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Abstract—In this work, we focus on solving a decentralized
consensus problem in a private manner. Specifically, we consider a
setting in which a group of nodes, connected through a network,
aim at computing the mean of their local values without revealing
those values to each other. The distributed consensus problem is
a classic problem that has been extensively studied and its
convergence characteristics are well-known. However, state-of-
the-art consensus methods build on the idea of exchanging local
information with neighboring nodes which leaks information
about the users’ local values. We propose an algorithmic frame-
work that is capable of achieving the convergence limit and
rate of classic consensus algorithms while keeping the users
local values private. The key idea of our proposed method is to
carefully design noisy messages that are passed from each node to
its neighbors such that the consensus algorithm still converges
precisely to the average of local values, while a minimum amount
of information about local values is leaked. We formalize this by
precisely characterizing the mutual information between the
private message of a node and all the messages that another
adversary collects over time. We prove that our method is capable
of preserving users privacy for any network without a so-called
generalized leaf, and formalize the trade-off between privacy and
convergence time. Unlike many private algorithms, any desired
accuracy is achievable by our method, and the required level of
privacy only affects the convergence time.

Index Terms—Distributed learning, private learning, leakage
measure, information-theoretic privacy, algebraic graph theory.

I. INTRODUCTION

N this paper, we focus on a classic distributed computing
I problem in which a group of connected agents aim to find
the average of their local values, also known as the consensus
problem. Due to applications of the consensus problem in
many domains, such as sensor fusion [1]—[3], distributed
energy management [4], Internet of Things [5], and large-scale
machine learning and federated learning [6], [7], it has been
widely studied in the literature [8]-[10].

A common feature in most classic consensus algorithms is
the requirement for sharing the local values with neighboring
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nodes. However, this approach is, indeed, problematic in
settings that nodes are not willing to share their exact local
value (opinion or belief) due to privacy concerns [11]. An
example would be in the case where members of a social
network aim to compute their common opinion on a subject,
but want to keep their personal opinions secret [12]. Another
example rises in the case where multiple parties in a financial
system seek to reach a summation (e.g., of bank capital) while
individual data is extremely sensitive. This issue has motivated
a new line of research which focuses on the possibility of
achieving consensus in a fully decentralized manner without
disclosing the initial nodes’ value.

To provide privacy in the consensus problem, the first step is
to define a measure that quantifies it. Differential privacy [13],
[14] is the most studied measure of privacy for an algorithm
running over a dataset. This notion measures the privacy
based on the statistical dependency of an algorithm’s output to
the perturbation of a single element of the input dataset.
Noting that the classic consensus method is a deterministic
procedure, the most common approach for a private consensus
algorithm in the literature is that each node perturbs its signals
by some form of noise such that the resulting stochastic
algorithm is differentially private [15]-[25]. However, these
approaches suffer from some drawbacks. Adding perturbing
noises affects the convergence properties compared to non-
private consensus algorithms in two ways: (i) It leads to a
non-exact limit, and (ii) it compromises the convergence rate,
i.e., it leads to slower convergence rates, e.g., slower than the
rates achieved by [8]. While some methods address the non-
exact limit by adding zero-sum correlated noise [11], [22],
no prior study has addressed both (i) and (ii) simultaneously.
This issue persists for any iterative method that perturbs in
some way the communication messages at each iteration either
randomly or in a deterministic manner. This includes works
that use methods like output masking [26], state decomposition
[27], splitting messages into segments and adding noise to
each segment [21], observability methods [28], [29], edge-
based perturbation methods [30], [31], and Homomorphic
encryption-based methods [32]-[34].

To explain how this paper deviates from part of the existing
literature, we highlight some specific characteristics of our
setting: (i) We aim to present a simple algorithm in terms
of both analysis and extension. In particular, we aim to fully
preserve the original classical averaging consensus structure
and protocol so that our methods can be implemented on the
existing averaging consensus platforms; (ii) We consider a
given graph structure rather than assuming that all nodes can
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communicate; (iii) We suppose that initial values are random
variables; (iv) We seek to deviate from the classical differential
privacy as a measure of privacy in our method, because given
the item (iii), the data collected at each node will be also a
vector-valued random variable Y. Assuming that the initial
value of interest is a random variable X due to (iii), the most
natural way of conducting a privacy measure is to ask: “Does
Y give any hint (information) about X” This is exactly what
the mutual information between X and Y projects.

With attention to the item (iv), investigating the connection
of mutual information and differential privacy [35] may be
relevant here. However, the results of [35] do not enforce
any implications on the subject we study in this paper. Note
that [35] defines a concept of mutual information differential
privacy where the concept of differential privacy is mapped to
the mutual information between two constructed distributions
and the paper shows an equivalency between such a measure
and the classical differential privacy. However, the notion of
the privacy discussed in this paper is not mutual information
differential privacy. In fact, it is based on the mutual informa-
tion between two quantities that are fundamentally irrelevant
to that of [35]. Hence, it is hard to project the results of [35]
here.

To elaborate how the specifications discussed in the earlier
paragraph separates the current paper from the existing work,
some instances are mentioned in the following. The works on
multi-party computation [36] in general try to design specific
and mostly discrete noise structures using coding-like schemes
so that they cancel out and return the desired consensus value.
In particular, [36] considers a setting in which all nodes can
communicate. These properties imply that [36] deviates from
our work according to the items (i) to (iv) mentioned in thee
earlier paragraph. Moreover, [11] can be differentiated from
our work in setting due to the items (i), (iii), and (iv).

Indeed, differential-privacy is a powerful measure for indi-
cating the level of privacy of a learning algorithm running
over a dataset. This is done by quantifying the statistical
dependency of the algorithm’s output to a perturbation of a
single input data point. This approach is best applicable when a
full list of data points is accessible by the adversary. However,
in a consensus setting, the data available at one user, i.e., the
messages it collects from its neighbors over time, is different
from the data available at other users. By injecting extra noise
to all communication messages in a consensus algorithm, the
differential-privacy approaches mask the private values against
an adversary that can eavesdrop all messages. The cost to
defeat this adversary appears on convergence side as discussed
above. However, in a setting that the adversary can gain
access to only a single node’s information, such approaches
provide more than necessary privacy with an unwanted cost. In
fact, the approaches based on the local adaptation of
differential privacy that build a dataset based on a single node’s
perspective are most compatible with extra noise injection
procedures that, as discussed above, fail to guarantee the exact
limit and the fastest rate simultaneously. Hence, to handle the
consensus setting with such type of adversary and asymmetric
data distribution, differential privacy may be replaced with
a more compatible privacy measure. There have been few

information-theoretic measures proposed to model the leakage
of a random variable to another. In particular, [37] proposes a
leakage measure L(X ! Y) that is based on some axiomatic
properties. This novel measure is neatly for telecommunication
purposes. However, finding an analytical closed-form for L
is challenging when the inputs consist of high-dimensional
continuous random variables that evolve over time. Such a
setting arises for the concatenation of all observed data by a
node over time. Based on this, for a consensus setting, using
simpler information-theoretic measures such as mutual
information is preferable.

Motivated by this point, we provide a novel information-
theoretic scheme to measure and analyze privacy leakage
in consensus problems. We further provide simple noise-
aggregation methods to reach the exact consensus in a private
manner while achieving the fastest rate that a non-private
consensus method can achieve. These advantages are based
on the fact that our proposed provably private averaging
consensus (PPAC) method only modifies the initial values of
the consensus dynamic and leaves the consensus procedure
intact. Moreover, we use a probabilistic model where the
private values are random variables, which makes our method
fundamentally different from most of the prior work. In
this probabilistic framework, we introduce a new measure of
privacy leakage based on the mutual information between the
initial value of a node and the set of messages that is available
at another node. In this way, we can capture how private the
initial value of a node is with respect to any other node in the
network. Most of our theoretical results hold regardless of the
shape of the distribution of noises and private values. Next,
we state our contributions:

1) Given a network structure and a consensus matrix, we
propose an algorithm for reaching consensus among the
nodes, while keeping the initial values private through-
out the algorithm and preserving the fastest rate that a
non-private consensus method can achieve.

2) We formalize a continuous notion based on the mutual
information function that measures the privacy leakage
of any (victim) node at another (adversary) node that can
be (optimally) tuned by our adjustable noise parameters.

3) We provide a precise characterization of the information
flow of a private value over the network over time. Hav-
ing this, even in ill-shaped structures that leak privacy,
we can determine the amount of information that an
adversary receives as a function of time and compute
the waiting time until recovering a private value.

In summary, this paper has two main messages: (i) Privacy
from a node’s perspective can be measured and efficiently
analyzed based on the concept of mutual information. (ii)
Splitting private messages into fragments prior to running
the classical consensus method maintains the convergence
guarantees and ensures the privacy for most structures. No
further additive noise is required.

Il. PRELIMINARIES

In this section, we first mention the notation used throughout
the paper and then recap some basic concepts required for
presenting our framework.
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Notation. Column vectors are denoted by small letters in
bold font, a; b, while matrices are denoted by capital non-
bold letters, A; B, and scalars by small letters a;b. For a
matrix A, wee denote the transpose of A by A”> while the
notation A' for a positive integer t indicates powers of the
matrix A, i.e., self-multiplying of the matrix A for t times,
eg, A2 = A A and A® to be the identity matrix with
same size as A. Moreover, faigiz| is considered as an ordered
sequence of mathematical objects aj, i 2 I. Concatenation of
ordered sequences is denoted by Cartesian product and when
the number of elements are finite, these ordered sequences are
considered as column vectors. For scalars aj, the following
example illustrates these notations:

faigizm;zg (as; as) fasg = [a1;a2;a3;as;as] : (1)

The right-hand side of (1) indicates a column vector with ele-
ments ai1; az; as; as; as. When aj s in (1) are replaced with row
vectors, (1) refers to the matrix with rows ai;az;as;aas;as.
Moreover, note that faig;,¢;,,, Can be interpreted as either
[a1;@2]> or [az;a1]>. In this paper, whenever the choice
of order is not specified, the argument holds regardless of
the choice. The identity matrix of size k is Ix and all ones
(column) vector of length k is 1x. We use both Ajj and
[A]ij to denote the ij-th element of the matrix A. Also,
we use [A]i and [A]; to represent the i-th row of A as
a row vector and the j-th column of A as a column

vector. Similarly, [v]i refers to the i-th coordinate of the
vector v. Further, A 0 means A;; O for all i;j and

diag(a1;:::;an) represents an n n diagonal matrix with a;
as its i-th diagonal element. If A = fag;:::;akg R", then
span(A) = f Py tiai j ti;:::;t 2 Rg. Further

[n]= f1;:::; ;ng and AT B represents set difference for sets
A and B. Flnally, jAj denotes the size of set A and for (real
or complex) scalar a, jaj denotes the absolute value of a.
Graph Theory. By G = (V;E), we denote a simple graph
where V is the set of nodes and E is the set of (undirected)
edges. The distinct nodes i and j are called neighbors if
fi; jg 2 E. Further, the neighborhood of node i, denoted by
Ni, is the set of all neighbors of node i. The degree of node
i is deg (i) = jNij. A walk of length k between i and j, is
the sequgnce of nodes (‘o; ‘1;:::; ‘k), where ‘0 =i, ‘x = ],
and all consecutive nodes are neighbors. A graph is called
connected if for every node pair, there is a walk between them.
The minimum k for which a walk of length k exists between
i and j is called the distance between i and j and denoted
by dg(i; j). The eccentricity of node i is the largest distance
we can get from node i, i.e., eccg(i) = maxjov dg(i;j) and
the radius of G is defined as r(G) = minjav eccg(i). The
adjacency matrix of a graph G with n nodes is an n n
matrix denoted by Ag, where [Ag] is 1iffi;jg2 E and 0
otherwise.

Matrix Theory. For matrices A ald B, we define A B if
for every i = j, Aj; = 0 if and only if B;; = O0.Spectral
radius of A 2 R"" W|th eigenvalues 1;:::;nis (A) =
maxiz[nifiijg. For A 2 R"", its minimal polynomial A is
defined as the unique monic polynomial with minimum degree
such that o(A) = 0. By Cayley-Hamilton theorem, deg(a) n
(see [38]).

Given an infinite sequence of vectors faig?! , where a; 2

R" and ap = 0, we consider a basis pursuit procedure which
constructs a finite subset B of the elements of the sequence
faigio such that the elements of B are linearly independent
and aj; 2 span(B) for all i and in this sense, it is a called
a basis for fajg_  and is denoted by B = B(faig=1 ).
The procedure is as follows: Add ap to B. For i > 0, if
ai 2 span(B), then add a; to B and go to the next iteration.
We formally prove in the supplementary material that this
procedure results in a basis for faiga,.
Information Theory. Consider continuous random variables
X and Y which are defined over spaces X and Y with
probability density functions (PDFs) fx and fy , respectively.
Moreover, let fxy (x;y) denote joint PDF of X and Y, then
their mutual information | (X; Y ) is defined as

z
folboy),

HX;Y) = (f (g oey: (@

fxvy (X;V“ng
XY

I1l. PROBLEM SETUP

In this section, we discuss the problem setup and the
restrictions under which the problem is solved. To do this, we
start by introducing the classical averaging consensus whose
concepts are used in the our setting.

A. Classical Averaging Consensus

Consider a network represented by a simple connected
graph G = (V;E) over a set of nodes V = f1;:::;ng
with m = jEj. We assume only adjacent nodes can exchange
information with each other. Moreover, suppose u; 2 R is
the initial value of user i. The main goal in the consensus
problem is to reach a state that all nodes in tpe network learn
the average of initial vectors, i.e.,, u = % (., Ui. Letting
vi(t) be the value of node i at iteration t which is initially setto
vi(0) = uj, one can consider a linear update given by

vi(t+ 1) = Wi vi(t) + Wijvj(t):

J2N;

3)

Here, W;; and W;; denote the corresponding coefficients of
vi(t) and vj(t), respectively, in the update formula of vi(t
+ 1). One can form a matrix W 2 R"" whose ij-th element
is Wij, called the consensus matrix. Having this, the averaging
consensus aims to have limy¢y1 vi(t) = u for alli 2 [n].
Letting v(t) [vi(t);:::;vn(t)]>, one can write v(t) =
W 'v(0) seeking to have |Imt!1 v(t) = u, whereu = ul.
This is equivalent to

(4)

It is known that Equation (4) holds if and only if (i) W1, =
W?>1, = 1, and (ii) (W 1=n1,]1>) < 1, where ()
denotes the spectral radius of a matrix; see [8] for more
details. Further, the convergence rate of (4) can be computed as
follows:

1
lim Wt= =1,17:
t 1 n

kv(t) ukzl
lim  kvtor—ukz =

1 >

v(6l)1=put W 1,1, (5)
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B. Problem Definition

Definition 1: Basics. We consider a network over n nodes
(users) with an underlying simple graph G = ([n];E). We
assume that each node i 2 [n] has a (secret) fixed initial
value u; 2 R and the quantities uj;i 2 [n] are continuous
independent random variables.

Communication. We assume that only adjacent nodes are
allowed to directly communicate. Except for one initial round,
all the communications are restricted to be synchronous broad-
casting, i.e., there is a clock that determines the communica-
tion iteration for all users and in each iteration, each user
has to broadcast some value to all its neighbors following by
an update of the form (3) for some given fixed weight matrix
W 2 R". Only in the initial round, users have still
synchronous but possibly non-broadcasting communications to
the neighbors, i.e., they may send different values to different
neighbors in the initial round.

Data. We assume that each node has only access to what it
receives from the neighboring nodes over time following the
communication protocol described above. This excludes the
possibility of colluding among nodes. p
Goal. The goal is that each node i obtains u = 1
without being able to recover u; for j = i from the data
described above.

To explain the setting we introduce in Theorem 1, the
adversary and privacy models are described in the following.
Adversary model. We assume all nodes are honest but
curious, meaning that they follow the protocols and commu-
nication principles of the network, but they might be willing
to recover the initial value of other nodes in the network. This
is equivalent to the situation in which an adversary obtains
access to the messages received by a single node. Moreover,
we assume that nodes (adversaries) do not collude in recov-
ering private messages and the underlying graph and the full
consensus matrix are accessible by all nodes (adversaries).
Privacy model. In this part, we further determine what is
means to recover an the initial in Theorem 1. Consider
arbitrary distinct nodes i and j and suppose node i is curious
about node j’s private value uj. Node i only has access to the
u; and all messages it sends to or receives from its neighbors
over time. Denote the concatenation of all these by Di. The
privacy fails if node i can deterministically recover u; from
D;. Otherwise, it is important to know how close node i can
statistically estimate u; using Di. This can be evaluated by
finding how much information D; reveals about uj which
can be formalized by the mutual information between the
joint distribution of the elements of D; and uj, denoted by
I(Di;uj) 2 [0;1]. Achieving zero mutual information is
impossible since the consensus goal u itself reveals some
information about uj. Upcoming sections reveal how tuning
the model’s parameters push | (D ; uj) toward 0 as much as
possible.

Next, we briefly mention our approach in achieving the goal
expressed in Theorem 1.

Approach. We consider the averaging dynamic described in
(3) under the constraint that the original messages u; must be
kept private from other nodes. Satisfying this requirement rules
out the naive initialization of vi(0) = uj. Therefore, we seek

n .
i=1 Ui

new initializations v;(0) in the first round of communication to
fulfill the privacy and convergence requirements while follow-
ing the consensus dynamic (3). We present this initialization
and rigorously analyze the privacy and convergence under the
model described earlier in this section.

C. Problem Extension

We assume that the initial values u; are scalar-valued contin-
uous random variables, but a similar argument is applicable to
a discrete case. Also, for a vector-valued u; with independent
coordinates, our results can be applied to each coordinate. As
we will discuss in Section V, the result of our privacy analysis
is proved for the case where the randomness sources of the
model are all Gaussian. However, the structure of our analysis
allows one to rebuild the results for other distributions.

As an interesting direction, one may think of extending the
problem to the case where the underlying graph is directed
rather than simple. It is important to note that the current
assembly of the analysis requires the graph to be simple.
To incorporate such an assumption, one must first setup a
meaningful model. To explain this necessity, suppose one node
io has only inward edges. Following our model described in
Theorem 1, this means no other node can incorporate u; as
a partial term in any update, i.e., the value of u; will’ not
appear in the final consensus and thus u cannot be achieved.
Despite these confusions, extension of this paper to directed
graphs can be an interesting direction if the model definition is
properly investigated.

IV. PRIVATE CONSENSUS

In this section, we first explain our method and then
introduce a privacy leakage measure in Section IV-A. As
mentioned earlier, the regular averaging consensus method
reveals the private messages at t = 0 due to the initialization
vi(0) = uj. We propose a new initialization for v;(0) that
preserves privacy while leaving most convergence properties
intact. The main idea behind the proposed method is the
following: If we modify the initial vectors vi(0) such that
their_sum preserveB the sum of the right local values uj,
ie, ,vi(0)= [, uj then by following the averaging
consensigs dynamic all nodes converge to the optimal value
u= 1 " . ui. Now our goal is to select these values so that
they do not reveal the original values fuigiz(n) or minimize the
amount of information that is revealed after a specific number
of communication rounds.

To do so, we proceed as follows. In the first round, which
we call the preparation phase, unlike the traditional consensus
approach, each node i does not send the same signal to all its
neighbors. Instead, it splits its private message u; into multiple
pieces and distributes it among its neighbors. All but one of
these pieces are pure noise terms, independent from u;. More
precisely, in the preparation phase, each node i splits its private
value uj into fragments ;, where j 2 N;. Hence, the number
of fragments is equal to the number of neighbors of node i.
These elements are selected such that all of them except one
are pure noise and their sum recovers the original signal, i.e.,

uj = X i (6)

J2N;
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Algorithm 1 Provably Private Averaging Consensus (PPAC)
Preparation-Phase:

1: for i 2 [n] do

2:  Node i picks mi 2 Nj arbitrarily.

3: For all j 2 Ni nfm;g: node i generates noise j and
sends it to node j p

4: Node.l computes im, = Ui i2Ninfmg and
sends it to node m;.

5: end for

6: for i 2 [n] do

7:  Node i computes: vi(0) = k2N, ki

8: end for

Consensus-Phase:

1: Nodes follow the consensus dynamic in (3) with initial
values fvi(0)gian].

Formally, to create such signals, node i arbitrarily chooses one
of its neighbors, which we denote by mj. For j = m;j, node
i sets j to be a continuous random variable, independent
from all other randomness sources. Then, node i sets
such that (6) holds, i.e., it sets

im.
1

X
= Uj ij-
j2Ninfmig

(7)

imi

The following indexing set S distinguishes all pairs (i; j) such
that j is a pure noise term.

S = (8)

Note that jSj = 2m n, where m = jEj. Randomness sources
in this model consist of n private values and 2m n pure noisy
messages. Next, we state the independence requirement.
Assumption 2: The concatenation of all 2m randomness
sources in Algorithm 1, i.e., fuigizin; T ij8 (5125 where
S is defined as (8) consists of independent eleme'nzts.
The choice of distribution for randomness sources is arbitrary
among continuous random variables with a valid PDF unless
otherwise is specified. However, it is beneficial to fix a notation
for their mean and variances as follows.
Definition 3: For i 2 [n] and (k;‘) 2 S, let; and 2 be the
mean and variance of u; and k- and 2 be, the mean and

variance of ¢+, respectively. Moreover, let max be the
maximum of the absolute value of all i and -+, and define .4
irca similar manner for variances.

Once the preparation phase is done and the messages ijare
communicated, every node computes its consensus ini-
tialization by summing up the messages tf};t it has received
in the preparation phase, that is, vi(0) = ~ ki- After
that, all nodes follow the consensus dynamic described in (3).
The steps of our proposed method (PPAC) are summarized in
Algorithm 1.

Note that PPACP preserves the Sum property after the prepa-
ration phase, i.e, _  vi(0) = " ui. To achieve the exact
limit, it is required to have W1, = W >1, = 1,. This implies
that the sgm property is_preserved dur'ng the consensus phase
too, i.e., © MP,vi(t)= " nL,vi(0)= " N, ou

f(i;j) ji2[n];j 2 Ninfmigg:

A. Privacy Leakage Measure

We first provide a mathematical definition to formalize
the notion of privacy leakage that was earlier described in
Section IIl. Then, we rigorously analyze this notion.

We start with mathematically formalizing the concatenation
of all data that a node i collects, which was earlier denoted
by Di in Section IIl. The first data available at node i is
its own private value u;. Next, in the preparation phase, it
generates f i'gon nfm g. Note that iy is a redundant data,
since it is simply the subtraction of other p'ure noises from u;. In
the preparation phase, node i receives f -ig-on  from its
neighbors. Moreover, when the consensus procedure starts, at
timet 0, node * 2 Nj transmits v/(t) to node i so that it can
compute its new update for the next iteration. Hence, up to
time t, node i has received values v+() for all * 2 Nj and 2

up to time t can be written as
Di(t) = fuig f i'82Ninfm;g
foigon, fvi)8aonor:

The notation D (1) is also applicable and represents all the
data that node i can gather if the consensus runs forever. To
measure the privacy leakage of u; at node i up to time t, we
consider the mutual information between D;(t) and u;j. This is
formalized in the following definition.

Definition 4 (Privacy Leakage Measure): Considering the
definition of Di(t) in (9), the privacy leakage of node j from
the perspective of node i up to time t is defined as

()

0(t) =1 (Di(t); uj) 2 [0;1): (10)

Note that smaller “)(t) means u;j is more private at node i
as less information js revealed about it.

V. MAIN RESULTS

Based on the private consensus method in Section 1V, our
main results can be stated informally in Theorem 6. Formal
statements regarding privacy and convergence are provided in
Section VI and Section VII, respectively. To present the main
results, we first must mention the definition of a generalised
leaf in the following.

Definition 5 (informal): We say there is a generalized leaf
with head j and tail i if either of the following cases occurs: (i)
When node i is the only neighbor of node j; (ii) When node j
is not adjacent to node i, and node j only has neighbors of
degree two and node i is adjacent to all of them; (iii) The
situation of case (ii) while the edge fi; jg is also added. An
illustration of these cases is provided in Figure 1.

Theorem 6 (informal): Running Algorithm 1 (PPAC) over
a network and assuming all randomness sources are indepen-
dent, we can conclude the following results:

1) For each node i, there are only finitely many iterations

private values strictly increases (Theorem 8). For the
latest of such iterations, i.e., tx, we find an upper-bound
tx n 1, where n is the number of all nodes (Propo-
sition 9), and a lower-bound eccg(i) 2 tx, where
eccg(i) is the eccentricity of node i (Proposition 10).
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2) If the network contains a specific sub-structure called a
generalized leaf, defined in Definition 13, some nodes
can deterministically recover the private values of some
other nodes in the first consensus iteration, i.e., privacy
fails.

3) If the network does not contain a generalised leaf,
no node can fully recover a private value (Lemma 11
and Theorem 14). In this case, (i”, defined in Def-

inition 4, measures the amount of leakage of u; to
node i, statistically. We obtain a closed form im(t) =
1=2|og(1+21a> 1a) for some vector a and matrix
(Theorem 12). In Section VI, we discuss the construction
of a and through several steps. In this construction, the
quantities 2, the. variances of noisy fragments

«s (k; ‘) 2°S, appear as linear terms in the elements of

. This shows that ) Jis a decreasing function in terms of
2 .\ Thus, increasing the tunable noise variances
decreases the information leakage.

4) PPAC leaves the convergence limit and rate of the
classical averaging consensus intact. Moreover, the con-
vergence time to achieve an -accurate solution by PPAC
scales as O(log(1=)) and it also increases proportional
to the logarithm of noise parameters (Theorem 16).
This shows that tuning 2 adjusts the trade-off between
privacy and convergence time.

Next, we discuss the novel techniques used to achieve
the above results. The baseline in obtaining our results is
transforming the information-/graph-theoretical formulation of
the problem into a linear-algebraic form by writing the data
collection at each node as a matrix-vector decomposition
Di(t) Ri(t)g, where g is the vector consisting of the
2m randomness sources of the model. As we show later, the
possibility of leakage and properties of information flow over
the graph can be translated into constraints on Ri(t).

While the size of g is fixed, each new iteration adds deg(i)
rows to Di(t) and Ri(t). The decomposition Di(t) = Ri(t)g
reveals that, after sufficiently many iterations, all new rows are
linear combinations of previous ones. This leads to the fact
that finitely many iterations t1;:::;tk have new information.
Moreover, we constructively find t1;:::; tx by running a basis-
pursuit procedure on the rows of Rij(t). As a next step,
we write each element Rij(t) as a function of the elements
of W!. Having this, we then use Cayley-Hamilton theorem
(see [38]) on matrix powers to show that ty n 1. The
aforementioned decomposition also paves the way to translate
the waiting time for node i to receive the first message
containing non-redundant information about u;j in terms of
the distance dg(i; mj), which leads to eccg(i) 2 tk.

Considering the data collection Di(t) on only non-
redundant data points corresponding to ti;:::;t. for r k
gives D] and accordingly R%. The next tool to obtain the
results of Theorem 6 is the fact that we translated the ability of
deterministic recovery of uj by node i into the rank-deficiency
of Rt when its j-th column is removed. Having this, the
core technique in obtaining the main results of this paperis
transforming the aforementioned rank-deficiency condition
into the existence of a specific substructure in the graph called

Fig. 1. All possible forms of a generalized leaf with head j and tail i: (i)
When node i is the only neighbor of node j; (ii) When node j is not adjacent to
node i and only has neighbors of degree two and node i is adjacent to all of
them; (iii) The situation of case (ii) while the edge fi; jg is also added.

a generalized leaf. A generalized leaf with head j and tail i
consists of i being connected to all degree 2 neighbors of j
(and possibly j itself) which is illustrated in Figure 1. While it is
straightforward to see why in a generalized leaf with head j and
tail i, node i can fully recover uj, it is far more challenging to
prove that this is indeed the only possible scenario for a full
recovery of some private value. We prove this fact based on a
refined analysis (see Section B-G) that shows, assuming there
are no generalized leaves, the j-th column of R" can be written
in terms of other columns and thus removing the j- -th column
does not decrease the rank of R". |

By distinguishing the only case for a full (deterministic)
recovery, the next step is to analyse and reduce the partial
(stochastic) recovery of private values. With no generalized
leaves in the graph, under Gaussian distribution for all random-
ness sources in the model, we then show that joint distribution
of the elements of D is a non-degenerate Gaussian that
has an invertible covariance matrix and compute the mutual
information between this joint distribution and u . Th|s leads to

a closed-form expression for “)(t) and shows how it can be
decreased by the model’s tunable parameters.

VI. PRIVACY ANALYSIS

In this section, we first introduce a representation of Di(t) in
the form of a matrix-vector decomposition (Section VI-A), and
then use it to formally state our results on privacy (Section
VI-B).

A. Matrix-Vector Decomposition for Dj(t)

To obtain Theorem 6, we start by finding a representation of
the elements of Di(t) in terms of the randomness sources of
our model. To this aim, let 2 R"" be the matrix whose ij-th
element is j; defined in Algorithm 1. Based on the
preparation phase, we have v(0) = ~1, which results in

v(t) = Wiv(0)= W' ~1,

) vi(t) = [v(t)];= W' 71, '=
Recall that []; denotes the i-th row. Consider all the (in-
dependent) sources of randomness in our model which are

fuig. and f .,g( 25 . Equation (11) implies that vi(t)
can |oe written as a hnear combination of these quantities.

whti “1,: (11)
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The following expression suggests a notation for this linear
combination:
X X
vi(t) = I () u; +
j2[n]

e (t) e

(k;")2s

(12)

(11) implies that the coefficients in (12) can be obtained in
terms of the elements of [W'], as
i(+) = Wt . i it
'('t)—Wimj, ',k(t)-Wi,
j
To express (12) in a vector-multiplication form, we define g to
be a 2m-dimensional (column) vector that is the concatenation
of all sources of randomness and pi(t) to be the concatenation
of the coefficients as follows: (Note that g; pi(t) 2 R2™.)

Wtimk (13)

8= fuigjn f «Bass

. : 14
pilt) = 50 0 k() (5 ()

Hence, vi(t) can be written as
vi(t) = p7(t)g: (15)

Similar to vi(t) in (15), other elements of Di(t) are also
linear combinations of the elements of g and can be written in
vector-multiplication forms in terms of g. To this aim, we can
consider matrices ;i and ; (where both are of size degg(i)
2m) such that

fuig f ilg’ZNinfm“g = |gl f lig’zNi = ig: (16)

Putting together the representation of the elements of Di(t) in
terms of g in (15), and (16), we obtain the matrix Ri(t) by
vertically concatenating the matrices i, i, and appending
vectors p«(t) to the end. More formally, to be compatible with
our notation for concatenation of vectors, we write

Ri(t) = flilsg, flilsgs pr () oy, 005 Dilt) = Ri(t)g:
(17)

Since we set the notation only for the concatenation of vectors,
to concatenate matrices ; and ;, we first split them into their rows
and then concatenate the rows.

B. Formal Statement of Privacy Results

In this section, we formally state the privacy results using
the linear-algebraic representations obtained in Section VI-A.
As the first step, we seek to spot the iterations at which
node i receives a message that contains new information.
To do so, we define as as the s-th row of Ri(t) for some
t s. We then run a basis-pursuit procedure over fasg 1 ,
as described in Section Il. Suppose B(fasg! ) is the Basis
obtained by the basis-pursuit scheme. It is sst?gightforward to
confirm that the elements [i]s and [i]s, for all s, are all
linearly independent and lie in this basis. Denote the rest of

B(fasgl.,) =

flils :sgl flilg :sgl  pj, (ta)i::o;p; (t)” : (18)

We want to show that the elements of B(fasgio) are all the
data points at node i that matter and the rest of data points
are redundant. To this aim, consider the following definition.

that t; t.
Next, let D] be the accumulated data that considers the data
points corresponding to the informative sequence at node i,

(19)

As a next step, we seek to formally show that the information

content of Di(t) equals that of D?m, with g(t) defined in
Definition 7. This claim is proved in the following statement.
Theorem 8: Consider Algorithm 1 with n 2 under
Assumption 2. Moreover, consider q(t) from Definition 7. Sup-
pose 0 t 1 is given and letr = q(t). Having D! defined
in (19), for any j = i, we have I(Di(t); uj) = I (D% ; uj):
Proof Sketch: We consider the rows of Di(t) as a
sequence of vectors. We then run a basis-pursuit procedure
described in Section Il that leads to the construction of D .
As a result, each row of Di(t) can be written as a linear
combination of the rows of D{ and thus it can be easily shown
that the information content of Di(t) lies in D{. A detailed
proof is provided in Section B-B. m
Theorem 8 implies that | (Di(1); uj) = | D:‘ ; uj , sug-
gesting that all but finitely many messages are redundant.
The following proposition upperbounds the largest informative
time instance tg.
Proposition 9: Consider Algorithm 1 under Assumption 2

node i. If w is the minimal polynomial of matrix W, then

ty deg(w) 1 n 1: (20)

Proof Sketch: On one hand, Equation (13) shows that the
coefficients in (12) can be obtained in terms of the elements
of [W'], . On the other hand, having = deg(w), one can
write Wt for t in terms of smaller powers of W. This
means the rows of Di(t) for t can be written in terms of
previous rows of Di(t) and no information is added for t .
Hence, for the last informative instance tg, we get ty 1.
Further, by Cayley-Hamilton theorem from linear algebra, we
have n. A detailed proof is provided in Section B-C. [
Proposition 9 states that no more information about private
values will be exchanged after n rounds of consensus and from
then all the messages throughout the network are redundant.
Hence, up to t = n, it can be determined whether or not
an adversary is able to recover a private value. It is also
interesting to know how many consensus rounds a (curious)
node i must wait to hear about uj for the first time. The
following proposition is dedicated to this result.

Proposition 10: Consider Algorithm 1 under Assumption 2

node i from Definition 7. Further, suppose the underlying
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graph is connected and for the consensus matrix, W, we have

W 0,and W Ag. Lett= " be the minimum t such that ()
deﬁneg:l in (13) is not zero. Then = dG(iJ_; m;) and r(G)
2 eccgl(i) 2 tx.

Proof Sketch: In the proof, we use the construction of
the D! and the fact that each element of W' can be written
as a sum of products of the elements of W over all walks
of length t in the graph. The result verifies the intuition that
in order to make sure that all the information content of the
graph has reached out to node i, we must wait at least until
the time when the information of the farthest nodes to i (i.e.,
nodes whose distance to i is eccg(i)) has arrived to node i.
A detailed proof is provided in Section B-D. [

Analogous to (16), we can define the data collection on
non-redundant data based on the concept of the informative
sequence at one node and its representation in terms of g in a
matrix-vector multiplication format. To this aim, first consider

Rir = f[i]sgs f[i]sgs pi.(t) 17 % (21)

3 P

and note that RE is a full row-rank matrix. Equation (21)
represents all the informative data points at node i in terms of
the model’s randomness sources, i.e., in terms of the elements
of g. In this representation, each column of R corresponds to
the coefficients of one randomness source for all data points.
As we show later, the difference between the rank of R| before
and after removing the column corresponding to a private value
determines the privacy-preserving properties of the network.
Towards this argument, let Rri; be the matrix obtained by
removing the column corresponding to uj. We use j to
emphasize that this column is removed. Two cases are possible
in this situation:

Case 1: rank Ri; j = rank(Rir); (22)
Case 2: rar']k Ri; j = rank(Ri ) 1:
(23)

We will show that under Case 2, node i can deterministically
recover uj while under Case 1, this is not possible. We start
by presenting the following lemma stating that under Case 2,
the privacy fails.

Lemma 11: Consider Algorithm 1 with n 2 under
Assumption 2. Moreover, consider r = ¢(t) from Definition 7
and suppose (23) holds for some j = i. Then node i can fully
recover uj using D'.

Proof Sketch: Using the facts from linear algebra, we
explicitly obtain u; in terms of the elements of D{. A detailed
proof is provided in Section B-E. [ |
Lemma 11 shows that under Case 2, node i can deterministi-
cally recover uj, meaning that u; is a deterministic function of
D (t). Since we assumed all the random variables in our model
are continuous random variables, this leads to “?(t) = 1.
Next, in Theorem 12, we obtain a closed-form ex'pression for
“i) (t) under Case 1, which implies that el (t) is finite under Case
1. This implies that u;j is not a deterministic function of D;i(t)
and thus node i cannot fully recover uj using Di(t). Thus,
Case 2 holds if and only if node i can deterministically

recover uj. To analyse Case 1, we need to define S j in
the following, which is the covariance matrix of g when the
element u; is removed:

. 2(ka5 (24)

- di .2
S j = diag i i2[nlnfjg k

Note that the parameters in (24) are previously defined in
Definition 3. The following theorem computes mi(t) under
Case 1, for a Gaussian model.

Theorem 12: Consider Algorithm 1 with n 2 under
Assumption 2. Suppose 0 t 1 is given and let r = q(t) as
defined in Definition 7. Moreover, suppose Equation (22)
holds and assume that all random variables us; s 2 [n], and

k; (k; ‘) 2 S, have Gaussian distributions. Then, for j = i

i 1
U(t)= "log 1+ %a” 'a; (25)
2
where a = [Rf]. ,and = R;, ;S jR;.
Proof Sketch: Considering X = uj, we show that the

information content of D| about X lies in the variables of the
form X + ax Yk where Yi’s are independent. We then compute
the mutual information of X and the concatenation of such
variables. A detailed proof is provided in Section B-F. m
Note that for (k; ‘) 2 S, the quantity 2 «1-e., the variance of
the generated noise term - lies in the diagonal of S j. As
a result, U)(t) is a decreasing function of 2 . Since we are
free to choose 2 , wg.set them large enough to decrease (J)(t)
close to its minimum. However, the cost of increasing 2
appears in the convergence time. This result is fqrmalised in
Theorem 16 and the effect of increasing 2 pn (”(t) is also
evaluated in the simulations (see Section A).

As the next step, to avoid Case 2, we investigate under what
conditions Case 1 and Case 2 hold. To this aim, the notion of a
generalized leaf is introduced.

Definition 13 (Generalized Leaf): Consider graph G =
(V; E) with distinct vertices i;j 2 V where fi;jg may or
may not be in E. Then, G has a generalized leaf with head
j and tail i if either Nj = fig or for every s 2 N; nfig, we
have degg(s) = 2 and s 2 N;.

A generalized leaf is a generalization of a leaf (i.e., a node
with degree 1). Figure 1 illustrates all possible forms of a
generalized leaf with head j and tail i. For a generalized
leaf of head j and tail i, node i can recover uj in the first
iteration of the consensus. To see this, suppose s 2 N;j. Node

s receives s and js in the preparation phase and initializes
its consensus by is + js. Node i knows s and has also
received s + s from node s in the first iteration of the

consensus, thus it obtains js. Since node i is adjacent to all
neighbors of j, node i recovers js for all s2 Nj. Summing
these reveals uj to node i. Next theorem guarantees that this
is the only troubling case.

Theorem 14: Consider Algorithm 1 over a connected graph
G. Then (22) holds for every distinct pair i;j 2 [n] and all

Proof Sketch: While the non-existence of a generalised
leaf is enforced, one can discuss about the elements of R"; and
uses a subtle case by case proof to show that in all cases, the
column of R corresponding to u; can be written as a linear
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combination of other columns and thus it can be removed from
R without rank reduction. Hence, (22) holds. A detailed proof
is provided in Section B-G. [ |

VII. CONVERGENCE ANA YSIS

Next, we study the convergence properties of Algorithm 1.
We first formalize the notion of convergence time based on
the waiting time required to achieve an -accurate estimation of
the convergence limit. We denote this quantity by t and define
it as follows.

Definition 15: For > 0 and v(t) in (11), let t be the
minimum time t such that kv(t) uk 5
Note that the convergence rate (5) is conceptually different
from the convergence time defined in Definition 15. While the
rate represents the ”slope” of a convergence, the convergence
time refers to the time when the iterations arrive to the vicinity
of the solution. This for example, implies that a larger distance
between the initial values and the final solution leads to a
larger convergence time under the same convergence rate.
Having this definition, the convergence results of this paper
are summarized in the following theorem.

Theorem 16: Consider Algorithm 1 (PPAC) under As-
sumption 2. Further, suppose W1, = W>1, = 1, and
(W 1=n1,1n>) < 1. Then, we have:

1) In the limit, PPAC converges to the exact solution, i.e.,

limerg v(t) = u.

2) The convergence rate in part (i) is the same as the
convergence rate of an ordinary (non-private) consensus,
meaning that (5) holds for PPAC too.

3) The expected convergence time for achieving an -
accurate solution is

E[t]= O

ax ax

log ; (26)

where max and 52 are from Definition 3.

Proof Sketch: We follow simple algebraic computations
after writing the initial values v;i(0) in terms of the random-
ness sources of the model. A detailed proof is provided in
Section B-H. [
Note that the conditions W1, = W>1, = 1, and (W
1=n1,17) < 1 are essential for the fundamental convergence
properties of the classical averaging consensus, as mentioned
in Section Il. Further, we refer to Section A for simulation
results on convergence.

Remark 17: The trade-off between privacy and the con-
vergence time in our model can be explained as follows. In
Section VI, we mentioned that increasing 2 for (k; ‘) 2 S (or
similarly 2 max) decreases the privacy leakage “)i(t) due to
Equation (25), while it increases the convergence time due to
Equation (26). Hence, the quantities 2 for (k; ‘) 2 S can be
seen as the tuning parameters that adjust the position in the
trade-off between privacy and the convergence time.

VIII.

In this work, we introduced a novel private consensus aver-
aging algorithm and analyzed its privacy from an information-
theoretic perspective. We specifically used the mutual infor-
mation function between all the information available at the

CONCLUSION

adversary node and the initial value of the victim to measure
how private the value of the victim is with respect to the
attacker. Our results show that the convergence rate of our
proposed method is similar to the convergence rate of a classic
non-private consensus method, for any level of privacy. More
importantly, any level of accuracy can be achieved via our
proposed method. Our results also show that there exists a
trade-off between the level of information-theoretic privacy
and convergence time.

APPENDIX A
SIMULATIONS

In this section, we provide simulations as a visualization to
theoretical results of this paper. Consider a private consensus
problem with the underlying graph G consisting of n = 6
nodes as shown in Figure 2. The vector of private values
is denoted by u =
is independently generated from the normal distribution with
mean 0 and standard deviation o = 10, i.e., uj N(O;E) =
N (0; 100) for all i 2 [6]. The specific realization of this
example was u = [2:30; 4:40; 6:17; 2:75; 6:01; 0:92]> with
average u = 1:7. We then ran Algorithm 1 (PPAC) over this
model. For each node i, we chose m; uniformly at random in

(2;4; 4;3;4;1). All the pure noises are independently gen-
erated from normal distribution with mean 0 and standard
deviation n , i.e., ij N(0;2 ) for all (i;j) 2 S. Inall
cases, we use the following corbensus matrix: W = I,
1=dmax(Dec Ag), where |, is the identity matrix, Dg =

First, Gne might beCinterested in observing a reali%ation
of the pure noises and the corresponding dynamics (con-
vergence) of nodes’ messages for such a realization. For
this purpose, we set n = 15. Note that PPAC generates new
initial values for the consensus different from u but with the
same average. Under the aforementioned realization, the new
initial values were v(0) =
16:49; 20:11; 20:78; 23:08; 28:70]”. Figure 3 shows the
convergence of vi(t) for all nodes in terms of the iteration
number (time) t. As it can be seen, all nodes converge to the
same value, which is the true average u = 1:7.

The second plot of interest answers the following question:
While the initial values are kept fixed, how does the total con-
vergence error over time behave when we increase the variance
of pure noises | ?generated by Algorithm 1? To this aim, we

Consensus updates vi(t)

0 5 10 15 20 25
Iteration number t

Fig. 2. The graph G. Fig. 3. One realization of the con-
vergence of vi(t) in terms of t for

all nodes using N = 15.
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Fig. 4. The total convergence error Fig. 5. The leakage of node 1 at

node 4, ie., (1)(1) in terms of

generated noises’ standard deviation
yforvalues 5 15,150, 1500, I-€-

15000, 150000, 1500000 on a loga-

rithmic scale.

kv(t) uk ,in terms of iteration
number t for'a wide range of gener-

ated noises’ standard deviation y ,
for values Ny = 15, 150, 1500,

15000, 150000, 1500000.

plot the total convergence error, i.e., kv(t) uk_ in terms of
time t for different values of n . We consider a wide range of
values, that is y = 15; 150; 1500; 15000; 150000; 1500000.
Recall that the generated noises ij; i 2 [n];j = m; are
realizations from the normal distribution with mean zero and
variance 2 and thus the quantity kv(t) uk is affected by
particular r¥alization of the values ij- To release the plots from
this randomness, we generated 100 realizations of i; and
averaged kv(t) uk for each t over these realizations. Figure
4 shows the resulted plots?As it can be seen, Figure 4 agrees
with Theorem 16 and shows that increasing the variance of the
generated noises ij; (i;j) 2 S affects the convergence time t
of achieving a given error only by a logarithmic factor. Note
that the y-axis is in logarithmic scale.

(o)

@
p

Leakage 7

Fig. 7. The leakage of node 2 at node
1inG = Cn, i.e.,(zl)(l) in terms of
generated noises’ standard deviation y
for values y = 15, 150, 1500, 15000,
150000, 1500000 on a logarithmic scale
for values n = 10; 20; 30; 40.

Fig. 6. The graph G = Cq.

As the next step, we run experiments to visualize our privacy
results. Note that graph G in Figure 2 does not contain any
generalized leaf that are illustrated in Figure 1. More generally,
it is interesting to know that any graph over n 5 nodes that has
a cycle of length n cannot contain a generalized leaf and is
therefore a private structure. Hence, due to Theorem 6, the
privacy of every node is preserved at every other node in this
example. Having this, one might be interested in computing the

leakage measure i(”(t) defined by Definition 4. This quantity
can be computed based on Theorem 12. We are interested in
considering all the data that one node can collect over all

times through Algorithm 1. Therefore, we consider i(”(l),
i.e., the maximum leakage of node j at node i. Here, we

10

consider node i = 4 is curious about j = 1. Recall that in this
experiment, we let all the generated noises have a common
variance 2 Due to (25), we know that increasing 2
decreases “i)(l) = | (D (1) ; u ) through a logarithmic
function. This is plotted in Figure 5 for (41)(1). Note that
the x-axis is in logarithmic scale. Few important items are
worth mentioning about this figure which are discussed in the
following:

First, as it can be observed, there is a ceiling on the achiev-
able amount of privacy. This is due to the fact that some
amount of information will unavoidably be transmitted by the
construction of consensus model. For instance, the average of
private values to which all nodes will converge, contains some
amount of information about each private value. Second, since
the scale is logarithmic, choosing smaller values of n can
provide almost the same privacy level that extremely large
values can but smaller values of y provide better convergence
time as discussed in Figure 4. Hence, one might choose y to
be smallest value for which the plot in Figure 5 is almost flat.
n = 1500 seems a good option.

Following the above discussion, we know that the consensus
problem inherently reveals some amount of information. For
instance, the limiting value u which is achievable by all nodes
partially reveal information about each u;. We know that part
of the information is leaked due to achieving the exact average
u. This can be computed as | (u; uj) = 0:5log(1+1=(n 1)) in
the case where u; s are Gaussian. This expression also
suggests that when n is large, less information will be naturally
be revealed by u. One might ask if PPAC also provides a
smaller leakage for a larger n and thus higher levels of privacy
are achievable by PPAC as n gets larger. It turns out that
the answer is a yes. To numerically evaluate this notion, we
consider the underlying graph to be a cycle of n nodes G = C,
(see Figure 6) and we suppose one node is curious about its
neighbor. For the sake of clarity choose node 1 as the curious
node (attacker) and node 2 as the victim. Any two neighbors
can be chosen due to the symmetry. Figure 7 shows a similar
plot as in Figure 5 for G = Cp, evaluating (2)1(1) in terms of
n When the total number of nodes n is increasing, i.e., n =
10; 20; 30; 40. As it can be seen in Figure 7, larger networks
provide lower levels of privacy leakage.

N

APPENDIX B
PROOFS

A. Further Notations

For a matrix A, jAj = jdet(A)j and for a set A, jAj is
the number of elements of A.

For a matrix A, A 0 means that A is a positive
definitive matrix.

matrix with these columns.

For a 2 R, dae denotes the smallest integer greater than
or equal to a.

X ? Y:X and Y are statistically independent.

For a multidimensional random variable X: x =
Cov(X) is the covariance matrix of X.
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random variable X: 2 =

For a one-dimensional X

Var(X) denotes the variance of X.
The indicator function with condition C is denoted by 1¢.
Therefore, 1¢ = 1 if C holds and 1¢ = 0 otherwise.

B. Theorem 8

We first formally prove the fundamental property of a
basis-pursuit procedure. Then we express a lemma stating
that redundant data can be ignored when computing mutual
information. Equivalently, if there is a spanning set that
generates all other arguments of a mutual information function,
considering this spanning set is enough and other elements
can be ignored. The proof is based on the fact that the
basis resulted from a basis-pursuit procedure is an example of
such spanning sets. We start by formally proving fundamental
properties of a basis-pursuit procedure

Lemma 18: ConS|der fa.g o Where a; 2 R" with ap = 0
and let B = (fa|g o) be obtained from a basis pursuit
procedure. Then, ij < 1 and the elements of B are linearly
mdependent Let B = fa¢ ;:::;ar g where 0= t1 < t2 <

: < tg. Then for every i O, Iettmg r be the largest number
such that t, i, we have

ai 2 span (fag;:::;a,g): (27)

Proof: By construction of B(), any finite subset of B is

linearly independent. Thus, jBj dim (R") = n. Moreover, if

tr = i, (27) trivially holds. Therefore, suppose t; < i and a;j
2 span (fat it g) then by construction of B(), we have
ai 2 B and thus i = t- for some ‘ > r which contradicts the
definition of r. m

As the next step, we prove that a spanning subset of a dataset
contains all the information of that dataset.

Lemma 19: Suppose Y is an n-dimensional and X is an
arbitrary random variable. Further, suppose a;:::;ar 2 R"

i2fs+ 1;:::;rg there eX|ts i1;::;is 2R such that aj =

i1a1 + :::+ jsas. Let denote the matrix with elements jj
and write
(as+1;:::5ar) = (a1;:::5@s) 7 (29)
Hence,
ag+qY;:::;@7Y = Y7 (as;iii;an)
To=Y7 (aas)”
= Y’aq;:::;Yas (30)
=f ajY;:::;as

11

Let Z = (ai1;:::;as). From (30), a> Y;:::;a%Y =
f(Z), where f() is a deterministic functien. This results in

= | alY """ ;a3 yY; as+1Y """ ;ar Y 5 X
= | (z;f(Z); ) (31)
=1(Z; X)

I ajY;:::;@°Y; X

Proof of Theorem 8: Consider Ri(t) from (16). TheM
as is defined to be the s-th row of R (1) or more rigorously,
the s-th row of Rj(t) for some t s. Moreover, consider the
related basis from (18). When finding B(fasg ) the basis-
pursuit procedure adds to the basis all the rows of matrices
i and i. This holds because one can confirm that in the
concatenation of these two matrices, i.e.,

B (32)
I
each column has at most 1 non-zero value (the non-zero values

are either 1 or 1) and each row has at least one non-zero
value. The basis pursuit then continues by evaluating p«(t) for

2 Nij and t O and chooses pj (tl)"::;pJ (tk), where
((a;t1); :: 05 (jk; tk)) is the informative sequence of node i
(see Deﬁnltlon 7). Define
Ar =f[il, : 1 s deggli)g
[ flils:1s dege(i)g (33)
[ pi,(ta);:::5 85 (
Using the notation as, Di(t) and Dri (for every r k), can
be written as
Di(t)= as g <& . g (e,
'r X 0;:::;t+2 de ¢ (34)
Di= a8 ,,a, "

Due to Lemma 19, for 0 s t+ 2degg(i) and r = q(t),

as 2 span(A;): (35)
Having (34) and (35), the result follows by applying
Lemma 19 in whichY = g and X = uj. ]

C. Proposition 9

Proof: Let = deg(w) and denote the coefficients of the
minimal polynomial w () by
wi(X)=X +a 1X Y+ :::4 apl: (36)
Having w (W) = 0, W can be written as a linear combi-
nation of W% :::; W 1. Using induction, this also holds for
any W' when t Therefore, for every integer t 0, there exists
do;:::;d 1 such that
Xl
wt= asW*: (37)
s=0

Having (13) and (37), we conclude that for any t 0 and

every q;j; k; “2 [n] with j = g and (k;‘) 2 S:
x1 x1
a4t) = ats);,  yt) = as%y(s): (38)
s=0 s=0
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Having the definition of pq(t) in (14), for every q 2 [n] and
t 0, (38) results in

Xl

dspq(s):
s=0

Pa(t) = (39)
Note that (39) holds for every q 2 [n], particularly when q 2
Ni. Considering g 2 Nj, (39) leads to the fact that for very
t 0Oand “ 2 N,

p-(t) 2 span(fpq() : 92 Ni; O 1g): (40)

Hence, tk 1= deg(w) 1. Moreover, due to Cayley-
Hamilton theorem, for any n n square matrix W, we have
deg(w) n. [ |

D. Proposition 10

Proof: The statement has two parts and the proof will be
enumerated accordingly.

1) For the adjacency matrix Ag of a simple graph G,
[AtG]i. has a combinatorial meaning. It is equal to the
number of walks of length k between the nodes i and j.
For a consensus matrix W Ag, W can be obtained
from A by replacing the 1s and (possibly) the diagonal
elements of A with some non-negative numbers. Similar
to [At] , [W?' can also be represented combinatori-
ally. To'this aim’ define
t(i;j) to be the set of walks of length t between (i;j),
that is

(41)
so=i;st=j;8q2 [t]: fsq;5q 182 Eg:

Based on the definition of matrix multiplication, we can
write

X y1

(W] (42)

SqSq+l °

Having (42), if t < dg(i; mj), then there is no walk

of length t between i and mj, i.e.,
t(i;m;) = ; and i‘rg]t_) = [WT] = 0. Now for t
= de)ti; m;j), there eéxists at least one positive term

(corresponding to each pgth of length d (i; m )) in (42)

which resultsin ' (t) = [W] > 0. Thus, 1) exists and

equals i !
de(i; mj). This completes the first part.

2) Suppose jo = argmaxsyin) de(i;s) which leads to
de(i; jo) = maxsy[ny dali; s) = ecc(i). If da(i;jo) 2,
the result is trivial. Suppose dg(i;jo) 3.1t
suffices to prove that tg de(i;jo) 2. De-
fine io = argminsan dg(s; mj ). We claim that
t«  dc(io;m; ). The claim then leads to tk
de(io; mj ) de(3jo) 2. The claim can be proved as
follows: When we run the basis pursuit over the
sequence fasgs to obtain (18), consider the jo-th co-
ordinate. For example, such a coordinate in p<(t) is
" (t). Note that p; (t) with t = dg(io; m; ) lies in
thie basis because theojo-th element of [i]s andd;]s for all
s are totally zero and the first time in the basis pursuit
that the jo-th coordinate is not zero occurs at

12

t = dal(io; mj,) in pi, (t). Due to this, pi (t) does not
lie in the span of the latest updated basis and must be
added to it. Note that ti is the time when the final vector
will be added to the basis, hence, tk dg(io; mj,).

E. Lemma 11

Proof: Suppose g j denotes g after removing the j-th
coordinate (which corresponds to uj). Then, we can rewrite
(21) in the following way such that for every valid index s:

Dy L= [Ri log=[Rilju+Ry g5  (43)

Note that the notation []s denotes a row vector. Under Case 2
given in (23), there exists a row sp of R' i that is a
linear combination of other rows of this matrix, i.e., there exist
coefficients s 2 R such that
Ri - = X

s, (44)
Multiply both sides of (43) by s for all s = sp, then sum over
all these values and subtract the corresponding equation for s
= so from it. This leads to:

0 1
X r
@ s [D']A (D",
Yo 1
=@ S[Rr]isj [Rr]iSOjA uj
S=S
[ } (45)
0 ) 1
X A
r r L
+@ sRl, JSJ Ri jSoj g J'|
S=So
{z }
=0 from (44)

Note that the first term is definitely not zero because otherwise
Case 1 (22) holds rather than Case 2 (23). From (45), uj can
be obtained by the observed data points of node i uptot= t,
as the following:

[R]

(]

[RY]

s=sg i"soj |
P :
s=sg S [Dirs [Dirs(;

Moreover, note that in (46), R{ only depends to the underlying
graph G and matrix consensus W both of which are known to
all nodes. Hence, uj leaks before time exceeds t. [ |

(46)

F. Theorem 12

For the sake of clarity and ease of computation, we need
to state and prove two intermediate lemmas before proving
Theorem 12. The first lemma is just a formal computing of a
combination of normal random variables.

Lemma 20: Suppose X is an arbitrary multi-

dimensional non-degenerate random variable i.e.,, x is
invertible and A 2 R"™ is a constant matrix. Then

E[(X E[X])7A(X E[X])]= tr(Ax).
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1
Proof: Letting Y = 2 (X
1 1

In. Hence,

E[X]) gives E[Y] = O

and y = sz)(z =

E[(X E[X] )>A2(x E[X])]

3
=E4Y> ,7A Y5
[y
° 3 (47)
X
=E4 BijYiY;5
i;j
= tr(B) = tr yAy = tr(Ax):

Lemma 20 eases the proof of the following lemma that corl®
putes the mutual information with specific form of arguments
that will appear later in the proof of Theorem 12.

mal where X ? Y = (Y1;:::;Yk)” and assume vy is
invertible. Then

Proof: Denote | =
and Z = X +a’yY =

| =
(48)
tiidzk:

To obtain the joint distribution of (X;Z), the following
transformation is useful:

¥ T ox

which results in

det(J) = 1; (49)

J=&g(;

fx;z(x;z) = fx;v(x;z  ax) = fx(x)fy(z ax): (50)

By replacing (50) into (48) and cancelling out the term fx,
we get

z oy )
fy (x)fy (2 tviz  ax)

ax) log Y dxdz: (51)

fz(z)

To compute the terms in (51), we need a quick discussion.

Letting Y N (y;v) and Z N (z;z), we know that
z =y +ax; (52)
and we can relate ,and  as follows:
X X Cov
=JC i
ov, .
T X
0 Y y + 2 aa>x
=) z =y + % aay: (53)

13

Since v 0, from (53) we conclude that ;7 0 and thus 7 is
invertible. Therefore, v 1 and , 1 exist. Having this,
we can write
f
v(iz ax) _ (54)
flz (z)
.1 1
J2) exp (z ax ) 1z ax )
.. 2 Y Y Y
Jv)?
+1 > 1
2(2 z) (zZ z)

Replacing (54) into (51) leads to the computation of (51) in

three terms as follows:
Il =11+ 12+ I3; (55)

where the first term |1 equals

Z L . .
Fe(x)fy(z  ax)log Y dxdz = _ fog 233 ¢s6)
ik o2 2 iy
The second term is
Z
o= 3 fx(x)fy(z ax)(z ax v)~
v1(z ax y) dzdx=
1 z h . . i
— fx(X)EY (Y y) ({Y Y) dx
27
= % fx(x)tr 'y dx due to Lemma 20
Z
= U e (%) dx = ;: (57)
And the third term can be obtained as follows.
Z
Is= 2 fx(x)fy(z ax)(z z)° 1(Zz z) dzdxZ
2
=3 KOOEVIY+ax 2)7 (Y +ax o)ldx
(58)

For each given x 2 R, we can compute the argument of the

integration in (58) as follows.
i

Ey (Y+ax ) >H(Y+ax ),
h i
= Ey (Y v) M (Y v) (59
FEYT2(Y y) Tlaxey 2) (80)+ (ax
+v z) Max+y  2): (61)

To compute the right-hand side of the latest equation, note that

(59) can be obtained using Lemma 20 as follows:
i
Ev (Y v) ZH(Y v)
= tr Zlv
=t ,' ; x ad” due to (53)
= tr(l)
>

=k 2@ ‘a

2tr ;taa”
(62)
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Having (62) together with the fact that (60) is zero and
replacing v z = ax in (61), we can put together

the three terpps and write i
> 1

Ev (Y+ax z) 1@Y+ax z)
2 > 1 >21 (63)
=k “x@ "a+(x x) a’; a:
Replacing (63) in (58) leads to
1
3= =k 2@ la
L, 2
+ §a> la fx(x) (x  x)%dx
_k 1, 1 > 1 1. _ . k (64)
=35 5 @ Tat 5 a’y a=,,t =

Putting the values of |1, 1, and I3 from (56), (57), and (64)
into (55) results in
zi  k k
ik 22
To simplify further, note that from (53) and the fact that y is
invertible, we have

jzji = jvi 1+ x a’, ta: (66)

y

I =11+12+13 =

1 zJ.]
Zlog Ilog. =—{65)
2 2 J oy

Therefore,

| = ilog j 'E= 2!og 1+x 3’ ta: (67)

Finally, the proof of Theorem 12 can be provided as follows
using Lemma 21. n
Proof of Theorem 12: Suppose g ; denotes g after
removing the j-th coordinate (which corresponds to uj). Then,
we can rewrite (21) in the following way such that for every
valid index s:
[Di Ig = [Ri I, 8= [Rilg uj+ Ri;

is8 it (68)

Note that the notation []s denotes a row vector. For ease of
notation, suppose Smax is the number of rows of of D'.
\Nie directly apply Lemma 21 by considering X = uj,

Ys = Rir} is
which also gives a = [a1;:::;as,,,]” = [Rir]j . With these
replacements, the conditions of Lemma 21 hold because due
to Assumption 2, u; is independent of all other randomness
sources, i.e., uj ? g ; which leads to X ? Y and also we
assumed in the statement of Theorem 8 that all randomnesses
are Gaussian, hence, (X; Y) is multivariate normal. Further,
with this assignment of Y, we need to compute the covariance
matrix Cov(Y) and show that it is invertible. Note that

Y =Ri'; j8 5 ) v =Cov(Y)
= R, j Cov(g ;) RY; |
= R{; jS i {i¢ i (69)

where S j is defined in (24). Note that R" is a full row-rank

matrix and under Case 1 (i.e., (22)), R' b is also full
row-rank. Hence,
rank (y) = rank(S ;) = 2m 1 (70)

14

Since vy is a (2m 1) (2m 1) matrix, (70) meansy is
invertible. So far, we showed that all the conditions of
Lemma 21 hold under the above assignments. Therefore, the
result also holds and we have

1

| (D ;uj)= Zlog 1+ %2a” 1la; (71)

i 2 J Y

Finally, due to Theorem 8, we know that

I (Di(t); uj) = 1 (D7 ; uj): (72)

With (71) and (72) together, we conclude that
I (Di(t); uj) = %Iog 1+ %a’ a: (73)

j

|

G. Theorem 14

Proof: Suppose G does not contain any generalized leaf.
We want to show that Case 1 (Equation (22)) holds. To do so
is, the main idea is that we show that under such a condition,
the j-th column (the column corresponding to uj) in R’i,
i.e., the column to be removed to obtain Rri,_ J is a linear
combination of other columns of Rri. Therefore, removing it
does not change the rank. To this aim, we need to setup a
notation that we only use throughout this proof. Recall from
(21) that R" is a concatenation of three matrices, i, i, andP "
as follows: '

3
pj>1(tl)

P/ = 8 . £,
pj, (tr)

Thus, each column of Rri consists of three sub-columns in
each of these matrices. A set of columns of R are linearly
dependent if and only if the exact same linear combination
holds for the sub-columns in each of i, i, and P; . Notation
Setup. All the aforementioned matrices, i.e., R ,i, i, andr
P " have 2m columns. Each column corresponds to one '
randomness source in the model that are up forp 2 [n]and
ps for (p;s) 2 S. We use index up or ps to refer tothose
columns. For example, [R"] A denotes the column
of R" that corresponds to ps. Td refer to rows, we setup a
notatlon for each sub-matrices i, i, and P". The rows of
correspond to u; and ip for (i;p) 2 S. We aldo use these as
row-indices. For example, [i] equals the coefficient of
ug when we write ip in terms ofega This coefficient is
zero since jp and uq are independent noises. The rows of
i correspond to «; for * 2 Nj. Note that here (‘; i) may or
may not lie in S. The quantity +; is what neighbor ‘ sends
to i in the preparation phase. It may be a pure noise (when
(“;i) 2 S) or in the form of u- s. We also
use these i for * 2 N; as row-indicgs Finally, the rows of

(74)

p”(t) and is denoted by [P "](-,t). When we want to refer to
the element uy in this row,, we write [P J(;1)u . As we will
see in the remaining of the proof, our dfscussion here holds
for each row identically. Hence, we refer to rows by general
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pair (“; t) and use this pair as a row-index.

Using the notation explained above, we can now state the
proof. Recall that node i is the attacker and node j is the
victim and we want to show that [R"] ., can be generated as
a linear combination of other columns of R]. Note that the
following arguments hold regardless of r which means it holds

for simplicity. Suppose the connected graph G does not have
any generalized leaf. Then j must have a neighbor s = .
Considering all such neighbors, there exists nodes b;s such
that s 2 Nj, s= i, b2 Ns, and b 2 fi; jg because otherwise
either the graph is not connected or we have a generalized leaf in
the graph. Now, we consider four cases based on whethers =
m; versus s = mj and s = my versus s = mp. The proof in
each case are provided in the following. Note that in
obtaining the elements of P;, we are basically using (13).
Again, note that the superscript r will be omitted for simplicity
and we use (‘; t) subscript to refer to the rows of P; where the
choice of 2 N; and t does not matter. Moreover, O denotes a
vector with all zero elements.

1) Case s= mj and s = mp:
[Pi](';t)uj = [Wt]'mj
[Pi](';t)ub = [Wt]'mb

(W
(W,

=) [P, = [P, (75)
lil,, = [il,, = O (76) [il,,
= [il,, = 0 (77)
Hence,
[Rily, = [Ri,, : (78)

2) Case s= mj and s = mp:
Note that mp might be i, j, or any other node other than s.
Since s = my, we have (b;s) 2 S meaning that psis a

pure noise. This means the relevant coefficient is
computable based on (t) in (13).
[Pi](,;t)uj = [Wt]'mi = [W'], 3
[Pi](';t)ub = [Wt]'mb .
(Pil(ye) ,, = Wt W, 7
=) [Py, = [Pily, *+ [Pi] (79)
Moreover,
o =0 g [ = Lmyei; .
2 [I] bub = m:;,-=l,
. . i b oy mo=i’
itb2 N; S Other elements of il . (81)
and [i] ,, are zero;
ifb2N;i:[il, =0, =0 (82)
Hence, we always get
[y, = G, + [, : (83)
Further,
lily, = Gly, = L ,, =0
=) [y, = by, + ], (84)

3)

4)

15

Putting (79), (83), and (84), we conclude that
[Rily, = [Rily, + [Ri] | :

Case s= mj and s = my:

Since s = mj, we have (j;s) 2 S meaning that jsis a

pure noise. This means the relevant coefficient is
computable based on ;(t) in (13).

(85)

9
[Pi](‘;t)uJ = [Wt]'mj =
Pil(e, = Wy, = Wi,
Pl . = Wiy (Wt
=) [Pily, = [Pily, [Pi]  : (86)
Now, for i we have
[il,, = 0 (87)
> [i]ju = Im=i;
er . [I]J is = 1mj:i;
ifj 2N Other elements of [i], J (88)
and [i] |, are zero;
ifj2Ni:[il, =0, =0: (89)
Hence, we always get
lily, = [ly, L, (90)
Further,
[i]uj = [i]ub = [I is = O
=) Gy, = Ly, L, (91)
Putting (86), (90), and (91), we conclude that
[Ri]uj = [Ri]ub [Ri] L (92)
Case s= mj and s = mp:
First note that since s = mj and s = mp, we
have (j;s);(b;s) 2 S meaning that js and s are

pure noises. This means the relevant coefficients are
computable based on ; (t) and ,(t) in (13).

Pl = (Wi °
[Pi](‘;t)ub = [Wt]fm B
Pilisy = Wil Wil

Piliy o= Wi W, 7

=) [Py, = [P, [P+ [P : (93)
Now, for i we have
[i]ju J= 1mj:i)
IfZNE []ij is 1mj=i; (94)
] b Other elements of [i],
and [i] |, are zero;
if j 2 N; :si]“" =0, =0 (95)
> (] o, = Lmy=is [i]
b2 Ny o (96)
""" Other elements of [i] ,
and [i] ,, are zero;
if b2 N; :[i]uh = [i] b T 0: (97)
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Hence, we always get

lily, = [ly, L1, + 0], : (98)
Further,
lily, = [ily, = Ll ,, =0, =0
=) [y = Gly, L1+ 0, ¢ (99)
Putting (93), (98), and (99), we conclude that
[Rily, = [Rily, [Ri]l  + [Ri]  : (100)

The equations (78), (85), (92), and (100) show that in all cases
the column [Ri]  can be written as a linear combination of
other columns of Ri. Hence, removing it does not change the

rank Ri; j = (101)

i rank(Rir):

H. Theorem 16

We start with a simple lemma that eases the computation
of t.

Lemma 22: Let fx(t)glo be an arbitrary sequence of
vectors over the integer t that converges to x and suppose for
every t 0

kx(t+ 1) xk, kx(t) xk,; (102)

for some real number 2 (0; 1). Moreover, define the quantity t

= minft 0jkx(t) xk, g. Then
1
I | kx: N
t gg Lt IO - (103)
log
Proof: Note that
kx(t) xk, "kx(0) xk,: (104)

When one is not considering t 0, we can let t be the
minimum real number t such that the right-hand side of (104)
holds, i.e.,

t= mint2 R j'kx(0) xk, (105)
Then by taking the logarithm of both sides of
tkx(0) xk, =, we have
tlog + logkx(0) xk, = log
o) r= Lo KXO) xky, (106)

log 1

Note that small kx(0) xk , may lead to a negative €
Hence, for a minimum non-negative time, we can define

t= minft 0jkx(t) xk, g: (107)
Having t 0 constraint and kx(t) xk instead of
tkx(0) xk in the definition of t, we havet t if t O afid
t = 0 otherwise. This together with (106) gives
1+ kx(O k
t Lipg Lr X0 x ko (108)
log =
|

3)

16

Proof of Theorem 16:

Algorithm 1 preserves the summation of all values over
all iterations. In other words, 17v(t) = 17u = nu
for all t 0. Due to [8], we know that the conditions

Wil,= W?>1, = 1, and (W 1=n1n1>r} < 1 lead
to (4). Therefore,

1
lim v(t) = lim W'(0)= 1,1 v(0) = 17u = u:
th1 t1 n

Since Algorithm 1 only changes v(0) compared to an
ordinary consensus, (5) trivially holds.

We use Lemma 22 to compute t for our problem. Note
that for t 0, we have

vit+ 1) wu

1. .. 1. .
Wv(t) Wu 1 1°v(t)+ 1 1°u
n n n "

n n

= W %1nln> (v(t) u): (109)
In obtaining (109), we used the following:
Wu = thn1n>u - n}z\/1n1nm
- %1n1n>u = u; (110)

and the fact that 17v(t) = 1”u for all t 0. From
(109), we conclude that for all t 0

kv(t+ 1) uk, W " 101> kv(t) uk,:(111)
- n 2
Comparing (111) with (102), by putting
=W Ipln (112)

2

Note that < 1 (because (W 1=n1,1") < 1). Thus, the
quantity t can be obtained from (103) as follows:

¢ ;1 1+ kv(0) u kng 1
log =+

uk?

1
! 2 410 (113)

—log 2 -

log 2 + )

Here, the quantity v(0) u is a random variable. We
take the expectation of both sides of (113) and apply the
Jensen inequality due to the concavity of the logarithm
function (Jensen inequality states that for a concave
function f and random variable X, E[f(x)] f(E[X])).

Hence, h .
L O 1+E"kv(0) uk'?
og =

h [ (114)
Next, we compute E kv(0)  uk,? and replace it into
(114). To do so, we start by writing
E hkv(O) uk? I n maxE (v r(]O).
2 i2[n] '
u])2 + Var(v (0) wu):

2

u) (115)

= n max (E[v (0)
i2[n]
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To compute the right-hand side of (115), we denote the
maximum degree of a node in G by dmax, the indicator
function by 1, and the number of elements of a set A
by jAj and continue as follows:

JELvi(0) u]j
2 0

1
X
- g4 @y PA qi=m;
J2N; ‘2Njnfmjg
1
+  jili=m;  —(ur+ i+ up)
n
jfi 2 Ni i = mjgj maxdmax
+ jfj 2 Ny :i = mjgj max *+ max
dmax®+ 1 max: (116)
To compute Var (vi(0) u), we write
Var (vi(0) u)
0 0 1
X X
= Var@ @Uj j'A 1i:m1
j2N; ‘2Njnfm;g
+ jili=m, %(u1+ (114 up)
jfi2a2 N ti=mgj
J1) gl , |
1 1}1 max t (dmax 1) max
+§ff 2 Ni 20 = mjgj ma&
2
+jfi 2 [n]:i= mgj —m=
n
ifi 2 Ni i = mjgj dmaxmax °
2
+ jfj 2 [n]:i = mygj ”;]azx
2
dmazxma"2+ (n dmax) max2
n
dm2x + 1 pa? (117)
Puttin$1 (115), (116), and (117) together results in
i
E kv(0) uk22
2
N dmax b 1 max +) dmax £ 1max
2
n dmix +1 maX 2t max: 2 (118)

Finally, replace (112) and (118) into (114) to obtain

1
E [t] log I (119)
kw d1,17k, |
2
|0g 2 1+ n dm2ax+ 1 maxz" max 2 + 1:
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