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Abstract— Adversarial training using empirical risk minimiza-
tion (ERM) is the state-of-the-art method for defense against
adversarial attacks, that is, against small additive adversarial
perturbations applied to test data leading to misclassification.
Despite being successful in practice, understanding the general-
ization properties of adversarial training in classification remains
widely open. In this article, we take the first step in this direction
by precisely characterizing the robustness of adversarial training
in binary linear classification. Specifically, we consider the
high-dimensional regime where the model dimension grows with
the size of the training set at a constant ratio. Our results provide
exact asymptotics for both standard and adversarial test errors
under general {,-norm bounded perturbations (¢ > 1) in both
discriminative binary models and generative Gaussian-mixture
models with correlated features. We use our sharp error formulae
to explain how the adversarial and standard errors depend upon
the over-parameterization ratio, the data model, and the attack
budget. Finally, by comparing with the robust Bayes estimator,
our sharp asymptotics allow us to study the fundamental limits
of adversarial training.

Index Terms— Adversarial learning, adversarial training, high-
dimensional statistics, optimization.

I. INTRODUCTION

EVERAL machine-learning models ranging from simple
Slinear classifiers to complex deep neural networks have
been shown to be prone to adversarial attacks, i.e., small addi-
tive perturbations to the data that cause the model to predict a
wrong label [31], [42]. The requirement for robustness against
adversaries is crucial for the safety of systems that rely on
decisions made by these algorithms (e.g., in self-driving cars).
With this motivation, over the past few years, there have been
remarkable efforts by the research community to construct
defense mechanisms, e.g., [11], [38] for a survey. Among
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many proposals in the already rich literature, perhaps the most
popular approach is that of adversarial training [20]. Among
many favorable properties, adversarial training is flexible and
easy to adjust to different types of data perturbations and has
also been shown to achieve state-of-the-art performance in sev-
eral tasks [25]. However, despite major recent progress in the
study and implementation of adversarial training, its efficacy
has been mainly shown empirically without providing much
theoretical understanding. Indeed, many questions regarding
its theoretical properties remain open even for simple models.
For instance, how does the adversarial/standard error depend
on the adversary’s budget during training time and test time?
How do they depend on the over-parameterization ratio? What
is the role of the chosen loss function?

In this article, we consider the adversarial training problem
for £,-norm bounded perturbations in classification tasks,
which solves the following robust empirical risk minimization
(ERM) problem:

m

min > max L(yi, fo(x; +8)) +r[|6]3. ()

OeR! = |5, <5
Here, {(x;, yi)}iepm) € R" x {£1} is the training set, §; € R”
are the perturbations with [ the dimension of the feature
space, fp:R" — R is a model parameterized by a vector
0 € R/, g, is a user-specified tunable parameter that can be
interpreted as the adversary’s budget during training, and r is
the ridge-regularization parameter. Once the robust classifier 0
is obtained by (1), the adversarial error/robust classification
error is given by

Ex,)'|: max 1{y;£sign(fg(x+6))}i|

181l <exs

where 1(, is the 0/1-indicator function, (x, y) € R" x {£1} is
a test sample drawn from the same distribution as that of the
training dataset, & is the budget of the adversary, and f5 uses
the trained parameters 9 and the fresh sample x to output a
label guess. The standard classification error is given by the
same formula by simply setting g = 0.

The goal of this article is to precisely analyze the perfor-
mance of adversarial training in (1) for binary classification
with linear models, i.e., fy(x) = (0, x). In our proof, we use
the convex Gaussian min—max theorem (CGMT) [39], [40],
[47] and in particular its applications to the convex ERM
that enables its precise analysis, e.g., [30], [36], [43], [44],
[46]. However, compared to previous works, we develop a new
analysis for robust optimization with correlated data.
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Our main contributions are summarized as follows.

1) We precisely analyze, for the first time, the performance
of adversarial training with ¢, and £, attacks in binary
classification for two important data models of Gaussian
mixtures and generalized linear models. See Sections I1I
and IV.

2) Our approach is general, allowing us to characterize the
role of feature correlation, regularization, and general £,
attacks with ¢ > 1. In particular, our proof technique
allows for nonisotropic features, yielding novel theoret-
ical results even for nonadversarial convex regularized
ERM settings (i.e., when ¢, = &5 = 0). We elaborate
on our technical approach in Section III-C.

3) Numerical illustrations in Section III-B show tight
agreements between our theoretical and empirical results
and also allow us to draw intriguing conclusions regard-
ing the behavior of adversarial and standard errors
as functions of key problem parameters such as the
sampling ratio 6 := m/n, the budget of the adversary
&, and the robust-optimization hyper-parameter &, in
our studied settings. Moreover, we observe interesting
phenomena by comparing our results with the Bayes
optimal robust errors.

A. Prior Works

Relevant to the flavor of our results, the recent work [24]
studies precise tradeoffs and performance analysis in adver-
sarial training with linear regression with £, perturbations
and isotropic Gaussian data. Compared to [24], our results
hold for binary models, general ¢, perturbations with g >
1, and nonisotropic features with mild assumptions on the
covariance matrix. Moreover, we consider regularized ERM
allowing us to study the behavior of adversarial training
in the over-parameterized regime in the limit of A — 0.
Similar results on the behavior of adversarial training in
classification are only derived in a concurrent work by [23].
On the one hand, compared to [23] our analysis applies to
both discriminative and generative data models, and also to the
regularized ERM. Our analysis also allows generic covariance
matrices while the analysis of [23] only applies to very specific
structures for the covariance matrix. In addition, we examine
how our formulas on adversarial training compare with those
of the Bayes robust estimator. On the other hand, [23] extend
their analysis to robust support vector machines (SVMs). Note,
however, that we can retrieve the same results regarding the
performance of adversarially-robust SVM by evaluating our
formulas on regularized ERM with logistic loss and vanishing
regularization parameters.

Our analysis of correlated features was motivated by [30],
which derives sharp generalization guarantees for SVM mod-
els with correlated data. Very recently, correlated features
have been considered in various settings, e.g., [8], [10], [15].
However, none of these works studies the more challenging
problem of adversarially-robust ERM as we do here. To see,
at a high level, why this differs from standard ERM or standard
SVM analysis note the following complications in the analysis.
First, because adversarial training is formulated as a min—max
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optimization, it is not at all apparent that the machinery of
Gaussian comparison theorems applies. Second, the perfor-
mance metric here is a robust error (rather than a standard
error), and we show that this changes the statistics that need
to be tracked by the CGMT analysis. Third, the primary
optimization to which we eventually apply the CGMT involves
an “effective” £,-regularizer (where ¢, is the dual norm
of the adversary’s £,-norm), which unlike previous works
appears inside the argument of the loss function, requiring
new techniques to scalarize the auxiliary optimization (AO).
Specially, we do this in the presence of nonisotropic features,
which yields new results even for standard ERM methods.

The adversarial Bayes risk for Gaussian mixtures has been
recently characterized in [5], [13], and [17]. Here, we combine
their results with our precise asymptotics on the practically
relevant adversarial training method, allowing us to investigate
the fundamental limits of the latter. Allen-Zhu and Li [12]
and Charles et al. [1] discuss the optimization landscape of
adversarial training, however, these works do not address
the generalization properties of adversarial training, as done
in this article. The prior work [29] considers adversarial
training with linear loss to analyze the sample complexity
of robust estimators. Instead, here, we investigate the more
challenging, but practically more relevant, 0/1-loss and its
tractable approximations (e.g., hinge and logistic). Another
related line of work studies tradeoffs between the standard and
adversarial errors, e.g., [17], [33], [48], [49], but for simpler
algorithms and data models, rather than adversarial training
and correlated GLM/GMM, which we focus on here. The
benefits of unlabeled data in robustness have been investigated
in several works, e.g., [7], [32]. An exciting direction opening
up with our analysis is investigating adversarial training perfor-
mance for random features and neural tangent models. To date,
precise asymptotics for such models have been obtained
only very recently and for the simpler problem of standard
ERM [15], [16], [18], [19], [28]. A preliminary version of
this work appeared in [45]. The results presented in [45] only
apply to data that follow the isotropic Gaussian mixture model
and only to £, attacks. The current manuscript significantly
extends the scope of these results: first, we extend the results
for GMM to general covariance matrices (not necessarily
isotropic). This is important because it better captures data
distributions in practice. We also note that the extension is
technically nontrivial, requiring several modifications in the
proof compared with the isotropic case. Second, in the journal
version, we describe a unifying analysis and results that apply
both to discriminative and generative models. Specifically for
discriminative models, we present new results for GLM data.
Third, we provide a general analysis of £,-norm attacks. This
extends the results of the conference version that only applied
to fs-norm. For demonstration, we present results for £;-
attacks in Section IV. Finally, we have extended our numerical
study by introducing additional experiments in Appendix VII,
as shown in the supplementary material.

Notation: Letting 5(x) denote a Dirac delta mass at x,
the empirical distribution of a vector x € R” is given by
(1/n) >°!_, 8(x;). The empirical joint distribution of v, u € R”
is given by (1/n) >"_, 8(v;, u;). The Wasserstein-k distance
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between two measures pj, p, is defined as Wi (p1, p2) £
(infpep Ex,y)~pl X — Y[5)/k, where P denotes all couplings
of p; and p,. We say that a sequence of probability distribu-
tions u, converges in Wasserstein-k distance to a probability
distribution w, if Wi(u,, u) — 0 as n — oo. The Gaussian
Q-function is denoted by Q(-). © denotes the elementwise
multiplication. The function |-||; is denoted by ¢£7. For a
positive semidefinite matrix S, we define ||v]s £ (v Sv)!/2,
Finally, for a sequence of random variables X, , that con-
verges in probability to some constant ¢ in the proportional

Lo . P
asymptotic limit m,n — oo, m/n — §, we write X,, , — c.

II. PROBLEM FORMULATION

In this section, we describe the data model, the specific
form of (1), and the asymptotic regime for which our results
hold. After this section, it is understood that all our results
hold in the setting described here without any further explicit
reference.

A. Data Model

We study two stylized models for binary classification.

1) Gaussian Mixture Models: The first model is a Gaussian
mixture model (GMM) where the conditional distribution of
the feature vectors is a Gaussian with mean £6’; (depending on
the label y; € {£1}) and with covariance X,. The subscript n
emphasizes the dependence on dimension. Formally, the GMM
assumes

Pyi=D=mel0, 1], xily ~N(6),%,). (2

2) Generalized Linear Models: The second model is a
generalized linear model (GLM) with a binary link function.
Specifically, assume that the label y; € {1} associated with
the feature vector x; is generated as

yi=v((0. %), xi~N©,32,) 3)

for a possibly random link function ¥:R — {%1}. This
includes the well-known logistic and signed models, by letting
P(y(x) = 1 = 1/( + exp(—x)) and ¥ (x) = sign(x),
respectively.

We assume that the underlying (unknown) vector of regres-
sors @, € R”, and the covariance matrix X, € R"*", satisfy
the following technical (and mild) assumptions.

Assumption 1: The minimum and maximum eigenvalues of
the covariance matrices X, satisfy 0 < ¢ < Apin(X,) and
Amax (Xn) < C < 0.

Assumption 2: Denoting ¢, 2 (8%'%,07)'/? for GLM
and £, 2 (0:'%;'0%)'/2 for GMM, we define their
high-dimensional limits as ¢ and E ie., ¢ LN ¢ and
E;, —P> Z Moreover, for both models, we assume without

loss of generality that [|6% 2 Y

Assumption 3: Let X, = U,,AnU;lr be the eigendecomposi-
tion of X, and let \,; denote the ith entry on the diagonal
of Ap. Denote v, £ UIO;. Then, the joint distribution of
(W10, ;s Mis /nV4i), € [n], converges in Wasserstein-2
distance to a probability distribution IT in R x Ry x R, i.e.,

l E 8(\/50; i )\n,i» \/ﬁvn,i) ——>W2 IT.
n ,
i=1

The assumption on |0, is without loss of generality for
GLM since [|67]l2 can be absorbed in the link function .
Similarly for GMM, if [|0;]. # 1, we can always assume
normalized features x, by appropriately scaling the covariance
matrix X,. We remark that while the Gaussian distribution
assumption on feature vectors is crucial for our theoretical
analysis, our empirical results suggest that this assumption
can be relaxed to include at least the family of sub-Gaussian
data distributions. We discuss this universality property in
Appendix VII-B (supplementary material).

B. Asymptotic Regime

We consider the high-dimensional asymptotic regime in
which the size m of the training set and the dimension n of
the feature space grow large at a proportional rate. Formally,
m,n — oo at a fixed ratio § = m/n.

C. Robust Learning

Let 5,, be a linear classifier trained on data generated accord-
ing to either model (2) or (3). As is typical, given ’0\,[/,\21 decision
is made about the label of x based on sign({x,#,)). Thus,
letting y be the label of a fresh sample x, the standard error
is given by

£(0,) & Ex,y[l{y#siqn(@@x))}]' @

Here, the expectation is over a fresh pair (x, y) also generated
according to either the GLM or the GMM model. Next,
we define the adversarial error with respect to a worst-case
£,-norm bounded additive perturbation. Let &5 > 0 be the
budget of the adversary. Then, the adversarial error is defined
as follows:

géq,els @,) = IEx,y |:§Ill’tafxfu l{y;é31gn((x+5,§,l>)}:| . 5)
Adversarial training leads to a classifier 9, that solves the
robust optimization problem (1) with L(y, fy(x 4+6)) replaced
by L(y(#,x + §)). The loss function £L:R — [0, 00) is
chosen as a convex approximation to the 0/1 loss. Specifically,
throughout this article, we assume that £ is convex and
decreasing. This includes popular choices such as the logistic,
hinge, and exponential losses.

III. MAIN RESULTS FOR {,, PERTURBATIONS
A. Asymptotic Behavior

In this section, we focus on the case of bounded £, -
perturbations, i.e., the adver/s\arial error in (5) is considered
for g = oo. Specifically, let #,, be a solution to the following
robust minimization:

m

min > max  L(yi(xi +8,0,) + 0,03 (©6)

el DINESH

In our asymptotic setting, & is of constant order and the factor
1/4/n in front of it is the proper normalization needed to
ensure that the perturbations norm ||§; ||, is comparable to the
norm of the true vector [|0}||,, i.e., both are constant in the
high-dimensional limit — n. We explain this normalization
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further in Section III-C. Here, we consider the case of the
diagonal covariance matrix (i.e., X, = A,). Note that this
assumption can be made without loss of generality for GMM
data. Indeed, instead of features x; as in (2) and mean vector
0}, we can equivalently analyze features x¥; = U, x; and mean
vector @7 := U 6%. For the GLM data in (3), we defer the
general case of possibly nondiagonal X, to Appendix VIII,
as shown in the supplementary material, where we also discuss
how final expressions simplify in the case of isotropic features.

Before presenting our main result, we need to introduce
some necessary definitions. We write

M (x: k) = min —(x -0’ + f() (7
for the Moreau envelope of a function f:R — R at x €
R with parameter x > 0 [35]. We also define the following
min-max optimization over eight scalar variables. Denote V £
(o, T1, w, W, T2, B, ¥, n) and define f:R® — R as follows:

DA _yy KR o on pu - na
JO==yw== %o 2 2 T oo
where C = E and ¢ (defined in Assumption 2) for GMM

and GLM, respectively. We introduce the following min—max
objective based on the eight scalars:

_ T

min max f(V)+E| Mg\ Zy, —w; 4

a,1,weRy, 1,8,y R, B
neR neR

g+ & on T AEyY (8)
2«/ ‘L’zD ’ ‘L’zL
where D £ Z2L and ¢2 for models (2) and (3), respectively,

H ~ N(0,1) and (T, L, V) ~ I1 where IT was defined in
Assumption 3. We also let for convenience

7 & Vo2 + p2t2 G + uc?,  for GMM ©)

au
oG+ ugS-yv(s), for GLM

+ euy EI:MKI"'&;V (

where G, S X N(0, 1). Notice that the objective function
of (8) depends explicitly on the sampling ratio § and on the
training parameter .. Moreover, it depends implicitly on @
and A, via T and L, respectively, and on the specific loss £
via its Moreau envelope. The nature of allowed perturbations
(the £oo-type) is reflected in (8), via the Moreau-envelope of
the dual-norm (the £; norm).

We are now ready to state our main result in Theorem
1, which establishes a relation between the solutions of (8)
and the adversarial risk of the robust classifier 6,,. The proof
is deferred to Appendices VIII-C and VIII-B (supplementary
material).

Theorem 1: Assume that the training dataset {(x;, yi)}i~,,
is generated according to either (2) or (3) with diagonal
covariance matrices satisfying Assumptions 1-3. Consider the
robust classifiers {0,1} obtained by adversarial training in (6).
Then, the high-dimensional limit for the adversarial error
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Eo (o)) (8,), converges to

Q(—“ £ W eu/ 8“), for GMM
/M*2§-2+a*2 . (10)
P(M*g SY(ES) +a*G < 2 8‘5), for GLM

Slr

where Q(-) denotes the Gaussian Q-function and (a*, u*, w*)
is the unique solution to the scalar min—max problem (8).

The asymptotics for adversarial error in Theorem 1 are pre-
cise in the sense that they hold with probability 1, as m,n —
oo. In Section III-B, we demonstrate the precise theoretical
values and the corresponding numerical values.

B. Numerical Illustrations

In this section, we illustrate the theoretical predictions for
various values of the different problem parameters, including
8 = m/n and the attack budgets e, and &g. For numer-
ical results here, we focus on the hinge-loss, i.e., L(t) =
max (1 —¢,0) and on the GMM with isotropic features; thus
L has a unit mass at 1. Additional experiments on GLM
are given in Appendix VII-A, as shown in the supplemen-
tary material. We further assume that 7' is standard normal
and fix regularization parameter r = 10~*. To solve (8),
we derive the solution of the corresponding saddle point
equations (derived in (60) in Appendix VIII-DI1, as shown
in the supplementary material) by iterating over the equations
and finding the fixed-point solution after 100 iterations. For
the numerical results, we set n = 200 and solve the ERM
problem (6) by gradient descent. The resulting estimator is
used to compute the adversarial test error by evaluating (4) on
a test set of 3 x 103 samples. We then average the results over
20 independent experiments. The results for both numerical
and theoretical values are shown in Figs. 1 and 2. Next,
we discuss some of the insights obtained from these figures.

1) Impact of & on Standard/Adversarial Errors: Fig. 1
shows the adversarial and standard errors as a function of
8 = m/n. We compare the results of adversarial training with
the Bayes optimal error. Formally, the Bayes adversarial error
is defined as

quqgu(OPT) £ n}m ]Ex’yl:?lljag; 1{y¢fa(x+5)}:|' (11)
0 g€

For the Gaussian-mixture model (2) under an £, attack with
budget ¢, the Bayes adversarial error is derived as follows [5]:

o(1er —Ilv*”):-‘),

where p* £ arg rrHun 6™ — [L||
q

&, (OPT)

(12)

The dashed lines in Fig. 1 show the Bayes adversarial error,
derived according to (12) for & = g//n.

Note that both errors decrease as the sampling ratio § grows,
with the adversarial error approaching the Bayes adversarial
error of the corresponding value of &5. In Appendix X-
C, as shown in the supplementary material, we formally
prove that for ¢, attacks bounded by & € [0, 1], the robust
error achieved by adversarial training with any ¢, € [0, 1]
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Adbversarial/standard test error based on § := m/n. Solid lines correspond to theoretical predictions while markers denote the empirical results derived

by solving ERM with vanishing regularization (» = 10™%) using gradient descent. The dashed lines denote (a) Bayes’s adversarial error and (b) Bayes’s
standard error. Note that the adversarial error of estimators obtained from adversarial training approaches the Bayes adversarial error as § grows.
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Fig. 2. Theoretical (solid lines) and empirical (markers) results for the impact of adversarial training on the adversarial test error for (a) &s = 0.5 and

(b) &5 = 0.9. The black dashed lines denote the Bayes adversarial error for the corresponding values of &i. The colored dashed lines show the optimal value
of each curve. Note that the optimal value of &, decreases as § grows. (c) Impact of adversarial training on the standard test error, illustrating that adversarial

training can improve standard accuracy.

converges to the Bayes adversarial error in the infinite sample-
size limit, i.e., when § — oo. In general, in light of the
comparison between the error formulas of Theorem 1 and the
Bayes adversarial error, Fig. 1 provides a means to quantify
the suboptimality gap of adversarial training for all values
of the oversampling ratio § > O and for different values
of the adversary’s budget. A related study was performed
in [37], but therein the authors derive error bounds for a
simple averaging estimator. Instead, our analysis is precise
and holds for the broader case of convex decreasing losses.
Next, we comment on the shape of the error curves as a
function of the sampling ratio. Note that a second sharp
decrease in standard and adversarial errors appears right
after a separability threshold &, m) n, which we define
as the maximum value of § for which the data-points are
(Loos (81/+/m))-separable (for definition, see the discussion on
robust separability in Section V). This constantly decreasing
behavior of the error is in contrast to the corresponding
behavior in linear regression with £, perturbations and £, loss
analyzed in [24], where error based on § starts rising after
the first decrease and then again decreases as & grows. This
double-descent behavior can be considered as an extension
of the more familiar double-descent behavior in standard

ERM (first observed in numerous high-dimensional machine
learning models [3], [4], [21]), to the adversarial training case.
Finally, we highlight the following observation from Fig. 1(a):
for highly over-parameterized models (very small §), standard
accuracy remains the same for different choices of &;. As §
grows, adversarial training (perhaps surprisingly) seems to
(also) improve the standard accuracy. However, for very large
8, increasing & hurts standard accuracy. These observations
are consistent and theoretically validate corresponding findings
on the role of dataset size on standard accuracy that was
empirically observed in [48] for neural network training with
nonsynthetic datasets such as MNIST.

2) Impact of ey on Standard/Adversarial Errors: Adver-
sarial and standard error curves based on the hyper-parameter
&y are illustrated in Fig. 2. Note that the adversarial error
behavior based on &, is informative about the role of the
dataset size on the optimal value of ;. Fig. 2(a) and (b)
shows that the optimal value of & is typically larger than
&s. Also note that as § gets smaller, larger values of g are
preferable for robustness. As detailed in Appendix VII-C,
as shown in the supplementary material, this behavior is also
observed in real-world experiments with the MNIST dataset.
Fig. 2(c) illustrates the impact of &, on the standard error,
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where similar to Fig. 1(b), we observe that adversarial training
can help standard accuracy. In particular, we observe that in the
under-parameterized regime where § > 3,/ m . (as we will
define in Section V), adversarial training with small values
of &, is beneficial for accuracy. As § increases, such gains
diminish and indeed adversarial training starts hurting standard
accuracy.

C. Proof Sketch

The complete proof of Theorem 1 is deferred to the
appendix (supplementary material). Here, we provide an out-
line of the key steps in deriving (8) and (10).

1) Reducing (6) to a Minimization Problem: For a decreas-
ing loss function, picking & £ —y; sign(8,) ex//1,
optimizes the inner maximization in (6). Therefore, (6) is
equivalent to

m
. Etr 2
»C i i 0;1 - T = 011 0'1 . 13
W2 (3000 = 10,00 ) 10,13 13

From (13), we can see now why the specific normalization of
&y 1s needed in (6). Recall that (for model (3), for instance),
x; ~N(0,X,) and |0}l —> 1. For simplicity assume here
that ¥, = I,,. For fixed 0, the argument y;(x;, @) behaves as
1012S¥ (S), where S ~ A(0, 1). Thus, for @s that are such
that |0, = ©(1) (which ought to be the case for “good”
classifiers in view of [|0;]l, = 1), the term y;{x;, 8) is an
©(1)-term. Now, thanks to the normalization 1//n in (6), the
second term (gy/+/n)|0]]1 in (13) is also of the same order.
Here, we used again the intuition that ||0]|; = ©(/n), as is
the case for the true 8*. Our analysis formalizes these heuristic
explanations.

2) Key Statistics for the Adversarial Error: Our key obser-
vation is that the asymptotics of the adversarial error of a
sequence of arbitrary classifiers {#,} depend on the asymp-
totics of only a few key statistics of {#,}. This is formalized
in the following lemma. The proof is deferred to Appendix
VIII-A (supplementary material). Similar to before, there is
nothing special here to ¢ = oo, so we state this result for
general q.

Lemma I: Fix g > 1 and let £, denote the dual norm of £,.
Let % £ X!/26* for data model (3) and 0* £ %-1/2* for data
model 2). Furthermore for both rnodels deﬁne projection

matrices ®, and ®; as follows, ©, = 0n0,’; /||0n||2, er £
I, — ©,. Furthermore let ¢ and &’ (possibly scaling with
the problem dimensions) be the upper bounds on the norm
of the adversarial perturbation during training and test time,
respectively. With this notation, assume that the sequence of
{6,,} is such that the following limits are true for the statistics

10,1l 5, 11©, 220,15 and |©;}X)/20,,]|,:

{el8,11,} 5 w,

{l6r2,%6.],} > o

1 ,
Llo.zy0,0,) 5
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where C = ¢, ¢ for GMM and GLM, respectively. Then, in the
high-dimensional limit, the adversarial error converges to

0 neT—we'je for GMM
[12t2 + a2 ) (14)
P(ug Sy (¢S) +aG—we'/e <0), for GLM.

The detailed proof of the lemma is deferred to the appendix
(supplementary material). There are essentially two steps in
establishing the result. The first is to exploit the decreasing
nature of the 0/1-loss to explicitly optimize over §;. This
optimization gives rise to the dual norm ||6,],. The second
step is to consider the change of variables 0, = 0, &
%!/%6, and decompose 6, on its projection on X}/?6} and
its complement. In the notation of the lemma, 0, = 0,0, +
©;-0,. The Gaussianity of the feature vectors together with
orthogonality of the two components in the decomposition of
0, explain the appearance of the Gaussian variables S and G
in (14). When applied to £.,-perturbations, Lemma 1 reduces
the goal of computing asymptotics of the adversarial risk of
9, to computing asymptotics of the corresponding statistics
12,720,111, €40, 12, and [©3, 2.

3) Scalarizing the Objective Function: The previous two
steps set the stage for the core of the analysis, which we
outline next. Thanks to step 1, we are now asked to analyze
the statistical properties of a convex optimization problem.
On top of that, due to step 2, the outcomes of the anal-
ysis ought to be_asymptotic predictions for the quantities
1=;'%9, 1, 1O, 0,2, and |©;-8,,||,. However, note that the
term || X, 172 0 |l appears inside the loss function. In particular,
this is a new challenge, specific to robust optimization com-
pared with previous analyses of standard regularized ERM.
Moreover, both of the terms || X, 1/20 1 and || X 1/20 ||2 are
not decomposable based on ||®,, 0 > and ||®l0 |2, due to the
presence of the term X 1/2_ The first step to overcome these
challenges is to identify an appropriate min—-max AO problem
that is probabilistically equivalent to (13). The second crucial
step is to scalarize the AO based on an appropriate Lagrangian
formulation. Finally, we perform a probabilistic analysis of the
scalar AO. This results in the deterministic min—max problem
in (8). See the appendix (supplementary material) for details.

IV. MAIN RESULTS FOR £; PERTURBATIONS
When ¢ = 2, the min-max problem is equivalent to the
following, by choosing the optimal choice §; = —y;e.0/]0]l2:
1
min — Zl LOilxi. 0a) = eullBull) + 710,13 (15)
Here, we assume {X,} to be a sequence of positive definite

matrices. Denote Vv = (o, 71, T3, W, U, T2, B, ¥, n) and define
g2:R%> = R as follows:

2 2
N wn _, oap at BT
= — ——C _—_— —_—
gV = —yw = %, 2 T2
2
o egyTs
t S e T,

where recall that C £ E and ¢ for GMM and GLM,
respectively. With this notation, we introduce the following
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min-max problem:

T
min max g(V)—l—E[ML(Za.M —w; —l)i|
o, 71,13, weR L 1, B,yeR,, /3
neR neR

c'p?

E | —2
r L exya+2t3ra + L
73

o’ (evy
+ 122C4(213 + (16)
where we define L 2 1 /L and L for GMM and GLM,
respectively, and the random variables L and Z, ,, are defined
the same as in (8).

Theorem 2: Consider the same setting as in Theorem 1,
only here assume that ¢ = 2 and {X,} are positive definite
matrices (not necessarily diagonal) satisfying Assumptions 1—
3. Let («*, u*, w*) be the unique solution to the min-max
problem (16). Then, the high-dimensional limit for the adver-
sarial error (&, ,(6,)) converges to

Q(M { _~w Ets/gtr)’ fOI' GMM
/M*2§2+a*2 (17)
P(M LSYCS) +a*G < w*i“), for GLM.
tr

Proof of Theorem 2 is deferred to Appendix IX-A, as shown
in the supplementary material. Compared to Theorem 1, note
here that the asymptotic prediction only depends on the total
energy of 67 (which was assumed to be 1 in Assumption 2)
and not on its empirical distribution 7. We present numerical
illustrations on ¢,-attacks in Appendix IX-A, as shown in the
supplementary material, where we also discuss how the dataset
size and attack budgets, affect the adversarial and standard test
errors based on Theorem 2.

V. FURTHER DISCUSSION ON OUR RESULTS

Remark 1 (Training With No Regularization and Robust
Separability): An instance of special interest in practice is
solving the unregularized version of the min—max problem

m

mln —Z”ﬁ?ﬁgﬁ()ﬁ x; +38;,0,)). (18)

Following the same proof techniques as above, we can show
that the formulas predicting the statistical behavior of this
unconstrained version are given by the same formulas as in
Theorem 1 with » = 0 and also provided that the sampling
ration § is large enough so that a certain robust separability
condition holds. In what follows, we describe this condition.
We start with some background on (standard) data separability.
Recall, that training data {(x;, y;)} are linearly separable if
and only if 30 € R”" such that for all training samples
vi{xi,0) > 1. Now, we say that data are ({,, €)-separable
if and only if

30 e R", st yi(x;,0)—¢l@ll, =1 Vielm].

Note that (standard) linear separability is equivalent to (£, 0)-
separability as defined above. Moreover, it is clear that
(L4, €)-separability implies ({,, 0)-separability for any & >
0. Recent works have shown that in the proportional limit
data from the GLM are ({,, 0)-separable if and only if the

sampling ratio satisfies 6 < &y [6], [14], [30], [41] for
some &, > 2. Here, the subscript v denotes dependence
of the phase-transition threshold 6, on the link function v
of the GLM. We conjecture that there is a threshold &y . 1,
depending on ¢, the link function i and the probability
distribution IT such that data are (£, ¢)-separable if and only
if § < &y, . We believe that our techniques can be used to
prove this conjecture and determine 8y . 1, but we leave this
interesting question to future work. Instead here, we simply
note that based on the above discussion, if such a threshold
exists, then it must satisfy 8y, ,.n < dyon, for all values
of ¢, and in fact, it is a decreasing function of ¢. Now let
us see how this notion relates to solving (6) and to our
asymptotic characterization of its performance. Recall from
(13) that the robust ERM for decreasing losses reduces the
minimization ming .~ | L(yi{x;,0) — €[|0],). Thus, using
again the decreasing nature of the loss, it can be checked
that the solution to the objective function above becomes
unbounded for @ such that the argument of the loss is positive
for any i € [m]. This is equivalent to the condition of (¢, ¢)-
separability. In other words, when data are (£, ¢)-separable,
the robust estimator is unbounded. Recall from Section III-
C that the min—-max optimization variables w, u, o represent
the limits of [[6,]l,, ©,%/20, >, and |©;X1?8,]),. Thus,
if @, is unbounded, then w*, u*, * are not well defined.
In accordance with this, we conjecture that the min-max
problem (8) for r = 0 [corresponding to (18)] has a solution
if and only if the data are not (¢, &)-separable, equivalently,
if § > 8y . . Equivalent results are applicable to the Gaussian-
Mixture models.

Remark 2 (On Statistical Limits in Adversarial Training):
The asymptotics in (17) imply that for £, perturbations and
isotropic features, since w* = (a*> + w**)'/2, the errors
depend on the ratio o*/p*. In fact, it can be seen that smaller
values of the ratio lead to smaller adversarial errors. This leads
to an interesting conclusion: 7o find the hyper-parameter &
that minimizes the adversarial error, it suffices to tune &y
to minimize the ratio o*/u*. A similar conclusion can be
made for the case of £, perturbations, by noting from (10)
that the adversarial error is characterized in a closed form
in terms of (a*, u*, w*). In view of these observations, our
sharp guarantees for the performance of adversarial training
open the way to answering questions on the statistical limits
and optimality of adversarial training, e.g., how to optimally
tune e? How to optimally choose the loss function and what
are the best minimum values of adversarial error achieved by
the family of robust estimators? How do these answers depend
on the adversary budget and/or the sampling ratio §? Funda-
mental questions of this nature have been recently addressed
in the non-adversarial case based on the corresponding saddle
point equations for standard ERM, e.g., [2], [9], [26], [27],
[43], [44]. Theorems 1 and 2 are the first steps toward such
extensions to the adversarial settings.

VI. CONCLUSION

We studied the generalization behavior of adversarial train-
ing in a binary classification setting. In particular, we derived
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precise theoretical predictions for the performance of adver-
sarial training for the GLM and GMM. Numerical simulations
validate theoretical predictions even for relatively small prob-
lem dimensions and demonstrate the role of all problem
parameters on adversarial robustness. Finally, we remark that
the current analysis can be extended to general convex reg-
ularization functions building on our ideas. An interesting
future direction is analyzing adversarial training for random
features [34] and neural tangent kernel [22] models. One other
natural question is considering attacks other than £,-norm
attacks considered in this article.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
(17]
(18]

[19]

[20]

REFERENCES

Z. Allen-Zhu and Y. Li, “Feature purification: How adversarial training
performs robust deep learning,” in Proc. IEEE 62nd Annu. Symp. Found.
Comput. Sci. (FOCS), Feb. 2022, pp. 977-988.

D. Bean, P. J. Bickel, N. El Karoui, and B. Yu, “Optimal M-estimation
in high-dimensional regression,” Proc. Nat. Acad. Sci. USA, vol. 110,
no. 36, pp. 14563-14568, Sep. 2013.

M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern
machine-learning practice and the classical bias—variance trade-off,”
Proc. Nat. Acad. Sci. USA, vol. 116, no. 32, pp. 15849-15854,
Aug. 2019.

M. Belkin, D. Hsu, and J. Xu, “Two models of double descent for
weak features,” SIAM J. Math. Data Sci., vol. 2, no. 4, pp. 1167-1180,
Jan. 2020.

A. N. Bhagoji, D. Cullina, and P. Mittal, “Lower bounds on adversarial
robustness from optimal transport,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 7498-7510.

E. J. Candes and P. Sur, “The phase transition for the existence of the
maximum likelihood estimate in high-dimensional logistic regression,”
Ann. Statist., vol. 48, no. 1, pp. 27-42, Feb. 2020.

Y. Carmon, A. Raghunathan, L. Schmidt, J. C. Duchi, and P. S. Liang,
“Unlabeled data improves adversarial robustness,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 32, 2019.

M. Celentano and A. Montanari, “CAD: Debiasing the LASSO with
inaccurate covariate model,” 2021, arXiv:2107.14172.

M. Celentano and A. Montanari, “Fundamental barriers to high-
dimensional regression with convex penalties,” Ann. Statist., vol. 50,
no. 1, pp. 170-196, Feb. 2022.

M. Celentano, A. Montanari, and Y. Wei, “The LASSO with gen-
eral Gaussian designs with applications to hypothesis testing,” 2020,
arXiv:2007.13716.

A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and
D. Mukhopadhyay, “Adversarial attacks and defences: A survey,”
2018, arXiv:1810.00069.

Z. Charles, S. Rajput, S. Wright, and D. Papailiopoulos, “Conver-
gence and margin of adversarial training on separable data,” 2019,
arXiv:1905.09209.

C. Dan, Y. Wei, and P. Ravikumar, “Sharp statistical guaratees for
adversarially robust Gaussian classification,” in Proc. Int. Conf. Mach.
Learn., 2020, pp. 2345-2355.

Z. Deng, A. Kammoun, and C. Thrampoulidis, “A model of dou-
ble descent for high-dimensional logistic regression,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020,
pp. 4267-4271.

O. Dhifallah and Y. Lu, “On the inherent regularization effects of
noise injection during training,” in Proc. Int. Conf. Mach. Learn., 2021,
pp- 2665-2675.

O. Dhifallah and Y. M. Lu, “A precise performance analysis of learning
with random features,” 2020, arXiv:2008.11904.

E. Dobriban, H. Hassani, D. Hong, and A. Robey, “Provable tradeoffs
in adversarially robust classification,” 2020, arXiv:2006.05161.

B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari, “Limitations
of lazy training of two-layers neural network,” in Proc. NIPS, 2019.

S. Goldt, M. Mézard, F. Krzakala, and L. Zdeborova, “Modeling the
influence of data structure on learning in neural networks: The hidden
manifold model,” Phys. Rev. X, vol. 10, no. 4, 2020, Art. no. 041044.
L. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proc. Int. Conf. Learn. Represent., 2015.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

(30]

[31]

[32]

[34]
[35]

(36]

[37]

(38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani, “Surprises
in high-dimensional ridgeless least squares interpolation,” Ann. Statist.,
vol. 50, no. 2, pp. 949-986, Apr. 2022.

A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Conver-
gence and generalization in neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 31, 2018.

A. Javanmard and M. Soltanolkotabi, “Precise statistical analysis of
classification accuracies for adversarial training,” Ann. Statist., vol. 50,
no. 4, pp. 2127-2156, Aug. 2022.

A. Javanmard, M. Soltanolkotabi, and H. Hassani, ‘“Precise tradeoffs in
adversarial training for linear regression,” in Proc. Conf. Learn. Theory,
2020, pp. 2034-2078.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in Proc. Int. Conf.
Learn. Represent., 2018.

X. Mai and Z. Liao, “High dimensional classification via regularized
and unregularized empirical risk minimization: Precise error and optimal
loss,” 2019, arXiv:1905.13742.

X. Mai, Z. Liao, and R. Couillet, “A large scale analysis of logis-
tic regression: Asymptotic performance and new insights,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019,
pp. 3357-3361.

S. Mei and A. Montanari, “The generalization error of random features
regression: Precise asymptotics and the double descent curve,” Commun.
Pure Appl. Math., vol. 75, no. 4, pp. 667-766, Apr. 2022.

Y. Min, L. Chen, and A. Karbasi, “The curious case of adversarially
robust models: More data can help, double descend, or hurt generaliza-
tion,” in Proc. Uncertainty Artif. Intell., 2021, pp. 129-139.

A. Montanari, F. Ruan, Y. Sohn, and J. Yan, “The generalization error of
max-margin linear classifiers: Benign overfitting and high dimensional
asymptotics in the overparametrized regime,” 2019, arXiv:1911.01544.
S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple
and accurate method to fool deep neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2574-2582.

A. Raghunathan, S. M. Xie, F. Yang, J. Duchi, and P. Liang, “Under-
standing and mitigating the tradeoff between robustness and accuracy,”
in Proc. Int. Conf. Mach. Learn., 2020, pp. 7909-7919.

A. Raghunathan, S. M. Xie, F. Yang, J. C. Duchi, and P. Liang,
“Adversarial training can hurt generalization,” in Proc. ICML Workshop
Identifying Understand. Deep Learn. Phenomena, 2019.

A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Proc. Adv. Neural Inf. Process. Syst., vol. 20, 2007.

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317.
Springer, 2009.

F. Salehi, E. Abbasi, and B. Hassibi, “The impact of regularization on
high-dimensional logistic regression,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 32, 2019.

L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Madry, “Adver-
sarially robust generalization requires more data,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 5014-5026.

S. H. Silva and P. Najafirad, “Opportunities and challenges in deep
learning adversarial robustness: A survey,” 2020, arXiv:2007.00753.
M. Stojnic, “Various thresholds for ¢;-optimization in compressed
sensing,” 2009, arXiv:0907.3666.

M. Stojnic, “A framework to characterize performance of LASSO
algorithms,” 2013, arXiv:1303.7291.

P. Sur and E. J. Candes, “A modern maximum-likelihood theory for high-
dimensional logistic regression,” Proc. Nat. Acad. Sci. USA, vol. 116,
no. 29, 2019, Art. no. 201810420.

C. Szegedy et al., “Intriguing properties of neural networks,” 2013,
arXiv:1312.6199.

H. Taheri, R. Pedarsani, and C. Thrampoulidis, “Sharp asymptotics and
optimal performance for inference in binary models,” in Proc. Int. Conf.
Artif. Intell. Statist., 2020, pp. 3739-3749.

H. Taheri, R. Pedarsani, and C. Thrampoulidis, “Fundamental limits of
ridge-regularized empirical risk minimization in high dimensions,” in
Proc. Int. Conf. Artif. Intell. Statist., 2021, pp. 2773-2781.

H. Taheri, R. Pedarsani, and C. Thrampoulidis, “Asymptotic behavior
of adversarial training in binary linear classification,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jun. 2022, pp. 127-132.

C. Thrampoulidis, E. Abbasi, and B. Hassibi, “Precise error analysis of
regularized M -estimators in high dimensions,” IEEE Trans. Inf. Theory,
vol. 64, no. 8, pp. 5592-5628, Aug. 2018.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 19,2023 at 12:56:32 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAHERI et al.: ASYMPTOTIC BEHAVIOR OF ADVERSARIAL TRAINING

[47] C. Thrampoulidis, S. Oymak, and B. Hassibi, “Regularized linear

regression: A precise analysis of the estimation error,” in Proc. 28th

Conf. Learn. Theory, 2015, pp. 1683-1709.

D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry,

“Robustness may be at odds with accuracy,” in Proc. Int. Conf. Learn.

Represent., 2019.

[49] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan,
“Theoretically principled trade-off between robustness and accuracy,” in
Proc. Int. Conf. Mach. Learn., 2019.

(48]

Hossein Taheri received the B.Sc. degree in elec-
trical engineering and mathematics from the Sharif
University of Technology, Tehran, Iran, in 2018.
He is currently pursuing the Ph.D. degree in elec-
trical and computer engineering with the University
of California at Santa Barbara, Santa Barbara, CA,
USA.

His main area of research is on statistical learning.

Ramtin Pedarsani (Senior Member, IEEE)
received the B.Sc. degree in electrical engineering
from the University of Tehran, Tehran, Iran,
in 2009, the M.Sc. degree in communication
systems from the Swiss Federal Institute of
Technology, Lausanne, Switzerland, in 2011, and
the Ph.D. degree from the University of California
at Berkeley, Berkeley, CA, USA, in 2015.

He is an Associate Professor with the
ECE Department, University of California at
Santa Barbara, Santa Barbara, CA, USA. His
research interests include machine learning, information and coding theory,
networks, and transportation systems.

Dr. Pedarsani was a recipient of the Communications Society and
Information Theory Society Joint Paper Award in 2020, the Best Paper
Award at the IEEE International Conference on Communications in 2014,
and the NSF CRII Award in 2017.

Christos Thrampoulidis received the Diploma
degree in ECE from the University of Patras, Patras,
Greece, in 2011, and the M.Sc. and Ph.D. degrees
in electrical engineering with a minor in applied
and computational mathematics from the California
Institute of Technology, Pasadena, CA, USA, in
2012 and 2016, respectively.

He was an Assistant Professor at the Univer-
sity of California at Santa Barbara, Santa Barbara,
CA, USA, and a Post-Doctoral Researcher at Mas-
sachusetts Institute of Technology, Cambridge, MA,
USA. He is an Assistant Professor with the Department of Electrical and
Computer Engineering, The University of British Columbia, Vancouver, BC,
Canada. His research is on high-dimensional estimation, machine learning,
and optimization.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 19,2023 at 12:56:32 UTC from IEEE Xplore. Restrictions apply.



