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Asymptotic Behavior of Adversarial Training in

Binary Linear Classification
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AbstractÐ Adversarial training using empirical risk minimiza-
tion (ERM) is the state-of-the-art method for defense against
adversarial attacks, that is, against small additive adversarial
perturbations applied to test data leading to misclassification.
Despite being successful in practice, understanding the general-
ization properties of adversarial training in classification remains
widely open. In this article, we take the first step in this direction
by precisely characterizing the robustness of adversarial training
in binary linear classification. Specifically, we consider the
high-dimensional regime where the model dimension grows with
the size of the training set at a constant ratio. Our results provide
exact asymptotics for both standard and adversarial test errors
under general ℓq-norm bounded perturbations (q ≥ 1) in both
discriminative binary models and generative Gaussian-mixture
models with correlated features. We use our sharp error formulae
to explain how the adversarial and standard errors depend upon
the over-parameterization ratio, the data model, and the attack
budget. Finally, by comparing with the robust Bayes estimator,
our sharp asymptotics allow us to study the fundamental limits
of adversarial training.

Index TermsÐ Adversarial learning, adversarial training, high-
dimensional statistics, optimization.

I. INTRODUCTION

S
EVERAL machine-learning models ranging from simple

linear classifiers to complex deep neural networks have

been shown to be prone to adversarial attacks, i.e., small addi-

tive perturbations to the data that cause the model to predict a

wrong label [31], [42]. The requirement for robustness against

adversaries is crucial for the safety of systems that rely on

decisions made by these algorithms (e.g., in self-driving cars).

With this motivation, over the past few years, there have been

remarkable efforts by the research community to construct

defense mechanisms, e.g., [11], [38] for a survey. Among
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many proposals in the already rich literature, perhaps the most

popular approach is that of adversarial training [20]. Among

many favorable properties, adversarial training is flexible and

easy to adjust to different types of data perturbations and has

also been shown to achieve state-of-the-art performance in sev-

eral tasks [25]. However, despite major recent progress in the

study and implementation of adversarial training, its efficacy

has been mainly shown empirically without providing much

theoretical understanding. Indeed, many questions regarding

its theoretical properties remain open even for simple models.

For instance, how does the adversarial/standard error depend

on the adversary’s budget during training time and test time?

How do they depend on the over-parameterization ratio? What

is the role of the chosen loss function?

In this article, we consider the adversarial training problem

for ℓq -norm bounded perturbations in classification tasks,

which solves the following robust empirical risk minimization

(ERM) problem:

min
θ∈Rl

m∑

i=1

max
∥δi ∥q≤ εtr

L̃(yi , fθ (xi + δi ))+ r∥θ∥2
2. (1)

Here, {(xi , yi )}i∈[m] ∈ R
n × {±1} is the training set, δi ∈ R

n

are the perturbations with l the dimension of the feature

space, fθ :Rn → R is a model parameterized by a vector

θ ∈ R
l , εtr is a user-specified tunable parameter that can be

interpreted as the adversary’s budget during training, and r is

the ridge-regularization parameter. Once the robust classifier θ̂

is obtained by (1), the adversarial error/robust classification

error is given by

Ex,y

[
max

∥δ∥q≤εts

1{y ̸=sign( fθ̂ (x+δ))}
]

where 1{·} is the 0/1-indicator function, (x, y) ∈ R
n ×{±1} is

a test sample drawn from the same distribution as that of the

training dataset, εts is the budget of the adversary, and fθ̂ uses

the trained parameters θ̂ and the fresh sample x to output a

label guess. The standard classification error is given by the

same formula by simply setting εts = 0.

The goal of this article is to precisely analyze the perfor-

mance of adversarial training in (1) for binary classification

with linear models, i.e., fθ (x) = ⟨θ , x⟩. In our proof, we use

the convex Gaussian min±max theorem (CGMT) [39], [40],

[47] and in particular its applications to the convex ERM

that enables its precise analysis, e.g., [30], [36], [43], [44],

[46]. However, compared to previous works, we develop a new

analysis for robust optimization with correlated data.
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Our main contributions are summarized as follows.

1) We precisely analyze, for the first time, the performance

of adversarial training with ℓ2 and ℓ∞ attacks in binary

classification for two important data models of Gaussian

mixtures and generalized linear models. See Sections III

and IV.

2) Our approach is general, allowing us to characterize the

role of feature correlation, regularization, and general ℓq

attacks with q ≥ 1. In particular, our proof technique

allows for nonisotropic features, yielding novel theoret-

ical results even for nonadversarial convex regularized

ERM settings (i.e., when εtr = εts = 0). We elaborate

on our technical approach in Section III-C.

3) Numerical illustrations in Section III-B show tight

agreements between our theoretical and empirical results

and also allow us to draw intriguing conclusions regard-

ing the behavior of adversarial and standard errors

as functions of key problem parameters such as the

sampling ratio δ := m/n, the budget of the adversary

εts, and the robust-optimization hyper-parameter εtr in

our studied settings. Moreover, we observe interesting

phenomena by comparing our results with the Bayes

optimal robust errors.

A. Prior Works

Relevant to the flavor of our results, the recent work [24]

studies precise tradeoffs and performance analysis in adver-

sarial training with linear regression with ℓ2 perturbations

and isotropic Gaussian data. Compared to [24], our results

hold for binary models, general ℓq perturbations with q ≥
1, and nonisotropic features with mild assumptions on the

covariance matrix. Moreover, we consider regularized ERM

allowing us to study the behavior of adversarial training

in the over-parameterized regime in the limit of λ → 0.

Similar results on the behavior of adversarial training in

classification are only derived in a concurrent work by [23].

On the one hand, compared to [23] our analysis applies to

both discriminative and generative data models, and also to the

regularized ERM. Our analysis also allows generic covariance

matrices while the analysis of [23] only applies to very specific

structures for the covariance matrix. In addition, we examine

how our formulas on adversarial training compare with those

of the Bayes robust estimator. On the other hand, [23] extend

their analysis to robust support vector machines (SVMs). Note,

however, that we can retrieve the same results regarding the

performance of adversarially-robust SVM by evaluating our

formulas on regularized ERM with logistic loss and vanishing

regularization parameters.

Our analysis of correlated features was motivated by [30],

which derives sharp generalization guarantees for SVM mod-

els with correlated data. Very recently, correlated features

have been considered in various settings, e.g., [8], [10], [15].

However, none of these works studies the more challenging

problem of adversarially-robust ERM as we do here. To see,

at a high level, why this differs from standard ERM or standard

SVM analysis note the following complications in the analysis.

First, because adversarial training is formulated as a min±max

optimization, it is not at all apparent that the machinery of

Gaussian comparison theorems applies. Second, the perfor-

mance metric here is a robust error (rather than a standard

error), and we show that this changes the statistics that need

to be tracked by the CGMT analysis. Third, the primary

optimization to which we eventually apply the CGMT involves

an ªeffectiveº ℓp-regularizer (where ℓp is the dual norm

of the adversary’s ℓq -norm), which unlike previous works

appears inside the argument of the loss function, requiring

new techniques to scalarize the auxiliary optimization (AO).

Specially, we do this in the presence of nonisotropic features,

which yields new results even for standard ERM methods.

The adversarial Bayes risk for Gaussian mixtures has been

recently characterized in [5], [13], and [17]. Here, we combine

their results with our precise asymptotics on the practically

relevant adversarial training method, allowing us to investigate

the fundamental limits of the latter. Allen-Zhu and Li [12]

and Charles et al. [1] discuss the optimization landscape of

adversarial training, however, these works do not address

the generalization properties of adversarial training, as done

in this article. The prior work [29] considers adversarial

training with linear loss to analyze the sample complexity

of robust estimators. Instead, here, we investigate the more

challenging, but practically more relevant, 0/1-loss and its

tractable approximations (e.g., hinge and logistic). Another

related line of work studies tradeoffs between the standard and

adversarial errors, e.g., [17], [33], [48], [49], but for simpler

algorithms and data models, rather than adversarial training

and correlated GLM/GMM, which we focus on here. The

benefits of unlabeled data in robustness have been investigated

in several works, e.g., [7], [32]. An exciting direction opening

up with our analysis is investigating adversarial training perfor-

mance for random features and neural tangent models. To date,

precise asymptotics for such models have been obtained

only very recently and for the simpler problem of standard

ERM [15], [16], [18], [19], [28]. A preliminary version of

this work appeared in [45]. The results presented in [45] only

apply to data that follow the isotropic Gaussian mixture model

and only to ℓ∞ attacks. The current manuscript significantly

extends the scope of these results: first, we extend the results

for GMM to general covariance matrices (not necessarily

isotropic). This is important because it better captures data

distributions in practice. We also note that the extension is

technically nontrivial, requiring several modifications in the

proof compared with the isotropic case. Second, in the journal

version, we describe a unifying analysis and results that apply

both to discriminative and generative models. Specifically for

discriminative models, we present new results for GLM data.

Third, we provide a general analysis of ℓp-norm attacks. This

extends the results of the conference version that only applied

to ℓ∞-norm. For demonstration, we present results for ℓ2-

attacks in Section IV. Finally, we have extended our numerical

study by introducing additional experiments in Appendix VII,

as shown in the supplementary material.

Notation: Letting δ(x) denote a Dirac delta mass at x ,

the empirical distribution of a vector x ∈ R
n is given by

(1/n)
∑n

i=1 δ(xi ). The empirical joint distribution of v,u ∈ R
n

is given by (1/n)
∑n

i=1 δ(vi ,ui ). The Wasserstein-k distance
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between two measures ρ1, ρ2 is defined as Wk(ρ1, ρ2) ≜

(infρ∈P E(X,Y )∼ρ |X − Y |k)1/k , where P denotes all couplings

of ρ1 and ρ2. We say that a sequence of probability distribu-

tions µn converges in Wasserstein-k distance to a probability

distribution µ, if Wk(µn, µ) → 0 as n → ∞. The Gaussian

Q-function is denoted by Q(·). ⊙ denotes the elementwise

multiplication. The function ∥·∥p
q is denoted by ℓ

p
q . For a

positive semidefinite matrix S, we define ∥v∥S ≜ (vT Sv)1/2.

Finally, for a sequence of random variables Xm,n that con-

verges in probability to some constant c in the proportional

asymptotic limit m, n → ∞, m/n → δ, we write Xm,n
P−→ c.

II. PROBLEM FORMULATION

In this section, we describe the data model, the specific

form of (1), and the asymptotic regime for which our results

hold. After this section, it is understood that all our results

hold in the setting described here without any further explicit

reference.

A. Data Model

We study two stylized models for binary classification.

1) Gaussian Mixture Models: The first model is a Gaussian

mixture model (GMM) where the conditional distribution of

the feature vectors is a Gaussian with mean ±θ ⋆n (depending on

the label yi ∈ {±1}) and with covariance 6n . The subscript n

emphasizes the dependence on dimension. Formally, the GMM

assumes

P(yi = 1) = π ∈ [0, 1], xi |yi ∼ N
(
yiθ

⋆
n,6n

)
. (2)

2) Generalized Linear Models: The second model is a

generalized linear model (GLM) with a binary link function.

Specifically, assume that the label yi ∈ {±1} associated with

the feature vector xi is generated as

yi = ψ
(〈
θ ⋆n, xi

〉)
, xi ∼ N (0,6n) (3)

for a possibly random link function ψ :R → {±1}. This

includes the well-known logistic and signed models, by letting

P(ψ(x) = 1) = 1/(1 + exp(−x)) and ψ(x) = sign(x),

respectively.

We assume that the underlying (unknown) vector of regres-

sors θ ⋆n ∈ R
n , and the covariance matrix 6n ∈ R

n×n , satisfy

the following technical (and mild) assumptions.

Assumption 1: The minimum and maximum eigenvalues of

the covariance matrices 6n satisfy 0 < c < λmin(6n) and

λmax(6n) < C < ∞.

Assumption 2: Denoting ζn ≜ (θ ⋆n
⊤
6nθ

⋆
n)

1/2 for GLM

and ζ̃n ≜ (θ ⋆n
⊤
6−1

n θ ⋆n)
1/2 for GMM, we define their

high-dimensional limits as ζ and ζ̃ , i.e., ζn
P−→ ζ and

ζ̃n
P−→ ζ̃ . Moreover, for both models, we assume without

loss of generality that ∥θ ⋆n∥2
P−→ 1.

Assumption 3: Let 6n = Un3nU⊤
n be the eigendecomposi-

tion of 6n and let λn,i denote the i th entry on the diagonal

of 3n. Denote vn ≜ U⊤
n θ ⋆n . Then, the joint distribution of

(
√

nθ ⋆n,i ,λn,i ,
√

nvn,i ), i ∈ [n], converges in Wasserstein-2

distance to a probability distribution 5 in R × R+ × R, i.e.,

1

n

n∑

i=1

δ
(√

nθ ⋆n,i ,λn,i ,
√

nvn,i

) W2−→ 5.

The assumption on ∥θ ⋆n∥2 is without loss of generality for

GLM since ∥θ ⋆n∥2 can be absorbed in the link function ψ .

Similarly for GMM, if ∥θ ⋆n∥2 ̸= 1, we can always assume

normalized features x, by appropriately scaling the covariance

matrix 6n . We remark that while the Gaussian distribution

assumption on feature vectors is crucial for our theoretical

analysis, our empirical results suggest that this assumption

can be relaxed to include at least the family of sub-Gaussian

data distributions. We discuss this universality property in

Appendix VII-B (supplementary material).

B. Asymptotic Regime

We consider the high-dimensional asymptotic regime in

which the size m of the training set and the dimension n of

the feature space grow large at a proportional rate. Formally,

m, n → ∞ at a fixed ratio δ = m/n.

C. Robust Learning

Let θ̂n be a linear classifier trained on data generated accord-

ing to either model (2) or (3). As is typical, given θ̂n , a decision

is made about the label of x based on sign(⟨x, θ̂n⟩). Thus,

letting y be the label of a fresh sample x, the standard error

is given by

E
(̂
θn

)
≜ Ex,y

[
1{y ̸=sign(⟨x ,̂θn⟩)}

]
. (4)

Here, the expectation is over a fresh pair (x, y) also generated

according to either the GLM or the GMM model. Next,

we define the adversarial error with respect to a worst-case

ℓq -norm bounded additive perturbation. Let εts ≥ 0 be the

budget of the adversary. Then, the adversarial error is defined

as follows:

Eℓq ,εts
(̂θn) ≜ Ex,y

[
max

∥δ∥q≤εts

1{y ̸=sign(⟨x+δ,̂θn⟩)}
]
. (5)

Adversarial training leads to a classifier θ̂n that solves the

robust optimization problem (1) with L̃(y, fθ (x +δ)) replaced

by L(y⟨θ , x + δ⟩). The loss function L:R → [0,∞) is

chosen as a convex approximation to the 0/1 loss. Specifically,

throughout this article, we assume that L is convex and

decreasing. This includes popular choices such as the logistic,

hinge, and exponential losses.

III. MAIN RESULTS FOR ℓ∞ PERTURBATIONS

A. Asymptotic Behavior

In this section, we focus on the case of bounded ℓ∞-

perturbations, i.e., the adversarial error in (5) is considered

for q = ∞. Specifically, let θ̂n be a solution to the following

robust minimization:

min
θn

m∑

i=1

max
∥δi ∥∞≤ εtr√

n

L(yi ⟨xi + δi , θn⟩)+ r∥θn∥2
2. (6)

In our asymptotic setting, εtr is of constant order and the factor

1/
√

n in front of it is the proper normalization needed to

ensure that the perturbations norm ∥δi∥2, is comparable to the

norm of the true vector ∥θ ⋆n∥2, i.e., both are constant in the

high-dimensional limit → n. We explain this normalization
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further in Section III-C. Here, we consider the case of the

diagonal covariance matrix (i.e., 6n = 3n). Note that this

assumption can be made without loss of generality for GMM

data. Indeed, instead of features xi as in (2) and mean vector

θ ⋆n , we can equivalently analyze features x̃i = U⊤
n xi and mean

vector θ̃ ⋆n := U⊤
n θ ⋆n . For the GLM data in (3), we defer the

general case of possibly nondiagonal 6n to Appendix VIII,

as shown in the supplementary material, where we also discuss

how final expressions simplify in the case of isotropic features.

Before presenting our main result, we need to introduce

some necessary definitions. We write

M f (x; κ) ≜ min
v

1

2κ
(x − v)2 + f (v) (7)

for the Moreau envelope of a function f :R → R at x ∈
R with parameter κ > 0 [35]. We also define the following

min±max optimization over eight scalar variables. Denote v̄ ≜

(α, τ1, w,µ, τ2, β, γ, η) and define f :R8 → R as follows:

f (v̄) ≜ −γw −
µ2τ2

2α
C2 −

αβ2

2δτ2

−
ατ2

2
+
βτ1

2
+ηµ−

η2α

2τ2C2

where C = ζ̃ and ζ (defined in Assumption 2) for GMM

and GLM, respectively. We introduce the following min±max

objective based on the eight scalars:

min
α,τ1,w∈R+,

µ∈R

max
τ2,β,γ∈R+,

η∈R

f (v̄)+ E

[
ML

(
Zα,µ − w;

τ1

β

)]

+ εtrγ E

[
Mℓ1+ r

εtrγ
ℓ2

2

(
αβ

τ2

√
δL

H +
αη

τ2 D
T ;
αεtrγ

τ2L

)]
(8)

where D ≜ ζ̃ 2L and ζ 2 for models (2) and (3), respectively,

H ∼ N (0, 1) and (T, L , V ) ∼ 5 where 5 was defined in

Assumption 3. We also let for convenience

Zα,µ ≜





√
α2 + µ2ζ̃ 2 G + µζ̃ 2, for GMM

αG + µζ S · ψ(ζ S), for GLM

(9)

where G, S
iid∼ N (0, 1). Notice that the objective function

of (8) depends explicitly on the sampling ratio δ and on the

training parameter εtr. Moreover, it depends implicitly on θ ⋆n
and 3n via T and L , respectively, and on the specific loss L

via its Moreau envelope. The nature of allowed perturbations

(the ℓ∞-type) is reflected in (8), via the Moreau-envelope of

the dual-norm (the ℓ1 norm).

We are now ready to state our main result in Theorem

1, which establishes a relation between the solutions of (8)

and the adversarial risk of the robust classifier θ̂n . The proof

is deferred to Appendices VIII-C and VIII-B (supplementary

material).

Theorem 1: Assume that the training dataset {(xi , yi )}m
i=1,

is generated according to either (2) or (3) with diagonal

covariance matrices satisfying Assumptions 1±3. Consider the

robust classifiers {̂θn}, obtained by adversarial training in (6).

Then, the high-dimensional limit for the adversarial error

Eℓ∞,(εts/
√

n)(̂θn), converges to





Q

(
µ⋆ζ̃ 2 − w⋆ εts/εtr√
µ⋆2ζ̃ 2 + α⋆2

)
, for GMM

P

(
µ⋆ζ S ψ(ζ S)+ α⋆G <

w⋆εts

εtr

)
, for GLM

(10)

where Q(·) denotes the Gaussian Q-function and (α⋆, µ⋆, w⋆)

is the unique solution to the scalar min±max problem (8).

The asymptotics for adversarial error in Theorem 1 are pre-

cise in the sense that they hold with probability 1, as m, n →
∞. In Section III-B, we demonstrate the precise theoretical

values and the corresponding numerical values.

B. Numerical Illustrations

In this section, we illustrate the theoretical predictions for

various values of the different problem parameters, including

δ = m/n and the attack budgets εtr and εts. For numer-

ical results here, we focus on the hinge-loss, i.e., L(t) =
max (1 − t, 0) and on the GMM with isotropic features; thus

L has a unit mass at 1. Additional experiments on GLM

are given in Appendix VII-A, as shown in the supplemen-

tary material. We further assume that T is standard normal

and fix regularization parameter r = 10−4. To solve (8),

we derive the solution of the corresponding saddle point

equations (derived in (60) in Appendix VIII-D1, as shown

in the supplementary material) by iterating over the equations

and finding the fixed-point solution after 100 iterations. For

the numerical results, we set n = 200 and solve the ERM

problem (6) by gradient descent. The resulting estimator is

used to compute the adversarial test error by evaluating (4) on

a test set of 3 × 103 samples. We then average the results over

20 independent experiments. The results for both numerical

and theoretical values are shown in Figs. 1 and 2. Next,

we discuss some of the insights obtained from these figures.

1) Impact of δ on Standard/Adversarial Errors: Fig. 1

shows the adversarial and standard errors as a function of

δ = m/n. We compare the results of adversarial training with

the Bayes optimal error. Formally, the Bayes adversarial error

is defined as

Eℓq ,εts
(OPT) ≜ min

f
θ

Ex,y

[
max

∥δ∥q≤εts

1{y ̸= f
θ
(x+δ)}

]
. (11)

For the Gaussian-mixture model (2) under an ℓq attack with

budget ε, the Bayes adversarial error is derived as follows [5]:

Eℓq ,ε(OPT) = Q
(
∥θ ⋆ − µ⋆∥6−1

n

)
,

where µ⋆ ≜ arg min
∥µ∥q≤ε

∥θ ⋆ − µ∥2

6−1
n

. (12)

The dashed lines in Fig. 1 show the Bayes adversarial error,

derived according to (12) for ε = εts/
√

n.

Note that both errors decrease as the sampling ratio δ grows,

with the adversarial error approaching the Bayes adversarial

error of the corresponding value of εts. In Appendix X-

C, as shown in the supplementary material, we formally

prove that for ℓ2 attacks bounded by εts ∈ [0, 1], the robust

error achieved by adversarial training with any εtr ∈ [0, 1]
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Fig. 1. Adversarial/standard test error based on δ := m/n. Solid lines correspond to theoretical predictions while markers denote the empirical results derived
by solving ERM with vanishing regularization (r = 10−4) using gradient descent. The dashed lines denote (a) Bayes’s adversarial error and (b) Bayes’s
standard error. Note that the adversarial error of estimators obtained from adversarial training approaches the Bayes adversarial error as δ grows.

Fig. 2. Theoretical (solid lines) and empirical (markers) results for the impact of adversarial training on the adversarial test error for (a) εts = 0.5 and
(b) εts = 0.9. The black dashed lines denote the Bayes adversarial error for the corresponding values of εts. The colored dashed lines show the optimal value
of each curve. Note that the optimal value of εtr decreases as δ grows. (c) Impact of adversarial training on the standard test error, illustrating that adversarial
training can improve standard accuracy.

converges to the Bayes adversarial error in the infinite sample-

size limit, i.e., when δ → ∞. In general, in light of the

comparison between the error formulas of Theorem 1 and the

Bayes adversarial error, Fig. 1 provides a means to quantify

the suboptimality gap of adversarial training for all values

of the oversampling ratio δ > 0 and for different values

of the adversary’s budget. A related study was performed

in [37], but therein the authors derive error bounds for a

simple averaging estimator. Instead, our analysis is precise

and holds for the broader case of convex decreasing losses.

Next, we comment on the shape of the error curves as a

function of the sampling ratio. Note that a second sharp

decrease in standard and adversarial errors appears right

after a separability threshold δ(εtr/
√

n),5, which we define

as the maximum value of δ for which the data-points are

(ℓ∞, (εtr/
√

n))-separable (for definition, see the discussion on

robust separability in Section V). This constantly decreasing

behavior of the error is in contrast to the corresponding

behavior in linear regression with ℓ2 perturbations and ℓ2 loss

analyzed in [24], where error based on δ starts rising after

the first decrease and then again decreases as δ grows. This

double-descent behavior can be considered as an extension

of the more familiar double-descent behavior in standard

ERM (first observed in numerous high-dimensional machine

learning models [3], [4], [21]), to the adversarial training case.

Finally, we highlight the following observation from Fig. 1(a):

for highly over-parameterized models (very small δ), standard

accuracy remains the same for different choices of εtr. As δ

grows, adversarial training (perhaps surprisingly) seems to

(also) improve the standard accuracy. However, for very large

δ, increasing εtr hurts standard accuracy. These observations

are consistent and theoretically validate corresponding findings

on the role of dataset size on standard accuracy that was

empirically observed in [48] for neural network training with

nonsynthetic datasets such as MNIST.

2) Impact of εtr on Standard/Adversarial Errors: Adver-

sarial and standard error curves based on the hyper-parameter

εtr are illustrated in Fig. 2. Note that the adversarial error

behavior based on εtr is informative about the role of the

dataset size on the optimal value of εtr. Fig. 2(a) and (b)

shows that the optimal value of εtr is typically larger than

εts. Also note that as δ gets smaller, larger values of εtr are

preferable for robustness. As detailed in Appendix VII-C,

as shown in the supplementary material, this behavior is also

observed in real-world experiments with the MNIST dataset.

Fig. 2(c) illustrates the impact of εtr on the standard error,
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where similar to Fig. 1(b), we observe that adversarial training

can help standard accuracy. In particular, we observe that in the

under-parameterized regime where δ > δ(εtr/
√

n),5 (as we will

define in Section V), adversarial training with small values

of εtr is beneficial for accuracy. As δ increases, such gains

diminish and indeed adversarial training starts hurting standard

accuracy.

C. Proof Sketch

The complete proof of Theorem 1 is deferred to the

appendix (supplementary material). Here, we provide an out-

line of the key steps in deriving (8) and (10).

1) Reducing (6) to a Minimization Problem: For a decreas-

ing loss function, picking δ⋆i ≜ −yi sign(θn) εtr/
√

n,

optimizes the inner maximization in (6). Therefore, (6) is

equivalent to

min
θn

m∑

i=1

L

(
yi ⟨xi , θn⟩ −

εtr√
n
∥θn∥1

)
+ r∥θn∥2

2. (13)

From (13), we can see now why the specific normalization of

εtr is needed in (6). Recall that (for model (3), for instance),

xi ∼ N (0,6n) and ∥θ ⋆n∥2
P−→ 1. For simplicity assume here

that 6n = In . For fixed θ , the argument yi ⟨xi , θ⟩ behaves as

∥θ∥2Sψ(S), where S ∼ N (0, 1). Thus, for θs that are such

that ∥θ∥2 = 2(1) (which ought to be the case for ªgoodº

classifiers in view of ∥θ ⋆n∥2 = 1), the term yi ⟨xi , θ⟩ is an

2(1)-term. Now, thanks to the normalization 1/
√

n in (6), the

second term (εtr/
√

n)∥θ∥1 in (13) is also of the same order.

Here, we used again the intuition that ∥θ∥1 = 2(
√

n), as is

the case for the true θ ⋆. Our analysis formalizes these heuristic

explanations.

2) Key Statistics for the Adversarial Error: Our key obser-

vation is that the asymptotics of the adversarial error of a

sequence of arbitrary classifiers {θn} depend on the asymp-

totics of only a few key statistics of {θn}. This is formalized

in the following lemma. The proof is deferred to Appendix

VIII-A (supplementary material). Similar to before, there is

nothing special here to q = ∞, so we state this result for

general q .

Lemma 1: Fix q ≥ 1 and let ℓp denote the dual norm of ℓq .

Let θ̃ ⋆n ≜ 61/2
n θ ⋆n for data model (3) and θ̃ ⋆n ≜ 6−1/2

n θ ⋆n for data

model (2). Furthermore, for both models, define projection

matrices 2n and 2⊥
n as follows, 2n ≜ θ̃ ⋆n θ̃

⋆
n

⊤
/∥θ̃ ⋆n∥2

2, 2
⊥
n ≜

In − 2n. Furthermore, let ε and ε′ (possibly scaling with

the problem dimensions) be the upper bounds on the norm

of the adversarial perturbation during training and test time,

respectively. With this notation, assume that the sequence of

{θn} is such that the following limits are true for the statistics

∥θn∥p, ∥2n6
1/2
n θn∥2 and ∥2⊥

n 61/2
n θn∥2:

{
ε∥θn∥p

} P→ w,
1

C

{∥∥2n6
1/2
n θn

∥∥
2

} P→ µ

{∥∥2⊥
n 61/2

n θn

∥∥
2

} P→ α

where C = ζ̃ , ζ for GMM and GLM, respectively. Then, in the

high-dimensional limit, the adversarial error converges to




Q

(
µζ̃ 2 − w ε′/ε√
µ2ζ̃ 2 + α2

)
, for GMM

P
(
µζ S ψ(ζ S)+ αG−wε′/ε < 0

)
, for GLM.

(14)

The detailed proof of the lemma is deferred to the appendix

(supplementary material). There are essentially two steps in

establishing the result. The first is to exploit the decreasing

nature of the 0/1-loss to explicitly optimize over δi . This

optimization gives rise to the dual norm ∥θn∥p. The second

step is to consider the change of variables θn ⇒ θ̃n ≜

61/2
n θn and decompose θ̃n on its projection on 61/2

n θ ⋆n and

its complement. In the notation of the lemma, θ̃n = 2n θ̃n +
2⊥

n θ̃n . The Gaussianity of the feature vectors together with

orthogonality of the two components in the decomposition of

θn explain the appearance of the Gaussian variables S and G

in (14). When applied to ℓ∞-perturbations, Lemma 1 reduces

the goal of computing asymptotics of the adversarial risk of

θ̂n to computing asymptotics of the corresponding statistics

∥6−1/2
n θ̃n∥1, ∥2n θ̃n∥2, and ∥2⊥

n θ̃n∥2.

3) Scalarizing the Objective Function: The previous two

steps set the stage for the core of the analysis, which we

outline next. Thanks to step 1, we are now asked to analyze

the statistical properties of a convex optimization problem.

On top of that, due to step 2, the outcomes of the anal-

ysis ought to be asymptotic predictions for the quantities

∥6−1/2
n θ̃n∥1, ∥2n θ̃n∥2, and ∥2⊥

n θ̃n∥2. However, note that the

term ∥6−1/2
n θ̃n∥1 appears inside the loss function. In particular,

this is a new challenge, specific to robust optimization com-

pared with previous analyses of standard regularized ERM.

Moreover, both of the terms ∥6−1/2
n θ̃n∥1 and ∥6−1/2

n θ̃n∥2
2 are

not decomposable based on ∥2n θ̃n∥2 and ∥2⊥
n θ̃n∥2, due to the

presence of the term 6−1/2
n . The first step to overcome these

challenges is to identify an appropriate min±max AO problem

that is probabilistically equivalent to (13). The second crucial

step is to scalarize the AO based on an appropriate Lagrangian

formulation. Finally, we perform a probabilistic analysis of the

scalar AO. This results in the deterministic min±max problem

in (8). See the appendix (supplementary material) for details.

IV. MAIN RESULTS FOR ℓ2 PERTURBATIONS

When q = 2, the min-max problem is equivalent to the

following, by choosing the optimal choice δi = −yiεtrθ/∥θ∥2:

min
θn

1

m

m∑

i=1

L(yi ⟨xi , θn⟩ − εtr∥θn∥2)+ r∥θn∥2
2. (15)

Here, we assume {6n} to be a sequence of positive definite

matrices. Denote ṽ ≜ (α, τ1, τ3, w,µ, τ2, β, γ, η) and define

g:R9 → R as follows:

g(̃v) ≜ −γw −
µ2τ2

2α
C2 −

αβ2

2δτ2

−
ατ2

2
+
βτ1

2

+ ηµ−
η2α

2τ2C2
+
εtrγ τ3

2

where recall that C ≜ ζ̃ and ζ for GMM and GLM,

respectively. With this notation, we introduce the following
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min±max problem:

min
α,τ1,τ3,w∈R+

µ∈R

max
τ2,β,γ∈R+,

η∈R

g(̃v)+ E

[
ML

(
Zα,µ − w;

τ1

β

)]

+
η2α2

τ 2
2 C4

(
εtrγ

2τ3

+ r

)
EL




C4β2

η2δ
+ L̃

εtrγα+2τ3rα

τ2τ3
+ L


 (16)

where we define L̃ ≜ 1/L and L for GMM and GLM,

respectively, and the random variables L and Zα,µ are defined

the same as in (8).

Theorem 2: Consider the same setting as in Theorem 1,

only here assume that q = 2 and {6n} are positive definite

matrices (not necessarily diagonal) satisfying Assumptions 1±

3. Let (α⋆, µ⋆, w⋆) be the unique solution to the min±max

problem (16). Then, the high-dimensional limit for the adver-

sarial error (Eℓ2,εts
(̂θn)) converges to





Q

(
µ⋆ζ̃ 2 − w⋆ εts/εtr√
µ⋆2ζ̃ 2 + α⋆2

)
, for GMM

P

(
µ⋆ζ Sψ(ζ S)+ α⋆G < w⋆

εts

εtr

)
, for GLM.

(17)

Proof of Theorem 2 is deferred to Appendix IX-A, as shown

in the supplementary material. Compared to Theorem 1, note

here that the asymptotic prediction only depends on the total

energy of θ ⋆n (which was assumed to be 1 in Assumption 2)

and not on its empirical distribution T . We present numerical

illustrations on ℓ2-attacks in Appendix IX-A, as shown in the

supplementary material, where we also discuss how the dataset

size and attack budgets, affect the adversarial and standard test

errors based on Theorem 2.

V. FURTHER DISCUSSION ON OUR RESULTS

Remark 1 (Training With No Regularization and Robust

Separability): An instance of special interest in practice is

solving the unregularized version of the min±max problem

min
θn

1

m

m∑

i=1

max
∥δi ∥q≤ ε

L(yi ⟨xi + δi , θn⟩). (18)

Following the same proof techniques as above, we can show

that the formulas predicting the statistical behavior of this

unconstrained version are given by the same formulas as in

Theorem 1 with r = 0 and also provided that the sampling

ration δ is large enough so that a certain robust separability

condition holds. In what follows, we describe this condition.

We start with some background on (standard) data separability.

Recall, that training data {(xi , yi )} are linearly separable if

and only if ∃θ ∈ R
n such that for all training samples

yi ⟨xi , θ⟩ ≥ 1. Now, we say that data are (ℓq , ε)-separable

if and only if

∃θ ∈ R
n, s.t. yi ⟨xi , θ⟩ − ε∥θ∥p ≥ 1 ∀i ∈ [m].

Note that (standard) linear separability is equivalent to (ℓq , 0)-

separability as defined above. Moreover, it is clear that

(ℓq , ε)-separability implies (ℓq , 0)-separability for any ε ≥
0. Recent works have shown that in the proportional limit

data from the GLM are (ℓq , 0)-separable if and only if the

sampling ratio satisfies δ < δψ [6], [14], [30], [41] for

some δψ > 2. Here, the subscript ψ denotes dependence

of the phase-transition threshold δψ on the link function ψ

of the GLM. We conjecture that there is a threshold δψ,ε,5,

depending on ε, the link function ψ and the probability

distribution 5 such that data are (ℓq , ε)-separable if and only

if δ < δψ,ε,5. We believe that our techniques can be used to

prove this conjecture and determine δψ,ε,5, but we leave this

interesting question to future work. Instead here, we simply

note that based on the above discussion, if such a threshold

exists, then it must satisfy δψ,ε,5 ≤ δψ,0,5, for all values

of ε, and in fact, it is a decreasing function of ε. Now let

us see how this notion relates to solving (6) and to our

asymptotic characterization of its performance. Recall from

(13) that the robust ERM for decreasing losses reduces the

minimization minθ

∑m
i=1 L(yi ⟨xi , θ⟩ − ε∥θ∥p). Thus, using

again the decreasing nature of the loss, it can be checked

that the solution to the objective function above becomes

unbounded for θ such that the argument of the loss is positive

for any i ∈ [m]. This is equivalent to the condition of (ℓq , ε)-

separability. In other words, when data are (ℓq , ε)-separable,

the robust estimator is unbounded. Recall from Section III-

C that the min±max optimization variables w,µ, α represent

the limits of ∥̂θn∥p, ∥2n6
1/2
n θ̂n∥2, and ∥2⊥

n 61/2
n θ̂n∥2. Thus,

if θ̂n is unbounded, then w⋆, µ⋆, α⋆ are not well defined.

In accordance with this, we conjecture that the min±max

problem (8) for r = 0 [corresponding to (18)] has a solution

if and only if the data are not (ℓq , ε)-separable, equivalently,

if δ > δψ,ε,5. Equivalent results are applicable to the Gaussian-

Mixture models.

Remark 2 (On Statistical Limits in Adversarial Training):

The asymptotics in (17) imply that for ℓ2 perturbations and

isotropic features, since w⋆ = (α⋆2 + µ⋆2)1/2, the errors

depend on the ratio α⋆/µ⋆. In fact, it can be seen that smaller

values of the ratio lead to smaller adversarial errors. This leads

to an interesting conclusion: To find the hyper-parameter εtr

that minimizes the adversarial error, it suffices to tune εtr

to minimize the ratio α⋆/µ⋆. A similar conclusion can be

made for the case of ℓ∞ perturbations, by noting from (10)

that the adversarial error is characterized in a closed form

in terms of (α⋆, µ⋆, w⋆). In view of these observations, our

sharp guarantees for the performance of adversarial training

open the way to answering questions on the statistical limits

and optimality of adversarial training, e.g., how to optimally

tune εtr? How to optimally choose the loss function and what

are the best minimum values of adversarial error achieved by

the family of robust estimators? How do these answers depend

on the adversary budget and/or the sampling ratio δ? Funda-

mental questions of this nature have been recently addressed

in the non-adversarial case based on the corresponding saddle

point equations for standard ERM, e.g., [2], [9], [26], [27],

[43], [44]. Theorems 1 and 2 are the first steps toward such

extensions to the adversarial settings.

VI. CONCLUSION

We studied the generalization behavior of adversarial train-

ing in a binary classification setting. In particular, we derived
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precise theoretical predictions for the performance of adver-

sarial training for the GLM and GMM. Numerical simulations

validate theoretical predictions even for relatively small prob-

lem dimensions and demonstrate the role of all problem

parameters on adversarial robustness. Finally, we remark that

the current analysis can be extended to general convex reg-

ularization functions building on our ideas. An interesting

future direction is analyzing adversarial training for random

features [34] and neural tangent kernel [22] models. One other

natural question is considering attacks other than ℓq -norm

attacks considered in this article.
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