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Abstract—We have widely observed that neural networks are
vulnerable to small additive perturbations to the input causing
misclassification. In this paper, we focus on the ℓ0-bounded
adversarial attacks, and aim to theoretically characterize the
performance of adversarial training for an important class of
truncated classifiers. Such classifiers are shown to have strong
performance empirically, as well as theoretically in the Gaussian
mixture model, in the ℓ0-adversarial setting. The main contribu-
tion of this paper is to prove a novel generalization bound for the
binary classification setting with ℓ0-bounded adversarial pertur-
bation that is distribution-independent. Deriving a generalization
bound in this setting has two main challenges: (i) the truncated
inner product which is highly non-linear; and (ii) maximization
over the ℓ0 ball due to adversarial training is non-convex and
highly non-smooth. To tackle these challenges, we develop new
coding techniques for bounding the combinatorial dimension of
the truncated hypothesis class.

I. INTRODUCTION

It is well-known that machine learning models are sus-

ceptible to adversarial attacks that can cause classification

error. These attacks are typically in the form of a small

norm-bounded perturbation to the input data that are carefully

designed to incur misclassification–e.g. they can be an additive

ℓp-bounded perturbation for some p ≥ 0 [1], [2], [3], [4].

There is an extensive body of prior work studying ad-

versarial machine learning, most of which have focused on

ℓ2 and ℓ∞ attacks [5], [6], [7], [8], [9]. To train models

that are more robust against such attacks, adversarial training

is the state-of-the-art defense method. However, the success

of the current adversarial training methods is mainly based

on empirical evaluations [10]. It is therefore imperative to

study the fundamental limits of robust machine learning under

different classification settings and attack models.

In this paper, we focus on the case of ℓ0-bounded attacks

that has been less investigated so far. In such attacks, given an

ℓ0 budget k, an adversary can change k entries of the input

vector in an arbitrary fashion – i.e. the adversarial perturba-

tions belong to the ℓ0-ball of radius k. In contrast with ℓp-balls

(p ≥ 1), the ℓ0-ball is non-convex and non-smooth. Moreover,

the ℓ0-ball contains inherent discrete (combinatorial) structures

that can be exploited by both the learner and the adversary. As

a result, the ℓ0-adversarial setting bears various challenges that

are absent in common ℓp-adversarial settings. In this regard, it

has recently been shown that any piece-wise linear classifier,
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e.g. a feed-forward neural network with ReLu activations,

completely fails in the ℓ0 setting [11].

Perturbing only a few components of the data or signal

has many real-world applications including natural language

processing [12], malware detection [13], and physical attacks

in object detection [14]. There have been several prior works

on ℓ0-adversarial attacks including white-box attacks that are

gradient-based, e.g. [4], [15], [16], and black-box attacks

based on zeroth-order optimization, e.g. [17], [18]. Defense

strategies against ℓ0-bounded attacks have also been proposed,

e.g. defenses based on randomized ablation [19] and defensive

distillation [20]. None of the above works have studied the

fundamental limits of the ℓ0-adversarial setting theoretically.

Recently, [21] proposed a classification algorithm called

FilTrun and showed that it is robust against ℓ0 adversarial

attacks in a Gaussian mixture setting. Specifically, they show

that asymptotically as the data dimension gets large, no other

classification algorithm can do better than FilTrun in the

presence of adversarial attacks. Their algorithm consists of

two component, namely truncation and filteration. Although

truncation can be efficiently implemented, filteration is com-

putationally expensive. Later, [22] proposed that employing

truncation in a neural network architecture together with

adversarial training results in a classification algorithm which

is robust against ℓ0 attacks. They proved this for the Gaussian

mixture setting in an asymptotic scenario as the data dimension

goes to infinity. Furthermore, they demonstrated the effective-

ness of their proposed method against ℓ0 adversarial attacks

through experiments.

In the previous theoretical results in ℓ0–bounded adversarial

attacks, it is assumed that the data distribution is in the form of

a Gaussian mixture with known parameters, and the focus is on

showing the asymptotic optimality of the proposed architecture

as the data dimension goes to infinity. In practical supervised

learning scenarios, we usually have indirect access to the

distribution through i.i.d. training data samples. In this setting,

adversarial training is a natural method for learning model

parameters that are robust against adversarial attacks, as shown

empirically in the prior work.

Motivated by the theoretical and empirical success of trun-

cation against ℓ0 adversarial attacks, in this paper we study its

generalization properties. Generalization properties of adver-

sarial training have been studied for other adversarial settings

(for instance [23], [24], [25], [26], [27], [28], [29], [30], [31],

and [32]) mainly involving ℓp, p ≥ 1. There are challenges

inherent in the ℓ0 setting which make the standard techniques

inapplicable. In this paper, we discuss these challenges and
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develop novel techniques to address this problem. We believe

that the proposed mathematical techniques in this work are

of independent interest and potentially have applications in

other generalization settings which are combinatorial in nature,

such as neural network architectures equipped with truncation

components for robustness purposes.

Summary of Contributions. Our main contributions are as

follows:

• We consider a binary classification setting in the presence

of an ℓ0 adversary with truncated linear classifiers as

our hypothesis class. We prove a generalization bound

in this setting that is distribution-independent, i.e. it

holds for any distribution on the data (see Theorem 1

in Section III).

• We observe that due to the complex and combinatorial

nature of our problem, the classical techniques for bound-

ing the combinatorial dimension and the VC dimension

are not applicable to our setting (see the discussion in

Section III). To this end, we introduce novel techniques

that may be generalized to problems involving non-linear

and combinatorial operations.

• Specifically, there are two key challenges in bounding the

combinatorial dimension in our setting: (a) the truncated

inner product which is highly non-linear, and (b) the inner

maximization over the ℓ0 ball due to adversarial training,

which is challenging to work with as it is non-convex

and highly non-smooth. It is worth mentioning that as

[25] has shown, it is possible that the original hypothesis

class (truncated inner products in our case) has a finite

VC dimension, but the corresponding adversarial setting

is only PAC learnable with an improper learning rule.

Therefore, it is crucial in our work to resolve the two

challenges individually and show that the VC dimension

is finite even in the adversarial setting proving proper

robust PAC learnability.

• We tackle the first challenge by employing a novel coding

technique, which encodes the sign of the truncated inner

product by a finite number of conventional inner products.

This enables us to bound the growth function using the

known bounds on the VC dimension of conventional

inner product (see Proposition 1 in Section III). We tackle

the second challenge by decomposing our loss function

into two terms, one which does not involve maximization

over the ℓ0, and one which involves studying the range

of the truncated inner product over the ℓ0 ball (see the

discussion in Section III-B and Propositions 2).

In Section II, we formulate the problem and give an

overview of prior results, in Section III, we give the main

results and highlights the proof techniques, and in Section IV

we conclude the paper.

II. PROBLEM FORMULATION

We consider the binary classification problem where the true

label is denoted by y ∈ {±1}, and the feature vector has

dimension d and is denoted by x ∈ R
d. We denote the joint

distribution of (x, y) by D. A classifier is a function C : Rd →

{±1} which predicts the label from the input. We consider the

0-1 loss ℓ(C;x, y) := ✶ [C(x) 6= y]. We study classification

under ℓ0 perturbations; i.e. the adversary can perturb the input

x to x′ ∈ R
d where the ℓ0 distance between the two vectors

defined as

‖x− x′‖0 :=

d∑

i=1

✶ [xi 6= x′
i] ,

is bounded. In other words, the adversary can modify the input

x to any other vector x′ within the ℓ0 ball of radius k around

x defined as

B0(x, k) := {x′ ∈ R
d : ‖x− x′‖0 ≤ k}.

Here, k is the budget of the adversary, and is effectively the

number of input coordinates that the adversary is allowed to

change. The robust classification error (or robust error for

short) of a classifier C when the adversary has ℓ0 budget k
is defined as

LD(C, k) := E(x,y)∼D

[
ℓ̃k(C;x, y)

]
, (1)

where

ℓ̃k(C;x, y) := max
x

′∈B0(x,k)
ℓ(C;x′, y). (2)

Here, (x, y) ∼ D means that the feature vector-label pair

(x, y) has distribution D, and the maximum represents the

adversary which can perturb the input vector x arbitrarily

within the ℓ0 ball B0(x, k).

Overview of Prior Results. The authors of [21] study the

above problem in the setting of the Gaussian mixture model.

More precisely, they assume that y ∼ Unif{±1}, and con-

ditioned on y, x ∼ N (yµ,Σ) is normally distributed with

mean yµ and covariance matrix Σ. Here, µ ∈ R
d, and Σ

is a positive-definite matrix. They study this problem in an

asymptotic fashion as the dimension d goes to infinity. They

propose an algorithm called FilTrun and prove that it is

asymptotically optimal when Σ is diagonal. Here, asymptotic

optimality means that asymptotically as the dimension d goes

to infinity, the robust error of FilTrun gets close to the

optimal robust error, defined as the minimum of the robust

error over all possible classifiers. FilTrun makes use of two

components, namely Filteration and Truncation.

• Filteration refers to a preprocessing phase, where upon

receiving the perturbed data vector x′, we remove certain

coordinates, or effectively set them to zero. The purpose

of filteration is to remove the non-robust coordinates. Let

us denote the output of the filteration phase by x̃′.

• Truncation refers to applying the truncated inner product

of an appropriate weight vector w by the output of the fil-

teration phase x̃′. More precisely, the weight vector w is

chosen appropriately based on the distribution parameters

µ and Σ, and the classification output is computed based

as the sign of the truncated inner product 〈w, x̃′〉k defined

as follows. Let u := w⊙ x̃′ be the coordinate-wise prod-

uct of w and x̃′, and let u(1) ≤ u(2) ≤ · · · ≤ u(d) be the

values in u after sorting. Then, 〈w, x̃′〉k :=
∑d−k

i=k+1 u(i).
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Effectively, 〈w, x̃′〉k is the summation of the values in the

coordinate-wise product of w and x̃′ after removing the k
largest and the k smallest values. Note that when k = 0,

this reduces to the usual inner product, and removing the

top and bottom k values effectively removes the outliers

in the input, which are possibly caused by the adversary.

Although truncation can be implemented in a computa-

tionally efficient way, filteration turns out to be computa-

tionally expensive. The authors in [22] have shown that in

the Gaussian mixture setting with diagonal covariance matrix,

optimizing for the weight vector w in the class of truncated

classifiers of the form C
(k)
w (x′) := sgn(〈w,x′〉k) results in an

asymptotically optimal classifier as the data dimension goes

to infinity. Motivated by this, they propose a neural network

architecture where the inner products in the first layer are

replaced by truncated inner products. Furthermore, they show

through several experiments that in practice when we do not

have access to the distribution parameters, adversarial training

as a proxy for optimizing the model parameters results in an

efficient and robust classifier.

Adversarial Training for Parameter Tuning. In the theoret-

ical analysis in above mentioned works, it is assumed that the

distribution D is in the form of a Gaussian mixture with known

parameters, and therefore we can optimize for the model

parameters within the proposed architecture. In practice, we

usually do not have access to the distribution D. Instead, we

usually have i.i.d. training data samples (x1, y1), . . . , (xn, yn)
distributed according to D. We stick to the usual setting in

the adversarial attacks framework, where the training data

is clean, while the test data is perturbed by the adversary,

and the objective is the robust error at the test time. In this

setting, adversarial training is a natural choice for finding

the model parameters. Motivated by the prior work described

above, we consider the hypothesis class of truncated linear

classifiers of the form C
(k)
w : x 7→ sgn(〈w,x〉k), parametrized

by w ∈ R
d, where for α ∈ R, sgn(α) := +1 when α ≥ 0,

and sgn(α) := −1 when α < 0. Also, motivated by the prior

work mentioned above, we set k to be equal to the adversary’s

budget. Furthermore, note that we are comparing 〈w,x〉k with

zero. This is without loss of generality, since we may assume

that there is a coordinate in x with constant value 1. Since we

focus on this hypothesis class, we use the shorthand notation

LD(w, k) for the robust error of the classifier C
(k)
w , i.e. for

w ∈ R
d, we define LD(w, k) := LD(C

(k)
w , k).

Adversarial training in this scenario translates to choosing

the hypothesis parameter w ∈ R
d by minimizing the adver-

sarial empirical loss

L̂n(w, k) :=
1

n

n∑

i=1

ℓ̃k(C
(k)
w

;xi, yi). (3)

Recall that ℓ̃k(C
(k)
w ;xi, yi) which was defined in (2) is the

maximum zero-one loss over the ℓ0 ball around the ith data

sample. Effectively, we assume that we have access to a perfect

adversary during the training phase which allows us to have

access to ℓ̃k(C
(k)
w ;xi, yi). Let

ŵn ∈ argmin
w∈Rd

L̂n(w, k), (4)

be the hypothesis parameter vector which is obtained by opti-

mizing the above adversarial empirical loss over the training

dataset. In this paper, we analyze the generalization properties

of the adversarial training for the above hypothesis class of

linear truncated classifiers. More precisely, our main question

is whether the robust error corresponding to ŵn (which is

obtained by employing adversarial training) converges to the

robust error of the best truncated linear classifier in our

hypothesis class. More precisely, if

w∗ ∈ argmin
w∈Rd

LD(C
(k)
w

, k), (5)

correspond to the best classifier in our hypothesis class, can

we show that as the number of samples n goes to infinity,

LD(ŵn, k) converges to LD(w
∗, k)? This question is formal-

ized in the following definition.

Definition 1 (robust PAC learnability). We say that a hypoth-

esis class H is robust PAC learnable with respect to an ℓ0
adversary with budget k, if there exists a learning algorithm

A such that for any ǫ, δ > 0, and for any distribution D,

A maps i.i.d. data samples S = ((xi, yi), 1 ≤ i ≤ n) to

A(S) ∈ H, such that if n > m(ǫ, δ), with probability at least

1− δ, we have

LD(A(S), k) ≤ inf
h∈H

LD(h, k) + ǫ.

Notation. [n] denotes the set {1, . . . , n}. We denote vectors

with boldface notation. Given a vector u = (u1, . . . , ud) ∈ R
d,

we denote by u(1) ≤ · · · ≤ u(d) the vector containing elements

in u in a non-decreasing order. Given u,v ∈ R
d, u⊙w ∈ R

d

is defined to be the element-wise product of u and v, i.e.

its ith coordinate is uivi. For vectors w,x ∈ R
d and integer

k < d/2, with u := w ⊙ x, the k–truncated inner product

〈w,x〉k between w and x is defined by
∑d−k

i=k+1 u(i).

III. MAIN RESULTS

Our main result is to show that the class of truncated inner

products in our adversarial setting is robustly PAC learnable

as formalized in Definition 1. This is a direct consequence of

the following Theorem 1. In the remaining of this section, we

explain the ideas and main steps of the proof.

Theorem 1. For any joint distribution D on the label y ∈
{±1} and feature-vector x ∈ R

d, and any adversarial budget
0 < k < d/2, for n > d + 1, if ŵn denotes the model
parameters obtained from adversarial training as in (4), with
probability at least 1− δ, we have

LD(ŵn, k) ≤ LD(w∗
, k)+c

√
d
[(

d

2k

)
+

(
d

2

)]
log en

d

n
+5

√
2 log 8

δ

n
,

where c is a universal constant.

In order to obtain this bound, it suffices to bound the
Rademacher complexity of our hypothesis class composed
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with the loss ℓ̃ defined in (2) and use standard bounds such

as [33, Theorem 26.5]. Let T̃d,k ⊂ {−1,+1}R
d×{±1} be the

class of functions T̃w,k parametrized by w ∈ R
d obtained by

applying the loss ℓ̃ to the truncated linear classifier C
(k)
w , i.e.

T̃w,k(x, y) := ℓ̃k(C
(k)
w

;x, y) = max
x
′∈B0(x,k)

✶
[
y 6= sgn(〈w,x

′〉k)
]
.

(6)

Note that since the loss ℓ̃ is the maximum of a zero-one

loss, the range of the functions in T̃d,k is indeed {−1,+1}.

To simplify the notation, with Z := R
d × {±1}, we denote

the feature vector-label pair (x, y) by z ∈ Z . In general, the

Rademacher complexity of a function class F ⊂ [−1, 1]Z is

defined to be

Rn(F) := E

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

ǫif(zi)

∣∣∣∣∣

]
, (7)

where expectation is taken with respect to i.i.d. Rademacher

random variables ǫi ∈ {±1} and i.i.d. samples zi = (xi, yi)
with law D. In the classification setting, where the function

class is of the form F ⊂ {±1}Z , we have from Massart lemma

(see, for instance, [33, Lemma 26.8]), that

Rn(F) ≤

√
2 log(ΠF (n))

n
, (8)

where

ΠF (n) := max{|{(f(z1), . . . , f(zn) : f ∈ F}| :

zi ∈ Z, 1 ≤ i ≤ n}.

is called the growth function of F . Motivated by this, our

strategy is to find a bound for ΠT̃d,k
(n) which is polynomial

in n.

Note that from (6), there are two challenges for bounding

the combinatorial dimension of the functions T̃w,k: (a) the

truncated inner product 〈w, x〉k, and (b) the maximization over

the ℓ0 ball B0(x, k). These two components bring fundamental

challenges beyond those present in the usual machine learning

scenarios where we deal with the usual inner product and ℓp
norms for p ≥ 1. More precisely,

1) The truncated inner product 〈w,x〉k is not linear, i.e.

〈w,x1 + x2〉k is not necessarily equal to 〈w,x1〉k +
〈w,x2〉k.

2) The ℓ0 ball B0(x, k) is unbounded, non-convex, and

non-smooth. Due to this, maximization over the ball is

not tractable, unlike the case of ℓp balls for p ≥ 1 (for

instance [24] in the ℓ∞ setting).

In Sections III-A and III-B below, we discuss the above

two challenges. In order to focus on these two challenges

individually and to convey the main ideas, we first study

the function class corresponding to truncated inner products

without maximization over the ℓ0 ball. More precisely, let

Td,k ⊂ {−1, 1}R
d

be the class of truncated inner product

functions of the form Tw,k : x 7→ sgn(〈w,x〉k), i.e. Td,k :=
{Tw,k : w ∈ R

d}. In Section III-A below, we study the growth

function ΠTd,k
(n) of this function class. Then, in Section

III-B, we bring the maximization over the ℓ0 ball into our

discussion and study the growth function ΠT̃d,k
(n). Note that

in fact, Td,k is our hypothesis class, and T̃d,k is the composition

of our hypothesis class with the maximized 0-1 loss ℓ̃.

A. Bounds on ΠTd,k
(n)

Our main idea to bound the growth function ΠTd,k
(n) is

to encode the truncated inner product in terms of a finite

number of conventional inner products. Note that 〈w,x〉k is

the sum of d − 2k coordinates in w ⊙ x. Therefore, if we

know exactly which coordinates survive after truncation, we

can form the zero-one vector α where αi is one if the ith
coordinate of w ⊙ x survives after truncation, and is zero

otherwise. Then, it is easy to see that 〈w,x〉k = 〈w,x⊙α〉,
where the right hand side is the conventional inner product (no

truncation). However, the problem is that the vector α is not

known beforehand, and it depends on the values in w⊙x. But

if we know the ordering of w⊙x, we can form the appropriate

α by selecting the d − 2k intermediate values. In order to

address this, observe that the ordering of values in w⊙x can

be determined by knowing the sign of all
(
d
2

)
pairwise terms

of the form wixi − wjxj for 1 ≤ i < j ≤ d. But this can be

in fact written as wixi − wjxj = 〈w,x⊙ β〉, where β ∈ R
d

is the vector whose ith coordinates is +1, jthe coordinate is

−1, and other coordinates are zero. This discussion motivates

the following lemma

Lemma 1. Given w,x ∈ R
d, sgn(〈w,x〉k) can be determined

by knowing sgn(〈w,x ⊙ αi〉) for 1 ≤ i ≤
(
d
2k

)
, and

sgn(〈w,x ⊙ βj〉) for 1 ≤ j ≤
(
d
2

)
. Here, αi’s are the

indicators of all the
(
d
2k

)
subsets of size d − 2k, and βj’s

are the vectors corresponding to all the
(
d
2

)
pairs as in the

above discussion.

Figure 1 illustrates Lemma 1 through an example. In fact,

Lemma 1 suggests that Tw,k(x) = sgn(〈w,x〉k) can be

“coded” in terms of the signs of
(
d
2k

)
+
(
d
2

)
conventional inner

products. Therefore, given x1, . . . ,xn ∈ R
d, and w ∈ R

d, we

can form the ±1 matrix with size n×(
(
d
2k

)
+
(
d
2

)
) whose entry

is row i and column j is sgn(〈w,xi ⊙αj〉) if 1 ≤ j ≤
(
d
2k

)
,

and is sgn(〈w,xi ⊙ β
j−( d

2k)
〉) if

(
d
2k

)
< j. This implies that

the growth function ΠTd,k
(n) is bounded by the number of

configurations of this matrix as w ranges in R
d. Since all

the entries in this matrix are formed by conventional inner

products, classical VC dimension results yield the following.

Proposition 1. ΠTd,k
(n) is bounded by a degree d polynomial

in n, whose coefficients depend on d and k.

B. Bounds on ΠT̃d,k
(n)

Now, we extend the ideas from Section III-A to bring

the maximization over the ℓ0 ball into play and bound the

growth function of the function class T̃d,k. Observe that given

a function T̃w,k(.) ∈ T̃d,k, we may write

T̃w,k(x, y) = ✶ [∃x′ ∈ B0(x, k) : y 6= sgn(〈w,x′〉k)]

= ✶ [sgn(〈w,x〉k) 6= y]

∨ ✶[∃x′ ∈ B0(x, k) :

2023 IEEE Information Theory Workshop (ITW)

116



i αi αi ⊙ x sgn(〈w,x⊙αi〉)

1 (1, 1, 0, 0) (1,−1, 0, 0) −1
2 (1, 0, 1, 0) (1, 0, 2, 0) −1
3 (1, 0, 0, 1) (1, 0, 0,−3) −1
4 (0, 1, 1, 0) (0,−1, 2, 0) +1
5 (0, 1, 0, 1) (0,−1, 0,−3) +1
6 (0, 0, 1, 1) (0, 0, 2,−3) −1

i βi βi ⊙ x sgn(〈w,x⊙ βi〉) conclusion

1 (1,−1, 0, 0) (1, 1, 0, 0) −1 w1x1 < w2x2

2 (1, 0,−1, 0) (1, 0,−2, 0) −1 w1x1 < w3x3

3 (1, 0, 0,−1) (1, 0, 0, 3) −1 w1x1 < w4x4

4 (0, 1,−1, 0) (0,−1,−2, 0) +1 w2x2 ≥ w3x3

5 (0, 1, 0,−1) (0,−1, 0, 3) +1 w2x2 ≥ w4x4

6 (0, 0, 1,−1) (0, 0, 2, 3) +1 w3x3 ≥ w4x4

Fig. 1: Illustration of Lemma 1 for d = 4, k = 1, x = (1,−1, 2,−3), and w = (−5,−4,−1, 1). From sgn(〈w,x⊙ βj〉) for

1 ≤ j ≤ 6 on the right, we realize that w1x1 ≤ w4x4 ≤ w3x3 ≤ w2x2. This means that 〈w,x〉k = w3x3+w4x4 = 〈w,x⊙α6〉
whose sign can be read from the highlighted row on the left table.

sgn(〈w,x′〉k) 6= sgn(〈w,x〉k)], (9)

where ∨ denotes the logical OR. The first term is very similar

to what we discussed in Section III-A. Let us focus on the

second term, which we denote by I1(w,x). Equivalently, we

may write

I1(w,x) = ✶

[
sgn

(
inf

x
′∈B0(x,k)

〈w,x′〉k

)

6= sgn

(
sup

x
′∈B0(x,k)

〈w,x′〉k

)]
,

where we let sgn(∞) := +1 and sgn(−∞) := −1. This

motivates studying the maximum and minimum values of the

truncated inner product over the ℓ0 ball. It is useful to define a

notation for this purpose. Given a vector u ∈ R
d, the truncated

sum of u is defined as TSumk(u) :=
∑d−k

i=k+1 u(i). Recall

that u(i) denotes the ith smallest value in u. Observe that

〈w,x〉k = TSumk(w ⊙ x). On the other hand, we have

{w ⊙ x′ : x′ ∈ B0(x, k)} ⊂ B0(w ⊙ x, k).

Note that if w has some zero coordinates, the inclusion is

strict, since w ⊙ x′ is always zero in the zero coordinates of

w. However, if wi 6= 0 for all i ∈ [d], the two sets are in fact

equal. We focus on the case where all the coordinates of w

are nonzero.This means that

I1(w,x) = ✶

[
sgn

(
inf

u
′∈B0(u,k)

TSumk(u
′)

)

6= sgn

(
sup

u
′∈B0(u,k)

TSumk(u
′)

)]
.

(10)

It turns out that the maximum and minimum of the truncated

sum can be explicitly found, as is stated in the following

Lemma 2.

Lemma 2. For u ∈ R
d, we have

min{TSumk(u
′) : u′ ∈ B0(u, k)} = u(1) + · · ·+ u(d−2k)

max{TSumk(u
′) : u′ ∈ B0(u, k)} = u(2k+1) + · · ·+ u(d).

Fig. 2 illustrates the intuitive reasoning behind this lemma.

Using Lemma 2 in (10), we realize that

I1(w,x) = ✶[sgn(u(1) + · · ·+ u(d−2k))

6= sgn(u(2k+1) + . . . u(d))],

u(1) u(d−2k) u(d−k) u(d)

u(1) u(d−2k) u(d−k)

(a)

u(1) u(2k)u(k) u(d)

u(2k)u(k) u(d)

(b)

Fig. 2: (a) Sorted elements in u are illustrated on top, and

u′ ∈ B0(u, k) on the bottom. To minimize TSumk(u
′), we

need to make the top k elements in u (orange block) smaller

than u(1) (green block). After truncating the green and blue

blocks in u′, we get TSumk(u
′) = u(1) + · · ·+ u(d−2k). (b)

similarly, u(2k+1) + · · ·+ u(d) is the maximum.

where u := w ⊙ x. Using this in (9),

T̃w,k(x, y) = ✶ [sgn(TSumk(u)) 6= y]

∨ ✶

[
sgn

(
d−2k∑

i=1

u(i)

)
6= sgn

(
d∑

i=2k+1

u(i)

)]
,

where u = w ⊙ x. Note that all the three sign terms depend

on the summation of some d− 2k coordinates in u = w⊙ x

after sorting the elements in u. Therefore, a coding technique

similar to the one we used in Lemma 1 results in the following.

Proposition 2. The growth function ΠT̃d,k
(n) is bounded by

a degree d polynomial in n, whose coefficients depend on d
and k.

Using the bound of Proposition 2 in (8), we get an upper

bound of order
√
log n/n for Rn(T̃d,k), which yields the

bound of our Theorem 1.

IV. CONCLUSION

In this paper, we proved a distribution-independent gener-

alization bound for the binary classification setting with ℓ0–

bounded adversarial perturbation. We saw that deriving such

generalization bound is challenging, in particular due to (i)
the nonlinearity of the truncated inner product, and (ii) non-

smoothness and non-convexity of the ℓ0 ball. We tackled these

challenges by introducing a novel technique which enables us

to bound the growth function of our hypothesis class.
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