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Abstract—We have widely observed that neural networks are
vulnerable to small additive perturbations to the input causing
misclassification. In this paper, we focus on the ¢;-bounded
adversarial attacks, and aim to theoretically characterize the
performance of adversarial training for an important class of
truncated classifiers. Such classifiers are shown to have strong
performance empirically, as well as theoretically in the Gaussian
mixture model, in the {y-adversarial setting. The main contribu-
tion of this paper is to prove a novel generalization bound for the
binary classification setting with /o-bounded adversarial pertur-
bation that is distribution-independent. Deriving a generalization
bound in this setting has two main challenges: (i) the truncated
inner product which is highly non-linear; and (ii) maximization
over the /¢, ball due to adversarial training is non-convex and
highly non-smooth. To tackle these challenges, we develop new
coding techniques for bounding the combinatorial dimension of
the truncated hypothesis class.

I. INTRODUCTION

It is well-known that machine learning models are sus-
ceptible to adversarial attacks that can cause classification
error. These attacks are typically in the form of a small
norm-bounded perturbation to the input data that are carefully
designed to incur misclassification—e.g. they can be an additive
£,-bounded perturbation for some p > 0 [1], [2], [3], [4].

There is an extensive body of prior work studying ad-
versarial machine learning, most of which have focused on
f5 and {, attacks [5], [6], [7], [8], [9]. To train models
that are more robust against such attacks, adversarial training
is the state-of-the-art defense method. However, the success
of the current adversarial training methods is mainly based
on empirical evaluations [10]. It is therefore imperative to
study the fundamental limits of robust machine learning under
different classification settings and attack models.

In this paper, we focus on the case of {y-bounded attacks
that has been less investigated so far. In such attacks, given an
{y budget k, an adversary can change k entries of the input
vector in an arbitrary fashion — i.e. the adversarial perturba-
tions belong to the £y-ball of radius £. In contrast with £,,-balls
(p > 1), the £y-ball is non-convex and non-smooth. Moreover,
the #y-ball contains inherent discrete (combinatorial) structures
that can be exploited by both the learner and the adversary. As
a result, the {y-adversarial setting bears various challenges that
are absent in common ¢,-adversarial settings. In this regard, it
has recently been shown that any piece-wise linear classifier,
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e.g. a feed-forward neural network with ReLu activations,
completely fails in the ¢y setting [11].

Perturbing only a few components of the data or signal
has many real-world applications including natural language
processing [12], malware detection [13], and physical attacks
in object detection [14]. There have been several prior works
on {y-adversarial attacks including white-box attacks that are
gradient-based, e.g. [4], [15], [16], and black-box attacks
based on zeroth-order optimization, e.g. [17], [18]. Defense
strategies against {y-bounded attacks have also been proposed,
e.g. defenses based on randomized ablation [19] and defensive
distillation [20]. None of the above works have studied the
fundamental limits of the ¢y-adversarial setting theoretically.

Recently, [21] proposed a classification algorithm called
FilTrun and showed that it is robust against ¢, adversarial
attacks in a Gaussian mixture setting. Specifically, they show
that asymptotically as the data dimension gets large, no other
classification algorithm can do better than Fi1Trun in the
presence of adversarial attacks. Their algorithm consists of
two component, namely truncation and filteration. Although
truncation can be efficiently implemented, filteration is com-
putationally expensive. Later, [22] proposed that employing
truncation in a neural network architecture together with
adversarial training results in a classification algorithm which
is robust against ¢, attacks. They proved this for the Gaussian
mixture setting in an asymptotic scenario as the data dimension
goes to infinity. Furthermore, they demonstrated the effective-
ness of their proposed method against ¢y adversarial attacks
through experiments.

In the previous theoretical results in £p—bounded adversarial
attacks, it is assumed that the data distribution is in the form of
a Gaussian mixture with known parameters, and the focus is on
showing the asymptotic optimality of the proposed architecture
as the data dimension goes to infinity. In practical supervised
learning scenarios, we usually have indirect access to the
distribution through i.i.d. training data samples. In this setting,
adversarial training is a natural method for learning model
parameters that are robust against adversarial attacks, as shown
empirically in the prior work.

Motivated by the theoretical and empirical success of trun-
cation against ¢ adversarial attacks, in this paper we study its
generalization properties. Generalization properties of adver-
sarial training have been studied for other adversarial settings
(for instance [23], [24], [25], [26], [27], [28], [29], [30], [31],
and [32]) mainly involving ¢,,p > 1. There are challenges
inherent in the ¢, setting which make the standard techniques
inapplicable. In this paper, we discuss these challenges and
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develop novel techniques to address this problem. We believe
that the proposed mathematical techniques in this work are
of independent interest and potentially have applications in
other generalization settings which are combinatorial in nature,
such as neural network architectures equipped with truncation
components for robustness purposes.

Summary of Contributions. Our main contributions are as
follows:

« We consider a binary classification setting in the presence
of an ¢y adversary with truncated linear classifiers as
our hypothesis class. We prove a generalization bound
in this setting that is distribution-independent, i.e. it
holds for any distribution on the data (see Theorem |1
in Section III).

o We observe that due to the complex and combinatorial
nature of our problem, the classical techniques for bound-
ing the combinatorial dimension and the VC dimension
are not applicable to our setting (see the discussion in
Section III). To this end, we introduce novel techniques
that may be generalized to problems involving non-linear
and combinatorial operations.

o Specifically, there are two key challenges in bounding the
combinatorial dimension in our setting: (a) the truncated
inner product which is highly non-linear, and (b) the inner
maximization over the ¢, ball due to adversarial training,
which is challenging to work with as it is non-convex
and highly non-smooth. It is worth mentioning that as
[25] has shown, it is possible that the original hypothesis
class (truncated inner products in our case) has a finite
VC dimension, but the corresponding adversarial setting
is only PAC learnable with an improper learning rule.
Therefore, it is crucial in our work to resolve the two
challenges individually and show that the VC dimension
is finite even in the adversarial setting proving proper
robust PAC learnability.

o We tackle the first challenge by employing a novel coding
technique, which encodes the sign of the truncated inner
product by a finite number of conventional inner products.
This enables us to bound the growth function using the
known bounds on the VC dimension of conventional
inner product (see Proposition 1 in Section III). We tackle
the second challenge by decomposing our loss function
into two terms, one which does not involve maximization
over the ¢y, and one which involves studying the range
of the truncated inner product over the ¢y ball (see the
discussion in Section III-B and Propositions 2).

In Section II, we formulate the problem and give an
overview of prior results, in Section III, we give the main
results and highlights the proof techniques, and in Section IV
we conclude the paper.

II. PROBLEM FORMULATION

We consider the binary classification problem where the true
label is denoted by y € {£1}, and the feature vector has
dimension d and is denoted by = € R?. We denote the joint
distribution of (¢, y) by D. A classifier is a function C : R —

{+£1} which predicts the label from the input. We consider the
0-1 loss ¢(C;x,y) := 1[C(x) # y]. We study classification
under /¢y perturbations; i.e. the adversary can perturb the input
x to ' € R? where the ¢, distance between the two vectors
defined as

d
lz —2'llo := Y Lfa; # i,
i=1
is bounded. In other words, the adversary can modify the input
x to any other vector x’ within the £, ball of radius & around
x defined as

Bo(z, k) == {z' € R : |z — 2'||o < k}.

Here, k is the budget of the adversary, and is effectively the
number of input coordinates that the adversary is allowed to
change. The robust classification error (or robust error for
short) of a classifier C when the adversary has ¢, budget k
is defined as

ﬁD(C7k) = ]E(m,y)wD |:zk:(c7w7y):| ) (1)

where _
: = sz ). 2
0(Cs,y) m’enBloa();,k)g(C7$ 'Y) 2)

Here, (¢,y) ~ D means that the feature vector-label pair
(z,y) has distribution D, and the maximum represents the
adversary which can perturb the input vector x arbitrarily
within the ¢y ball By(z, k).

Overview of Prior Results. The authors of [21] study the
above problem in the setting of the Gaussian mixture model.
More precisely, they assume that y ~ Unif{£1}, and con-
ditioned on y, £ ~ N (yu,Y) is normally distributed with
mean yp and covariance matrix X. Here, u € R%, and ¥
is a positive-definite matrix. They study this problem in an
asymptotic fashion as the dimension d goes to infinity. They
propose an algorithm called Fi1Trun and prove that it is
asymptotically optimal when X is diagonal. Here, asymptotic
optimality means that asymptotically as the dimension d goes
to infinity, the robust error of FilTrun gets close to the
optimal robust error, defined as the minimum of the robust
error over all possible classifiers. FilTrun makes use of two
components, namely Filteration and Truncation.

« Filteration refers to a preprocessing phase, where upon
receiving the perturbed data vector &', we remove certain
coordinates, or effectively set them to zero. The purpose
of filteration is to remove the non-robust coordinates. Let
us denote the output of the filteration phase by @’.

o Truncation refers to applying the truncated inner product
of an appropriate weight vector w by the output of the fil-
teration phase z’. More precisely, the weight vector w is
chosen appropriately based on the distribution parameters
p and X, and the classification output is computed based
as the sign of the truncated inner product (w, '), defined
as follows. Let u := w®Z’ be the coordinate-wise prod-
uct of w and &', and let u(yy < ug) < --- < u(dz be the
values in u after sorting. Then, (w, Z')}, := Z?:_kﬁ UG-
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Effectively, (w, Z')}, is the summation of the values in the
coordinate-wise product of w and &’ after removing the k
largest and the k smallest values. Note that when k = 0,
this reduces to the usual inner product, and removing the
top and bottom k values effectively removes the outliers
in the input, which are possibly caused by the adversary.

Although truncation can be implemented in a computa-
tionally efficient way, filteration turns out to be computa-
tionally expensive. The authors in [22] have shown that in
the Gaussian mixture setting with diagonal covariance matrix,
optimizing for the weight vector w in the class of truncated
classifiers of the form Cff)(m’) := sgn((w, x');) results in an
asymptotically optimal classifier as the data dimension goes
to infinity. Motivated by this, they propose a neural network
architecture where the inner products in the first layer are
replaced by truncated inner products. Furthermore, they show
through several experiments that in practice when we do not
have access to the distribution parameters, adversarial training
as a proxy for optimizing the model parameters results in an
efficient and robust classifier.

Adversarial Training for Parameter Tuning. In the theoret-
ical analysis in above mentioned works, it is assumed that the
distribution D is in the form of a Gaussian mixture with known
parameters, and therefore we can optimize for the model
parameters within the proposed architecture. In practice, we
usually do not have access to the distribution D. Instead, we
usually have i.i.d. training data samples (x1,y1), .-, (Tn, Yn)
distributed according to D. We stick to the usual setting in
the adversarial attacks framework, where the training data
is clean, while the test data is perturbed by the adversary,
and the objective is the robust error at the test time. In this
setting, adversarial training is a natural choice for finding
the model parameters. Motivated by the prior work described
above, we consider the hypothesis class of truncated linear
classifiers of the form C{t) : & — sgn((w, x)y), parametrized
by w € R?, where for a € R, sgn(a) := +1 when o > 0,
and sgn(a) := —1 when « < 0. Also, motivated by the prior
work mentioned above, we set k to be equal to the adversary’s
budget. Furthermore, note that we are comparing (w, ) with
zero. This is without loss of generality, since we may assume
that there is a coordinate in  with constant value 1. Since we
focus on this hypothesis class, we use the shorthand notation
Lp(w, k) for the robust error of the classifier ¢, ie. for
w € RY, we define Lp(w, k) = ED(Cfff),k).

Adversarial training in this scenario translates to choosing
the hypothesis parameter w € R? by minimizing the adver-
sarial empirical loss

~ 1 <~
Ln(w, k) =~ > 0 (CH i), 3)
i=1

Recall that Zk(C,(f );wi,yi) which was defined in (2) is the
maximum zero-one loss over the ¢y ball around the ith data
sample. Effectively, we assume that we have access to a perfect

adversary during the training phase which allows us to have
access to Zk(Cq(jf); x;,y;). Let
@, € argmin L, (w, k), 4)
weR?
be the hypothesis parameter vector which is obtained by opti-
mizing the above adversarial empirical loss over the training
dataset. In this paper, we analyze the generalization properties
of the adversarial training for the above hypothesis class of
linear truncated classifiers. More precisely, our main question
is whether the robust error corresponding to w, (which is
obtained by employing adversarial training) converges to the
robust error of the best truncated linear classifier in our
hypothesis class. More precisely, if
w* € arg min ﬁp(Cff), k), (5)
weR?
correspond to the best classifier in our hypothesis class, can
we show that as the number of samples n goes to infinity,
Lp (W, k) converges to Lp(w*, k)? This question is formal-
ized in the following definition.

Definition 1 (robust PAC learnability). We say that a hypoth-
esis class H is robust PAC learnable with respect to an {
adversary with budget k, if there exists a learning algorithm
A such that for any €,6 > 0, and for any distribution D,
A maps iid. data samples S = ((z;,y:),1 < i < n) to
A(S) € H, such that if n > m(e, ), with probability at least
1 -6, we have

Lo(AS).k) < inf Lo(hF) +ec.

Notation. [n] denotes the set {1,...,n}. We denote vectors
with boldface notation. Given a vector u = (u1, ..., uq) € RY,
we denote by u(y < -+ < u(q) the vector containing elements
in v in a non-decreasing order. Given u, v € RY, uow € RY
is defined to be the element-wise product of w and v, i.e.
its ith coordinate is u;v;. For vectors w,x € R¢ and integer
k < d/2, with u := w ® x, the k-truncated inner product
(w, )\, between w and x is defined by Z?;,fﬂ uj)-

III. MAIN RESULTS

Our main result is to show that the class of truncated inner
products in our adversarial setting is robustly PAC learnable
as formalized in Definition 1. This is a direct consequence of
the following Theorem 1. In the remaining of this section, we
explain the ideas and main steps of the proof.

Theorem 1. For any joint distribution D on the label y €
{£1} and feature-vector x € R%, and any adversarial budget
0 < k < d/2 forn > d+ 1, if W, denotes the model
parameters obtained from adversarial training as in (4), with
probability at least 1 — J, we have

d[(s) + (9)]log < [2log$
(@) < o, -y AL (o e

where c is a universal constant.

In order to obtain this bound, it suffices to bound the
Rademacher complexity of our hypothesis class composed
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with the loss ¢ defined in (2) and use standard bounds such
as [33, Theorem 26.5]. Let Ty, C {—1,+1}R"*{=1} be the
class of functions Tw , parametrized by w € R? obtalned by
applying the loss { to the truncated linear classifier Cw , 1.e.

1 [y # sen((w,2)i)] .
~ (6)
Note that since the loss ¢ is the maximum of a zero-one
loss, the range of the functions in Ty is indeed {—1,+1}.
To simplify the notation, with Z := R? x {1}, we denote
the feature vector-label pair (x,y) by z € Z. In general, the
Rademacher complexity of a function class F C [—1,1]%
defined to be

1 ; (N

where expectation is taken with respect to i.i.d. Rademacher
random variables ¢; € {£1} and i.i.d. samples z; = (z;, ;)
with law D. In the classification setting, where the function
class is of the form F C {£1}Z, we have from Massart lemma
(see, for instance, [33, Lemma 26.8]), that

< 2log(Ilx(n)) 7 )

n

/GB ( k)

n

sup L Z €if(zi)

R, (F):=E
fer |3

R, (F)
where

Hz(n) == max{[{(f(z1), ..., f(za) : f € F}:

2z € Z2,1<i<n}.

is called the growth function of F. Motivated by this, our
strategy is to find a bound for Iz (n) which is polynomial
in n.

Note that from (6), there are two challenges for bounding
the combinatorial dimension of the functions T, x: (a) the
truncated inner product (w, ), and (b) the maximization over
the ¢o ball By(x, k). These two components bring fundamental
challenges beyond those present in the usual machine learning
scenarios where we deal with the usual inner product and £,
norms for p > 1. More precisely,

1) The truncated inner product {w,x) is not linear, i.e.
(w,x1 + x2)k is not necessarily equal to (w,x1)x +
<w, 332>k:~

2) The ¢y ball By(x, k) is unbounded, non-convex, and
non-smooth. Due to this, maximization over the ball is
not tractable, unlike the case of ¢, balls for p > 1 (for
instance [24] in the /., setting).

In Sections III-A and III-B below, we discuss the above
two challenges. In order to focus on these two challenges
individually and to convey the main ideas, we first study
the function class corresponding to truncated inner products
without maximization over the ¢y ball. More precisely, let
Tar C {-1, 1}®" be the class of truncated inner product
functions of the form Ty, i, : © — sgn({w, x)y), i.e. Tar =
{Tw : w € R} In Section ITI-A below, we study the growth
function Il7,, (n) of this function class. Then, in Section
III-B, we bring the maximization over the ¢y ball into our

discussion and study the growth function Il  (n). Note that

in fact, 74,1 is our hypothesis class, and ﬁ,k is the comBosition
of our hypothesis class with the maximized 0-1 loss /.

A. Bounds on Il7, , (n)

Our main idea to bound the growth function Il7, , (n) is
to encode the truncated inner product in terms of a finite
number of conventional inner products. Note that (w, x) is
the sum of d — 2k coordinates in w ® ax. Therefore, if we
know exactly which coordinates survive after truncation, we
can form the zero-one vector o where «; is one if the ith
coordinate of w ® x survives after truncation, and is zero
otherwise. Then, it is easy to see that (w,x); = (w,z © ),
where the right hand side is the conventional inner product (no
truncation). However, the problem is that the vector « is not
known beforehand, and it depends on the values in w®x. But
if we know the ordering of w®x, we can form the appropriate
a by selecting the d — 2k intermediate values. In order to
address this, observe that the ordering of values in w ® « can
be determined by knowing the sign of all ( ) pairwise terms
of the form w;z; — wjz; for 1 < ¢ < j < d. But this can be
in fact written as w;r; — wjz; = (w,x ©® B), where B € R?
is the vector whose th coordinates is +1, jthe coordinate is
—1, and other coordinates are zero. This discussion motivates
the following lemma

Lemma 1. Given w,x € R, sgn((w, x)x) can be determined
by knowing sgn((w,xz © o)) for 1 < i < (Qdk), and
sgn({w,x © B;)) for 1 < j < (g) Here, a;’s are the
indicators of all the (2‘2) subsets of size d — 2k, and (;’s
are the vectors corresponding to all the (g) pairs as in the
above discussion.

Figure 1 illustrates Lemma 1 through an example. In fact,
Lemma 1 suggests that T, x(x) = sgn({w,x);) can be
“coded” in terms of the signs of (1) + (%) conventional inner
products. Therefore, given 1, ..., x, € R% and w € R?, we
can form the +1 matrix with size n x ((Qdk) + (g)) whose entry
is row 7 and column j is sgn({w, acz Oa))if1<j< (d)
and is sgn((w, z; ®6j_(2dlc)>) if () < j. This implies that
the growth function Il7, , (n) is bounded by the number of
configurations of this matrix as w ranges in R?. Since all
the entries in this matrix are formed by conventional inner
products, classical VC dimension results yield the following.

Proposition 1. I, , (n) is bounded by a degree d polynomial
in n, whose coefficients depend on d and k.
B. Bounds on 11z  (n)

Now, we extend the ideas from Section III-A to bring
the maximization over the {o ball into play and bound the
growth function of the function class ’7:1 k- Observe that given
a function Tng( ) e 7& &, WE may write

T‘w,k(way) =1 [Elw € Bo(il?, k) ‘Y 7é sgn((w, wl>k)]

= 1[sgn((w, z)1) # ]
132" € By(z, k) :
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i «; a0z sgn((w,x © a;))
1 (1,1,0,0) (1,-1,0,0) —1
2 (1,0,1,0)  (1,0,2,0) ~1
3 (1,0,0,1) (1,0,0,—3) ~1
4 (0,1,1,0) (0,-1,2,0) +1
5 (0,1,0,1) (0,—1,0,—3) +1
6 (0,0,1,1) (0,0,2,-3) —1

i Bi BioOx sgn((w,z © B;)) conclusion
1 (1,-1,0,0) (1,1,0,0) -1 w1Ty < Waly
2 (1,0,-1,0) (1,0,-2,0) -1 w1y < Wwary
3 (1,0,0,-1) (1,0,0,3) -1 Wiy < WaTy
4 (0,1,-1,0) (0,-1,-2,0) +1 Waly > W3x3
5 (0,1,0,—1) (0,-1,0,3) 11 Way > Wals
6 (0,0,1,-1) (0,0,2,3) +1 W3T3 > Waly

Fig. 1: Illustration of Lemma | for d =4, k=1, = (1,-1,2,-3), and w = (=5, —4, —1,1). From sgn((w, x © B;)) for
1 < j < 6 on the right, we realize that wix1 < wazry < w3z < wazs. This means that (w, ), = wsrz+wary = (W, LOAg)
whose sign can be read from the highlighted row on the left table.

sgn({w, z')i) # sen((w, )x)],  (9)

where V denotes the logical OR. The first term is very similar
to what we discussed in Section III-A. Let us focus on the
second term, which we denote by I; (w, x). Equivalently, we
may write

inf
x’ €Bo (x,k)

‘ sgn< eup <w,m'>k> ]
x' €Bo (x,k)

where we let sgn(oco) := +1 and sgn(—oo) := —1. This
motivates studying the maximum and minimum values of the
truncated inner product over the ¢y ball. It is useful to define a
notation for this purpose. Given a vector u € RY, the truncated
sum of u is defined as TSumg(u) := Zf;,fﬂ u(;). Recall
that u(;) denotes the sth smallest value in u. Observe that
(w, x), = TSumg(w ® x). On the other hand, we have

Iw,x) =1 [sgn ( <w,w'>k)

{woz' 2 € By(x, k)} C By(w© x, k).

Note that if w has some zero coordinates, the inclusion is
strict, since w © x’ is always zero in the zero coordinates of
w. However, if w; # 0 for all ¢ € [d], the two sets are in fact
equal. We focus on the case where all the coordinates of w
are nonzero.This means that

inf
u’€Bo(u,k)

# sgn sup  TSumg(u') ] |.
u' €Bo(u,k)

It turns out that the maximum and minimum of the truncated
sum can be explicitly found, as is stated in the following
Lemma 2.

L(w,z)=1 lsgn ( TSumk(u’))

(10)

Lemma 2. For u € R% we have

min{TSumk(u’) cu' € Bo(u, k)} = U(1) + -+ U(d—2k)
max{TSumy(u') : u' € Bo(u, k)} = wopi1) + - + uga)-

Fig. 2 illustrates the intuitive reasoning behind this lemma.
Using Lemma 2 in (10), we realize that

L(w,z) = l[sgn(u(l) + -+ U(d—2k))
# sgn(u(art) + - - - ue))l;

() U(d—2k)  U(d—k) () w1y U(k) U(ag) ()

[ || )

) L
(oo )

Ud—2k)  U(d—k) U(k) U(2k)

(a) ®)

Fig. 2: (a) Sorted elements in w are illustrated on top, and
u’ € By(u, k) on the bottom. To minimize TSumy ('), we
need to make the top k elements in w (orange block) smaller
than w(;) (green block). After truncating the green and blue
blocks in u’, we get TSumg(u') = w4 - - + ug—2k). (b)
similarly, wegq1) + -+ u(q) is the maximum.

where u := w © . Using this in (9),

Tow (2, y) = 1 [sgn(TSumy,(u)) 7# y]

sgn <dik u(i)) 7 sgn ( Zd: U(i))} )

i=1 i=2k+1

v

where © = w ® x. Note that all the three sign terms depend
on the summation of some d — 2k coordinates in u = w ® x
after sorting the elements in u. Therefore, a coding technique
similar to the one we used in Lemma 1 results in the following.

Proposition 2. The growth function 11z (n) is bounded by
a degree d polynomial in n, whose coefficients depend on d
and k.

Using the bound of Proposition 2 in (8), we get an upper
bound of order +/logn/n for R, (Tax), which yields the
bound of our Theorem 1.

IV. CONCLUSION

In this paper, we proved a distribution-independent gener-
alization bound for the binary classification setting with £y—
bounded adversarial perturbation. We saw that deriving such
generalization bound is challenging, in particular due to (i)
the nonlinearity of the truncated inner product, and (i) non-
smoothness and non-convexity of the ¢y ball. We tackled these
challenges by introducing a novel technique which enables us
to bound the growth function of our hypothesis class.
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