
9908 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

Insights From Generative Modeling

for Neural Video Compression
Ruihan Yang , Yibo Yang , Joseph Marino , and Stephan Mandt , Member, IEEE

Abstract—While recent machine learning research has revealed
connections between deep generative models such as VAEs and
rate-distortion losses used in learned compression, most of this
work has focused on images. In a similar spirit, we view recently
proposed neural video coding algorithms through the lens of
deep autoregressive and latent variable modeling. We present
these codecs as instances of a generalized stochastic temporal
autoregressive transform, and propose new avenues for further
improvements inspired by normalizing flows and structured
priors. We propose several architectures that yield state-of-the-art
video compression performance on high-resolution video and
discuss their tradeoffs and ablations. In particular, we propose
(i) improved temporal autoregressive transforms, (ii) improved
entropy models with structured and temporal dependencies,
and (iii) variable bitrate versions of our algorithms. Since our
improvements are compatible with a large class of existing
models, we provide further evidence that the generative modeling
viewpoint can advance the neural video coding field.

Index Terms—Autoregressive models, generative models,
normalizing flow, variational inference, video compression.

I. INTRODUCTION

N
EURAL data compression [1] has evolved to become

a promising new application and testing domain for

generative modeling.1 Generative models such as hierarchical

variational autoencoders have already demonstrated empirical

improvements in image compression, outperforming classical

codecs [2], [3] such as BPG [4]. For neural video compression,

progress has proved harder due to complex temporal depen-

dencies operating at multiple scales. Nevertheless, recent neural

video codecs have shown promising performance gains [5], in

some cases on par with current hand-designed, classical codecs,

Manuscript received 20 July 2021; revised 26 January 2023; accepted 13
March 2023. Date of publication 22 March 2023; date of current version 30
June 2023. The work of Yibo Yang was supported by the HPI Research Center
in Machine Learning and Data Science at UC Irvine. The work of Stephan
Mandt was supported in part by the National Science Foundation (NSF) under
NSF CAREER Award under Grant 2047418, NSF under Grants 2003237 and
2007719, in part by the Department of Energy under Grant DE-SC0022331, and
IN PART by gifts from Qualcomm and Disney. Recommended for acceptance
by T. Tran (Corresponding author: Ruihan Yang.)

Ruihan Yang, Yibo Yang, and Stephan Mandt are with the Department of
Computer Science, University of California Irvine, Irvine, CA 92697 USA
(e-mail: ruihan.yang@uci.edu; yibo.yang@uci.edu; mandt@uci.edu).

Joseph Marino is with the DeepMind, California Institute of Technology,
Pasadena, CA 91125 USA (e-mail: jmarino@caltech.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TPAMI.2023.3260684, provided by the authors.

Digital Object Identifier 10.1109/TPAMI.2023.3260684
1Proceedings of the First ICLR Workshop on Neural Compression: From

Information Theory to Applications, neuralcompression.github.io

e.g., HEVC [6], [7]. Compared to hand-designed codecs, learn-

able codecs are not limited to a specific data modality and offer

a promising approach for streaming specialized content, such as

sports or video conferencing. Therefore, improving neural video

compression is vital for dealing with the ever-growing amount

of video content being created.

The common approach to source compression transforms the

data into a white noise distribution that can be more easily

modeled and compressed with an entropy model. This way, data

compression fundamentally involves decorrelation. Improving

a model’s capability to decorrelate data helps improves its com-

pression performance. On the other hand, we can improve the

entropy model (i.e., the model’s prior) to capture any remaining

dependencies. Just as compression techniques attempt to remove

structure, generative models attempt to generate structure. For

example, autoregressive flows map between less structured dis-

tributions, e.g., uncorrelated noise, and more structured distribu-

tions, e.g., images or video [8], [9]. The inverse flow can remove

dependencies in the data, making it more amenable to compres-

sion. Thus, a natural question to ask is how autoregressive flows

can best be utilized in compression and if mechanisms in existing

compression schemes can be interpreted as normalizing flows.

This paper draws on recent insights in hierarchical sequential

latent variable models with autoregressive flows [10]. In par-

ticular, we identify connections between this family of models

and recent neural video codecs based on motion estimation [5],

[11], [12], [13], [14], [15]. By interpreting this technique as an

instantiation of a more general autoregressive flow transform, we

propose various alternatives and improvements based on insights

from generative modeling. Specifically, our contributions are as

follows:

First, we interpret existing video compression methods

through the framework of generative modeling and variational

inference, allowing us to readily investigate extensions and

ablations. In particular, we discuss the relationship between

sequence modeling and sequence compression. We identify

autoregressive transform as a key component in both cases and

suggest incorporating it in a sequential latent variable as the

basis of our approach.

Second, we improve a popular model for neural video com-

pression, Scale-Space Flow (SSF) [5]. This model uses motion

estimation to predict the frame being compressed and further

compresses the residual obtained by subtraction. Our proposed

model extends the SSF model with a more flexible decoder

and prior, and obtains improved rate-distortion performance.

Specifically, we incorporate a learnable scaling transform to

0162-8828 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: INSIGHTS FROM GENERATIVE MODELING FOR NEURAL VIDEO COMPRESSION 9909

allow for more expressive and accurate reconstruction. Aug-

menting a shift transform by scale-then-shift is inspired by

the extension of NICE [8] to RealNVP [9]. We also compare

motion-estimation-based versus purely CNN-based approaches

to predictive coding.

Third, our probabilistic perspective allows us to explore im-

proved entropy models for SSF and its relatives. In particular,

we explore structured priors that jointly encode motion and

residual information. As the two tend to be spatially correlated,

encoding residual information conditioned on motion informa-

tion results in a better prior. Since the residual dominates the

bitrate, our improved entropy model reduces the overall bitrate

significantly. We also investigate different versions of temporal

priors, where we either condition on latent variables or on frame

reconstructions and discuss their tradeoffs in terms of bit savings

and optimization challenges.

Finally, also from the perspective of generative modeling, we

present variable bitrate versions of our models, i.e., training a

single encoder and decoder that works at different points on

the rate-distortion curves. This step is considered important for

making neural coding schemes practical. Our experiments show

that the difference in rate-distortion performance of variable

bitrate models and models tuned to individual bit rates depends

on the model complexity.

Our paper is structured as follows. We establish our viewpoint

and model improvements in Section II, discuss related work in

Section III, and present experiments in Section IV. Conclusions

are provided in Section V.

II. VIDEO COMPRESSION THROUGH DEEP AUTOREGRESSIVE

MODELING

We first review low-latency video compression, including the

classical predictive coding technique. We then draw connections

between data compression and data modeling with a Masked

Autoregressive Flow (MAF) [16], a generative model based on

a temporal autoregressive transform that resembles predictive

coding. Finally, inspired by hierarchical autoregressive flow

models [10], we combine the strength of autoregressive model-

ing with the end-to-end optimizable transform coding approach

of VAEs [17], resulting in a sequential VAE [18] with an au-

toregressive encoding/decoding transform. The resulting model

captures many existing neural video compression methods [5],

[11], [12], [13], [14], [15], and serves as the basis of our proposed

improvements to the decoding transform as well as the prior

model.

Notation. We use bold letters (e.g., x, z) to denote random

variables and variables with superscripts to indicate determinis-

tically computed quantities (e.g., x̂, z̄). We usep(x) to denote the

probability distribution or density induced by random variable

x and write P (x) to emphasize when it is a probability mass

function.

A. Background

As follows, we review lossy video compression, focusing

on the low-latency online compression setting. We then review

the classical technique of predictive coding, which provides the

high-level algorithmic framework of many video compression

methods, including ours. As our final building block, we review

normalizing flow models, in particular the Masked Autoregres-

sive Flow for sequence modeling.

Video Compression. Given a typical sequence of video frames

x1:T , lossy video compression ultimately aims to find a short

bitstring description of x1:T , from which a faithful (but not nec-

essarily perfect) reconstruction x̂1:T can be recovered. Denoting

the description length (“rate”) by R and the reconstruction

error (“distortion,” often the Mean-Squared Error) by D, lossy

video compression aims to minimize the rate-distortion (R-D)

objective function,

L = Ex1:T∼pdata
[D(x1:T , x̂1:T) + βR(x̂1:T)], (1)

whereβ > 0 is a hyperparameter weighing the two costs, and the

expectation is with respect to the source data distribution pdata,

which is approximated by averaging over a training set of videos

in practice. One simple approach is to compress each frame xt

separately using an image compression algorithm, which can

exploit the spatial redundancy between the pixels within each

frame. However, a key feature distinguishing video from image

compression is the significant amount of temporal redundancy

between frames that can be exploited to improve the compression

rate.

Online Video Compression by Predictive Coding. In theory,

the optimal rate-distortion performance is achieved by com-

pressing exceedingly long blocks of frames together [19]. How-

ever, such an approach is rarely implemented in practice because

of its prohibitive computation expense and the latency caused

by buffering the frames into long blocks. We consider video

compression in the sequential/online setting, widely used in both

conventional and recent neural codecs [5], [20] and are suitable

for real-time applications such as video conferencing and live

streaming. In this setting, each video frame xt is compressed in

temporal order so that at any time t < T , the source frames up

to time t, i.e., x1:t, are encoded and transmitted, and similarly

the reconstructed frames up to time t, x̂1:t, are available to the

receiver. Since past frames are often highly indicative of future

frames, the basic idea for exploiting this temporal redundancy is

to use knowledge of the previous frame reconstructions, x̂<t,

to aid the compression of the current frame xt. Indeed, the

earliest video codecs are based on transmitting frame differences

xt − x̂t−1 [21], analogous to the classic modeling technique in

dynamical systems whereby the state-space becomes first-order

Markov when redefined in terms of temporal changes [10], [22].

This technique is further refined by predictive coding [23], where

instead of simply using the previous reconstructed frame x̂t−1,

a motion-compensated prediction of the current frame, x̄t, is

computed, and the residual xt − x̄t is transmitted instead.

In more detail, the idea of predictive coding is typically

implemented in traditional video codecs as follows: 1. motion

estimation: The encoder estimates the motion vectormt between

the current frame xt and the previous reconstruction x̂t−1; 2.

motion compensation: The encoder simulates the coding of mt,

and uses the reconstruction m̂t (as would be received by the

decoder in step 3) to transform the previous frame reconstruction

x̂t−1 into a prediction of the current frame x̄t. Conceptually,

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

9910 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

this is done by shifting the pixels of x̂t−1 according to the

motion vector m̂t. The compression of mt could either be lossy

(m̂t ≈ mt) or lossless (m̂t = mt). 3. residual compression:

The residual is computed as rt = xt − x̄t, and is encoded.

The decoder, upon receiving the bit-streams for (mt, rt) and

reconstructing them as (m̂t, r̂t), computes the prediction x̄t as

in step 2, and finally the reconstruction of the current frame,

x̂t = x̄t + r̂t. The current reconstruction x̂t then serves as the

reference frame in the predictive coding of the next frame xt+1.

Masked Autoregressive Flow (MAF). MAF2 [16] is a type of

normalizing flow [24] that models the distribution of a random

sequence p(x1:T) in terms of a simpler distribution p(y1:T) of

its underlying noise variablesy1:T . The two variables are related

by the following invertible autoregressive transform,

yt =
xt−hµ(x<t)
hσ(x<t)

⇔ xt = hµ(x<t) + hσ(x<t)⊙ yt, (2)

for t = 1, 2, . . ., T . Here, ⊙ denotes element-wise multiplica-

tion, x<t denotes all frames up to time t, and hµ and hσ are two

deterministic neural network mappings.3 The base distribution

p(y1:T) is typically fixed to be a simple factorized distribution

such as an isotropic Gaussian, and is related to the distribution

p(x1:T) through the standard change-of-variable formula be-

tween probability densities. While the forward MAF transform

(y1:T → x1:T) converts a sequence of standard normal noise

variables into a data sequence, the inverse transform (x1:T →
y1:T) removes temporal correlations and “normalizes” the data

sequence.

Although originally proposed for modeling static data (e.g.,

still images interpreted as a sequence of pixels), MAF can be

applied along the temporal dimension of sequential data and

is shown to improve video modeling performance [10]. This

motivates us to consider the potential of MAF for sequential

data compression.

B. On the Relation Between MAF and Sequence Compression

In this section, we identify the commonality and difference be-

tween sequence modeling with MAF and sequence compression

with predictive coding. On the one hand, MAF implements a core

idea of decorrelation in transform coding, and the autoregressive

transform underlying MAF resembles and generalizes that of

traditional predictive coding. On the other hand, MAF does

not consider the quantization and reconstruction error of lossy

compression and is, therefore, not directly suitable for compres-

sion. Motivated by these two aspects, we will later on consider

the model family of Variational Autoencoders (VAEs) [25] that

is more suited for compression (Section II-C) but reintroduce

the MAF-style autoregressive transform into the encoding and

2As a clarification, even though the original MAF was implemented with
the masking approach of MADEs [16] (hence “masked” in the name), we use
the term “MAF” to refer more broadly to the normalizing flow defined by the
temporal autoregressive transform in (2).

3In general, (hµ, hσ) can be a different pair of neural networks for each
time step t, although for practical sequence modeling, they are often shared
across time and only receive a fixed length-k context x(t−k+1):t as input. In the
special case t = 1, the networks receive no input and reduce to two learnable
parameters.

decoding procedure of the VAE (Section II-D), resulting in a

hybrid model that forms the basis of our proposal.

We begin by drawing conceptual connections between MAF

and transform coding, the predominant paradigm of lossy com-

pression. In transform coding, the data is first transformed to

the domain of transform coefficients via a function G : x → y,

and the resulting coefficients y are compressed after scalar

quantization. Although this two-stage approach is theoretically

suboptimal compared to vector quantization [26], it has con-

siderably lower computational complexity and is the default

approach used in modern media compression algorithms [27].

Conventionally, the transform G is chosen to be orthogonal,

and the rate-distortion-optimal transform is often characterized

by its ability to decorrelate the transform coefficients, i.e.,

cov(yi,yj) = 0, for i �= j [27]. The idea of decorrelation is

also a guiding principle behind data modeling with MAF or

normalizing flow in general. Specifically, training a normalizing

flow is, in fact, equivalent to decorrelating and “normalizing”

the data distribution into a simple base distribution. Consider

a flow model p(x) in the data space induced by passing a

noise base distribution p(y) through a (forward) flow transform

F : y → x. If pdata(x) is the true data-generating distribution,

then the following relation holds [16],

KL [pdata(x)‖p(x)] = KL
[

F−1(pdata(x))‖p(y)
]

, (3)

whereF−1(pdata(x)) denotes the distribution that pdata(x)would

follow when passed through the inverse transform F−1. In other

words, training a flow model by maximum-likelihood is equiva-

lent to fitting the “normalized” data distribution” F−1(pdata(x))
to the base distributionp(y). The connection to transform coding

is then clear: the normalizing transform F−1 plays a similar role

to the transform G, F−1(pdata(x)) is the empirical distribution

of “transform coefficients” y, and p(y) corresponds to the

factorized entropy model in transform coding.

Moreover, the autoregressive transform used by MAF is

closely related to that of predictive coding and generalizes

the latter. We can view predictive coding as implementing an

autoregressive transform between the residual sequence and data

sequence

yt = xt − hµ(x̂t−1); // encode; (4)

x̂t = hµ(x̂t−1) + ŷt; // decode, (5)

for t = 2, . . ., T .4 In the language of predictive coding from

Section II-A, hµ(x̂t−1) = x̄t is the prediction of the current

frame, and yt is the residual rt. The resulting transform can

be seen as a special case of the more general shift-and-scale

transform used by MAF in (2), if we fix hσ ≡ 1 and limit x̂<t

to only the most recent (reconstructed) frame.

We now discuss the difference between sequence modeling

and compression and the reasons why MAF may not be directly

suitable for lossy compression. In our discussion above, we have

left out the issue of quantization. Unlike in sequence modeling,

in lossy compression, the noise variable yt must be communi-

cated to the decoder in a lossy manner, e.g., via quantization

4At time t = 1, x1 is compressed and reconstructed as x̂1 separately without
reference to any context frame.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: INSIGHTS FROM GENERATIVE MODELING FOR NEURAL VIDEO COMPRESSION 9911

ŷt = Q(yt) followed by (lossless) entropy coding. Similarly,

we no longer have access to the history of ground truth frames

x<t, but only their lossy reconstructions x̂<t. Taking this into

account, it is possible to construct a transform coding procedure

using a learned MAF transform: 1. apply the learned (hµ, hσ)
networks to compute the noise yt via

yt =
xt − hµ(x̂t−1)

hσ(x̂t−1)
, (6)

similar to (4); 2. quantize the noise to ŷt = Q(yt); 3. compute

the reconstruction x̂t via

x̂t = hµ(x̂t−1) + hσ(x̂t−1)⊙ ŷt, (7)

similar to (5), and finally, 4. iterate the above over time steps t =
1, 2, . . ., T . Unfortunately, this simple transform coding proce-

dure comes with a few practical drawbacks and is generally sub-

optimal in terms of rate-distortion performance. First, since the

flow transformF is only trained to maximize the data likelihood,

the resulting reconstruction error D(x1:T , x̂1:T) due to quanti-

zation is uncontrolled. Empirically, trained flow transforms are

often close to singular and suffer numerical stability issues [28],

resulting in large reconstruction error D(x, F ((F−1(x)))) even

without the quantization step (despite F being invertible in

theory). Second, the invertibility of the transform F places

restrictions on the kinds of computation allowed. This often ne-

cessitates deeper and more expensive neural network transforms

to achieve similar expressivity to unconstrained neural network

transforms. State-of-the-art normalizing flow models such as

GLOW [29] often require a deep stack of bijective transforms

and are computationally much more expensive than comparable

VAEs or GANs, making them potentially less suited for real-time

video transmission applications.

Lastly, we do note, however, that a connection exists between

density modeling and the lossless compression of quantized data

through the technique of dequantization [30], and the latter has

been used extensively in training and evaluating normalizing

flows. Moreover, under fine quantization, the negative log den-

sity under a normalizing flow model can be recovered as the

NELBO of a particular latent variable model, allowing bits-back

coding to be applied for lossless compression [31].

C. Latent Variable Models for Learned Sequence Compression

We can overcome the suboptimality of normalizing flows for

lossy compression by switching to another class of generative

models. In this section, we motivate sequence compression with

latent variable models, particularly VAEs, that can be trained

to perform nonlinear transform coding [17] and optimize for

rate-distortion performance in an end-to-end manner. From this

generative modeling perspective, we give a detailed account of

the probabilistic structure of the sequential latent variable model

for learned online video compression, in particular, the corre-

spondence between the data compression process and inference-

generative process.

To motivate this approach, consider transform coding with

a pair of flexible (but not necessarily invertible) transforms

f (“encoder”) and g (“decoder”) that map between the video

x1:T and its transformed representation z̄1:T = f(x1:T). Given

sufficiently expressive f and g, quantization can be performed

by element-wise rounding to the nearest integer, ⌊·⌉, resulting

in the following R-D objective,

L = Ex1:T∼pdata
[D (x1:T , g (⌊f(x1:T)⌉)) + βR (⌊f(x1:T)⌉)].

(8)

Following [32], we approximate the rounding operations by

uniform noise injection to enable gradient-based optimization

during training. The resulting, relaxed version of the above R-D

objective can be shown to be equal to the expected Negative

Evidence Lower BOund (NELBO) of a particular compressive

VAE model, described below [32], [33]

L̃ = Ex1:T∼pdata

[

Eq(z1:T |x1:T) [− log p(x1:T |z1:T)

− log p(z1:T)]]. (9)

In this compressive VAE model, the noisy quantization,

⌊z̄1:T ⌉ ≈ z̄1:T + u1:T ,u1:T ∼ U(−0.5,0.5), is equivalently

obtained by sampling from a particular variational posterior

distribution q(z1:T |x1:T) = U(z̄1:T − 0.5, z̄1:T + 0.5), i.e., a

unit-width uniform distribution whose mean z̄1:T is predicted by

an amortized inference network f . The likelihood p(x1:T |z1:T)
follows a Gaussian distribution with fixed diagonal covariance

β
2 log 2I, and mean x̂1:T = g(z1:T) computed by the generative

networkg, so that the negative log-likelihood− log p(x1:T |z1:T)
equals the squared error distortion 1

β
‖x1:T − x̂1:T ‖2 weighted

by 1
β

. Following [32], the prior density p(z1:T) is parameterized

to interpolate its discretized version P (z1:T), so that given inte-

ger valued z1:T , the negative log density− log p(z1:T)measures

the code length − logP (z1:T) assigned by the entropy model

P (z1:T). By minimizing the approximate R-D objective of (9)

with respect to the parameters of f , g, and p(z1:T), training an

end-to-end neural compression model is thus equivalent to learn-

ing a VAE by maximum-likelihood and amortized variational

inference. Note this is in contrast to the maximum-likelihood

estimation of a normalizing flow model, which does not account

for the distortion of lossy compression and results in suboptimal

rate-distortion performance (as discussed in Section II-B).

Given a compressive VAE, the compression of a data se-

quence x1:T via transform coding closely corresponds to an

inference-generation pass through the VAE, described in the

following steps. 1. encoding: The encoder passes x1:T through

f to obtain a transformed representation z̄1:T = f(x1:T), thus

computing the mean parameters z̄1:T of the variational dis-

tribution q(x1:T |z1:T) by amortized variational inference; 2.

quantization and entropy coding: A posterior sample z1:T is

drawn, i.e., z1:T ∼ q(z1:T |x1:T) (or, deterministically com-

puted as z1:T = ⌊z̄1:T ⌉ at test time), and a bit-string encoding

ξ of z1:T is transmitted under the entropy model P (z1:T); 3.

decoding: The decoder decodes z1:T from bit-string ξ using

the entropy model P (z1:T), then computes the reconstruction

by x̂1:T = g(z1:T), corresponding to the mean parameters of

the Gaussian likelihood model p(x1:T |z1:T). Note that step 3

(decoding) is analogous to sampling from the generative model,

but without adding diagonal Gaussian noise to x̂1:T dictated by

the Gaussian likelihood p(x1:T |z1:T). Indeed, if the bitstring

ξ consists of a sequence of purely random bits, then it is

well known that decoding ξ under the entropy model P (z1:T)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

9912 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

produces a sample z1:T ∼ P (z1:T) [19]. For this reason, in

the following discussions, we occasionally blur the distinction

between the (random) latent variable z1:T ∼ P (z1:T) and the

quantized latent representation ⌊z̄1:T ⌉ (as would be decoded

from a bitstring ξ) to simplify notation.

A data compression process with such a learned transform

coding algorithm also implicitly defines a VAE model for the

data. Specifically, let us consider the compression procedure

of an online video compression codec, in which individual

frames xt are transmitted sequentially. The encoding-decoding

process is specified recursively as follows. Given the ground

truth current frame xt and the previously reconstructed frames

x̂<t, the encoder is restricted to be of the form z̄t = f(xt, x̂<t),
and similarly the decoder computes the reconstruction sequen-

tially based on previous reconstructions and the current en-

coding, x̂t = g (x̂<t, ⌊z̄t⌉)). Existing codecs usually condition

on a single reconstructed frame, substituting x̂<t by x̂t−1 in

favor of efficiency. In the language of generative modeling

and variational inference, the sequential encoder corresponds

to a variational posterior of the form q(zt|xt, z<t), i.e., filter-

ing, and the sequential decoder corresponds to the likelihood

p(xt|z≤t) = N
(

x̂t,
β

2 log 2I

)

; in both distributions, the proba-

bilistic conditioning on z<t is based on the observation that x̂t−1

is a deterministic function of z<t, if we identify ⌊z̄t⌉ with the

random variable zt and unroll the recurrence x̂t = g(x̂<t, zt).
As we show, all sequential compression approaches considered

in this work follow this paradigm and implicitly define gener-

ative models of the data as p(x1:T) ∝ p(x1:T |z1:T)p(z1:T) =
p(z1:T)

∏

t p(xt|z≤t), where the likelihood model p(xt|z≤t) at

each time step is centered on the reconstruction x̂t. The key

difference is in the definition of the decoding transform for

computing x̂t as a (stochastic) function of x̂<t and zt.

D. Hybrid Model With Stochastic Temporal Autoregressive

Transform

Having laid out the general approach for end-to-end learned

video compression with sequential VAEs, we specify the per-

frame likelihood model p(xt|z≤t) by revisiting the autoregres-

sive transform of MAF from Section II-B. The resulting model

captures several existing low-latency neural compression meth-

ods as specific instances [5], [11], [12], [13], [14], [15] and

gives rise to the exploration of new models. Consider computing

the reconstruction x̂t using the forward temporal autoregressive

transform of a MAF as in (7),

x̂t = hµ(x̂<t) + hσ(x̂<t)⊙ ŷt. (10)

As follows, we augment it with a latent variable zt. We may

interpret the reconstructed ŷt as being decoded from the random

variable zt given some prior p(zt), and a decoding transform

gz; additionally, zt may enter into the computation of the

shift hµ and scale hσ transforms. By combining a sequential

latent variable model with temporal autoregressive transforms,

we therefore arrive at the most general form of the proposed

stochastic temporal autoregressive transform

x̂t = hµ(x̂<t, zt) + hσ(x̂<t, zt)⊙ gz(zt). (11)

In this work, we only consider the common Mean Squared Error

(MSE) distortion for simplicity. Therefore the above decoding

transform computes the mean of a diagonal Gaussian frame

observation model p(xt|z≤t), with a fixed diagonal co-variance

parameterized by the desired Lagrange multiplier β (see expla-

nation at the end of Section II-B). We note, however, other kinds

of distortion functions such as MS-SSIM are possible, resulting

in a different form of p(xt|z≤t) parameterized by x̂t [32].

This stochastic decoder model has several advantages over

existing generative models for compression, such as simpler

normalizing flows or sequential VAEs. First, the stochastic

autoregressive transform hµ(x̂<t, zt) involves a latent variable

zt and is therefore more expressive than a deterministic trans-

form [34], [35]. Second, compared to MAF, which directly

models yt, the additional nonlinear transform gz(zt) enables

more expressive residual noise, reducing the burden on the prior

by allowing it to model a simpler distribution of zt. Finally,

as visualized in the video compression example in Fig. 2, the

scale parameter computed by hσ effectively acts as a gating

mechanism, determining how much variance is explained in

terms of the autoregressive transform and the residual noise

distribution. This provides an added degree of flexibility, in a

similar fashion to how RealNVP improves over NICE [8], [9].

Our approach is inspired by [10], who analyzed a restricted

version of the model in (11), aiming to hybridize autoregressive

flows and sequential latent variable models for video model-

ing. In contrast to the stochastic transform in (11), the hybrid

model in [10] is based on applying a deterministic tempo-

ral autoregressive transform (as in MAF) to a sequence of

residual noise variables y1:T modeled by a sequential VAE,

p(y1:T) ∝ p(y1:T |z1:T)p(z1:T). The data distribution p(x1:T)
under the resulting model (after applying the change-of-variable

formula to the density of p(y1:T)) does not admit a simple condi-

tional likelihood distribution like xt|x̂t ∼ N
(

x̂t,
β

2 log 2I

)

, and

maximum-likelihood training of p(x1:T) is not directly aligned

with the R-D objective of video compression. We note that,

however, the learned MAF transform of such a model may be

used by a transform coding algorithm in a manner similar to our

discussion in Section II-B, but the resulting algorithm is likely

to be suboptimal in R-D performance and faces similar issues

with decoding.

E. Example Models

Next, we will show that the general framework expressed by

(11) captures a variety of state-of-the-art neural video compres-

sion schemes and gives rise to extensions and new models.

Temporal Autoregressive Transform (TAT). The first special

case among the class of models that are captured by (11) is

the autoregressive neural video compression model by Yang et

al. [15], which we refer to as temporal autoregressive transform

(TAT). Shown in Fig. 1(a), the decoder g implements a deter-

ministic scale-shift autoregressive transform of decoded noise

ŷt,

x̂t= g(x̂t−1, zt) = hµ(x̂t−1) + hσ(x̂t−1)⊙ ŷt, ŷt= gz(zt)
(12)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: INSIGHTS FROM GENERATIVE MODELING FOR NEURAL VIDEO COMPRESSION 9913

Fig. 1. Model diagrams for the generative and inference procedures of the current frame xt, for various neural video compression methods. Random variables are
shown in circles; all other quantities are deterministically computed; solid and dashed arrows describe computational dependency during generation (decoding) and
inference (encoding), respectively. Purple nodes correspond to neural encoders (CNNs) and decoders (DCNNs), and green nodes implement temporal autoregressive
transform. (a) TAT; (b) SSF; (c) STAT or STAT-SSF; the magenta box highlights the additional proposed scale transform absent in SSF, and the red arrow from
wt to vt; highlights the proposed (optional) structured prior. (d) SSF-TP/SSF-TP+ and (e) STAT-SSF-SP-TP+ illustrate the temporal prior extension based on our
proposal; the blue arrow shows the temporal dependency on the previous residual latent vt−1, and the green arrow highlights the improved dependency on the
previous reconstructed frame x̂t−1.

Fig. 2. Visualizing the encoding/decoding computation of the STAT-SSF-SP model on one frame of UVG video “Shake-NDry”. See Fig. 1(c) for the model’s
computation diagram. In this example, the warping prediction µ̂t (bottom, first) incurs a large error around the dog’s moving contour but models the mostly static
background well, with the residual latents ⌊v̄t⌉ taking up an order of magnitude higher bit-rate than ⌊w̄t⌉. The proposed scale parameter σ̂t (top, second) gives
the model extra flexibility when combining the noise ŷt (bottom, second) with the warping prediction µ̂t to form the reconstruction x̂t = µ̂t + σ̂t ⊙ ŷt (bottom,
fourth). The scale σ̂t downweights contribution from the noise ŷt in the foreground where it is very costly, and reduces the residual bit-rate R(⌊v̄t⌉) (and thus
the overall bit-rate) compared to STAT-SSF and SSF, as illustrated in the third and fourth figures in the top row. The (BPP, PSNR) performance for STAT-SSF-SP,
STAT-SSF, and SSF [5] are (0.046, 36.97), (0.053, 36.94), and (0.075, 36.97), respectively. Thus, STAT-SSF and SSF here have comparable reconstruction quality
to STAT-SSF-SP but worse bit-rate.

The encoder f inverts the transform to decorrelate the input

frame xt into ȳt and encodes the result as z̄t = f(xt, x̂t−1) =

fz(ȳt), where ȳt =
xt−hµ(x̂t−1)
hσ(x̂t−1)

. The shift hµ and scale hσ

transforms are parameterized by neural networks, fz is a con-

volutional neural network (CNN), and gz is a deconvolutional

neural network (DCNN) that approximately inverts fz .

The TAT decoder is a simple version of the more general

stochastic autoregressive transform in (11), where hµ and hσ

lack latent variables. Indeed, focusing on the generative process

of x̂, TAT implements the model proposed by [10], transforming

y into x̂ by a MAF. However, the generative process underlying

lossy compression (see Section II-C) adds additional white noise

to x̂, with x := x̂+ ǫ, ǫ ∼ N (0, β
2 log 2I). Thus, the generative

process from y to x is no longer invertible nor corresponds to

an autoregressive flow. Nonetheless, TAT was shown to bet-

ter capture the low-level dynamics of video frames than the

autoencoder (fz, gz) alone, and the inverse transform decor-

relates raw video frames to simplify the input to the encoder

fz [15].

DVC [11], Scale-Space Flow (SSF, [5]), Among Others [12],

[13], [14]. The second class of models captured by (11) belong

to the neural video compression framework based on predictive

coding; both models make use of two sets of latent variables

z1:T = {w1:T ,v1:T } to capture different aspects of informa-

tion being compressed, where w captures estimated motion

information used in the warping prediction, and v helps capture

residual error not predicted by warping the previous reconstruc-

tion frame.

Like most classical approaches to video compression by

predictive coding, the reconstruction transform in the above

models has the form of a prediction shifted by residual error

(decoded noise), and lacks the scaling factor hσ compared to

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

9914 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

the autoregressive transform in (11)

x̂t = hwarp(x̂t−1, gw(wt)) + gv(vt,wt). (13)

Above, gw and gv are DCNNs, ot := gw(wt) has the inter-

pretation of an estimated optical flow (motion) field, hwarp

denotes warping [36], the hµ of (11) is defined by the compo-

sition hµ(x̂t−1,wt) := hwarp(x̂t−1, gw(wt)), and the residual

rt := gv(vt,wt) = x̂t − hwarp(x̂t−1,ot) represents the pre-

diction error unaccounted for by warping. DVC [11] only makes

use of vt in the residual decoder gv , and performs simple

2D warping by bi-linear interpretation; Lin et al. [13] make

use of multiple reference frames x̂(t−3):t for estimating the

optimal flow (motion) field; SSF [5] augments the optical flow

(motion) field ot with an additional scale field, and applies

scale-space-warping to the progressively blurred versions of

x̂t−1 to allow for uncertainty in the warping prediction. The

encoding procedure in the above models computes the vari-

ational mean parameters as w̄t = fw(xt, x̂t−1), v̄t = fv(xt −
hwarp(x̂t−1, gw(wt))), corresponding to a structured posterior

q(zt|xt, z<t) = q(wt|xt, z<t)q(vt|wt,xt, z<t). We illustrate

the above generative and inference procedures in Fig. 1(b).

F. Proposed Models (Base Versions)

Finally, we consider a version of stochastic temporal autore-

gressive transform (11) in the context of predictive video coding,

x̂t = hµ(x̂t−1,wt) + hσ(x̂t−1,wt)⊙ gv(vt,wt). (14)

As in DVC and SSF, the latent variable zt consists of two com-

ponents vt,wt, and the shift and scale parameters are computed

using only the previous reconstruction x̂t−1. See Fig. 1(c) for a

diagram of the resulting generative model. We study two main

variants, categorized by how they implement hµ and hσ:
� STAT uses DCNNs for hµ and hσ as in Yang et al. [15], but

both networks receive the latent variable wt as additional

input, which helps guide the transform. In theory, the uni-

versal approximation property of neural networks should

allow us to learn whichever flexible functions (hµ, hσ)
achieve the best compression performance. However, in

practice, we find the following variant based on warping to

be more performant and parameter-efficient.
� STAT-SSF is a more domain-knowledge-driven vari-

ant of the above that still uses scale-space warp-

ing [5] in the shift transform, i.e., hµ(x̂t−1,wt) =
hwarp(x̂t−1, gw(wt)). This can also be seen as an extended

version of the SSF model, whose shift transform hµ is

preceded by a new learned scale transform hσ . We mo-

tivated the scaling transform in Section II-D, and provide

a visualization of its effect in Fig. 2.

Structured Prior (SP). Besides improving the autoregressive

transform (affecting the likelihood model for xt), one variant

of our approach also improves the topmost generative hierarchy

in the form of a more expressive latent prior p(z1:T), affecting

the entropy model for compression. We observe that motion

information encoded in wt can often be informative of the

residual error encoded invt. In other words, large residual errors

vt incurred by the mean prediction hµ(x̂t−1,wt) (e.g., the result

of warping the previous frame hµ(x̂t−1)) are often spatially

collocated with (unpredictable) motion as encoded by wt.

The original SSF model’s prior factorizes as p(wt,vt) =
p(wt)p(vt) and does not capture such correlation. We, therefore,

propose a structured prior by introducing conditional depen-

dence between wt and vt, so that p(wt,vt) = p(wt)p(vt|wt).
At a high level, this can be implemented by introducing a new

neural network that maps wt to parameters of a parametric

distribution of p(vt|wt) (e.g., mean and variance of a diagonal

Gaussian distribution). This results in variants of the above

models, STAT-SP and STAT-SSF-SP, where the structured prior

is applied on top of the proposed STAT and STAT-SSF models,

respectively.

G. Temporal Prior (TP) Extensions

In previous sections and other similar works in variational

compression [5], [11], [37], the prior model p(z1:T) typically

assumes that the latent variables z1:T are temporally factor-

ized: p(z1:T) =
∏T

t=1 p(zt). However, such assumptions may

be unrealistic for real world data, such as modeling natural

video [10], [38], [39], where temporal dependencies may persist

even after removing low-level motion information. To this end,

we model these dependencies by introducing a temporal prior:

p(z1:T) = p(z1)
∏T

t=2 p(zt|z<t) to more accurately predict the

density of the latent variable. Given the framework described

in the previous section, we implement the prior of the video

compression model with the following two types of temporal

conditioning. Meanwhile, the motion latent wt is not discussed

here, as it usually has a much lower bitrate than vt.

Temporal Residual Conditioningp(vt|vt−1) (TP). Most video

compression methods are based on the Markov assumption, e.g.,

an optical flow’s vector field is only conditioned on the most

recent frame. Empirically, we find that the information content

of the compressed flow field is much smaller than that of the

residual, − log p(vt) ≫ − log p(wt). Therefore, we only place

a temporal prior on vt and keep p(wt) temporally factorized

for simplicity. Temporal conditioning for v is implemented by

using an additional neural network that takes vt−1 as input to

a conditional Gaussian prior for vt. However, this conditioning

scheme may require special handling of the initial frames be-

cause the individual image compression model for the I-frame

(the first frame) does not have a “residual.” This indicates that

such temporal conditioning can only start from the 2nd frame, as

p(vt|vt−1) is only available for t ≥ 3. Instead, we use a separate

factorized prior p(v2) for the 2nd frame.

Conditioning on the Previous Frame p(vt|x̂t−1) (TP+).

Learning a temporal prior by only conditioning on the latent

variable v is challenging in practice. First, v is a noisy quantity

during training and only carries information of the previous

frame’s residual, lacking explicit information of the previ-

ous frame. Furthermore, the latent representation can change

throughout training because of the noise injection, potentially

complicating the learning process. Instead, we explore an al-

ternative scheme, TP+, in which vt is conditioned on the pre-

vious reconstruction, x̂t−1, which maintains a less noisy, more

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: INSIGHTS FROM GENERATIVE MODELING FOR NEURAL VIDEO COMPRESSION 9915

informative, and more consistent feature representation through-

out training and simplifies the learning procedure. In this sce-

nario, the model also no longer requires the extra prior for

p(v2), as in TP; moreover, the resulting prior p(vt|x̂t−1) =
p(vt|w<t,v<t) (since x̂t−1 is a deterministic function of z<t)

offers a strictly more expressive probabilistic model than TP,

p(vt|vt−1).

H. Variable Bitrate Extensions

Classical compression methods such as HEVC or AVC typ-

ically use one compression model to compress a video for 52

different quality levels. For example, in the FFMPEG library,

this can be achieved by varying the value of the Constant

Rate Factor (CRF). However, current end-to-end trained neural

codecs largely focus on optimal rate-distortion performance at

a fixed bitrate. As discussed, various neural video compression

models [5], [11], [12], [37] minimize the NELBO objective,

L = D + βR, where β controls the rate-distortion tradeoff, and

a separate compression model needs to be optimized for each

setting of β. The overhead of training and deploying multiple

models (e.g, 52 sets of neural network parameters for 52 quality

levels) potentially makes neural video compression impracti-

cal. Therefore, we consider a variable-rate compression setting,

where we train a single model with multiple β values and adapt

it to different quality factors at deployment time.

The analogy between the compression models and deep latent

variable models (see Section II-C) inspires us to draw on con-

ditional variational autoencoders [40] that model conditional

distributions instead of unconditional ones. By conditioning

the networks on the quality control factor B and generating

random Q-samples during training, we can learn a single set of

encoder, decoder, and prior model that operates near-optimally

at different bitrates. Specifically, we draw on a proposal by [41]

for images and generalize it to the class of neural video codecs

studied here.

In more detail, we define a quality control factor B, repre-

sented by a one-hot vector, as the condition of the compression

model where each B has a unique corresponding β. Then we

can derive the new conditional optimization objective from (9)

˜LVBR = Ex1:T∼pdata
Eq(z1:T |x1:T ,B)

[− log p(x1:T |z1:T , B)− β log p(z1:T |B)]
(15)

≡ D(B) + βR(B). (16)

During training, a (B, β) pair is selected randomly for each

training sample. Following [41], we also replace all convolutions

with conditional convolution to incorporate the B variable. We

found that one can technically use simpler methods (like directly

reshaping and concatenating B to the network hidden features)

to achieve the same result.

III. RELATED WORK

We divide related work into three categories: neural image

compression, neural video compression, and sequential genera-

tive models.

Neural Image Compression. Considerable progress has been

made by applying neural networks to image compression; here

we focus on the lossy (instead of lossless) compression setting

more relevant to us. Early works [42], [43] leveraged LSTMs to

model spatial correlations of the pixels within an image. [33],

[44] were among the first to train an autoencoder-stlye model

with rate-distortion loss for end-to-end lossy image compres-

sion, and proposed uniform noise injection [44] or the straight-

through estimator [45] to approximately differentiate through

quantization. The end-to-end approach based on uniform noise

injection was given a principled probabilistic interpretation

as implementing a deep latent variable model, a variational

autoencoder (VAE) [25]. In subsequent work, [46] encoded

images with a two-level VAE architecture involving a scale

hyper-prior, which can be further improved by autoregressive

structures [2], [47] or by optimization at encoding time [3]. [48]

and [49] demonstrated competitive image compression perfor-

mance without a pre-defined quantization grid. Recently, [50]

attempted to apply normalizing flow to lossy image compres-

sion; noting the incompatibility between density modeling with

flow and the R-D objective of lossy compression (which we

discuss in more detail in Section II-B), they essentially trained

an invertible autoencoder with a R-D loss instead, resulting in

superior rate-distortion performance in the high bitrate regime

but otherwise inferior performance compared to the VAE ap-

proach [32], [46] without the invertibility requirement.

Neural Video Compression. Compared to image compression,

video compression is a significantly more challenging problem,

as statistical redundancies exist not only within each video

frame (exploited by intra-frame compression) but also along

the temporal dimension. Early works by [51], [52] and [53]

performed video compression by predicting future frames us-

ing a recurrent neural network, whereas [54] and [55] used

convolutional architectures within a traditional block-based

motion estimation approach. These early approaches did not

outperform the traditional H.264 codec and barely surpassed

the MPEG-2 codec. [11] adopted a hybrid architecture that

combined a pre-trained Flownet [56] and residual compression,

which leads to an elaborate training scheme. [37] and [12]

combined 3D convolutions for dimensionality reduction with

expressive autoregressive priors for better entropy modeling at

the expense of parallelism and runtime efficiency. Our method

extends a low-latency model proposed by [5], which allows for

end-to-end training, efficient online encoding and decoding, and

parallelism.

Sequential Deep Generative Models. We drew inspiration

from a body of work on sequential generative modeling. Early

deep learning architectures for dynamics forecasting involved

RNNs [18]. [38] and [57] used VAE-based stochastic models in

conjunction with LSTMs to model dynamics. [39] introduced

both local and global latent variables for learning disentangled

representations in videos. Other video generation models used

generative adversarial networks (GANs) [58], [59] or autore-

gressive models and normalizing flows [8], [9], [16], [29], [60],

[61]. Recently, [10] proposed to combine latent variable models

with autoregressive flows for modeling dynamics at different

levels of abstraction, which inspired our models and viewpoints.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

9916 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

Algorithm 1: Gaussian Pyramid for Scale Space Volume.

IV. EXPERIMENTS

In this section, we demonstrate the effectiveness of our models

compared with baseline neural video compression solutions [5],

[11] as well as a state-of-the-art classic video codec when

evaluated on two publicly available benchmark datasets. The

backbone modules and training scheme for our models largely

follow [5].

Regarding the implementation of scale-space volume [5], we

adopted a Gaussian pyramid approach with successive con-

volution and downsampling. Compared with naively applying

separate Gaussian kernels with exponentially increasing kernel

width (referred to as Gaussian-blur approach), the Gaussian

pyramid-based implementation uses a fixed small convolution

kernel, yields similar scale-space volume, and is much more

efficient in terms of computation. The pseudo-code is presented

in Algorithm 1

A. Training and Evaluation

Training. We train on the Vimeo-90k [62] dataset as in

previous works [11], [12], [63]. We follow largely the same

procedure as SSF [5], and give more details in the supplementary

material, which can be found on the Computer Society Digital

Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.

2023.3260684. Table I summarizes our proposed models and

the baseline methods whose published results we compare with.

Evaluation. We report compression performance on two

widely used datasets: UVG5 [64] and MCL_JCV [65]. Both

consist of raw videos in YUV420 format. UVG contains seven

1080p videos at 120fps with smooth and mild motions or stable

camera movements. MCL_JCV contains thirty 1080p videos at

5UVG dataset is provided by http://ultravideo.fi/ and under CC-by-NC 3.0
license.

30 fps, which are generally more diverse, with a higher degree

of motion and scene cuts.

We report the bitrate (bits-per-pixel, or BPP for short) and

the reconstruction quality, measured in PSNR on 8-bit RGB

space (same as in training), averaged across all frames. PSNR

is a more challenging metric than MS-SSIM [66] for learned

codecs [5], [11], [37], [63], [67], [68]. Since most existing neural

compression methods assume video input in 8-bit RGB444 for-

mat (24 bits per pixel), we follow this convention by converting

test videos from YUV420 to RGB444 in our evaluations for

meaningful comparison. It is worth noting that HEVC is mainly

designed for YUV420 with sub-sampled chroma components,

which means that it can exploit the fact that chroma components

in test videos are subsampled and thus gains an unfair advantage

in the comparison against neural codecs. Nevertheless, we report

the performance of HEVC as a reference.

B. Base Results

First, we examine the performance of our proposed approach

without introducing temporal conditioning in the prior. Fig. 3(a)

compares our proposed models (STAT-SSF and STAT-SSF-SP)

with classical codec HEVC and baseline neural codecs on the

UVG test dataset. As can be seen from the rate-distortion results,

our STAT-SSF-SP model is uniformly better than previously

known neural codecs represented by SSF [5] and DVC [11].

STAT-SSF-SP even outperforms HEVC(YUV) (using YUV420

video input and evaluating on RGB444, the setting is available in

the Supplementary Material, available online) at bitrates ≥ 0.07
BPP. As expected, our proposed STAT model improves over

TAT [15], with the latter lacking stochasticity in the autoregres-

sive transform compared to our proposed STAT and its variants.

Fig. 3(a) shows that the performance ranking on MCL_JCV is

similar to that on UVG, despite MCL_JCV having more diverse

and challenging (e.g., animated) content. We provide qualitative

results in Figs. 2 and 4, offering insight into the behavior of the

proposed scaling transform and structured prior, as well as visual

qualities of different methods.

Additionally, we observe that different implementations of

scale space volume (Gaussian pyramid or Gaussian blur) also

slightly influence the rate-distortion performance. While the

Gaussian blur version seems to have more advantage at the high

bitrate regime, the Gaussian pyramid performs better at mid-

range bitrate, as shown in Fig. 3. The Gaussian pyramid usually

generates a blurrier high-scale image compared to Gaussian blur

when the base scales are the same.

Finally, we ablate on our proposed STAT-SSF-SP model. This

allows us to study the performance contribution of each of our

proposed components, stochastic temporal autoregressive trans-

form (STAT) and structured prior (SP), in isolation. Compared to

the baseline SSF [5] model, STAT-SSF introduces an additional

elementwise scaling transform, while SSF-SP introduces the

structured prior (see discussions in Section II-F). As shown in

Fig. 5(a), SSF-SP provides a comparable or greater improvement

than STAT-SSF, relative to SSF. The improvements from the two

components are complementary, and combining them into STAT-

SSF-SP yields even further improvement as seen in Fig. 3(a).

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: INSIGHTS FROM GENERATIVE MODELING FOR NEURAL VIDEO COMPRESSION 9917

TABLE I
OVERVIEW OF VARIOUS COMPRESSION METHODS CONSIDERED AND THE CONTEXTS IN WHICH THEY APPEAR

Fig. 3. Rate-Distortion Performance of various models and ablations. Results are evaluated on (a) UVG and (b) MCL_JCV datasets. All the learning-based
models (except VCII [51]) are trained on Vimeo-90 k. STAT-SSF-SP-TP+ (proposed) achieves the best performance.

C. Temporal Prior Experiments

We also conduct experiments to illustrate the rate-distortion

performance of SSF [5] and our proposed models using different

temporal priors. Refer to Table I for naming conventions.

Fig. 6 shows the RD curve of each ablation model. We

see that performing temporal conditioning through the prior

does indeed improve performance, both for STAT and SSF. We

see that temporally conditioning on the previous reconstruc-

tion (SSF-TP+) outperforms temporally conditioning on the

previous latent (SSF-TP) in almost all bitrate regimes across

both datasets. Finally, SSF-TP+ even performs comparably with

STAT-SSF-SP, and the hybrid model STAT-SSF-SP-TP+ offers

slight improvement further.

However, we also observe that compared with the SSF-TP+

or SSF model, SSF-TP shows fluctuating rate-distortion per-

formance during evaluation if we train the same model with

different random initializations. We hypothesize that this may

be caused by either numerical instability or video length incon-

sistency between training and evaluation data. To the best of our

knowledge, most proposed sequential generative or compression

models with a temporal prior are trained with more than three

consecutive frames [10], [12], [38], [39], [63], [69]. In contrast,

our model only uses three consecutive frames during training

for better efficiency.

Fortunately, we can still avoid the issue by using “β-

annealing”. We first train a model at a high bitrate and

then finetune the model to lower bitrates using the increas-

ingly larger β value. In our experiment, the initial model

is trained with β = 1.5625× 10−4, and the following mod-

els are finetuned with β = {3.125× 10−4, 6.25× 10−4, 1.25×
10−3, 2.5× 10−3, 5× 10−3}, respectively.

D. Variable-Bitrate Experiments

In contrast to previous experiments that train separate mod-

els, one for each β value, in this section, we show results

of the proposed conditional autoencoder based variable-bitrate

scheme. The conditioning factor B is defined as a one-hot

vector with length 7 and seven β values are used to match

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

9918 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

Fig. 4. Qualitative comparisons of various methods on a frame from MCL-JCV video 30. Figures in the bottom row focus on the same image patch on top. Here,
models with the proposed scale transform (STAT-SSF and STAT-SSF-SP) outperform the ones without, yielding visually more detailed reconstructions at lower
rates. The structured prior (STAT-SSF-SP) and temporal prior (STAT-SSF-SP-TP+) reduce the bitrate further.

Fig. 5. (a) Ablation study of STAT-SSF-SP, examining the effect of two proposed components, STAT (stochastic temporal autoregressive transform) and SP
(structured prior), with R-D results evaluated on the UVG dataset. Compared to STAT-SSF-SP, SSF-SP lacks the learned elementwise scaling transform in STAT
(Section II-D), STAT-SSF lacks the structured prior, while SSF [5] lacks both components. See discussion in Section IV-B. (b) Comparison of the Rate-Distortion
performance between variable-bitrate models and non-variable-bitrate models.

each one-hot vector: {10−2, 5× 10−3, 2.5× 10−3, 10−3, 5×
10−4, 2.5× 10−4, 10−4}. For each training datum, the (B, β)
pair is selected randomly. We also observe that this sampling

scheme results in better rate-distortion performance than sam-

pling (B, β) per batch.

In Fig. 5(b), we compare the performance of the variable-

bitrate models and models with separate β values. We ob-

serve that Conditional SSF performs slightly worse than SSF at

high bitrate. While Conditional STAT-SSF-SP consistently has

worse performance than STAT-SSF-SP, it performs better than

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: INSIGHTS FROM GENERATIVE MODELING FOR NEURAL VIDEO COMPRESSION 9919

Fig. 6. Rate-Distortion Performance of various models and ablations (see Table I). Results are evaluated on (a) UVG and (b) MCL_JCV datasets. The best results
are obtained by models with deterministic temporal conditioning (TP+), while the improvement from conditioning on previous latents (TP) is less.

Conditional SSF at bitrate ≤ 0.08 bpp. This result demonstrates

that the performance gap between variable and non-variable-

bitrate models could be amplified with a more complicated

model, while the gap is barely noticeable for simpler models. The

investigation of this phenomenon will be left to future research.

V. DISCUSSION

Generative modeling and compression share similar aims,

respectively modeling and removing redundant structure in data.

Accordingly, the nascent field of learned, neural compression

holds the potential to drastically improve performance over

conventional codecs. Perhaps nowhere is this more impactful

than in the setting of high-resolution video, where capturing

temporal redundancy can yield significant reductions in cod-

ing costs. Toward this end, we have drawn inspiration from a

recently developed technique within deep generative models,

temporal autoregressive flows [10], which perform temporal

predictive coding via affine transforms. By interpreting recent

state-of-the-art neural compression methods via autoregressive

flows, we can generalize them to using more complex trans-

forms, with corresponding improvements in performance. We

have investigated such improvements on video compression

benchmarks, along with extensions to the higher-level latent

variable model: additional hierarchical priors, temporal priors,

and variable bitrate compression. Of particular importance, our

results show that domain knowledge (in our case, next frame pre-

diction via the computer vision technique of warping) remains

valuable in video compression and can be more cost-effective

than a neural-network-only approach. They also shed light on the

potential pitfalls in estimating higher-level temporal dynamics

in learned compression models.

The art of transform coding involves the effective design of

both the transform and entropy model, and many possibilities

remain in the domain of video compression. Unlike for images,

where the convolutional neural network has been established

as the default transform for capturing spatial redundancy [17],

video introduces additional temporal redundancy, and it remains

to be seen what transform is most effective while staying within

(often stringent) computation budgets. The design space is vast,

and the approach of predictive coding combined with computer

vision techniques has so far achieved the widest commercial

success. Our work shows one way of extending this approach

inspired by normalizing flows, and opens up the possibility

of compression with more general and potentially non-affine

autoregressive transforms [70]. Finally, recent work [71] has

shown state-of-the-art video compression performance with a

rich entropy model and without predictive coding in the pixel

space. This approach essentially offloads the task of designing

good transforms to that of modeling high-dimensional discrete

distributions, which now can be tackled thanks to the rise of

large-scale transformer models [72] and abundance of data,

but remains computationally prohibitive. An interesting future

research direction could therefore be to explore the comple-

mentary strengths between this and our approach for sequence

decorrelation, which may lead to further advances in both rate-

distortion performance and computational efficiency.

REFERENCES

[1] Y. Yang, S. Mandt, and L. Theis, “An introduction to neural data compres-
sion,” 2022, arXiv:2202.06533.

[2] D. Minnen, J. Ballé, and G. D. Toderici, “Joint autoregressive and hier-
archical priors for learned image compression,” in Proc. Adv. Neural Inf.

Process. Syst., 2018, pp. 10771–10780.
[3] Y. Yang, R. Bamler, and S. Mandt, “Improving inference for neural image

compression,” in Proc. Adv. Neural Inf. Process. Syst., 2020, Art. no. 49.
[4] F. Bellard, “BPG image format,” 2014. [Online]. Available: https://bellard.

org/bpg/bpg_spec.txt
[5] E. Agustsson, D. Minnen, N. Johnston, J. Balle, S. J. Hwang, and G.

Toderici, “Scale-space flow for end-to-end optimized video compres-
sion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 8503–8512.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

9920 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

[6] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video

Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.
[7] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the

high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits Syst.

Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.
[8] L. Dinh, D. Krueger, and Y. Bengio, “NICE: Non-linear independent

components estimation,” 2014, arXiv:1410.8516.
[9] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real

NVP,” 2016, arXiv:1605.08803.
[10] J. Marino, L. Chen, J. He, and S. Mandt, “Improving sequential latent

variable models with autoregressive flows,” in Proc. Symp. Adv. Approx.

Bayesian Inference, 2020, pp. 1–16.
[11] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “DVC: An end-

to-end deep video compression framework,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit., 2019, pp. 11006–11015.
[12] H. Liu, H. Shen, L. Huang, M. Lu, T. Chen, and Z. Ma, “Learned video

compression via joint spatial-temporal correlation exploration,” in Proc.

AAAI Conf. Artif. Intell., 2020, pp. 11580–11587.
[13] J. Lin, D. Liu, H. Li, and F. Wu, “M-LVC: Multiple frames prediction

for learned video compression,” in Proc. IEEE/CVF Conf. Comput. Vis.

Pattern Recognit., 2020, pp. 3546–3554.
[14] G. Lu et al., “Content adaptive and error propagation aware deep

video compression,” in Proc. Eur. Conf. Comput. Vis., Springer, 2020,
pp. 456–472.

[15] R. Yang, Y. Yang, J. Marino, Y. Yang, and S. Mandt, “Deep generative
video compression with temporal autoregressive transforms,” in Proc.

ICML Workshop Invertible Neural Netw. Normalizing Flows, Explicit

Likelihood Models, 2020.
[16] G. Papamakarios, T. Pavlakou, and I. Murray, “Masked autoregressive

flow for density estimation,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 2338–2347.

[17] J. Ballé et al., “Nonlinear transform coding,” 2020, arXiv:2007.03034.
[18] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio, “A

recurrent latent variable model for sequential data,” in Proc. Adv. Neural

Inf. Process. Syst., 2015, pp. 2980–2988.
[19] T. M. Cover, Elements of Information Theory, Hoboken, NJ, USA: Wiley,

1999.
[20] O. Rippel, S. Nair, C. Lew, S. Branson, A. G. Anderson, and L. D. Bourdev,

“Learned video compression,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
2019, pp. 3453–3462.

[21] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video
compression,” IEEE Signal Process. Mag., vol. 15, no. 6, pp. 74–90,
Nov. 1998.

[22] R. E. Kalman et al., “A new approach to linear filtering and prediction
problems,” J. Basic Eng., vol. 82, no. 1, pp. 35–45, 1960.

[23] C. C. Cutler, “Differential quantization of communication signals,” Jul.
29, 1952, US Patent 2,605,361.

[24] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B.
Lakshminarayanan, “Normalizing flows for probabilistic modeling and
inference,” J. Mach. Learn. Res., vol. 22, 2021, Art. no. 57.

[25] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
2013, arXiv:1312.6114.

[26] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression,
vol. 159, Berlin, Germany: Springer Science & Business Media, 2012.

[27] V. K. Goyal, “Theoretical foundations of transform coding,” IEEE Signal

Process. Mag., vol. 18, no. 5, pp. 9–21, Sep. 2001.
[28] J. Behrmann, P. Vicol, K.-C. Wang, R. Grosse, and J.-H. Jacobsen, “Under-

standing and mitigating exploding inverses in invertible neural networks,”
in Proc. 24th Int. Conf. Artif. Intell. Statist., 2020, pp. 1792–1800.

[29] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invert-
ible 1x1 convolutions,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 10215–10224.

[30] B. Uria, I. Murray, and H. Larochelle, “RNADE: The real-valued neural
autoregressive density-estimator,” in Proc. Adv. Neural Inf. Process. Syst.,
2013, pp. 2175–2183.

[31] J. Ho, E. Lohn, and P. Abbeel, “Compression with flows via local bits-back
coding,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 3874–3883.

[32] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized
image compression,” in Proc. 5th Int. Conf. Learn. Representations,
2017.

[33] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compres-
sion with compressive autoencoders,” in Proc. Int. Conf. Learn. Represen-

tations, 2017.

[34] F. Schmidt and T. Hofmann, “Deep state space models for uncondi-
tional word generation,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 6158–6168.

[35] F. Schmidt, S. Mandt, and T. Hofmann, “Autoregressive text gener-
ation beyond feedback loops,” in Proc. Conf. Empir. Methods Natu-

ral Lang. Process. 9th Int. Joint Conf. Natural Lang. Process., 2019,
pp. 3391–3397.

[36] C. A. Glasbey and K. V. Mardia, “A review of image-warping methods,”
J. Appl. Statist., vol. 25, no. 2, pp. 155–171, 1998.

[37] A. Habibian, T. V. Rozendaal, J. M. Tomczak, and T. S. Cohen, “Video
compression with rate-distortion autoencoders,” in Proc. IEEE Int. Conf.

Comput. Vis., 2019, pp. 7033–7042.
[38] E. Denton and R. Fergus, “Stochastic video generation with a learned

prior,” in Proc. Int. Conf. Mach. Learn., PMLR, 2018, pp. 1174–1183.
[39] Y. Li and S. Mandt, “Disentangled sequential autoencoder,” in Proc. 35th

Int. Conf. Mach. Learn., PMLR, 2018, pp. 5670–5679.
[40] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation

using deep conditional generative models,” in Proc. Adv. Neural Inf.

Process. Syst., 2015, pp. 3483–3491.
[41] Y. Choi, M. El-Khamy, and J. Lee, “Variable rate deep image compression

with a conditional autoencoder,” in Proc. IEEE/CVF Int. Conf. Comput.

Vis., 2019, pp. 3146–3154.
[42] G. Toderici et al., “Full resolution image compression with recurrent neural

networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 5435–5443.

[43] N. Johnston et al., “Improved lossy image compression with priming and
spatially adaptive bit rates for recurrent networks,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., 2018, pp. 4385–4393.
[44] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimization of

nonlinear transform codes for perceptual quality,” in Proc. Picture Coding

Symp., 2016, pp. 1–5.
[45] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagat-

ing gradients through stochastic neurons for conditional computation,”
2013, arXiv:1308.3432.

[46] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational
image compression with a scale hyperprior,” in Proc. Int. Conf. Learn.

Representations, 2018.
[47] D. Minnen and S. Singh, “Channel-wise autoregressive entropy models

for learned image compression,” in Proc. IEEE Int. Conf. Image Process.,
2020, pp. 3339–3343.

[48] Y. Yang, R. Bamler, and S. Mandt, “Variational Bayesian quantization,”
in Proc. Int. Conf. Mach. Learn., 2020, pp. 10670–10680.

[49] G. Flamich, M. Havasi, and J. M. Hernández-Lobato, “Compres-
sion without quantization,” in Proc. Int. Conf. Learn. Representations,
2019.

[50] L. Helminger, A. Djelouah, M. Gross, and C. Schroers, “Lossy image
compression with normalizing flows,” 2020, arXiv:2008.10486.

[51] C.-Y. Wu, N. Singhal, and P. Krahenbuhl, “Video compression
through image interpolation,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 416–431.

[52] A. Djelouah, J. Campos, S. Schaub-Meyer, and C. Schroers, “Neural
inter-frame compression for video coding,” in Proc. IEEE/CVF Int. Conf.

Comput. Vis., 2019, pp. 6420–6428.
[53] J. Han, S. Lombardo, C. Schroers, and S. Mandt, “Deep generative video

compression,” in Proc. Adv. Neural Inf. Process. Syst., 2019, Art. no. 833.
[54] Z. Chen, T. He, X. Jin, and F. Wu, “Learning for video compression,” IEEE

Trans. Circuits Syst. Video Technol., vol. 30, no. 2, pp. 566–576, Feb. 2020.
[55] T. Chen, H. Liu, Q. Shen, T. Yue, X. Cao, and Z. Ma, “DeepCoder: A deep

neural network based video compression,” in Proc. IEEE Vis. Commun.

Image Process., 2017, pp. 1–4.
[56] A. Dosovitskiy et al., “FlowNet: Learning optical flow with convolutional

networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 2758–2766.
[57] M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine,

“Stochastic variational video prediction,” in Proc. Int. Conf. Learn. Rep-

resentations, 2018.
[58] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene

dynamics,” in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 613–621.
[59] A. X. Lee, R. Zhang, F. Ebert, P. Abbeel, C. Finn, and S. Levine, “Stochastic

adversarial video prediction,” 2018, arXiv:1804.01523.
[60] D. J. Rezende and S. Mohamed, “Variational inference with normalizing

flows,” in Proc. 32nd Int. Conf. Mach. Learn., 2015, pp. 1530–1538.
[61] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and

M. Welling, “Improved variational inference with inverse autoregressive
flow,” in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 4743–4751.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: INSIGHTS FROM GENERATIVE MODELING FOR NEURAL VIDEO COMPRESSION 9921

[62] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video enhance-
ment with task-oriented flow,” Int. J. Comput. Vis., vol. 127, no. 8,
pp. 1106–1125, 2019.

[63] R. Yang, F. Mentzer, L. Van Gool, and R. Timofte, “Learning for
video compression with hierarchical quality and recurrent enhance-
ment,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 6627–6636.

[64] A. Mercat, M. Viitanen, and J. Vanne, “UVG dataset: 50/120fps 4K
sequences for video codec analysis and development,” in Proc. 11th ACM

Multimedia Syst. Conf., 2020, pp. 297–302.
[65] H. Wang et al., “MCL-JCV: A JND-based h. 264/AVC video quality

assessment dataset,” in Proc. IEEE Int. Conf. Image Process., 2016,
pp. 1509–1513.

[66] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural simi-
larity for image quality assessment,” in Proc. IEEE 37th Asilomar Conf.

Signals Syst. Comput., 2003, pp. 1398–1402.
[67] Y. Yang, G. Sautière, J. J. Ryu, and T. S. Cohen, “Feedback recurrent

autoencoder,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2020, pp. 3347–3351.

[68] N. Johnston, E. Eban, A. Gordon, and J. Ballé, “Computationally efficient
neural image compression,” 2019, arXiv:1912.08771.

[69] R. Yang, F. Mentzer, L. Van Gool, and R. Timofte, “Learning for video
compression with recurrent auto-encoder and recurrent probability model,”
IEEE J. Sel. Topics Signal Process., vol. 15, no. 2, pp. 388–401, Feb. 2021.

[70] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville, “Neural autore-
gressive flows,” in Proc. Int. Conf. Mach. Learn., PMLR, 2018, pp. 2078–
2087.

[71] F. Mentzer et al., “VCT: A video compression transformer,” 2022,
arXiv:2206.07307.

[72] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.

Process. Syst., 2017, pp. 6000–6010.
[73] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in Proc. Int. Conf. Learn. Representations, 2015.

Ruihan Yang received the BS degree in computer
science from NYU Shanghai, in 2018. He is currently
working toward the PhD degree with the University
of California, Irvine. From 2018 to 2019, his work
focused on generative modeling of music, and had
some experience on computational material science.
He currently works on source compression with gen-
erative models.

Yibo Yang is currently working toward the PhD
degree with the University of California, Irvine. His
research interests include probability theory, informa-
tion theory, and their applications in machine learn-
ing. His recent work develops deep generative mod-
eling approaches for data compression, and he has
co-organized tutorials and workshops on the topic.

Joseph Marino received the PhD degree in compu-
tation and neural systems from the California Insti-
tute of Technology (Caltech). His work focuses on
probabilistic models and inference algorithms as they
relate to deep generative modeling, reinforcement
learning, and theoretical neuroscience. He is currently
employed as a research scientist with DeepMind.

Stephan Mandt (Member, IEEE) received the PhD
degree in theoretical physics from the University of
Cologne, where he received the German National
Merit Scholarship. He is an associate professor of
computer science and statistics with the University of
California, Irvine. From 2016 until 2018, he was a
senior researcher and head of the Statistical Machine
Learning Group, Disney Research in Pittsburgh and
Los Angeles. He held previous postdoctoral positions
with Columbia University and Princeton University.
He is furthermore a recipient of the NSF CAREER

Award, the UCI ICS Mid-Career Excellence in Research Award, the German
Research Foundation’s Mercator Fellowship, a Kavli fellow of the U.S. National
Academy of Sciences, a member of the ELLIS Society, and a former visiting
researcher with Google Brain. He is an action editor of the Journal of Machine

Learning Research and of Transactions on Machine Learning Research. His
research is currently supported by NSF, DARPA, IARPA, DOE, Disney, Intel,
and Qualcomm.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 21,2023 at 11:27:29 UTC from IEEE Xplore. Restrictions apply.

