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Insights From Generative Modeling
for Neural Video Compression

Ruihan Yang ", Yibo Yang

Abstract—While recent machine learning research has revealed
connections between deep generative models such as VAEs and
rate-distortion losses used in learned compression, most of this
work has focused on images. In a similar spirit, we view recently
proposed neural video coding algorithms through the lens of
deep autoregressive and latent variable modeling. We present
these codecs as instances of a generalized stochastic temporal
autoregressive transform, and propose new avenues for further
improvements inspired by normalizing flows and structured
priors. We propose several architectures that yield state-of-the-art
video compression performance on high-resolution video and
discuss their tradeoffs and ablations. In particular, we propose
(i) improved temporal autoregressive transforms, (ii) improved
entropy models with structured and temporal dependencies,
and (iii) variable bitrate versions of our algorithms. Since our
improvements are compatible with a large class of existing
models, we provide further evidence that the generative modeling
viewpoint can advance the neural video coding field.

Index Terms—Autoregressive models, generative models,
normalizing flow, variational inference, video compression.

I. INTRODUCTION

EURAL data compression [1] has evolved to become
N a promising new application and testing domain for
generative modeling.! Generative models such as hierarchical
variational autoencoders have already demonstrated empirical
improvements in image compression, outperforming classical
codecs [2], [3] such as BPG [4]. For neural video compression,
progress has proved harder due to complex temporal depen-
dencies operating at multiple scales. Nevertheless, recent neural
video codecs have shown promising performance gains [5], in
some cases on par with current hand-designed, classical codecs,
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e.g., HEVC [6], [7]. Compared to hand-designed codecs, learn-
able codecs are not limited to a specific data modality and offer
a promising approach for streaming specialized content, such as
sports or video conferencing. Therefore, improving neural video
compression is vital for dealing with the ever-growing amount
of video content being created.

The common approach to source compression transforms the
data into a white noise distribution that can be more easily
modeled and compressed with an entropy model. This way, data
compression fundamentally involves decorrelation. Improving
amodel’s capability to decorrelate data helps improves its com-
pression performance. On the other hand, we can improve the
entropy model (i.e., the model’s prior) to capture any remaining
dependencies. Just as compression techniques attempt to remove
structure, generative models attempt to generate structure. For
example, autoregressive flows map between less structured dis-
tributions, e.g., uncorrelated noise, and more structured distribu-
tions, e.g., images or video [8], [9]. The inverse flow can remove
dependencies in the data, making it more amenable to compres-
sion. Thus, a natural question to ask is how autoregressive flows
can best be utilized in compression and if mechanisms in existing
compression schemes can be interpreted as normalizing flows.

This paper draws on recent insights in hierarchical sequential
latent variable models with autoregressive flows [10]. In par-
ticular, we identify connections between this family of models
and recent neural video codecs based on motion estimation [5],
[11], [12], [13], [14], [15]. By interpreting this technique as an
instantiation of a more general autoregressive flow transform, we
propose various alternatives and improvements based on insights
from generative modeling. Specifically, our contributions are as
follows:

First, we interpret existing video compression methods
through the framework of generative modeling and variational
inference, allowing us to readily investigate extensions and
ablations. In particular, we discuss the relationship between
sequence modeling and sequence compression. We identify
autoregressive transform as a key component in both cases and
suggest incorporating it in a sequential latent variable as the
basis of our approach.

Second, we improve a popular model for neural video com-
pression, Scale-Space Flow (SSF) [5]. This model uses motion
estimation to predict the frame being compressed and further
compresses the residual obtained by subtraction. Our proposed
model extends the SSF model with a more flexible decoder
and prior, and obtains improved rate-distortion performance.
Specifically, we incorporate a learnable scaling transform to
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allow for more expressive and accurate reconstruction. Aug-
menting a shift transform by scale-then-shift is inspired by
the extension of NICE [8] to RealNVP [9]. We also compare
motion-estimation-based versus purely CNN-based approaches
to predictive coding.

Third, our probabilistic perspective allows us to explore im-
proved entropy models for SSF and its relatives. In particular,
we explore structured priors that jointly encode motion and
residual information. As the two tend to be spatially correlated,
encoding residual information conditioned on motion informa-
tion results in a better prior. Since the residual dominates the
bitrate, our improved entropy model reduces the overall bitrate
significantly. We also investigate different versions of temporal
priors, where we either condition on latent variables or on frame
reconstructions and discuss their tradeoffs in terms of bit savings
and optimization challenges.

Finally, also from the perspective of generative modeling, we
present variable bitrate versions of our models, i.e., training a
single encoder and decoder that works at different points on
the rate-distortion curves. This step is considered important for
making neural coding schemes practical. Our experiments show
that the difference in rate-distortion performance of variable
bitrate models and models tuned to individual bit rates depends
on the model complexity.

Our paper is structured as follows. We establish our viewpoint
and model improvements in Section II, discuss related work in
Section III, and present experiments in Section IV. Conclusions
are provided in Section V.

II. VIDEO COMPRESSION THROUGH DEEP AUTOREGRESSIVE
MODELING

We first review low-latency video compression, including the
classical predictive coding technique. We then draw connections
between data compression and data modeling with a Masked
Autoregressive Flow (MAF) [16], a generative model based on
a temporal autoregressive transform that resembles predictive
coding. Finally, inspired by hierarchical autoregressive flow
models [10], we combine the strength of autoregressive model-
ing with the end-to-end optimizable transform coding approach
of VAEs [17], resulting in a sequential VAE [18] with an au-
toregressive encoding/decoding transform. The resulting model
captures many existing neural video compression methods [5],
[11],[12],[13],[14],[15], and serves as the basis of our proposed
improvements to the decoding transform as well as the prior
model.

Notation. We use bold letters (e.g., x,z) to denote random
variables and variables with superscripts to indicate determinis-
tically computed quantities (e.g., X, z). We use p(x) to denote the
probability distribution or density induced by random variable
x and write P(x) to emphasize when it is a probability mass
function.

A. Background

As follows, we review lossy video compression, focusing
on the low-latency online compression setting. We then review
the classical technique of predictive coding, which provides the
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high-level algorithmic framework of many video compression
methods, including ours. As our final building block, we review
normalizing flow models, in particular the Masked Autoregres-
sive Flow for sequence modeling.

Video Compression. Given a typical sequence of video frames
X1.7, lossy video compression ultimately aims to find a short
bitstring description of x;.7, from which a faithful (but not nec-
essarily perfect) reconstruction X.7 can be recovered. Denoting
the description length (“rate”) by R and the reconstruction
error (“distortion,” often the Mean-Squared Error) by D, lossy
video compression aims to minimize the rate-distortion (R-D)
objective function,

L = Ex, rrpuea PX1.7, X1:7) + BR(X1:7)], 1

where 5 > 01is a hyperparameter weighing the two costs, and the
expectation is with respect to the source data distribution pgq¢4,
which is approximated by averaging over a training set of videos
in practice. One simple approach is to compress each frame x;
separately using an image compression algorithm, which can
exploit the spatial redundancy between the pixels within each
frame. However, a key feature distinguishing video from image
compression is the significant amount of temporal redundancy
between frames that can be exploited to improve the compression
rate.

Online Video Compression by Predictive Coding. In theory,
the optimal rate-distortion performance is achieved by com-
pressing exceedingly long blocks of frames together [19]. How-
ever, such an approach is rarely implemented in practice because
of its prohibitive computation expense and the latency caused
by buffering the frames into long blocks. We consider video
compression in the sequential/online setting, widely used in both
conventional and recent neural codecs [5], [20] and are suitable
for real-time applications such as video conferencing and live
streaming. In this setting, each video frame x; is compressed in
temporal order so that at any time ¢ < 7', the source frames up
to time ¢, i.e., X1.;, are encoded and transmitted, and similarly
the reconstructed frames up to time ¢, X;.¢, are available to the
receiver. Since past frames are often highly indicative of future
frames, the basic idea for exploiting this temporal redundancy is
to use knowledge of the previous frame reconstructions, X,
to aid the compression of the current frame x;. Indeed, the
earliest video codecs are based on transmitting frame differences
X — X¢—1 [21], analogous to the classic modeling technique in
dynamical systems whereby the state-space becomes first-order
Markov when redefined in terms of temporal changes [10], [22].
This technique is further refined by predictive coding [23], where
instead of simply using the previous reconstructed frame X;_1,
a motion-compensated prediction of the current frame, X, is
computed, and the residual x; — X; is transmitted instead.

In more detail, the idea of predictive coding is typically
implemented in traditional video codecs as follows: . motion
estimation: The encoder estimates the motion vector m; between
the current frame x; and the previous reconstruction X;_1; 2.
motion compensation: The encoder simulates the coding of my,
and uses the reconstruction m; (as would be received by the
decoder in step 3) to transform the previous frame reconstruction
X¢—1 into a prediction of the current frame X;. Conceptually,
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this is done by shifting the pixels of X;_; according to the
motion vector M. The compression of m, could either be lossy
(m; =~ my) or lossless (t; = my). 3. residual compression:
The residual is computed as r; = x; — X, and is encoded.
The decoder, upon receiving the bit-streams for (my,r;) and
reconstructing them as (1, ¥;), computes the prediction X; as
in step 2, and finally the reconstruction of the current frame,
X; = X; + 4. The current reconstruction X; then serves as the
reference frame in the predictive coding of the next frame x; ;.

Masked Autoregressive Flow (MAF). MAF? [16] is a type of
normalizing flow [24] that models the distribution of a random
sequence p(x1.7) in terms of a simpler distribution p(y;.7) of
its underlying noise variables y;.7. The two variables are related
by the following invertible autoregressive transform,

xe—hpu(x<t)
he(x<t)

Yt = = Xt = hu(x<t) + ho(x<t) Oy, @)

fort =1,2,...,T. Here, ® denotes element-wise multiplica-
tion, X ; denotes all frames up to time ¢, and h,, and h, are two
deterministic neural network mappings.? The base distribution
p(y1.7) is typically fixed to be a simple factorized distribution
such as an isotropic Gaussian, and is related to the distribution
p(x1.7) through the standard change-of-variable formula be-
tween probability densities. While the forward MAF transform
(y1.7 — x1.7) converts a sequence of standard normal noise
variables into a data sequence, the inverse transform (x;.7 —
y1.7) removes temporal correlations and “normalizes” the data
sequence.

Although originally proposed for modeling static data (e.g.,
still images interpreted as a sequence of pixels), MAF can be
applied along the temporal dimension of sequential data and
is shown to improve video modeling performance [10]. This
motivates us to consider the potential of MAF for sequential
data compression.

B. On the Relation Between MAF and Sequence Compression

In this section, we identify the commonality and difference be-
tween sequence modeling with MAF and sequence compression
with predictive coding. On the one hand, MAF implements a core
idea of decorrelation in transform coding, and the autoregressive
transform underlying MAF resembles and generalizes that of
traditional predictive coding. On the other hand, MAF does
not consider the quantization and reconstruction error of lossy
compression and is, therefore, not directly suitable for compres-
sion. Motivated by these two aspects, we will later on consider
the model family of Variational Autoencoders (VAEs) [25] that
is more suited for compression (Section II-C) but reintroduce
the MAF-style autoregressive transform into the encoding and

2As a clarification, even though the original MAF was implemented with
the masking approach of MADEs [16] (hence “masked” in the name), we use
the term “MAF” to refer more broadly to the normalizing flow defined by the
temporal autoregressive transform in (2).

3In general, (hu,ho) can be a different pair of neural networks for each
time step ¢, although for practical sequence modeling, they are often shared
across time and only receive a fixed length-k context z(; g 1).¢ as input. In the
special case ¢ = 1, the networks receive no input and reduce to two learnable
parameters.
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decoding procedure of the VAE (Section II-D), resulting in a
hybrid model that forms the basis of our proposal.

We begin by drawing conceptual connections between MAF
and transform coding, the predominant paradigm of lossy com-
pression. In transform coding, the data is first transformed to
the domain of transform coefficients via a function G : x — vy,
and the resulting coefficients y are compressed after scalar
quantization. Although this two-stage approach is theoretically
suboptimal compared to vector quantization [26], it has con-
siderably lower computational complexity and is the default
approach used in modern media compression algorithms [27].
Conventionally, the transform G is chosen to be orthogonal,
and the rate-distortion-optimal transform is often characterized
by its ability to decorrelate the transform coefficients, i.e.,
cov(y;,y;) =0, for ¢ # j [27]. The idea of decorrelation is
also a guiding principle behind data modeling with MAF or
normalizing flow in general. Specifically, training a normalizing
flow is, in fact, equivalent to decorrelating and “normalizing”
the data distribution into a simple base distribution. Consider
a flow model p(x) in the data space induced by passing a
noise base distribution p(y) through a (forward) flow transform
F :y — x. If pgaa(x) is the true data-generating distribution,
then the following relation holds [16],

KL [paaia (%) ||Ip(x)] = KL [F ! (paaa (%)) Ip(y)], 3

where F'~ 1 (pgaa (X)) denotes the distribution that pyy, (x) would
follow when passed through the inverse transform F~!. In other
words, training a flow model by maximum-likelihood is equiva-
lent to fitting the “normalized” data distribution” F'~1 (pgaa(x))
to the base distribution p(y ). The connection to transform coding
is then clear: the normalizing transform '~ plays a similar role
to the transform G, F'~!(pgaa (X)) is the empirical distribution
of “transform coefficients” y, and p(y) corresponds to the
factorized entropy model in transform coding.

Moreover, the autoregressive transform used by MAF is
closely related to that of predictive coding and generalizes
the latter. We can view predictive coding as implementing an
autoregressive transform between the residual sequence and data
sequence

vt =%t —h,(X¢-1); // encode; )
Xy = hy(Xe-1) + ¥+ // decode, 5)
for t =2,...,7 * In the language of predictive coding from

Section II-A, h,(X:—1) = X; is the prediction of the current
frame, and y; is the residual r;. The resulting transform can
be seen as a special case of the more general shift-and-scale
transform used by MAF in (2), if we fix h, = 1 and limit X,
to only the most recent (reconstructed) frame.

We now discuss the difference between sequence modeling
and compression and the reasons why MAF may not be directly
suitable for lossy compression. In our discussion above, we have
left out the issue of quantization. Unlike in sequence modeling,
in lossy compression, the noise variable y; must be communi-
cated to the decoder in a lossy manner, e.g., via quantization

4Attime t = 1, x; is compressed and reconstructed as %1 separately without
reference to any context frame.
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¥+ = Q(y:) followed by (lossless) entropy coding. Similarly,
we no longer have access to the history of ground truth frames
X<, but only their lossy reconstructions X ;. Taking this into
account, it is possible to construct a transform coding procedure
using a learned MAF transform: 1. apply the learned (h,,, h,)
networks to compute the noise y; via

Xt — h,u (}A(t,l)
ha(f\(t—l)

similar to (4); 2. quantize the noise to §; = Q(y:); 3. compute
the reconstruction X; via

yi = (6)

Xy = hp(Xeo1) + ho (Xem1) © ¥4, @)

similar to (5), and finally, 4. iterate the above over time steps ¢t =
1,2,...,T. Unfortunately, this simple transform coding proce-
dure comes with a few practical drawbacks and is generally sub-
optimal in terms of rate-distortion performance. First, since the
flow transform F'is only trained to maximize the data likelihood,
the resulting reconstruction error D(x1.7,X1.7) due to quanti-
zation is uncontrolled. Empirically, trained flow transforms are
often close to singular and suffer numerical stability issues [28],
resulting in large reconstruction error D(x, F((F~1(x)))) even
without the quantization step (despite F' being invertible in
theory). Second, the invertibility of the transform F' places
restrictions on the kinds of computation allowed. This often ne-
cessitates deeper and more expensive neural network transforms
to achieve similar expressivity to unconstrained neural network
transforms. State-of-the-art normalizing flow models such as
GLOW [29] often require a deep stack of bijective transforms
and are computationally much more expensive than comparable
VAEs or GANs, making them potentially less suited for real-time
video transmission applications.

Lastly, we do note, however, that a connection exists between
density modeling and the lossless compression of quantized data
through the technique of dequantization [30], and the latter has
been used extensively in training and evaluating normalizing
flows. Moreover, under fine quantization, the negative log den-
sity under a normalizing flow model can be recovered as the
NELBO of a particular latent variable model, allowing bits-back
coding to be applied for lossless compression [31].

C. Latent Variable Models for Learned Sequence Compression

We can overcome the suboptimality of normalizing flows for
lossy compression by switching to another class of generative
models. In this section, we motivate sequence compression with
latent variable models, particularly VAEs, that can be trained
to perform nonlinear transform coding [17] and optimize for
rate-distortion performance in an end-to-end manner. From this
generative modeling perspective, we give a detailed account of
the probabilistic structure of the sequential latent variable model
for learned online video compression, in particular, the corre-
spondence between the data compression process and inference-
generative process.

To motivate this approach, consider transform coding with
a pair of flexible (but not necessarily invertible) transforms
f (“encoder”) and g (“decoder”) that map between the video
x1.7 and its transformed representation Z.7 = f(x1.7). Given
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sufficiently expressive f and g, quantization can be performed
by element-wise rounding to the nearest integer, |-], resulting
in the following R-D objective,

L = Ex,.prpa [P (X117, 9 (Lf(x1:7)1)) + BR(Lf(Xl:Tﬂ)(]é)

Following [32], we approximate the rounding operations by
uniform noise injection to enable gradient-based optimization
during training. The resulting, relaxed version of the above R-D
objective can be shown to be equal to the expected Negative
Evidence Lower BOund (NELBO) of a particular compressive
VAE model, described below [32], [33]

‘Z’ = EXI:T“‘pdala [Eq(zl:T\Xlzr) [_ logp(X1!T|Z1:T)
—log p(z1.7)]]- ©)

In this compressive VAE model, the noisy quantization,
|Z1.7] ~ Z1.7 + ur.,ur.r ~U(—0.5,0.5), is equivalently
obtained by sampling from a particular variational posterior
distribution q(z1:T|x1;T) = Z/{(Zl;T —0.5,z1.7 + 05), ie., a
unit-width uniform distribution whose mean z; .7 is predicted by
an amortized inference network f. The likelihood p(x1.7|21.7)
follows a Gaussian distribution with fixed diagonal covariance
ﬁlﬂl, and mean X;.7 = g(z1.7) computed by the generative
network g, so that the negative log-likelihood — log p(x1.7|21.7)
equals the squared error distortion %Hxl;T — %1.7||* weighted
by % Following [32], the prior density p(z1.7) is parameterized
to interpolate its discretized version P(z1.7), so that given inte-
ger valued z; .7, the negative log density — log p(z1.7) measures
the code length — log P(z1.7) assigned by the entropy model
P(z1.7). By minimizing the approximate R-D objective of (9)
with respect to the parameters of f, g, and p(z1.7), training an
end-to-end neural compression model is thus equivalent to learn-
ing a VAE by maximum-likelihood and amortized variational
inference. Note this is in contrast to the maximum-likelihood
estimation of a normalizing flow model, which does not account
for the distortion of lossy compression and results in suboptimal
rate-distortion performance (as discussed in Section II-B).
Given a compressive VAE, the compression of a data se-
quence x;.p via transform coding closely corresponds to an
inference-generation pass through the VAE, described in the
following steps. 1. encoding: The encoder passes x1.7 through
f to obtain a transformed representation z,.7 = f(x1.7), thus
computing the mean parameters z;.7 of the variational dis-
tribution ¢(x1.7|z1.7) by amortized variational inference; 2.
quantization and entropy coding: A posterior sample z;.r is
drawn, i.e., z1.7 ~ ¢(z1.7|x1.7) (or, deterministically com-
puted as z1.7 = |Z1.7] at test time), and a bit-string encoding
& of zy.7 is transmitted under the entropy model P(z;.7); 3.
decoding: The decoder decodes z;.7 from bit-string £ using
the entropy model P(z1.7), then computes the reconstruction
by %X1.7 = g(2z1.17), corresponding to the mean parameters of
the Gaussian likelihood model p(xi.7|z1.7). Note that step 3
(decoding) is analogous to sampling from the generative model,
but without adding diagonal Gaussian noise to X;.7 dictated by
the Gaussian likelihood p(x1.7|z1.7). Indeed, if the bitstring
& consists of a sequence of purely random bits, then it is
well known that decoding &€ under the entropy model P(z;.1)
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produces a sample z1.7 ~ P(zy.7) [19]. For this reason, in
the following discussions, we occasionally blur the distinction
between the (random) latent variable zq.7 ~ P(z1.7) and the
quantized latent representation |Z;.7] (as would be decoded
from a bitstring &) to simplify notation.

A data compression process with such a learned transform
coding algorithm also implicitly defines a VAE model for the
data. Specifically, let us consider the compression procedure
of an online video compression codec, in which individual
frames x; are transmitted sequentially. The encoding-decoding
process is specified recursively as follows. Given the ground
truth current frame x; and the previously reconstructed frames
X <, the encoder is restricted to be of the form z; = f(x¢,X<¢),
and similarly the decoder computes the reconstruction sequen-
tially based on previous reconstructions and the current en-
coding, X; = g (X<, |Zt|)). Existing codecs usually condition
on a single reconstructed frame, substituting X4 by X;_1 in
favor of efficiency. In the language of generative modeling
and variational inference, the sequential encoder corresponds
to a variational posterior of the form ¢(z:|x¢,z<:), i.e., filter-
ing, and the sequential decoder corresponds to the likelihood
p(xt|z<t) =N (fct, ﬁiﬁl); in both distributions, the proba-
bilistic conditioning on z; is based on the observation that X;_1
is a deterministic function of z, if we identify |Z;| with the
random variable z; and unroll the recurrence X; = g(X<¢, Zt)-
As we show, all sequential compression approaches considered
in this work follow this paradigm and implicitly define gener-
ative models of the data as p(x1.7) x p(x1.7|21.7)p(21.7) =
p(z1.7) [ [; p(x¢|Zz<;), where the likelihood model p(x;|z<;) at
each time step is centered on the reconstruction X;. The key
difference is in the definition of the decoding transform for
computing X; as a (stochastic) function of X4 and z;.

D. Hybrid Model With Stochastic Temporal Autoregressive
Transform

Having laid out the general approach for end-to-end learned
video compression with sequential VAEs, we specify the per-
frame likelihood model p(x:|z<;) by revisiting the autoregres-
sive transform of MAF from Section II-B. The resulting model
captures several existing low-latency neural compression meth-
ods as specific instances [5], [11], [12], [13], [14], [15] and
gives rise to the exploration of new models. Consider computing
the reconstruction X; using the forward temporal autoregressive
transform of a MAF as in (7),

X = hu(Rey) + ho(Xat) © 94 (10)

As follows, we augment it with a latent variable z,. We may
interpret the reconstructed ¥ as being decoded from the random
variable z; given some prior p(z;), and a decoding transform
g.; additionally, z; may enter into the computation of the
shift h, and scale h, transforms. By combining a sequential
latent variable model with temporal autoregressive transforms,
we therefore arrive at the most general form of the proposed
stochastic temporal autoregressive transform

Xe = hp(Ret, 2e) + ho (Rat, 2¢) © g2(2¢). an

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

In this work, we only consider the common Mean Squared Error
(MSE) distortion for simplicity. Therefore the above decoding
transform computes the mean of a diagonal Gaussian frame
observation model p(x:|z<;), with a fixed diagonal co-variance
parameterized by the desired Lagrange multiplier 3 (see expla-
nation at the end of Section II-B). We note, however, other kinds
of distortion functions such as MS-SSIM are possible, resulting
in a different form of p(x;|z<;) parameterized by %X; [32].

This stochastic decoder model has several advantages over
existing generative models for compression, such as simpler
normalizing flows or sequential VAEs. First, the stochastic
autoregressive transform h,, (X<, z;) involves a latent variable
z; and is therefore more expressive than a deterministic trans-
form [34], [35]. Second, compared to MAF, which directly
models y;, the additional nonlinear transform g, (z;) enables
more expressive residual noise, reducing the burden on the prior
by allowing it to model a simpler distribution of z;. Finally,
as visualized in the video compression example in Fig. 2, the
scale parameter computed by h, effectively acts as a gating
mechanism, determining how much variance is explained in
terms of the autoregressive transform and the residual noise
distribution. This provides an added degree of flexibility, in a
similar fashion to how RealNVP improves over NICE [8], [9].

Our approach is inspired by [10], who analyzed a restricted
version of the model in (11), aiming to hybridize autoregressive
flows and sequential latent variable models for video model-
ing. In contrast to the stochastic transform in (11), the hybrid
model in [10] is based on applying a deterministic tempo-
ral autoregressive transform (as in MAF) to a sequence of
residual noise variables y;.7 modeled by a sequential VAE,
p(ylzT) X p(yl;T|Z1;T)p(Z1;T). The data distribution p(Xl;T)
under the resulting model (after applying the change-of-variable
formula to the density of p(y1.7)) does not admit a simple condi-
tional likelihood distribution like x;|%; ~ N ()‘(t, ﬁl) , and
maximum-likelihood training of p(x1.7) is not directly aligned
with the R-D objective of video compression. We note that,
however, the learned MAF transform of such a model may be
used by a transform coding algorithm in a manner similar to our
discussion in Section II-B, but the resulting algorithm is likely
to be suboptimal in R-D performance and faces similar issues
with decoding.

E. Example Models

Next, we will show that the general framework expressed by
(11) captures a variety of state-of-the-art neural video compres-
sion schemes and gives rise to extensions and new models.

Temporal Autoregressive Transform (TAT). The first special
case among the class of models that are captured by (11) is
the autoregressive neural video compression model by Yang et
al. [15], which we refer to as temporal autoregressive transform
(TAT). Shown in Fig. 1(a), the decoder g implements a deter-
ministic scale-shift autoregressive transform of decoded noise
Yt

Xe=9(Xe-1,2¢) = hy(Xeo1) + ho(Xem1) O e Jie= 92(24)
(12)
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(@) (b) (© (d) (e)

Fig. 1. Model diagrams for the generative and inference procedures of the current frame x;, for various neural video compression methods. Random variables are
shown in circles; all other quantities are deterministically computed; solid and dashed arrows describe computational dependency during generation (decoding) and
inference (encoding), respectively. Purple nodes correspond to neural encoders (CNNs) and decoders (DCNNs), and green nodes implement temporal autoregressive
transform. (a) TAT; (b) SSF; (c) STAT or STAT-SSF; the magenta box highlights the additional proposed scale transform absent in SSF, and the red arrow from
w¢ to v¢; highlights the proposed (optional) structured prior. (d) SSF-TP/SSF-TP+ and (e) STAT-SSF-SP-TP+ illustrate the temporal prior extension based on our
proposal; the blue arrow shows the temporal dependency on the previous residual latent v;_1, and the green arrow highlights the improved dependency on the
previous reconstructed frame X;_1.

Rate savings in residual encoding |V;]
relative to SSF (BPP=0.075)

Rate savings in residual encoding | V]
relative to STAT-SSF (BPP=0.053

Previous reconstruction X;_|

by STAT-SSF-SP

Magnitude of the proposed scale
parameter & = hy(Xi—1, |[W¢])
i ; T

100

50 50

50 % Pl —50

Sitiarc

~100 ~100
Current reconstruction X; = f1; + T

by STAT-SSF-SP (BPP=0.046)

SSF warping (mean) prediction

= (X1, [We]) Decoded noise §; = ¢,(| v¢], [Wt]) Decoded residual t; = §; © ¢

Fig. 2. Visualizing the encoding/decoding computation of the STAT-SSF-SP model on one frame of UVG video “Shake-NDry”. See Fig. 1(c) for the model’s
computation diagram. In this example, the warping prediction fi; (bottom, first) incurs a large error around the dog’s moving contour but models the mostly static
background well, with the residual latents | V] taking up an order of magnitude higher bit-rate than | W |. The proposed scale parameter & (top, second) gives
the model extra flexibility when combining the noise §+ (bottom, second) with the warping prediction fi+ to form the reconstruction X+ = i + 6+ © §; (bottom,
fourth). The scale &+ downweights contribution from the noise § in the foreground where it is very costly, and reduces the residual bit-rate R(|¥¢]) (and thus
the overall bit-rate) compared to STAT-SSF and SSF, as illustrated in the third and fourth figures in the top row. The (BPP, PSNR) performance for STAT-SSF-SP,
STAT-SSF, and SSF [5] are (0.046, 36.97), (0.053, 36.94), and (0.075, 36.97), respectively. Thus, STAT-SSF and SSF here have comparable reconstruction quality
to STAT-SSF-SP but worse bit-rate.

The encoder f inverts the transform to decorrelate the input
frame x; into y; and encodes the result as z; = f(x;,X;-1) =

f-(¥¢), where §; = % The shift h,, and scale h,
transforms are parameterized by neural networks, f, is a con-
volutional neural network (CNN), and g, is a deconvolutional
neural network (DCNN) that approximately inverts f..

The TAT decoder is a simple version of the more general
stochastic autoregressive transform in (11), where h, and h,
lack latent variables. Indeed, focusing on the generative process
of X, TAT implements the model proposed by [10], transforming
y into X by a MAF. However, the generative process underlying
lossy compression (see Section II-C) adds additional white noise
to X, with x := X + €,€ ~ N(0, 215%1). Thus, the generative
process from y to x is no longer invertible nor corresponds to
an autoregressive flow. Nonetheless, TAT was shown to bet-
ter capture the low-level dynamics of video frames than the

autoencoder (f,g.) alone, and the inverse transform decor-
relates raw video frames to simplify the input to the encoder
f= [15].

DVC [11], Scale-Space Flow (SSF, [5]), Among Others [12],
[13], [14]. The second class of models captured by (11) belong
to the neural video compression framework based on predictive
coding; both models make use of two sets of latent variables
z1.7 = {w1.7,v1.7} to capture different aspects of informa-
tion being compressed, where w captures estimated motion
information used in the warping prediction, and v helps capture
residual error not predicted by warping the previous reconstruc-
tion frame.

Like most classical approaches to video compression by
predictive coding, the reconstruction transform in the above
models has the form of a prediction shifted by residual error
(decoded noise), and lacks the scaling factor h, compared to
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the autoregressive transform in (11)

13)

Above, g,, and g, are DCNNs, o; := g,,(w;) has the inter-
pretation of an estimated optical flow (motion) field, Ayqrp
denotes warping [36], the h,, of (11) is defined by the compo-
sition h, (X¢—1, W) := Ruwarp(Xe—1, Gw(We)), and the residual
ry = gy(Ve, W) = Xy — Ryarp(Xi—1,0;) represents the pre-
diction error unaccounted for by warping. DVC [11] only makes
use of vy in the residual decoder g,, and performs simple
2D warping by bi-linear interpretation; Lin et al. [13] make
use of multiple reference frames X(;_3).; for estimating the
optimal flow (motion) field; SSF [5] augments the optical flow
(motion) field o; with an additional scale field, and applies
scale-space-warping to the progressively blurred versions of
X;—1 to allow for uncertainty in the warping prediction. The
encoding procedure in the above models computes the vari-
ational mean parameters as Wy = fu,(X¢, X¢-1), V¢ = fo (Xt —
hwarp(Xi—1, guw(W¢))), corresponding to a structured posterior
q(ze|Xt,2<1) = q(Wi|X¢, 2<1)q(Vi|Wy, X4, Z<1). We illustrate
the above generative and inference procedures in Fig. 1(b).

Xt = hwarp(itfla gw(wt)) + gu (vt’ Wt)'

F. Proposed Models (Base Versions)

Finally, we consider a version of stochastic temporal autore-
gressive transform (11) in the context of predictive video coding,

Xe = hp (X1, We) + ho(Re—1, We) © go(Ve, Wy). (14)

As in DVC and SSF, the latent variable z; consists of two com-
ponents v, w;, and the shift and scale parameters are computed
using only the previous reconstruction X;_1. See Fig. 1(c) for a
diagram of the resulting generative model. We study two main
variants, categorized by how they implement h,, and h,:

® STAT uses DCNNs for b, and h, as in Yang et al. [15], but
both networks receive the latent variable w; as additional
input, which helps guide the transform. In theory, the uni-
versal approximation property of neural networks should
allow us to learn whichever flexible functions (h,,, hs)
achieve the best compression performance. However, in
practice, we find the following variant based on warping to
be more performant and parameter-efficient.

e STAT-SSF is a more domain-knowledge-driven vari-
ant of the above that still uses scale-space warp-
ing [5] in the shift transform, ie., h,(Xi(1, W) =
huwarp(Xi—1, gw(W¢)). This can also be seen as an extended
version of the SSF model, whose shift transform A, is
preceded by a new learned scale transform h,. We mo-
tivated the scaling transform in Section II-D, and provide
a visualization of its effect in Fig. 2.

Structured Prior (SP). Besides improving the autoregressive
transform (affecting the likelihood model for x;), one variant
of our approach also improves the topmost generative hierarchy
in the form of a more expressive latent prior p(z;.1), affecting
the entropy model for compression. We observe that motion
information encoded in w; can often be informative of the
residual error encoded in v. In other words, large residual errors
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vy incurred by the mean prediction b, (X;—1, w;) (e.g., the result
of warping the previous frame h,(%;-1)) are often spatially
collocated with (unpredictable) motion as encoded by wy.

The original SSF model’s prior factorizes as p(wy,vy) =
p(w)p(vy) and does not capture such correlation. We, therefore,
propose a structured prior by introducing conditional depen-
dence between w; and vy, so that p(wy, vi) = p(wy)p(ve|wy).
At a high level, this can be implemented by introducing a new
neural network that maps w; to parameters of a parametric
distribution of p(v¢|w;) (e.g., mean and variance of a diagonal
Gaussian distribution). This results in variants of the above
models, STAT-SP and STAT-SSF-SP, where the structured prior
is applied on top of the proposed STAT and STAT-SSF models,
respectively.

G. Temporal Prior (TP) Extensions

In previous sections and other similar works in variational
compression [5], [11], [37], the prior model p(z;.7) typically
assumes that the latent variables z;.p are temporally factor-
ized: p(z1.7) = H;T:l p(z+). However, such assumptions may
be unrealistic for real world data, such as modeling natural
video [10], [38], [39], where temporal dependencies may persist
even after removing low-level motion information. To this end,
we model these dependencies by introducing a temporal prior:
p(z1.7) = p(21) [1}—s p(2:|Z<;) to more accurately predict the
density of the latent variable. Given the framework described
in the previous section, we implement the prior of the video
compression model with the following two types of temporal
conditioning. Meanwhile, the motion latent w; is not discussed
here, as it usually has a much lower bitrate than v;.

Temporal Residual Conditioning p(v¢|vi_1) (TP). Most video
compression methods are based on the Markov assumption, e.g.,
an optical flow’s vector field is only conditioned on the most
recent frame. Empirically, we find that the information content
of the compressed flow field is much smaller than that of the
residual, — log p(v¢) > — log p(w¢). Therefore, we only place
a temporal prior on v; and keep p(w;) temporally factorized
for simplicity. Temporal conditioning for v is implemented by
using an additional neural network that takes v;_; as input to
a conditional Gaussian prior for v;. However, this conditioning
scheme may require special handling of the initial frames be-
cause the individual image compression model for the I-frame
(the first frame) does not have a “residual.” This indicates that
such temporal conditioning can only start from the 2" frame, as
p(vi|ve_1) is only available for ¢ > 3. Instead, we use a separate
factorized prior p(v2) for the 2" frame.

Conditioning on the Previous Frame p(vi|X:—1) (TP+).
Learning a temporal prior by only conditioning on the latent
variable v is challenging in practice. First, v is a noisy quantity
during training and only carries information of the previous
frame’s residual, lacking explicit information of the previ-
ous frame. Furthermore, the latent representation can change
throughout training because of the noise injection, potentially
complicating the learning process. Instead, we explore an al-
ternative scheme, TP+, in which v, is conditioned on the pre-
vious reconstruction, X;_1, which maintains a less noisy, more
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informative, and more consistent feature representation through-
out training and simplifies the learning procedure. In this sce-
nario, the model also no longer requires the extra prior for
p(va), as in TP; moreover, the resulting prior p(v|X;—1) =
p(Vi|Wey, voy) (since X;_1 is a deterministic function of z.;)
offers a strictly more expressive probabilistic model than TP,
p(velvi-1).

H. Variable Bitrate Extensions

Classical compression methods such as HEVC or AVC typ-
ically use one compression model to compress a video for 52
different quality levels. For example, in the FFMPEG library,
this can be achieved by varying the value of the Constant
Rate Factor (CRF). However, current end-to-end trained neural
codecs largely focus on optimal rate-distortion performance at
a fixed bitrate. As discussed, various neural video compression
models [5], [11], [12], [37] minimize the NELBO objective,
L =D + BR, where 3 controls the rate-distortion tradeoff, and
a separate compression model needs to be optimized for each
setting of 3. The overhead of training and deploying multiple
models (e.g, 52 sets of neural network parameters for 52 quality
levels) potentially makes neural video compression impracti-
cal. Therefore, we consider a variable-rate compression setting,
where we train a single model with multiple 5 values and adapt
it to different quality factors at deployment time.

The analogy between the compression models and deep latent
variable models (see Section II-C) inspires us to draw on con-
ditional variational autoencoders [40] that model conditional
distributions instead of unconditional ones. By conditioning
the networks on the quality control factor B and generating
random @-samples during training, we can learn a single set of
encoder, decoder, and prior model that operates near-optimally
at different bitrates. Specifically, we draw on a proposal by [41]
for images and generalize it to the class of neural video codecs
studied here.

In more detail, we define a quality control factor B, repre-
sented by a one-hot vector, as the condition of the compression
model where each B has a unique corresponding 3. Then we
can derive the new conditional optimization objective from (9)

Lypr = EXl:TNPdmaEq(Zl:T\XlzT,B)

[—log p(x1.7|21.7, B) — Blog p(z1.7|B)]
(15)

= D(B) + BR(B). (16)

During training, a (B, ) pair is selected randomly for each
training sample. Following [41], we also replace all convolutions
with conditional convolution to incorporate the B variable. We
found that one can technically use simpler methods (like directly
reshaping and concatenating B to the network hidden features)
to achieve the same result.

III. RELATED WORK

We divide related work into three categories: neural image
compression, neural video compression, and sequential genera-
tive models.

9915

Neural Image Compression. Considerable progress has been
made by applying neural networks to image compression; here
we focus on the lossy (instead of lossless) compression setting
more relevant to us. Early works [42], [43] leveraged LSTMs to
model spatial correlations of the pixels within an image. [33],
[44] were among the first to train an autoencoder-stlye model
with rate-distortion loss for end-to-end lossy image compres-
sion, and proposed uniform noise injection [44] or the straight-
through estimator [45] to approximately differentiate through
quantization. The end-to-end approach based on uniform noise
injection was given a principled probabilistic interpretation
as implementing a deep latent variable model, a variational
autoencoder (VAE) [25]. In subsequent work, [46] encoded
images with a two-level VAE architecture involving a scale
hyper-prior, which can be further improved by autoregressive
structures [2], [47] or by optimization at encoding time [3]. [48]
and [49] demonstrated competitive image compression perfor-
mance without a pre-defined quantization grid. Recently, [50]
attempted to apply normalizing flow to lossy image compres-
sion; noting the incompatibility between density modeling with
flow and the R-D objective of lossy compression (which we
discuss in more detail in Section II-B), they essentially trained
an invertible autoencoder with a R-D loss instead, resulting in
superior rate-distortion performance in the high bitrate regime
but otherwise inferior performance compared to the VAE ap-
proach [32], [46] without the invertibility requirement.

Neural Video Compression. Compared to image compression,
video compression is a significantly more challenging problem,
as statistical redundancies exist not only within each video
frame (exploited by intra-frame compression) but also along
the temporal dimension. Early works by [51], [52] and [53]
performed video compression by predicting future frames us-
ing a recurrent neural network, whereas [54] and [55] used
convolutional architectures within a traditional block-based
motion estimation approach. These early approaches did not
outperform the traditional H.264 codec and barely surpassed
the MPEG-2 codec. [11] adopted a hybrid architecture that
combined a pre-trained Flownet [56] and residual compression,
which leads to an elaborate training scheme. [37] and [12]
combined 3D convolutions for dimensionality reduction with
expressive autoregressive priors for better entropy modeling at
the expense of parallelism and runtime efficiency. Our method
extends a low-latency model proposed by [5], which allows for
end-to-end training, efficient online encoding and decoding, and
parallelism.

Sequential Deep Generative Models. We drew inspiration
from a body of work on sequential generative modeling. Early
deep learning architectures for dynamics forecasting involved
RNNs [18]. [38] and [57] used VAE-based stochastic models in
conjunction with LSTMs to model dynamics. [39] introduced
both local and global latent variables for learning disentangled
representations in videos. Other video generation models used
generative adversarial networks (GANs) [58], [59] or autore-
gressive models and normalizing flows [8], [9], [16], [29], [60],
[61]. Recently, [10] proposed to combine latent variable models
with autoregressive flows for modeling dynamics at different
levels of abstraction, which inspired our models and viewpoints.
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Algorithm 1: Gaussian Pyramid for Scale Space Volume.

Result: ssv: Scale-space 3D volume
Input: image input image; o base scale; M scale
depth;
ssv = [image];
kernel = Gaussian_Kernel(og);
for i=0 to M-1 do
image = Conv(image, kernel);
if i == 0 then
| ssv.append(image);
else
scaled = image;
for j=0to i-1 do
| scaled = UpSample2x(scaled);
end
ssv.append(scaled);
end
image = DownSample2x(image);
end
return Concat(ssv)

IV. EXPERIMENTS

In this section, we demonstrate the effectiveness of our models
compared with baseline neural video compression solutions [5],
[11] as well as a state-of-the-art classic video codec when
evaluated on two publicly available benchmark datasets. The
backbone modules and training scheme for our models largely
follow [5].

Regarding the implementation of scale-space volume [5], we
adopted a Gaussian pyramid approach with successive con-
volution and downsampling. Compared with naively applying
separate Gaussian kernels with exponentially increasing kernel
width (referred to as Gaussian-blur approach), the Gaussian
pyramid-based implementation uses a fixed small convolution
kernel, yields similar scale-space volume, and is much more
efficient in terms of computation. The pseudo-code is presented
in Algorithm 1

A. Training and Evaluation

Training. We train on the Vimeo-90k [62] dataset as in
previous works [11], [12], [63]. We follow largely the same
procedure as SSF [5], and give more details in the supplementary
material, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2023.3260684. Table I summarizes our proposed models and
the baseline methods whose published results we compare with.

Evaluation. We report compression performance on two
widely used datasets: UVG® [64] and MCL_JCV [65]. Both
consist of raw videos in YUV420 format. UVG contains seven
1080p videos at 120fps with smooth and mild motions or stable
camera movements. MCL_JCV contains thirty 1080p videos at

SUVG dataset is provided by http://ultravideo.fi/ and under CC-by-NC 3.0
license.
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30 fps, which are generally more diverse, with a higher degree
of motion and scene cuts.

We report the bitrate (bits-per-pixel, or BPP for short) and
the reconstruction quality, measured in PSNR on 8-bit RGB
space (same as in training), averaged across all frames. PSNR
is a more challenging metric than MS-SSIM [66] for learned
codecs [5], [11],[37], [63], [67], [68]. Since most existing neural
compression methods assume video input in 8-bit RGB444 for-
mat (24 bits per pixel), we follow this convention by converting
test videos from YUV420 to RGB444 in our evaluations for
meaningful comparison. It is worth noting that HEVC is mainly
designed for YUV420 with sub-sampled chroma components,
which means that it can exploit the fact that chroma components
in test videos are subsampled and thus gains an unfair advantage
in the comparison against neural codecs. Nevertheless, we report
the performance of HEVC as a reference.

B. Base Results

First, we examine the performance of our proposed approach
without introducing temporal conditioning in the prior. Fig. 3(a)
compares our proposed models (STAT-SSF and STAT-SSF-SP)
with classical codec HEVC and baseline neural codecs on the
UVG test dataset. As can be seen from the rate-distortion results,
our STAT-SSF-SP model is uniformly better than previously
known neural codecs represented by SSF [5] and DVC [11].
STAT-SSF-SP even outperforms HEVC(YUV) (using YUV420
video input and evaluating on RGB444, the setting is available in
the Supplementary Material, available online) at bitrates > 0.07
BPP. As expected, our proposed STAT model improves over
TAT [15], with the latter lacking stochasticity in the autoregres-
sive transform compared to our proposed STAT and its variants.

Fig. 3(a) shows that the performance ranking on MCL_JCV is
similar to that on UVG, despite MCL_JCV having more diverse
and challenging (e.g., animated) content. We provide qualitative
results in Figs. 2 and 4, offering insight into the behavior of the
proposed scaling transform and structured prior, as well as visual
qualities of different methods.

Additionally, we observe that different implementations of
scale space volume (Gaussian pyramid or Gaussian blur) also
slightly influence the rate-distortion performance. While the
Gaussian blur version seems to have more advantage at the high
bitrate regime, the Gaussian pyramid performs better at mid-
range bitrate, as shown in Fig. 3. The Gaussian pyramid usually
generates a blurrier high-scale image compared to Gaussian blur
when the base scales are the same.

Finally, we ablate on our proposed STAT-SSF-SP model. This
allows us to study the performance contribution of each of our
proposed components, stochastic temporal autoregressive trans-
form (STAT) and structured prior (SP), in isolation. Compared to
the baseline SSF [5] model, STAT-SSF introduces an additional
elementwise scaling transform, while SSF-SP introduces the
structured prior (see discussions in Section II-F). As shown in
Fig. 5(a), SSF-SP provides a comparable or greater improvement
than STAT-SSF, relative to SSF. The improvements from the two
components are complementary, and combining them into STAT-
SSF-SP yields even further improvement as seen in Fig. 3(a).
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TABLE I
OVERVIEW OF VARIOUS COMPRESSION METHODS CONSIDERED AND THE CONTEXTS IN WHICH THEY APPEAR

[ Model Name | Category | Remark |
STAT-SSF Proposed Proposed autoregressive transform with scale space flow
STAT-SSF-SP Proposed Same as above (STAT-SSF) but with structured prior
STAT-SSF-SP-TP+ | Proposed | Structured prior and improved temporal prior, p(v¢|X¢—1, w)
SSF Baseline Agustsson et al. [5]
DVC Baseline Luetal. [11]
VCII Baseline Wau et al. [51] (trained on the Kinectics dataset)
DGVC Baseline Han et al. [53] modified for low-latency compression setup
TAT Baseline Yang et al. [15]
HEVC Baseline FFMPEG-HEVC with RGB 4:4:4 color space input
HEVC(YUV) Baseline FFMPEG-HEVC with YUV 4:2:0 color space input
STAT Ablation STAT-SSF without optical flow
SSE-SP Ablation SSF with structured prior
SSF-TP Ablation SSF with temporal prior conditioned on v¢_1, p(v¢|vi—1)
SSE-TP+ Ablation SSF with temporal prior conditioned on X¢_1, p(v¢[X¢—1)
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Rate-Distortion Performance of various models and ablations. Results are evaluated on (a) UVG and (b) MCL_JCV datasets. All the learning-based

models (except VCII [51]) are trained on Vimeo-90 k. STAT-SSF-SP-TP+ (proposed) achieves the best performance.

C. Temporal Prior Experiments

We also conduct experiments to illustrate the rate-distortion
performance of SSF [5] and our proposed models using different
temporal priors. Refer to Table I for naming conventions.

Fig. 6 shows the RD curve of each ablation model. We
see that performing temporal conditioning through the prior
does indeed improve performance, both for STAT and SSF. We
see that temporally conditioning on the previous reconstruc-
tion (SSF-TP+) outperforms temporally conditioning on the
previous latent (SSF-TP) in almost all bitrate regimes across
both datasets. Finally, SSF-TP+ even performs comparably with
STAT-SSF-SP, and the hybrid model STAT-SSF-SP-TP+ offers
slight improvement further.

However, we also observe that compared with the SSF-TP+
or SSF model, SSF-TP shows fluctuating rate-distortion per-
formance during evaluation if we train the same model with
different random initializations. We hypothesize that this may
be caused by either numerical instability or video length incon-
sistency between training and evaluation data. To the best of our

knowledge, most proposed sequential generative or compression
models with a temporal prior are trained with more than three
consecutive frames [10], [12], [38], [39], [63], [69]. In contrast,
our model only uses three consecutive frames during training
for better efficiency.

Fortunately, we can still avoid the issue by using “3-
annealing”. We first train a model at a high bitrate and
then finetune the model to lower bitrates using the increas-
ingly larger § value. In our experiment, the initial model
is trained with 8 = 1.5625 x 1074, and the following mod-
els are finetuned with 3 = {3.125 x 1074,6.25 x 104,1.25 x
1073,2.5 x 1073, 5 x 1073}, respectively.

D. Variable-Bitrate Experiments

In contrast to previous experiments that train separate mod-
els, one for each 3 value, in this section, we show results
of the proposed conditional autoencoder based variable-bitrate
scheme. The conditioning factor B is defined as a one-hot
vector with length 7 and seven [ values are used to match
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(a) HEVG; (b) SSE; (c) STAT-SSF (ours); (d) STAT-SSF-SP (ours); (e) STAT-SSF-SP-TP+
BPP = 0.087, BPP = 0.082, BPP = 0.077, BPP = 0.055, (ours); BPP = 0.054,
PSNR = 38.10 PSNR = 37.44 PSNR = 38.11 PSNR = 38.10 PSNR = 38.09

Fig. 4.  Qualitative comparisons of various methods on a frame from MCL-JCV video 30. Figures in the bottom row focus on the same image patch on top. Here,
models with the proposed scale transform (STAT-SSF and STAT-SSF-SP) outperform the ones without, yielding visually more detailed reconstructions at lower
rates. The structured prior (STAT-SSF-SP) and temporal prior (STAT-SSF-SP-TP+) reduce the bitrate further.
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Fig. 5. (a) Ablation study of STAT-SSF-SP, examining the effect of two proposed components, STAT (stochastic temporal autoregressive transform) and SP
(structured prior), with R-D results evaluated on the UVG dataset. Compared to STAT-SSF-SP, SSF-SP lacks the learned elementwise scaling transform in STAT
(Section II-D), STAT-SSF lacks the structured prior, while SSF [5] lacks both components. See discussion in Section IV-B. (b) Comparison of the Rate-Distortion

performance between variable-bitrate models and non-variable-bitrate models.

each one-hot vector: {1072,5 x 1073,2.5 x 1072,1073,5 x
1074,2.5 x 1074,107*}. For each training datum, the (B, j3)
pair is selected randomly. We also observe that this sampling
scheme results in better rate-distortion performance than sam-
pling (B, ) per batch.

In Fig. 5(b), we compare the performance of the variable-
bitrate models and models with separate [ values. We ob-
serve that Conditional SSF performs slightly worse than SSF at
high bitrate. While Conditional STAT-SSF-SP consistently has
worse performance than STAT-SSF-SP, it performs better than
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Rate-Distortion Performance of various models and ablations (see Table I). Results are evaluated on (a) UVG and (b) MCL_JCV datasets. The best results

are obtained by models with deterministic temporal conditioning (TP+), while the improvement from conditioning on previous latents (TP) is less.

Conditional SSF at bitrate < 0.08 bpp. This result demonstrates
that the performance gap between variable and non-variable-
bitrate models could be amplified with a more complicated
model, while the gap is barely noticeable for simpler models. The
investigation of this phenomenon will be left to future research.

V. DISCUSSION

Generative modeling and compression share similar aims,
respectively modeling and removing redundant structure in data.
Accordingly, the nascent field of learned, neural compression
holds the potential to drastically improve performance over
conventional codecs. Perhaps nowhere is this more impactful
than in the setting of high-resolution video, where capturing
temporal redundancy can yield significant reductions in cod-
ing costs. Toward this end, we have drawn inspiration from a
recently developed technique within deep generative models,
temporal autoregressive flows [10], which perform temporal
predictive coding via affine transforms. By interpreting recent
state-of-the-art neural compression methods via autoregressive
flows, we can generalize them to using more complex trans-
forms, with corresponding improvements in performance. We
have investigated such improvements on video compression
benchmarks, along with extensions to the higher-level latent
variable model: additional hierarchical priors, temporal priors,
and variable bitrate compression. Of particular importance, our
results show that domain knowledge (in our case, next frame pre-
diction via the computer vision technique of warping) remains
valuable in video compression and can be more cost-effective
than a neural-network-only approach. They also shed light on the
potential pitfalls in estimating higher-level temporal dynamics
in learned compression models.

The art of transform coding involves the effective design of
both the transform and entropy model, and many possibilities
remain in the domain of video compression. Unlike for images,

where the convolutional neural network has been established
as the default transform for capturing spatial redundancy [17],
video introduces additional temporal redundancy, and it remains
to be seen what transform is most effective while staying within
(often stringent) computation budgets. The design space is vast,
and the approach of predictive coding combined with computer
vision techniques has so far achieved the widest commercial
success. Our work shows one way of extending this approach
inspired by normalizing flows, and opens up the possibility
of compression with more general and potentially non-affine
autoregressive transforms [70]. Finally, recent work [71] has
shown state-of-the-art video compression performance with a
rich entropy model and without predictive coding in the pixel
space. This approach essentially offloads the task of designing
good transforms to that of modeling high-dimensional discrete
distributions, which now can be tackled thanks to the rise of
large-scale transformer models [72] and abundance of data,
but remains computationally prohibitive. An interesting future
research direction could therefore be to explore the comple-
mentary strengths between this and our approach for sequence
decorrelation, which may lead to further advances in both rate-
distortion performance and computational efficiency.
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