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Reprogrammable allosteric metamaterials from
disordered networks†

Nidhi Pashine, Amir Mohammadi Nasab and Rebecca Kramer-Bottiglio *

Prior works on disordered mechanical metamaterial networks—consisting of fixed nodes connected by

discrete bonds—have shown that auxetic and allosteric responses can be achieved by pruning a specific

set of the bonds from an originally random network. However, bond pruning is irreversible and yields a

single bulk response. Using material stiffness as a tunable design parameter, we create metamaterial

networks where allosteric responses are achieved without bond removal. Such systems are

experimentally realized through variable stiffness bonds that can strengthen and weaken on-demand. In

a disordered mechanical network with variable stiffness bonds, different subsets of bonds can be

strategically softened to achieve different bulk responses, enabling a multiplicity of reprogrammable

input/output allosteric responses.

1 Introduction

Mechanical metamaterials are materials with unusual mechan-
ical properties not commonly seen in nature, which arise pre-
dominantly due to clever structural design rather than material
composition. There has been considerable interest in metama-
terials that show novel material responses, including metamater-
ials that can exhibit more than one mechanical response.1–6

In recent years, there has been notable development of
metamaterials made from disordered systems. In a system
composed of a disordered network of nodes connected by
bonds, each bond contributes differently to the bulk properties
of the system.7 This variation can be utilized by modifying
individual bonds in a way that the system evolves to have a
specific, programmed response. One example is a disordered
mechanical network wherein an output strain between two
nodes is tuned in response to an input strain applied between
two source nodes, where both sets of nodes are located along
the periphery of the network.8 A mechanical network with a
long-range interaction between input and output sites is called
an ‘‘allosteric’’ metamaterial, as allostery is the process by which
biological macromolecules transmit the effect of binding at one
site to another (often distal) site.

Allosteric responses have been designed in disordered mechan-
ical networks in various ways such as bond pruning,8,9 network
evolution,10,11 as well as by using local design rules.12,13 In the case
of bond pruning (i.e., the complete removal of network bonds),

once a programmed behavior is designed into a system, the output
response is immutable.7,8,13,14 To enable tunable and recoverable
allosteric metamaterial responses, we seek approaches to vary the
stiffness of select bonds on-demand.With variable stiffness bonds,
a subset of bonds could be softened to achieve one target response,
and another set softened to achieve a completely different output
response. This approach removes the need to prune bonds and
enables any new target response to be achieved while all prior
responses remain fully recoverable.

The field of soft robotics has recently seen substantial develop-
ment of novel compositematerials with tunablematerial properties,
especially material stiffness. A variety of methods have been
employed to attain variable stiffness,15 including pneumatic
jamming,16,17 magnetorheological and electrorheological
materials,18–21 shape memory polymers and alloys,22–25 liquid crys-
tal elastomers,26–28 and phase-changing materials.29–33 Typically
derived from metallic alloys, waxes, or thermoplastic polymers,
encapsulated phase-changing materials exhibit a decrease in mod-
ulus via the transition from solid to liquid, and raise in modulus via
the reverse (solidification) transition. One phase-changing material
gaining traction in the literature is Field’s metal, a eutectic alloy of
bismuth, indium, and tin known for its low melting point of
Tm = 62 1C and non-hazardous composition.34–41

Our instantiation of a re-programmable allosteric metama-
terial is realized through a disordered mechanical network
wherein we replace a predetermined set of inert bonds with
variable stiffness bonds, which are fabricated by incorporating
Field’s metal cores in soft silicone shells. A variable stiffness
bond is in the high-stiffness state when the Field’s metal core is
solid and in the low-stiffness state when the core is liquefied
using an embedded copper heater. The bond network is
designed by incorporating local stiffness as a parameter in

School of Engineering & Applied Science, Yale University, New Haven, CT, 06520,

USA. E-mail: rebecca.kramer@yale.edu

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d2sm01284g

Received 22nd September 2022,
Accepted 31st January 2023

DOI: 10.1039/d2sm01284g

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 0
8 

Fe
br

ua
ry

 2
02

3.
 D

ow
nl

oa
de

d 
by

 Y
al

e 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

9/
20

/2
02

3 
9:

57
:5

5 
PM

. 

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0002-0476-7853
https://orcid.org/0000-0003-4371-4516
https://orcid.org/0000-0003-2324-8124
https://doi.org/10.1039/d2sm01284g
https://doi.org/10.1039/d2sm01284g
https://rsc.li/soft-matter-journal
https://doi.org/10.1039/d2sm01284g
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM019008


1618 |  Soft Matter, 2023, 19, 1617–1623 This journal is © The Royal Society of Chemistry 2023

simulations and varying the bond stiffness to modify the
mechanical input/output response between two peripheral
node sets. When different sets of the variable stiffness bonds
are softened, different allosteric responses are achieved with
full reversibility and re-programmability.

2 Design algorithm

Our proposed mechanical network is a spring network inspired by
Rocks et al. 2017.8 The networks are generated from random
configurations of jammed soft disks in 2D.42 By joining the centers
of the disks with an unstretched central-force spring, these ran-
dom jammed packings are converted into disordered spring net-
works. With a network of N nodes and Nb bonds, the authors of
Rocks et al. tuned the output strain eout between two nodes in
response to the input strain ein applied between two source nodes,
where both sets of nodes are located far away from each other
within the same network—a so-called allosteric response. In this
work, we make allosteric networks by modifying the pruning
algorithm presented in ref. 13 to a tuning algorithm that is based
on local stress distributions in our system.

Starting with simulations of disordered networks with per-
iodic boundaries, we randomly choose two pairs of nodes
halfway across the system to be our source and target nodes.
The success of our network design is measured in terms of the
ratio of strain at the target nodes to the applied input strain at
the source nodes; strain ratio, Z = eout/ein. In our initial network,

each bond has an initial spring constant of kistiff ¼ K0
stiff

�
li,

where K0
stiff is a constant and li is the length of bond i. Our

design algorithm identifies a set of bonds j in {Bsoften}, which

when softened to a spring constant of kjsoft ¼ K0
soft

�
lj create an

allosteric interaction between the source and target sites. To
tune an allosteric response, we choose the source and target
sites, the desired strain ratio (Zgoal), and the stiffness ratio of

the bonds, R ¼ K0
soft=K

0
stiff . Notably, the initial network con-

tains no soft modes and any stresses from an applied strain
would dissipate locally. Therefore, the initial strain ratio of
these networks is Z0 E 0.

The set of bonds to be softened, {Bsoften}, is determined
based on the stress distribution in the network under externally
applied strains. We define TSourcei as the tension in bond i as a
result of an applied strain at the source site and TTargeti as the
tension in bond i due to applied strain at target site. A positive
value of Ti corresponds to tension and a negative value corre-
sponds to compression of bond i.

Our design algorithm is based on the values of TSourcei and
TTargeti for each bond i. These terms calculate how much stress
is channeled into each bond when a strain is applied at a
particular site in the system. Previous work has shown that the
product of the two terms, TSourcej � TTargetj , determines the
relevance of each bond in linking the source to the target.13

The larger the value of TSourcej � TTargetj , for a given bond, the
more it hinders an allosteric interaction. By softening these
bonds, we allow them to stretch or compress easily, hence
aiding an allosteric interaction. Until this point, the design

process is symmetric with respect to the source and the target.
However, we are designing an inherently assymetric network
where the input energy is provided at the source and an output
strain is expected at the target. In order to break the symmetry,
we change the relative weights of TSourcei and TTargeti by soft-
ening the bond with the highest TSourcej � (TTargetj )n, where n is
an odd integer 41. Higher values of n biases the algorithm
towards the target by effectively lowering the energy required to
create an output strain at the target site. Hence, larger values of
n lead to more efficient solutions with fewer numbers of
softened bonds. On the other hand, previous work has shown
that as the value of n increases, the discrepancy between
simulations and experiments also increases.13 In this work,
we choose n = 3 as a trade-off between these two effects.

The design algorithm is summarized in Fig. 1. We measure
TSourcei and TTargeti for each bond, take a product of the two
terms, and soften the bond with the largest value of TSourcej �
(TTargetj )3. We repeat this process iteratively until Z reaches its
desired value or the process fails due to creation of a localized
low energy mode. For simplicity, the network drawings in Fig. 1
only show the magnitude of tensions. However, the sign of each
term decides the sign of Z. Softening bonds where TSourcej �
(TTargetj )3 is positive leads to a positive Z, while softening bonds
where TSourcej � (TTargetj )3 is negative leads to a negative Z. In this
work we focus on designing networks with Z 4 0.

The results from simulations of allosteric responses are
shown in Fig. 2. Disordered networks are often characterized
by the average number of bonds coming out of each node,
known as the coordination number (hZi). The networks in our
simulation are isostatic at an average coordination number of
hZ0i = 4. We work with three sets of networks with a system size
of 70 nodes with average coordination numbers hZi = 4.5, hZi =
4.8, and hZi = 5.4. We tune each network using the design
protocol described above. Note that the design process is not
dependent on the strain ratio, Z. We simply keep softening
bonds one at a time and call the design process successful as
soon as the final strain ratio goes above the desired Z. As a
result, the output strain of these systems is never exactly equal
to the desired Z but always slightly higher than it.

Fig. 2A shows the success rate as a function of the stiffness
ratio for Z = 1. The stiffness ratio is given as ratio of stiffness of
a softened bond to the stiffness of a regular bond, such that it
can take a value between 0 and 1 and a lower stiffness ratio
corresponds to a higher contrast in bond stiffnesses. The
success rate rapidly declines as the stiffness ratio increases,
with the best results at a stiffness ratio of a few percent (0–2%).
This decrease in the success rate is expected because the
mechanism that incorporates an allosteric response relies on
creating a low energy mode in the system which is achieved by
lowering the strain energy of a particular set of bonds—ones
that are softened. Increasing the stiffness ratio increases the
energy stored in the soft bonds, thereby increasing the total
energy of the system and lowering the success rate. An inter-
esting feature to note here is that the closer these systems are to
isostaticity (hZi = 4), the higher the success rate. We speculate
that this is a result of the vibrational response of the original
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system. It has been shown that the correlation length of
vibrational modes increases as the system goes closer to
isostaticity,43–45 and since allosteric interactions span the
whole system, they are easier to achieve when extended vibra-
tional modes are already present in the system.

Another measure of ease of designing allosteric systems is
the number of bonds that need to be softened. As mentioned,
our system achieves an allosteric response by lowering the
energy of allosteric interaction, which is realized by softening
the bonds that contribute the most to this interaction. The net
change in the interaction energy depends on the number of
bonds softened, as well as the amount by which their stiffness
is reduced. The higher the stiffness difference between stiff and
soft bonds, the fewer the number of bonds that need to be
modified. This trend can be seen in Fig. 2B, where the fraction
of bonds that need to be softened is plotted as a function of
stiffness ratio. As expected, we see that with an increase in the
stiffness ratio, more bonds need to be softened in a network.
Moreover, this plot shows that the fraction of bonds that need
to be softened goes up with an increase in coordination
number. This finding is consistent with the data from
Fig. 2A, which shows that networks with lower coordination
numbers are better for designing an allosteric response.

Fig. 2C shows the success rate as a function of strain ratio, Z.
The success rate falls sharply as soon as Z goes over 1. We note
that one can achieve a more dramatic response in allosteric
networks if the bonds are removed instead of softened.8,13 This
difference is not surprising considering that softening a bond
lowers the local stress in the region whereas pruning a bond
gets rid of it completely. Achieving high strain ratios requires
certain soft bonds to have high strains, but the residual stress
in soft bonds increases rapidly with an increase in strain, thus
preventing them from showing a high output response.

3 Variable stiffness bonds

Experimental realizations of allosteric networks are built out of
silicone rubber sheets, with the bonds that need to be softened
replaced with variable stiffness bonds. By actuating these
variable bonds, we can switch between two different states of

Fig. 2 (A) Success rate of networks with different coordination numbers
as a function of stiffness ratio (ratio of stiffness of soft bonds to that of
regular bonds). Networks were designed to have a strain ratio (ratio of
strain at output nodes to the applied input strain) of 1. The vertical dashed
line at 0.01 corresponds to the value of stiffness ratio used for designing
networks that were built in experiments. (B) Percentage of bonds that need
to be softened as a function of stiffness ratio. (C) Success rate as a function
of strain ratio for a stiffness ratio of 0.01. The vertical dashed line at 1
corresponds to the strain ratio used in plots A and B.

Fig. 1 A schematic of the design process. I. Apply an external strain at the source site and measure the distribution of resulting tension in the system.
Darker bond corresponds to higher magnitude of tension. II. Apply an external strain at the target site and measure the resulting tension distribution. III.
Using I and II, get the distribution of TSourcej � (TTargetj )3. This identifies the bonds that are relevant to linking the source and target and creating an allosteric
response. IV. Soften the selected bond (dashed line) by changing its stiffness from kstiff to kstiff � R, and measure the new Z. This process is repeated
iteratively till the desired Z is achieved.
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the allosteric network. The variable bonds are made out of
Field’s metal and silicone, as shown in Fig. 3, and are passively
stiff. By sending an electric current through co-located copper
heaters, the Field’s metal inside the variable bonds can be
melted via Joule heating, resulting in a soft bond. In the stiff
state, the stiffness of variable bonds is comparable to the
regular silicone–rubber bonds but in their soft state, the vari-
able bonds are orders of magnitude softer than regular bonds.
Details about the construction of variable bonds, regular
bonds, and experimental networks containing the bonds are
included in ESI† S1.

We estimate the spring constant of the bonds by measuring
the force response of both regular and variable bonds using a
materials tester (Instron 3365). The response of regular as well
as variable bonds in both stiff and soft states is shown in
Fig. 4A. The same data is zoomed in at small strains (Fig. 4B),
and low forces (Fig. 4C). The response is averaged over 5
measurements of 3 different bonds of each kind. To calculate
the spring constant of each type of bond, we fit a slope to the
force-displacement curve in the small strain region where the
response is mostly linear. In our experiments, the stiff bonds as
well as the regular bonds (apart from the ones right at the input
site) experience negligible strain. On the other hand, when the
variable bonds are in their soft state, they get strained to
around 5%. For the present calculations, we include
strains between 0 and 1.5% and get the following spring
constants for each bond type: kregular = 4.1 � 0.2 N mm�1,
kstiff = 2.2 � 0.6 N mm�1, ksoft = 0.036 � 0.004 N mm�1. As
expected, the spring constant of bonds in the soft state is much
lower than the other two. Soft bonds are 0.9% as stiff as the
regular bonds, and as shown in the previous section, designing
allosteric responses is very successful at this low stiffness ratio.

We note here that the bonds have a non-linear response over
large strain ranges, as shown in Fig. 4. In particular, the
variable bond in the stiff state gets substantially softer at larger
strains. However, the stiff bonds usually do not experience large
strains and therefore this non-linearity does not have a

significant impact on the response of our networks. The strain
distribution within a simulated network is shown in ESI† S2.

4 Allosteric networks in experiments

To test the efficacy of our experimental networks, we measure
their response with the variable bonds in stiff and soft states. A
linear spring model is an oversimplification of real material
networks, and previous studies have shown that materials have
other interactions such as angle bending forces and nonlinear
stress–strain response present in them.14 Therefore, only a
fraction of allosteric networks designed in simulations show
a comparable response in experiments.13

To evaluate the behavior of incorporating variable stiffness
composites in a way that is decoupled from other effects in our
system, we make two copies of each network that we want to
test. In the first copy, C1, we take the set of selected bonds,
Bsoften, and replace them with variable stiffness bonds. In the
second copy, C2, we prune the set of bonds, Bsoftened. Then we
compare the response, Z(C1) to Z(C2). We test 3 such networks
and find that Z(C1) = 90 � 5% of Z(C2). Since there are multiple
mechanisms that lead to a loss in output response, the output
response in experiments often ends up being substantially
smaller than the designed response.

The designed allosteric networks show an output strain only
when the correct set of variable bonds is softened. We can build
multiple input and output responses in a single network and
our design process guarantees that each incorporated response
works independently when the corresponding set of variable
bonds is softened. However, as long as different responses have
allosteric pathways that do not overlap spatially, we often see
that multiple allosteric responses can coexist in experiments.
One such example is shown in Fig. 5(A): bonds in blue corre-
spond to output 1, and bonds in green correspond to output 2.
When the blue bonds are softened and the green bonds are

Fig. 3 (A) Schematic of a variable stiffness bond comprising of a Field’s
metal core and a copper heater that are sandwiched between three layers
of silicone. (B) Image of a variable bond.

Fig. 4 (A) Force response of regular bonds (red), variable bonds in the stiff
state (blue), and variable bonds in the soft state (black). Response at (B) low
strains, and (C) small forces. Stiffness values (ksoft, kstiff, kregular) are obtained
from the slopes of the force curves for strains between 0 and 1.5%.
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stiff, an applied strain at the input site results in a strain at
output 1 but not at output 2. Similarly, softening just the green
bonds results in a strain at output 2 but not at output 1.
Fig. 5(B) shows the measured output strain responses as a
function of input strain at sites 1 and 2, when each response is
activated individually. The responses are linear in the small
strain regime, with output at site 1, Z1 = 0.64 � 0.01, and output
at site 2, Z2 = 0.65 � 0.01. Note that both responses are smaller
than the designed response of Z = 1. These two sets do not have
any bonds in common and the pathways are spatially separated
from each other. In such cases, when both the sets of bonds are
softened, we see a response at both the output sites 1 and 2

without detriment to either of the outputs. Fig. 5(C) shows the
output strain responses as a function of input strain, when both
the responses are activated simultaneously. The output strain
responses at each of the output sites are slightly different than
before, with Z1 = 0.60 � 0.02, and Z2 = 0.81 � 0.01. Fig. 5(D)
shows the strains at input and output sites as a function of
time, where both sets of bonds have been softened and both
output sites simultaneously respond to the input strain.

Although multiple responses can be designed to work
simultaneously, this is not how this particular network was
designed. Our design process finds independent solutions for
each output which often turn out to work concurrently. Despite
some experimental losses in the designed networks, our result
shows that this method of designing allosteric responses with
variable stiffness materials is successful and feasible.

5 Conclusions

The ability to actively tune the behavior of a mechanical
metamaterial is essential for developing the next generation
of materials with increased adaptability and functionality. In
this work, we have demonstrated designing and building dis-
ordered allosteric metamaterials with multiple input and out-
put responses incorporated in them that can each be
individually activated on demand. To achieve this, we designed
and fabricated variable stiffness bonds whose stiffness changes
by two orders of magnitude between their soft and stiff states.
This work brings together the active tunability of material
properties and the diversity of responses that can be achieved
in disordered systems to create a new kind of allosteric
metamaterial.

Our work opens further avenues in both theoretical and
experimental directions. We introduced material stiffness as a
design parameter in disordered networks, but eventually our
variable bonds exist in one of the two possible states. Further
work is needed to create metamaterial systems that truly utilize
the range of material properties that can be achieved through
variable stiffness composites. Such a system might be able to
sustain multiple responses that are not spatially separated.
Additionally, our current simulation uses a simplified linear
spring model which deviates from experiments, especially
when extended to large system sizes or systems with a higher
number of responses. More realistic simulations would give us
a platform to design and build networks that can exhibit more
diverse and complex responses.

A distinct feature of our design algorithm is that we use a
local rule, as opposed to a global optimization. Local design
rules provide an ideal framework to build adaptable materials
because the system changes its properties based on local
stimuli. Our success with using a variable stiffness material
inspires us to consider other materials that respond to external
stimuli in different ways, such as bonds that can connect and
disconnect adjacent nodes or expand or shrink in length. Using
a variety of materials that respond to stimuli in different ways

Fig. 5 (A) Allosteric network with multiple responses. Variable stiffness
bonds are highlighted in blue and green. Softening blue bonds creates a
response at output 1, softening green bonds shows a response at output 2,
and softening both sets of bonds shows responses at output sites 1 and 2.
Responses can be seen in Movie S3 (ESI†). (B) Strain at output site as a
function of input strain when each response is activated individually.
Output 1 is blue (solid) line and output 2 is green (dashed) line. (C) Output
responses when both outputs are activated simultaneously. (D) Strain
response as a function of time with both outputs activated. Cyclic input
strain (black) results in output strains at output 1 (blue) and output 2
(green). Data has been smoothed, using a Savitzky–Golay filter with a
window length of 300 ms, for clarity.
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will substantially expand our design space and allow us to build
systems with adaptable mechanical responses.

Relatedly, there has been much recent interest in mechan-
ical memory, computing, and supervised learning in physical
systems.12,46–51 We believe that variable bonds, and more
generally the concept of locally tunable properties in material
systems,50–53 could be applied beyond the case of allostery in
materials. For example, we envision such local stiffness control
may contribute toward metamaterials with adaptable force
paths, bulk moduli, and computing functions.54,55 This paper
lays groundwork for the development of adaptable smart
materials that can modify their properties based on external
stimuli.
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