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I. Introduction

PACE trajectory optimization is the process of searching for the optimal trajectory from one
S celestial body or orbit to another, such that the mission requirements are satisfied and a given
objective is optimized. The objective can be minimizing the mission cost or fuel consumption,
minimizing the mission duration, maximizing the number of visited asteroids, or a combination of
these objectives. The earliest research on space trajectory optimization goes back to the work of
Walter Hohmann on trajectory design of a spacecraft with impulsive thrusters between two coplanar
orbits [1]. Cornelisse [2] showed that in the patched conics method, the cost of an interplanetary
trajectory mission can be reduced by applying a deep-space maneuver (DSM). Several works have
studied the effect of DSMs in different space missions [3—6]. Planetary flybys utilize the gravity of a
planet to change the momentum vector of a spacecraft. Such trajectories that use DSMs and flybys
are called Multi-Gravity-Assist-Deep-Space-Maneuver (MGADSM) trajectories.

To design a MGADSM interplanetary trajectory, many variables should be optimized depending
on the mission type, such as launch and arrival dates and times, number of flybys, planets to flyby,
number of DSMs, epoch of each DSM, direction and magnitude of each DSM, time of flight (TOF)
between each two successive celestial bodies (leg), and flyby altitudes and rotation angles. These
variables can be categorized into two groups of discrete design variables and continuous design

variables, as shown in Table 1. Since some variables are related to others (e.g. flyby attitude
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depends on whether there is a flyby or not), the problem can be considered as a variable-size
design space problem (VSDS), in which the number of optimization variables vary among different
solutions. In other words, the number of flybys and DSMs are not known a priori and they determine
the number of other variables needed to model the problem. These variables that determine the

total number of variables in a solution are referred to as the architecture variables.

Table 1: Design variables in an interplanetary trajectory optimization problem

Discrete Variables Continuous Variables
Number of flybys (m) Departure date (tq)
Flyby planets (P) Arrival date (t,)

Number of DSMs in each leg (n) TOF
Flyby pericenter altitude (hy)

Flyby rotation angles (n)

DSMs epoch (e)

DSMs magnitudes and directions

Many global optimization methods have been investigated in different MGADSM problems,
including heuristic algorithms [7-12], deterministic algorithms [13-15], or a combination of them
[16, 17]. Deterministic methods use grid or tree search to explore the design space. Although these
methods converge globally, they can be exhaustive, especially in more complex missions with high
number of flybys/rendezvous and DSMs or large time windows. The obtained solutions also are
usually sensitive to the grid size. Heuristic methods on the other hand do not need discretization
of the search space and are more adaptive and hence are not usually exhaustive. Yet they rely on
heuristics and parameters tuning. Genetic algorithms (GAs) [18-22], differential evolution [12, 23—

], and ant colony optimization [26] are some of the heuristic algorithms that have been proven to

be efficient in MGADSM optimization problems.

The genetic algorithms are among the most popular heuristic methods in space trajectory design.

The standard GAs assume the design variables of a solution as genes in a fixed-length chromosome.



By applying the evolutionary operations of selection, mutation, and crossover, the population of
these chromosomes converges to the global optimal solution [27]. Since in general the flyby and
DSM structures are not known a priori, it is not possible to use the standard GA for such problems
without simplifications in the problem or modification to the algorithm [7, 28, 29]. One way of
simplifying the problem is to prune the state space (assume fixed flyby sequence and number of
DSMs) to limit the possible mission scenarios. A deterministic search is used in [29, 30] where the
flyby sequence and DSMs are fixed and the search space is limited to a grid of points where the
global optimization methods can be used. Another way of simplifying the problem is to use a nested
loop solver to optimize the trajectory [8, 31]. The outer loop finds the optimal flyby sequence and
the inner loop optimizes the trajectory for that scenario. Since not all the scenarios have the same
number of flybys, this problem is a VSDS optimization. Early methods pruned the outer loop to
solutions that the designer considered to include the optimal flyby sequence [32]. Later, automatic
methods were proposed to find the flyby sequence in MGA trajectories. Some graphical methods use
the energy contours against two variables that define the orbits for different planet flybys [33, 34].
This method can be used when all the flybys are considered non-powered and it is assumed that
there is no DSMs. In [31] a maximum length for the flyby sequence is assumed and the outer loop is
optimized using a binary genetic algorithm. By adding null variables that represents a "no flyby",
variable-sized flyby sequences can be modeled in this method. For example, for a maximum flyby
of two, the Earth-Venus-Mars (EVM) sequence is equivalent to a mission from Earth to Mars with
a flyby around Venus and a null flyby that is not considered in the cost function. Genetic algorithm
is also used for multiple phase maneuvers where there is both impulsive and continuous maneuvers
[8]. Genetic Programming (GP) [35] is also among the earliest approaches that addressed the VSDS
optimization problems. One of the earliest attempts in implementing gene expression in GA is to
perform “cut and splice" on the chromosomes and applying a self adaptive recombination operator
on them to yield individuals of variable lengths [36, 37]. In recent years, the role of histone in
the regulation of DNA including gene expression and functionality of each cell was discovered [38],
which resulted in the use of epigenetics through modification of histone in strongly-typed genetic

programming [39].
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Fig. 1: Solutions are represented as chromosomes (string of genes) in standard GA.

Inspired by the concept of gene expression in biology, the concept of Hidden Genes Genetic Al-
gorithm (HGGA) was introduced to search for the optimal architecture and autonomously generate
new design spaces [40, 41]. Reference [411] applied a simplified version of the HGGA for inter-
planetary trajectory optimization and demonstrated success in finding the best known solutions
architectures for known benchmark problems. This original version of the HGGA implemented in
[11] assumes a long chromosome for each solution where some of the genes are hidden; this approach
is briefed below in Section IB. The HGGA implementation in [41], however, lacks a rigorous method
for selecting the hidden genes in each generation. Recently, reference [412] presented mechanisms for
selecting the hidden genes using tags that are appended to genes. Several evolution mechanisms
of the tags were investigated in [42]. In this paper, four new mechanisms are introduced for tags
evolution. The interplanetary trajectory optimization problem is solved using the proposed HGGA
mechanisms and two different bench mark problems are presented. These problems include missions
from Earth to Jupiter and Saturn. Sections TA and IB present necessary background on genetic
algorithms and the concept of hidden genes. Section IT presents HGGA tags evolution mechanisms
introduced in this paper, Section III briefs the problem formulation for the interplanetary trajec-
tory optimization. Section IV presents the numerical test cases on the two trajectory optimization

benchmark problems.

A. Genetic Algorithm

In standard GAs, the variables of the optimization problem are coded in chromosomes. Each
chromosome represents a solution and consists of the variables that are coded as genes. The objec-
tive of optimization determines the fitness of the solution. In Figure 1, a solution with N variables
is shown as a chromosome with N genes g1,¢s,...,9n. The genetic operations of selection, mu-
tation and crossover are applied on a population of these chromosomes, and through generations

(iterations), theses populations converge toward the optimal solution.
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Fig. 2: Added hidden genes in two different chromosomes [10]

In the selection operation, two chromosomes are selected as parents from the generation pool. In
general, the chromosomes that have better fitness values (objective function), have higher probability
to be selected as parents. After the parents are selected, mutation and crossover operations are
applied on them. As an example, in binary coding, genes are coded as Os and 1s; in the mutation
process gene 1 may change to 0 with a probability of p,,. In the crossover operation, parts of the
chromosome strings are swapped in parents. For example, in single point crossover, a random point
is selected in both parents and the genes of one side of that point are swapped in parents with
a crossover probability of p. to create new chromosomes. Some of the best chromosomes (elites)
are transferred to the next generation with no change. By repeating the GA operations in each

generation, the population converges to the optimal solution.

B. Hidden Genes Genetic Algorithm

To handle a VSDS (or architecture) optimization problem, the idea of turning genes on and
off was adapted from biology in genetic algorithm. By setting the chromosome length equal to
the length of the longest possible chromosome L4, (maximum number of design variables) and
turning some genes off, different solutions (of different architectures) with lengths of 1 to L4, can
be built while having the same length for all the chromosomes. Moreover, having similar lengths
for all the chromosomes enables the implementation of the standard GA operations like crossover
and mutation on them. The genes that are hidden are variables that do not affect the fitness of
the solution; yet they carry information, go through GA operations, and may become active (not
hidden) in future generations.

Assume that in a VSDS problem, two possible solutions are of lengths four and three, and



the maximum number of variables allowed in this problem is six. To make it a Fixed-Size Design
Space (FSDS) problem, two hidden genes are added to the first solution and three hidden genes
are added to the second solution to make both chromosomes of length six (Figure 2). In this way,
the added hidden genes do not affect the objective function and the chromosomes still represent
the same solutions as those without the hidden genes; yet both the chromosomes now have similar
lengths and standard GA operations can be applied to them. In other words, the GA starts by
producing an initial population of chromosomes of length six, of which some of the genes may be
hidden. Then, the selection, mutation, and crossover operations are applied on them to produce
the next generation of chromosomes of length six, of which some of the genes may be hidden again.
This algorithm is called Hidden Genes Genetic Algorithm. Based on the mechanisms that assign
the hidden genes, an active gene may become hidden in the next generation and vice versa. The
assignment mechanisms play an important role in how the HGGA evolves and affects the efficiency
and convergence rate of the HGGA.

As an example, a single-point crossover operator in HGGA is shown in Figure 3. In this
example, the genes go through the crossover operator regardless of the hidden genes positions,
meaning that the genes are swapped at a random crossover point (in Figure 3 it is between the
second and the third genes) with probability p. just like a normal crossover operator. Then, some
genes in the children chromosomes are assigned as hidden based on the hidden gene assignment
mechanism. Depending on the mechanism, the hidden genes positions might not be similar to
those of the hidden genes positions in the parents. The assignment mechanisms are explained in

Section II.

II. Hidden Genes Evolution Mechanisms

As discussed in the previous section, the hidden genes assignment logic has an important role in
the performance of the HGGA. The original work on HGGA [10] used a feasibility logic for assigning
the hidden genes, in which all genes are assumed active unless the solution is infeasible. In the case
of infeasible solutions, the algorithm hides genes, one by one, until the chromosome represents a
feasible solution. In a more recent work, logical and stochastic operations were used to assign the

hidden genes in a current generation based on their hidden/active status in the previous generation
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Fig. 3: An example for crossover in HGGA [410]

[42]. To implement this concept, a tag tag® was assigned to each gene z; as shown in Figure 4.
The value of this binary tag determines whether the corresponding gene is hidden or active. This
concept of tags is also found in biology where the protein (in the histone) of each gene determines if
it is hidden or active. In this implementation, the tag plays the role of the histone. Reference [12]
developed stochastic and logical operations for tags evolution. As an example, one of the effective
logical operations is the Active OR logic, which assumes a tag is active in a current generation if it

is active in any of its two parents, and it is hidden otherwise.

In this paper, two approaches for tags evolution are developed. The first approach exploits the
tags concept, and develops new operations for evolving these tags over generations. The second
approach presents the concept of using two tags (dominant and recessive Alleles) as agents that

determine the status of the genes. These two approaches are detailed below.
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Fig. 4: The concept of tags in HGGA
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Fig. 5: Schematic of the Stochastic Mechanism

A. Single Tag

Using the concept of tags, four new evolution mechanisms are investigated in this study. These
mechanisms utilize stochastic and/or logical methods to assign hidden genes in subsequent genera-

tions. These mechanisms are as follows:

1. Stochastic Mechanism

Similar to genes, the tags undergo mutation and crossover operations. The crossover points
and mutated locations in tags, however, are different from those of the genes. Figure 5 shows the
schematic of the Stochastic Mechanism, where the tags undergo a two-point crossover while the
genes undergo a single-point crossover. The crossover points for both genes and tags are chosen
stochastically. Simulations were conducted to investigate the impact of the tags mutation probability
on the optimization efficacy. In this investigation, the tags mutation probability was varied from

10~ to 0.1. A mutation probability of 0.01 is found to yield the most fit solutions.

2. Logical Mechanism

This mechanism has two steps. After the selection of two parents, two temporary chromosomes
are produced through a single-point crossover operation on genes, and an Active-OR logic on tags

(as shown in Figure 6). These two intermediate chromosomes have the same tags. The fitness



value of these two temporary chromosomes, J; and Jo, are calculated. The child (the offspring
of the Logical Mechanism) is then computed as the weighted arithmetic crossover of the parents
chromosomes and is closer to the parent whose intermediate chromosome has a better fitness J.
The tags of the offspring child are calculated using the Active-OR logic on the parents tags. Let C
be the gene string of the final offspring, A be a random number between 0 and 1, P;, and P, be
the genes strings of the parents, then the gene string of the final offspring is:

0.5[(1 4+ APy, +0.5(1 — APy, ], if J; > Jo
C = (1)

0.5[(1 = A) Py, +0.5(1 4 APy, ], if Jy < J

3.  Short Mechanism

This mechanism exploits solutions that are more fit and shorter (better fitness value and more
hidden genes). A fitness guided crossover is used for the genes with a modified objective function
that is a function of the design variables in addition to the number of hidden genes in a solution. The
tags are obtained by Hidden-OR operator on the parents tags. Consider a minimization problem,

the modified objective function for the crossover operator would be:
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Fig. 6: Intermediate Chromosomes in The Logical Mechanism.



where M is the number of tags, Z is the vector of variables (chromosome), and f(Z) is the fitness
function. Since the tags can only have values of 1 and 0, solutions with better fitness and more
hidden genes would be more fit. The offspring would be created based on Equations 1, with J;

and J evaluated as follows:

Jl = fmod(Ptl) (3)

J2 - med(Ptz) (4)

4. Long Mechanism

This mechanism exploits solutions that are more fit and longer (better fitness value and less
hidden genes). In this case, the fitness guided crossover is applied on genes and the tags are obtained
by Active-OR operator on the parents tags. The modified objective function for the genes crossover

operator in a minimization problem would be:

M

Froa(@) = F(@) + 3 (tag). (5)

i=1
B. Two Tags (Alleles)

In this concept, the HGGA is developed by simulating Alleles and considering two tags for
each gene, one recessive and one dominant. In biology, an allele is an alternative form of a gene.
In human cells, there can be two Alleles (dominant or recessive) of a gene in each position on a
chromosome. Dominant traits are expressed when the individual has one copy of the allele. On
the other hand, the recessive traits are expressed only if the Alleles of a pair are homozygous (the
individual has two copies of the allele). These principles and their traits were first discovered by
Gregor Mendel [43, 44], and is named as Mendel’s Law of Segregation.

This idea is adapted and modified to be applied on GA. Two sets of tags are considered for
each chromosome, called Alleles. One allele is dominant and one is recessive and only the value of
the dominant allele affects the status of the genes in the chromosome. Both dominant and recessive
tags evolve through generations. Therefore, a recessive allele in the current generation may become
a dominant allele in the next generation or vice versa. The Alleles have binary values of zero and

one. If a dominant tag is one, the corresponding gene is hidden and if a dominant tag is zero, the
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corresponding gene is active. Choosing the dominant and recessive Alleles is based on the fitness
value of the chromosome, i.e. the allele that results in better fitness value is chosen as the dominant
one.

The selection operator is selected in this study to be one of the standard selection operators, e.g.
the rank based operator that depends only on the fitness of the chromosome. The mutation operator
is only applied on genes, while tags do not mutate. During the crossover operation, the single point
crossover operator is applied on tags and genes separately and the tags crossover independently
from the genes. The concept of this method is shown in Figure 7. The recessive tags in parent
1 crossover only with recessive tags of parent 2, and the dominant tags also crossover only with
dominant tags. In this example, g1, is the first gene in first parent; g1, is the first gene in second
parent, and so on. In the first child, the top allele set results in a more fit solution and therefore is
dominant and the lower allele is recessive. In the second child, however, the lower allele results in

a more fit solution and is considered the dominant allele.
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Fig. 7: The crossover operator in the Alleles concept of HGGA.

Comparison between the concept of Alleles and the four tag based mechanisms of Section IT A
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is conducted through testing as detailed in Section III.

ITII. Interplanetary Trajectory Optimization Problems

Several examples of the complex trajectory optimization problems can be found in The Global
Trajectory Optimization Competition online portal of the European Space Agency [15]. A typical
problem statement can be written as follows: For a given range of the departure date from the
home planet Earth, a given range of the arrival date to a target planet, and a given dry mass of the
spacecraft, find the mission architecture (that is: how many flybys in the mission, and how many
DSMs in each leg), as well as the dates and times of flybys, the flybys planets, the dates and times
of DSMs, the amounts and directions of these DSMs, and the launch and arrival dates, such that
the fuel mass needed for the whole mission is minimized. This is a VSDS optimization problem.

It is assumed in this study that the spacecraft operates with impulsive thrust and can have
multiple DSMs in each leg. The objective function is to minimize the fuel consumption, which can

be divided into departure (launch) impulse, arrival impulse, and DSMs maneuvers.

Avior = [|AVal[ + [|AVall + Y [|AVDsal] (6)
=1

where ||AVy|| is the launch impulse, ||AV,]| is the arrival impulse, and || Y"1 AVpgsa|| is the
summation of costs of DSM maneuvers.

In the case of an n-impulse trajectory with no flybys (n DSMs in one mission leg), the indepen-
dent design variables are assumed the departure and arrival time, the AV vector of first n impulses,
and the epoch of the DSMs. Knowing the departure time, the planet heliocentric position vector
can be determined (assumed equal to the heliocentric position vector of the spacecraft). Since the
epoch of the first DSM and the initial velocity vector are known, the Kepler’s equation can be used
to propagate the position and velocity vector of the spacecraft at the DSM epoch. The velocity
vector of the spacecraft after the DSM can be computed as the summation of the velocity vector
of the spacecraft before the DSM and the DSM impulse vector. This procedure is repeated for all
the transfer orbits of the trajectory except the last one, where the Lambert’s problem is solved.

Lambert’s problem is a two-body boundary value problem that computes the trajectory using ini-

12
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Fig. 8: Geometry of a non-powered flyby.

tial and final position vectors and TOF. For the last transfer orbit, the arrival time and hence the
orbit’s TOF are known. The planets position vector can be determined (equal to the spacecraft
position vector at arrival) and therefore, the Lambert’s problem can be used. This results in the
arrival impulse for capture by the planet.

The spacecraft can have multiple powered or non-powered gravity-assist maneuvers (flybys).
The momentum change in a flyby maneuver can impact the AV needed for the spacecraft during
the mission. The spacecraft position vector during the flyby is assumed not to change and it is equal

to the heliocentric position vector of the planet at the flyby instance.

r =rt= ry (7)

where r~ and r* are the position vectors of the spacecraft before and after the flyby maneuver and
r, is the heliocentric position vector of the planet at the flyby instance. The velocity vector of the
spacecraft after the flyby maneuver is determined by calculating the magnitude and direction of the

velocity for powered and non-powered flybys as follows:

e Non-powered flyby: It is assumed that during the flyby, the linear momentum of the spacecraft

changes only due to the gravity field of the planet. Hence, the magnitude of incoming and

13



outgoing relative velocities are the same:

Vool = VL] = veo (8)
where v and v} are the incoming and outgoing relative velocity vectors, respectively and
are calculated as:

Voo = Vg/c — Vp (9)

vg/c is the spacecraft velocity vector and v, is the planet velocity vector (Figure 8). The

direction of the outgoing velocity can be determined by the flyby plane rotation angle 6.

. Hp
sin(0/2) = ————- 10
62 = (10)

where p, is the gravitational constant of the planet and 7., is the pericenter radius of the
flyby which is a design variable. The maximum rotation angle is when the pericenter radius
is minimum. If the required rotation angle is greater than the maximum achievable rotation
angle, a powered flyby maneuver is needed. The total spacecraft velocity change in a non-

powered flyby is then:

Avppr = 20508i0(6/2) (11)

Powered flyby: Higher rotation angles can be gained by applying a small impulse during the

flyby [46]. The spacecraft velocity on the periapsis trajectory is [47]:

Um =1/ V3% + 24p/Tper (12)

Hence, the required change in velocity for powered flyby is:

_ 2 _2
Avyp = vt —v,, = \/vé'o + 2/ Tper — \/voo + 20p/Tper (13)

The outgoing velocity of the spacecraft in heliocentric inertial frame can be calculated as

follows [41]:



K

Swing-by

plane \’

Ecliptic plane

Fig. 9: The local and inertial frames [41].

where (v1), is the outgoing relative velocity vector expressed in the local frame ijff and

C=1[i j k] isthe transformation matrix between local frame and inertial frame. As shown

in Figure 9, (v, can be calculated as [11]:

(VL)L = veo[cos(8) sin(s) 0] (15)

The local frame is defined such that 7 is in the direction of the incoming relative velocity and
j’ is perpendicular to 7 and is in the plane of the flyby maneuver. Line I' in Figure 9 is the
intersection of jl% plane (II plane) and the inertial Ecliptic plane IJ. The angle between I and
I'is Q, and the angle between I and jis 7. Also, ¢ is the inclination of plane II to the Ecliptic

plane. By this nomenclature, the unit directions can be derived as [41]:

i = % (16)
_1_
cos(—Q)  sin(—Q) 0 1 0 0 cos(—n) sin(—n) 0
. 0
J = |=sin(=Q) cos(=Q) 0| X |0 cos(—t) sin(—t)| X |=sin(—n) cos(—n) 0 .
0 0 1 0 —sin(—t) cos(—t) 0 0 1
(17)
k=1ix] (18)



For the full MGADSM problem with m flybys and n; DSMs in each leg (i = 1...m), the
calculations for each leg is carried out as explained above. Departure and arrival dates and the
TOF of each leg (except the last leg) are design variables. The TOF of the last leg can be calculated
knowing the total TOF of the mission and the summation of the TOF of the other legs. Assume
that there are n; DSMs in the first leg. Hence, there are ny + 1 transfer orbits in that leg. The
calculations of the first n; orbits are similar to the explanations on the n-impulse trajectory. For
the last orbit, the velocity vector at the end point is the incoming heliocentric velocity of the flyby.
The flyby is assumed non-powered if at least one DSM is in the following leg. Knowing the flyby
pericenter altitude and rotation angle (design variables), the outgoing velocity (the spacecraft initial
heliocentric velocity vector for the next leg) can be determined by carrying out the non-powered
flyby calculations. This procedure is repeated for all the legs. In case of no DSMs in a leg, the
initial flyby of that leg is assumed a powered flyby and the corresponding calculations can be used.

For all the problems, the J2 effect is ignored. Since Lambert’s problem can have multiple
solutions, the maximum number of revolutions is set to 5 and the best solution from Lambert’s
problem (lowest cost) is selected as the trajectory for the current leg.

To illustrate how this problem is a VSDS optimization problem, two sample solutions are shown
as chromosomes in Figure 10. In this example, the hidden genes are shown with gray color. The
top part of the figure shows the chromosomes in HGGA, with hidden genes and equal lengths, and
the bottom part of the figure shows the equivalent chromosomes with no hidden genes and different
lengths. As seen, depending on the number of flybys and DSMs, the length of the solutions can be
variable. In the first solution, there is one flyby and one DSM, and in the second solution there
are two flybys and two DSMs. Assume that it is required to send a spacecraft to planet Jupiter
with the lowest cost (fuel consumption) within certain ranges for launch and arrival dates. The two

solutions shown in Figure 10 can be interpreted as follows:

1. First Solution: A trajectory with one flyby around Venus (Earth-Venus-Jupiter) and one DSM

in the second leg.

2. Second Solution: A trajectory with two flybys around Venus and Earth (Earth-Venus-Earth-

Jupiter or EVEJ) and two DSMs in the first and the third legs.

16
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Fig. 10: An example of two different solutions for an interplanetary trajectory problem in HGGA

(Earth to Jupiter), and the equivalent chromosomes with no hidden genes in GA.

This is a VSDS problem; the proposed tags/Alleles mechanisms can be used to search for the

optimal solution and architecture.

IV. Numerical Results

In this paper, two benchmark problems are investigated: Earth to Jupiter and Earth to Saturn.
The best known solutions for these problems can be found in the European Space Agency (ESA)
website [48] and also in [41, 49]. Each problem is solved in two phases. In the first phase, it is
assumed that there are no DSMs (zero-DSM phase) and a sub-optimal flyby sequence is obtained.
The second phase is a multi-gravity-assist with DSMs phase (MGADSM phase) that uses a fixed
flyby sequence (obtained in the first step) to optimize the rest of the design variables including the
DSMs in the mission. This approach has shown to be computationally efficient [41] compared to a
single model where all the variables including DSMs and flyby sequences are optimized together. For
all the problems, the genes mutation probability is 0.01, the elite count is 10% of the population size,
the crossover probability is 0.95, and the function tolerance (stopping condition of the algorithm) is
10712, For the sake of comparison, the lower and upper boundaries of the variables in all problems

are compatible with the work done in [41, 48, 49].
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A. Earth - Jupiter Mission Trajectory Optimization

The variable boundaries are listed in Table 2. The spacecraft can flyby around up to two
planets in the solar system and there can be up to two DSMs in each leg. Hence, the chromosome
has two genes for the flyby planets in the zero-DSM phase, and each flyby planet can be any one
from one (Mercury) to eight (Neptune). Each flyby gene carries the planet identification number.
One tag (two tags in the case of using the Alleles concept) is assigned to each flyby gene and if the
tag of any of the flybys is one, the corresponding flyby is hidden. For example assume that the values
of flybys are three (first flyby is around the third planet-Earth) and five (second flyby is around the
fifth planet-Jupiter). If the tags are [1,0], the flyby around Earth is hidden and the solution has
only one flyby around Jupiter. Similarly, for the MGADSM phase, there can be a maximum two
DSMs in each leg. Since the maximum number of flybys is two, the maximum number of legs is
three, and hence, the maximum number of DSMs is six. For each DSM, we need to compute the
optimal time (Tpgas) at which this DSM occurs. A gene and a tag are added for each DSM time
Tpsu, and hence, there are six gens and six tags for Tpgps; (¢ = 1---6) in this mission. Note
that if a flyby is hidden, then its leg disappears and all the DSMs in that leg automatically become
hidden. Note also that even if a flyby exists, a DSM in its leg can be hidden depending on the
value of its own tag. The range for each DSM is set between [—5, =5, —5] km/s and [5,5,5] km/s
as shown in Table 2. So, the chromosome will have genes for 6 x 3 = 18 scalar components of the
DSMs. Note that these 18 genes are classified in groups of three genes; hence if one DSM is hidden
then its three genes get hidden together. The TOF for each leg is between 80 and 800 days except
the last one. The duration of the last leg is determined by the launch and arrival dates and the
TOF of the other legs. There is a gene for each TOF in the mission. Hence, we have three genes for
the TOFs in this Jupiter mission. Note that there are no tags associated with the TOF genes since
the state of each gene (hidden or active) is determined based on the flyby tags. If a flyby exists
then there is an active gene for a TOF associated with it. Two genes for the two flyby altitudes A,
and two genes for the two flyby plane angles n are added. Similar to the TOF variables, no tags are
needed for the h, and 1 genes. There are also six genes for the departure impulse, flight direction,

the arrival date and the departure date.
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Table 2: Lower and upper bounds of Earth-Jupiter problem

Design Variable Lower Bound Upper Bound
Flyby 1 planet 1(Mercury) 8(Neptune)
Flyby 2 planet 1 8
DSM; (km/s), i=1---6 [-5,—-5,-5]  [5,5,5]
Flight Direction Posigrade Retrograde
Departure Date (to) 01 Sep.2016 30 Sep.2016
Arrival Date (ty) 01 Sep.2021 31 Dec.2021
TOF (days) (80, 80] 800, 800]

Flyby normalized pericenter altitude (h,) [0.1,0.1,0.1]  [10,10, 10]
Flyby plane rotation angle () (rad) [0,0,0] (27, 27, 27]

Epoch of DSMs (¢;,2 =1---6) 0.1 0.9

The population size is set to 500 and the number of generations is 500. Each simulation is
repeated 100 times for the purpose of statistical analysis on the efficiency of the method. This
problem is solved using different mechanisms and the cost values of each mechanism in the zero-
DSM and the MGADSM models are reported in Table 3. All the mechanisms could find the optimal
flyby sequence which is Earth-Venus-Earth-Jupiter (EVEJ) in their zero-DSM model. Based on the
results of Table 3, the Stochastic Mechanism can find the lowest cost solution (10.1308 km/s) with
one DSM in the first leg, while the Logical Mechanism results in the the highest cost. The detailed

solution of the Stochastic Mechanism is presented in Table 4 and Figure 11.

Table 3: Cost values of Earth-Jupiter problem using different Mechanisms

Mechanism Zero-DSM model (km/s) MGADSM model (km/s)
Stochastic Mechanism 10.1612 10.1308
Logical Mechanism 11.0580 10.9822
Short Mechanism 11.2590 10.4483
Long Mechanism 13.2707 10.5075
Alleles 10.2374 10.1741
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Table 4: Solution of Earth-Jupiter problem using Stochastic Mechanism

Mission parameter Zero-DSM model

MGADSM model

Departure Date 05 — Sep — 2016, 17 : 20 : 00

Departure Impulse (km/s) 3.5233
DSM date -
DSM impulse (km/s) —
Venus flyby date 05 — Sep — 2017, 14 : 13 : 06

Post-flyby impulse (km/s) 1.5476 x 1077

Pericenter altitude (km) 1290.1954

Earth flyby date
Post-flyby impulse (km/s) 0.4402

Pericenter altitude (km) 637.8000

Arrival date 21 — Sep — 2021, 16 : 22 : 30

Arrival impulse (km/s) 6.1961

TOF (days) 364.8702, 570.3545, 906.7354
Mission duration (days) 1840.5174

Motion direction posigrade

Mission cost (km/s) 10.1612

29 — Mar — 2019, 22 :43: 33

03 — Sep — 2016, 15: 08 : 25

3.4488

14 — Jan — 2017, 06 : 36 : 34
1[0.0225,0.0354, —0.0147]| = 0.0444

06 — Sep — 2017, 17:54: 14

2.3533 x 107°

876.0221

29 — Mar — 2019, 04:20: 01

0.4478
637.8000
18 — Sep — 2021, 03 : 33 : 26
6.1897
368.1152, 568.4346, 903.9676
1844.499
posigrade

10.1308

B. Earth-Saturn Mission Trajectory Optimization (Cassini 2)

A more complicated trajectory is the Cassini 2 mission that was designed by NASA, European
Space Agency, and Italian Space Agency to discover the planet Saturn. The mission consists of
a satellite that orbits Saturn and a lander for its moon Titan [50]. We consider the problem of
designing the trajectory from Earth to rendez-vous with Saturn. The high number of potential
flybys and the wide ranges for the design variable make this problem challenging. Here, a launch
window of 30 days is selected for the mission for the sake of comparison with the reported results
in the literature [41, 51]. The upper and lower boundaries of the design variables are shown in
Table 5.

The goal is to optimize the trajectory to Saturn as a VSDS problem with unknown number

of flybys and DSMs. The maximum number of flybys is set to four (with four corresponding tags
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Fig. 11: EVEJ Trajectory for MGADSM Model using Stochastic Mechanism

Table 5: Lower and upper bounds of Earth-Saturn problem

Design Variable Lower Bound Upper Bound
Flyby #i planet, i =1---4 2 (Venus) 5 (Jupiter)
DSM;(km/s),i=1---5 [-5, -5, —5] [5,5,5]
Flight Direction Posigrade Retrograde
Departure Date 01 Nov.1997 01 Dec.1997
Arrival Date 01 Jan.2007 30 Jun.2007
TOF (days) [100, 100, 30,400] [400, 500, 300, 1600]

Flyby normalized pericenter altitude [0.05,0.05,0.15,0.7] [5,5,5.5,290]
Flyby plane rotation angle (rad) [—7, —m, —7, —7] [, 7, ™, 7]

Epoch of DSM (e;,i=1---5) 0.01 0.9

in the zero-DSM phase) and the maximum number of DSMs in each of the five legs is one (with
five corresponding tags in the MGADSM phase). For both phases, the population size is 500. The
number of generations is selected to be 400 for the zero-DSM phase and 500 for the MGADSM

phase. A niching method is used to help the optimization algorithm explore more of the design

, 41, 52]. In this niching method, every 20 generations, the current best solutions and

other solutions with similar flyby sequences are given high cost. Moreover, every five generations
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Fig. 12: EVVEJS Trajectory for MGADSM Model using Stochastic Mechanism

a random solution is inserted in place of an elite solution. In doing so, the stochastic, logical, and
Alleles mechanisms were able to find the optimal flyby sequence. Out of ten identical simulations,
the stochastic mechanism can find the optimal sequence seven times (success rate of 70%), the
logical mechanism two times (success rate of 20%), and the Alleles method five times (success rate
of 50%). The short and long mechanisms were not able to find the optimal flyby sequence. For the
MGADSM phase, only the mechanisms that were able to find the optimal sequence are investigated.
The results are summarized in Table 6. The Stochastic Mechanism has the lowest cost of 8.4457
km/s with one DSM in the first and second leg (Table 7). The Logical Mechanism and the Alleles
concept found solutions with higher cost values of 9.0539 km /s and 10.1364 km/s, respectively. The

Stochastic Mechanism trajectory is shown in Figure 12.

Table 6: Results of Earth-Saturn problem using different Mechanisms

Mechanism success rate of Zero-DSM model cost of MGADSM model (km/s)
Stochastic Mechanism 70% 8.4457
Logical Mechanism 10% 9.0539
Short Mechanism 0% -
Long Mechanism 0% -
Alleles 50% 10.1364
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Table 7: Solution of Earth-Saturn problem using stochastic mechanism

Mission parameter

Zero-DSM model

MGADSM model

Departure Date
Departure Impulse (km/s)
DSM date

DSM impulse (km/s)
Venus flyby date
Post-flyby impulse (km/s)
Pericenter altitude (km)
DSM date

DSM impulse (km/s)
Venus flyby date
Post-flyby impulse (km/s)
Pericenter altitude (km)
Earth flyby date
Post-flyby impulse (km/s)
Pericenter altitude (km)
Jupiter flyby date
Post-flyby impulse (km/s)
Pericenter altitude (km)
Arrival date

Arrival impulse (km/s)
TOF (days)

Mission duration (days)

Mission cost (km/s)

15 — Nov — 1997, 08 : 53 : 42

3.2676

02 — May — 1998, 08 : 45 : 56
1.8240

22685.3828

27 — Jun — 1999, 09 : 46 : 18
1.8873
12518.5172
19 — Aug — 1999, 15: 52 : 32
6.7970e — 07
1966.2076
31 — Mar — 2001, 08 : 45 : 42
1.7135e — 05
4920495.3477
13 — May — 2005, 08 : 21 : 04

4.2469

167.99, 421.04, 53.25, 589.70, 2199.35

3431.3442

11.2259

14 — Nov — 1997, 11 : 01 : 28
3.2782

08 — Mar — 1998, 19 : 51 : 44

1[0.16194 — 0.43175 — 0.21757]| = 0.50987

29 — Apr — 1998, 02 : 02 : 05
0
2066.8258

25 — Nov — 1998, 05 : 56 : 38

[[0.39217 — 0.0014362 — 0.10418]| = 0.40577

26 — Jun — 1999, 11 : 10 : 42
1.19153 x 1077
605.2880
19 — Aug — 1999, 16 : 16 : 48
0.00031764
1855.5100
29 — Mar — 2001, 09 : 31 : 40
0.00022016
4975803.05136
22 — Mar — 2007, 08 : 14 : 11
4.2513
165.81,423.41,53.78, 588.35, 2183.54
3414.8886

8.4457

V. Discussion

The GTOP database consists of a wide variety of problems to asteroids and different planets,

including Saturn and Mercury. The HGGA mechanisms in this paper are tested on Cassini 2 and

Earth to Jupiter problems. The results presented in this paper show that the proposed mechanisms
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are capable of finding the optimal architecture of the mission (optimal flyby sequence as well as

optimal number of DSMs).

The trajectory from Earth to Jupiter has been previously investigated using different evolution-
ary methods. For the sake of comparison, only the methods that assume an impulsive thrust are
considered here. Olympio and Marmorat solved this problem using the primer vector theory [51].
By assuming a fixed flyby sequence as EVEJ and setting the variable ranges close to Table 2, a
total cost of 10.267 km/s was found. The HGGA method with feasibility criteria (original HGGA)
was also tested on this problem and found a solution of cost 10.178 km/s [411]. The Dynamic-size
multiple population Genetic algorithm has also been tested on this problem and the cost of its solu-
tion is 10.125 km /s [49]. If the duration of the mission increases, the total cost would decrease. This
has been shown in the works done by Musegaas [53] and Myatt et. al. [30]. Musegaas solved the
Earth to Jupiter problem as a tuning step for a mission to Saturn (EVEJS). A fixed flyby sequence
and large mission duration (almost 20 years and eight months) are assumed in solving the problem.
The spacecraft can have powered flybys and is captured at Jupiter. No DSMs are assumed during
the trajectory and by optimizing only the event times, the cost found is 7.0144 km/s. Myatt et al.
solved the same problem assuming non-powered flybys and found a solution with a cost of 7.5483
km/s. The total time of the mission in here is not allowed to exceed five years and hence higher
cost values are found. The cost found by Stochastic Mechanism is 10.1308 km/s which is slightly

better than the solution found by the original version of the HGGA.

For the mission to Saturn, initial investigations show that the cost function is sensitive to the
events dates (dates of performing DSMs and flybys). As an example, consider the variation of the
cost function with the first flyby pericenter altitude h,. Figure 13a shows the variation of the
cost function with the pericenter altitude when all other variables are fixed at their optimal values;
clearly the optimal solution corresponds to the red star in this figure. Figure 13b on the other hand
shows the variation of the cost function with the pericenter altitude when the launch date is varied
to a value different from its optimal value, while still keeping all other variables at their optimal
values. Two observations can be noted from Figure 13. First, the impact of changing the launch

date is significant on the cost; this can be depicted by comparing the cost values between the two
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Fig. 13: Cost value vs. pericenter altitude of first flyby

figures (the vertical axis) with 50 days difference in their launch dates. Second, when the launch
date is not optimal (Figure 13b) the line relating the cost to h, is misleading to the optimizer.
When the launch date is optimal, the cost decreases with decreasing h,, while that is not the case
when the launch date is not optimized. Hence, when optimizing the MGADSM phase, a small range

is assumed around the zero-DSM variables.

The mission to Saturn has been investigated in many papers in different formats. EVEJS, Casini
1, Cassini 2 (easy and complete versions) are some of the variations on the mission that have been
investigated. For the Cassini 2 (easy version), the minimum cost reported in the literature is 8.385
km /s when solving the VSDS problem [11] and it is 8.282 km /s when solving the problem assuming
a known fixed flyby sequence [54, 55]. This problem is also solved using the PaGMO software using
differential evolution and genetic algorithms [53]. PaGMO is an optimization software in which
the user can define the problem and the optimization algorithm. The lowest cost found in this
reference is 8.2379 km/s given a known fixed flyby sequence and one DSM. Other references have
reported close cost values for this problem with a known fixed flyby sequence [56-58]. A list of
these solutions can be found in the GTOP website [48]. In this study, only three mechanisms (the
Stochastic, the logical, and the Alleles) were able to find the optimal flyby sequence. The Stochastic
Mechanism found a cost of 8.4457 km/s for this mission, with one DSM in the first leg and one

DSM in the second leg. Despite that this cost is slightly higher than the best known solution, the
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main advantage of the proposed method is its capability of searching for the optimal flyby and DSM

architecture.

In all the tested problems, the Stochastic Mechanism found the lowest cost compared to the
other mechanisms investigated in this paper. In the next section some statistical analysis is done

on the mechanisms and their performance is compared.

VI. Conclusions

This paper demonstrated that the hidden genes genetic algorithm - with new evolution mech-
anisms for tags - has the capability of searching for the optimal architecture and solution in space
trajectory optimization problems. The concepts of tags and Alleles in hidden genes are introduced
in this paper, and different evolution mechanisms for the tags are investigated and compared based
on their performance. These mechanisms found different solutions of different cost values and dif-
ferent success rates. In all the test cases, the stochastic mechanism could find the best flyby and

DSM sequence, as well as the lowest cost value compared to other mechanisms.
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