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I. Introduction

S
pace trajectory optimization is the process of searching for the optimal trajectory from one

celestial body or orbit to another, such that the mission requirements are satis�ed and a given

objective is optimized. The objective can be minimizing the mission cost or fuel consumption,

minimizing the mission duration, maximizing the number of visited asteroids, or a combination of

these objectives. The earliest research on space trajectory optimization goes back to the work of

Walter Hohmann on trajectory design of a spacecraft with impulsive thrusters between two coplanar

orbits [1]. Cornelisse [2] showed that in the patched conics method, the cost of an interplanetary

trajectory mission can be reduced by applying a deep-space maneuver (DSM). Several works have

studied the e�ect of DSMs in di�erent space missions [3�6]. Planetary �ybys utilize the gravity of a

planet to change the momentum vector of a spacecraft. Such trajectories that use DSMs and �ybys

are called Multi-Gravity-Assist-Deep-Space-Maneuver (MGADSM) trajectories.

To design a MGADSM interplanetary trajectory, many variables should be optimized depending

on the mission type, such as launch and arrival dates and times, number of �ybys, planets to �yby,

number of DSMs, epoch of each DSM, direction and magnitude of each DSM, time of �ight (TOF)

between each two successive celestial bodies (leg), and �yby altitudes and rotation angles. These

variables can be categorized into two groups of discrete design variables and continuous design

variables, as shown in Table 1. Since some variables are related to others (e.g. �yby attitude
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depends on whether there is a �yby or not), the problem can be considered as a variable-size

design space problem (VSDS), in which the number of optimization variables vary among di�erent

solutions. In other words, the number of �ybys and DSMs are not known a priori and they determine

the number of other variables needed to model the problem. These variables that determine the

total number of variables in a solution are referred to as the architecture variables.

Table 1: Design variables in an interplanetary trajectory optimization problem

Discrete Variables Continuous Variables

Number of �ybys (m) Departure date (td)

Flyby planets (P) Arrival date (ta)

Number of DSMs in each leg (n) TOF

Flyby pericenter altitude (hp)

Flyby rotation angles (η)

DSMs epoch (ε)

DSMs magnitudes and directions

Many global optimization methods have been investigated in di�erent MGADSM problems,

including heuristic algorithms [7�12], deterministic algorithms [13�15], or a combination of them

[16, 17]. Deterministic methods use grid or tree search to explore the design space. Although these

methods converge globally, they can be exhaustive, especially in more complex missions with high

number of �ybys/rendezvous and DSMs or large time windows. The obtained solutions also are

usually sensitive to the grid size. Heuristic methods on the other hand do not need discretization

of the search space and are more adaptive and hence are not usually exhaustive. Yet they rely on

heuristics and parameters tuning. Genetic algorithms (GAs) [18�22], di�erential evolution [12, 23�

25], and ant colony optimization [26] are some of the heuristic algorithms that have been proven to

be e�cient in MGADSM optimization problems.

The genetic algorithms are among the most popular heuristic methods in space trajectory design.

The standard GAs assume the design variables of a solution as genes in a �xed-length chromosome.
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By applying the evolutionary operations of selection, mutation, and crossover, the population of

these chromosomes converges to the global optimal solution [27]. Since in general the �yby and

DSM structures are not known a priori, it is not possible to use the standard GA for such problems

without simpli�cations in the problem or modi�cation to the algorithm [7, 28, 29]. One way of

simplifying the problem is to prune the state space (assume �xed �yby sequence and number of

DSMs) to limit the possible mission scenarios. A deterministic search is used in [29, 30] where the

�yby sequence and DSMs are �xed and the search space is limited to a grid of points where the

global optimization methods can be used. Another way of simplifying the problem is to use a nested

loop solver to optimize the trajectory [8, 31]. The outer loop �nds the optimal �yby sequence and

the inner loop optimizes the trajectory for that scenario. Since not all the scenarios have the same

number of �ybys, this problem is a VSDS optimization. Early methods pruned the outer loop to

solutions that the designer considered to include the optimal �yby sequence [32]. Later, automatic

methods were proposed to �nd the �yby sequence in MGA trajectories. Some graphical methods use

the energy contours against two variables that de�ne the orbits for di�erent planet �ybys [33, 34].

This method can be used when all the �ybys are considered non-powered and it is assumed that

there is no DSMs. In [31] a maximum length for the �yby sequence is assumed and the outer loop is

optimized using a binary genetic algorithm. By adding null variables that represents a "no �yby",

variable-sized �yby sequences can be modeled in this method. For example, for a maximum �yby

of two, the Earth-Venus-Mars (EVM) sequence is equivalent to a mission from Earth to Mars with

a �yby around Venus and a null �yby that is not considered in the cost function. Genetic algorithm

is also used for multiple phase maneuvers where there is both impulsive and continuous maneuvers

[8]. Genetic Programming (GP) [35] is also among the earliest approaches that addressed the VSDS

optimization problems. One of the earliest attempts in implementing gene expression in GA is to

perform �cut and splice" on the chromosomes and applying a self adaptive recombination operator

on them to yield individuals of variable lengths [36, 37]. In recent years, the role of histone in

the regulation of DNA including gene expression and functionality of each cell was discovered [38],

which resulted in the use of epigenetics through modi�cation of histone in strongly-typed genetic

programming [39].
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Fig. 1: Solutions are represented as chromosomes (string of genes) in standard GA.

Inspired by the concept of gene expression in biology, the concept of Hidden Genes Genetic Al-

gorithm (HGGA) was introduced to search for the optimal architecture and autonomously generate

new design spaces [40, 41]. Reference [41] applied a simpli�ed version of the HGGA for inter-

planetary trajectory optimization and demonstrated success in �nding the best known solutions

architectures for known benchmark problems. This original version of the HGGA implemented in

[41] assumes a long chromosome for each solution where some of the genes are hidden; this approach

is briefed below in Section IB. The HGGA implementation in [41], however, lacks a rigorous method

for selecting the hidden genes in each generation. Recently, reference [42] presented mechanisms for

selecting the hidden genes using tags that are appended to genes. Several evolution mechanisms

of the tags were investigated in [42]. In this paper, four new mechanisms are introduced for tags

evolution. The interplanetary trajectory optimization problem is solved using the proposed HGGA

mechanisms and two di�erent bench mark problems are presented. These problems include missions

from Earth to Jupiter and Saturn. Sections I A and IB present necessary background on genetic

algorithms and the concept of hidden genes. Section II presents HGGA tags evolution mechanisms

introduced in this paper, Section III briefs the problem formulation for the interplanetary trajec-

tory optimization. Section IV presents the numerical test cases on the two trajectory optimization

benchmark problems.

A. Genetic Algorithm

In standard GAs, the variables of the optimization problem are coded in chromosomes. Each

chromosome represents a solution and consists of the variables that are coded as genes. The objec-

tive of optimization determines the �tness of the solution. In Figure 1, a solution with N variables

is shown as a chromosome with N genes g1, g2, . . . , gN . The genetic operations of selection, mu-

tation and crossover are applied on a population of these chromosomes, and through generations

(iterations), theses populations converge toward the optimal solution.
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Fig. 2: Added hidden genes in two di�erent chromosomes [40]

In the selection operation, two chromosomes are selected as parents from the generation pool. In

general, the chromosomes that have better �tness values (objective function), have higher probability

to be selected as parents. After the parents are selected, mutation and crossover operations are

applied on them. As an example, in binary coding, genes are coded as 0s and 1s; in the mutation

process gene 1 may change to 0 with a probability of pm. In the crossover operation, parts of the

chromosome strings are swapped in parents. For example, in single point crossover, a random point

is selected in both parents and the genes of one side of that point are swapped in parents with

a crossover probability of pc to create new chromosomes. Some of the best chromosomes (elites)

are transferred to the next generation with no change. By repeating the GA operations in each

generation, the population converges to the optimal solution.

B. Hidden Genes Genetic Algorithm

To handle a VSDS (or architecture) optimization problem, the idea of turning genes on and

o� was adapted from biology in genetic algorithm. By setting the chromosome length equal to

the length of the longest possible chromosome Lmax (maximum number of design variables) and

turning some genes o�, di�erent solutions (of di�erent architectures) with lengths of 1 to Lmax can

be built while having the same length for all the chromosomes. Moreover, having similar lengths

for all the chromosomes enables the implementation of the standard GA operations like crossover

and mutation on them. The genes that are hidden are variables that do not a�ect the �tness of

the solution; yet they carry information, go through GA operations, and may become active (not

hidden) in future generations.

Assume that in a VSDS problem, two possible solutions are of lengths four and three, and

5



the maximum number of variables allowed in this problem is six. To make it a Fixed-Size Design

Space (FSDS) problem, two hidden genes are added to the �rst solution and three hidden genes

are added to the second solution to make both chromosomes of length six (Figure 2). In this way,

the added hidden genes do not a�ect the objective function and the chromosomes still represent

the same solutions as those without the hidden genes; yet both the chromosomes now have similar

lengths and standard GA operations can be applied to them. In other words, the GA starts by

producing an initial population of chromosomes of length six, of which some of the genes may be

hidden. Then, the selection, mutation, and crossover operations are applied on them to produce

the next generation of chromosomes of length six, of which some of the genes may be hidden again.

This algorithm is called Hidden Genes Genetic Algorithm. Based on the mechanisms that assign

the hidden genes, an active gene may become hidden in the next generation and vice versa. The

assignment mechanisms play an important role in how the HGGA evolves and a�ects the e�ciency

and convergence rate of the HGGA.

As an example, a single-point crossover operator in HGGA is shown in Figure 3. In this

example, the genes go through the crossover operator regardless of the hidden genes positions,

meaning that the genes are swapped at a random crossover point (in Figure 3 it is between the

second and the third genes) with probability pc just like a normal crossover operator. Then, some

genes in the children chromosomes are assigned as hidden based on the hidden gene assignment

mechanism. Depending on the mechanism, the hidden genes positions might not be similar to

those of the hidden genes positions in the parents. The assignment mechanisms are explained in

Section II.

II. Hidden Genes Evolution Mechanisms

As discussed in the previous section, the hidden genes assignment logic has an important role in

the performance of the HGGA. The original work on HGGA [40] used a feasibility logic for assigning

the hidden genes, in which all genes are assumed active unless the solution is infeasible. In the case

of infeasible solutions, the algorithm hides genes, one by one, until the chromosome represents a

feasible solution. In a more recent work, logical and stochastic operations were used to assign the

hidden genes in a current generation based on their hidden/active status in the previous generation
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Fig. 3: An example for crossover in HGGA [40]

[42]. To implement this concept, a tag tagi was assigned to each gene xi as shown in Figure 4.

The value of this binary tag determines whether the corresponding gene is hidden or active. This

concept of tags is also found in biology where the protein (in the histone) of each gene determines if

it is hidden or active. In this implementation, the tag plays the role of the histone. Reference [42]

developed stochastic and logical operations for tags evolution. As an example, one of the e�ective

logical operations is the Active OR logic, which assumes a tag is active in a current generation if it

is active in any of its two parents, and it is hidden otherwise.

In this paper, two approaches for tags evolution are developed. The �rst approach exploits the

tags concept, and develops new operations for evolving these tags over generations. The second

approach presents the concept of using two tags (dominant and recessive Alleles) as agents that

determine the status of the genes. These two approaches are detailed below.

Fig. 4: The concept of tags in HGGA
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Fig. 5: Schematic of the Stochastic Mechanism

A. Single Tag

Using the concept of tags, four new evolution mechanisms are investigated in this study. These

mechanisms utilize stochastic and/or logical methods to assign hidden genes in subsequent genera-

tions. These mechanisms are as follows:

1. Stochastic Mechanism

Similar to genes, the tags undergo mutation and crossover operations. The crossover points

and mutated locations in tags, however, are di�erent from those of the genes. Figure 5 shows the

schematic of the Stochastic Mechanism, where the tags undergo a two-point crossover while the

genes undergo a single-point crossover. The crossover points for both genes and tags are chosen

stochastically. Simulations were conducted to investigate the impact of the tags mutation probability

on the optimization e�cacy. In this investigation, the tags mutation probability was varied from

10−5 to 0.1. A mutation probability of 0.01 is found to yield the most �t solutions.

2. Logical Mechanism

This mechanism has two steps. After the selection of two parents, two temporary chromosomes

are produced through a single-point crossover operation on genes, and an Active-OR logic on tags

(as shown in Figure 6). These two intermediate chromosomes have the same tags. The �tness
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value of these two temporary chromosomes, J1 and J2, are calculated. The child (the o�spring

of the Logical Mechanism) is then computed as the weighted arithmetic crossover of the parents

chromosomes and is closer to the parent whose intermediate chromosome has a better �tness J .

The tags of the o�spring child are calculated using the Active-OR logic on the parents tags. Let C

be the gene string of the �nal o�spring, λ be a random number between 0 and 1, Pt1 and Pt2 be

the genes strings of the parents, then the gene string of the �nal o�spring is:

C =


0.5[(1 + λ)Pt1 + 0.5(1− λ)Pt2 ], if J1 > J2

0.5[(1− λ)Pt1 + 0.5(1 + λ)Pt2 ], if J1 < J2

(1)

3. Short Mechanism

This mechanism exploits solutions that are more �t and shorter (better �tness value and more

hidden genes). A �tness guided crossover is used for the genes with a modi�ed objective function

that is a function of the design variables in addition to the number of hidden genes in a solution. The

tags are obtained by Hidden-OR operator on the parents tags. Consider a minimization problem,

the modi�ed objective function for the crossover operator would be:

fmod(~x) = f(~x)−
M∑
i=1

(tagi). (2)

Fig. 6: Intermediate Chromosomes in The Logical Mechanism.

9



where M is the number of tags, ~x is the vector of variables (chromosome), and f(~x) is the �tness

function. Since the tags can only have values of 1 and 0, solutions with better �tness and more

hidden genes would be more �t. The o�spring would be created based on Equations 1, with J1

and J2 evaluated as follows:

J1 = fmod(Pt1) (3)

J2 = fmod(Pt2) (4)

4. Long Mechanism

This mechanism exploits solutions that are more �t and longer (better �tness value and less

hidden genes). In this case, the �tness guided crossover is applied on genes and the tags are obtained

by Active-OR operator on the parents tags. The modi�ed objective function for the genes crossover

operator in a minimization problem would be:

fmod(~x) = f(~x) +
M∑
i=1

(tagi). (5)

B. Two Tags (Alleles)

In this concept, the HGGA is developed by simulating Alleles and considering two tags for

each gene, one recessive and one dominant. In biology, an allele is an alternative form of a gene.

In human cells, there can be two Alleles (dominant or recessive) of a gene in each position on a

chromosome. Dominant traits are expressed when the individual has one copy of the allele. On

the other hand, the recessive traits are expressed only if the Alleles of a pair are homozygous (the

individual has two copies of the allele). These principles and their traits were �rst discovered by

Gregor Mendel [43, 44], and is named as Mendel's Law of Segregation.

This idea is adapted and modi�ed to be applied on GA. Two sets of tags are considered for

each chromosome, called Alleles. One allele is dominant and one is recessive and only the value of

the dominant allele a�ects the status of the genes in the chromosome. Both dominant and recessive

tags evolve through generations. Therefore, a recessive allele in the current generation may become

a dominant allele in the next generation or vice versa. The Alleles have binary values of zero and

one. If a dominant tag is one, the corresponding gene is hidden and if a dominant tag is zero, the
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corresponding gene is active. Choosing the dominant and recessive Alleles is based on the �tness

value of the chromosome, i.e. the allele that results in better �tness value is chosen as the dominant

one.

The selection operator is selected in this study to be one of the standard selection operators, e.g.

the rank based operator that depends only on the �tness of the chromosome. The mutation operator

is only applied on genes, while tags do not mutate. During the crossover operation, the single point

crossover operator is applied on tags and genes separately and the tags crossover independently

from the genes. The concept of this method is shown in Figure 7. The recessive tags in parent

1 crossover only with recessive tags of parent 2, and the dominant tags also crossover only with

dominant tags. In this example, g1p1 is the �rst gene in �rst parent; g1p2 is the �rst gene in second

parent, and so on. In the �rst child, the top allele set results in a more �t solution and therefore is

dominant and the lower allele is recessive. In the second child, however, the lower allele results in

a more �t solution and is considered the dominant allele.

Fig. 7: The crossover operator in the Alleles concept of HGGA.

Comparison between the concept of Alleles and the four tag based mechanisms of Section IIA
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is conducted through testing as detailed in Section III.

III. Interplanetary Trajectory Optimization Problems

Several examples of the complex trajectory optimization problems can be found in The Global

Trajectory Optimization Competition online portal of the European Space Agency [45]. A typical

problem statement can be written as follows: For a given range of the departure date from the

home planet Earth, a given range of the arrival date to a target planet, and a given dry mass of the

spacecraft, �nd the mission architecture (that is: how many �ybys in the mission, and how many

DSMs in each leg), as well as the dates and times of �ybys, the �ybys planets, the dates and times

of DSMs, the amounts and directions of these DSMs, and the launch and arrival dates, such that

the fuel mass needed for the whole mission is minimized. This is a VSDS optimization problem.

It is assumed in this study that the spacecraft operates with impulsive thrust and can have

multiple DSMs in each leg. The objective function is to minimize the fuel consumption, which can

be divided into departure (launch) impulse, arrival impulse, and DSMs maneuvers.

∆vtot = ||∆Vd||+ ||∆Va||+
n∑

i=1

||∆VDSM || (6)

where ||∆Vd|| is the launch impulse, ||∆Va|| is the arrival impulse, and ||
∑n

i=1 ∆VDSM || is the

summation of costs of DSM maneuvers.

In the case of an n-impulse trajectory with no �ybys (n DSMs in one mission leg), the indepen-

dent design variables are assumed the departure and arrival time, the ∆V vector of �rst n impulses,

and the epoch of the DSMs. Knowing the departure time, the planet heliocentric position vector

can be determined (assumed equal to the heliocentric position vector of the spacecraft). Since the

epoch of the �rst DSM and the initial velocity vector are known, the Kepler's equation can be used

to propagate the position and velocity vector of the spacecraft at the DSM epoch. The velocity

vector of the spacecraft after the DSM can be computed as the summation of the velocity vector

of the spacecraft before the DSM and the DSM impulse vector. This procedure is repeated for all

the transfer orbits of the trajectory except the last one, where the Lambert's problem is solved.

Lambert's problem is a two-body boundary value problem that computes the trajectory using ini-
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Fig. 8: Geometry of a non-powered �yby.

tial and �nal position vectors and TOF. For the last transfer orbit, the arrival time and hence the

orbit's TOF are known. The planets position vector can be determined (equal to the spacecraft

position vector at arrival) and therefore, the Lambert's problem can be used. This results in the

arrival impulse for capture by the planet.

The spacecraft can have multiple powered or non-powered gravity-assist maneuvers (�ybys).

The momentum change in a �yby maneuver can impact the ∆V needed for the spacecraft during

the mission. The spacecraft position vector during the �yby is assumed not to change and it is equal

to the heliocentric position vector of the planet at the �yby instance.

r− = r+ = rp (7)

where r− and r+ are the position vectors of the spacecraft before and after the �yby maneuver and

rp is the heliocentric position vector of the planet at the �yby instance. The velocity vector of the

spacecraft after the �yby maneuver is determined by calculating the magnitude and direction of the

velocity for powered and non-powered �ybys as follows:

• Non-powered �yby: It is assumed that during the �yby, the linear momentum of the spacecraft

changes only due to the gravity �eld of the planet. Hence, the magnitude of incoming and
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outgoing relative velocities are the same:

|v−∞| = |v+
∞| = v∞ (8)

where v−∞ and v+
∞ are the incoming and outgoing relative velocity vectors, respectively and

are calculated as:

v∞ = vS/C − vp (9)

vS/C is the spacecraft velocity vector and vp is the planet velocity vector (Figure 8). The

direction of the outgoing velocity can be determined by the �yby plane rotation angle δ.

sin(δ/2) =
µp

µp + rperv2∞
(10)

where µp is the gravitational constant of the planet and rper is the pericenter radius of the

�yby which is a design variable. The maximum rotation angle is when the pericenter radius

is minimum. If the required rotation angle is greater than the maximum achievable rotation

angle, a powered �yby maneuver is needed. The total spacecraft velocity change in a non-

powered �yby is then:

∆vnpf = 2v∞sin(δ/2) (11)

• Powered �yby: Higher rotation angles can be gained by applying a small impulse during the

�yby [46]. The spacecraft velocity on the periapsis trajectory is [47]:

vm =
√
v2∞ + 2µp/rper (12)

Hence, the required change in velocity for powered �yby is:

∆vpf = v+m − v−m =

√
v+∞

2
+ 2µp/rper −

√
v−∞

2
+ 2µp/rper (13)

The outgoing velocity of the spacecraft in heliocentric inertial frame can be calculated as

follows [41]:

v+
∞ = C(v+

∞)L (14)

14



Fig. 9: The local and inertial frames [41].

where (v+
∞)L is the outgoing relative velocity vector expressed in the local frame îĵk̂ and

C = [̂i ĵ k̂] is the transformation matrix between local frame and inertial frame. As shown

in Figure 9, (v+
∞)L can be calculated as [41]:

(v+
∞)L = v∞[cos(δ) sin(δ) 0]T (15)

The local frame is de�ned such that î is in the direction of the incoming relative velocity and

ĵ is perpendicular to î and is in the plane of the �yby maneuver. Line Γ in Figure 9 is the

intersection of ĵk̂ plane (Π plane) and the inertial Ecliptic plane Î Ĵ . The angle between Î and

Γ is Ω, and the angle between Γ and ĵ is η. Also, ι is the inclination of plane Π to the Ecliptic

plane. By this nomenclature, the unit directions can be derived as [41]:

î =
v−∞
|v−∞|

(16)

ĵ =


cos(−Ω) sin(−Ω) 0

−sin(−Ω) cos(−Ω) 0

0 0 1

×


1 0 0

0 cos(−ι) sin(−ι)

0 −sin(−ι) cos(−ι)

×

cos(−η) sin(−η) 0

−sin(−η) cos(−η) 0

0 0 1





1

0

0


(17)

k̂ = î× ĵ (18)

15



For the full MGADSM problem with m �ybys and ni DSMs in each leg (i = 1 . . .m), the

calculations for each leg is carried out as explained above. Departure and arrival dates and the

TOF of each leg (except the last leg) are design variables. The TOF of the last leg can be calculated

knowing the total TOF of the mission and the summation of the TOF of the other legs. Assume

that there are n1 DSMs in the �rst leg. Hence, there are n1 + 1 transfer orbits in that leg. The

calculations of the �rst nl orbits are similar to the explanations on the n-impulse trajectory. For

the last orbit, the velocity vector at the end point is the incoming heliocentric velocity of the �yby.

The �yby is assumed non-powered if at least one DSM is in the following leg. Knowing the �yby

pericenter altitude and rotation angle (design variables), the outgoing velocity (the spacecraft initial

heliocentric velocity vector for the next leg) can be determined by carrying out the non-powered

�yby calculations. This procedure is repeated for all the legs. In case of no DSMs in a leg, the

initial �yby of that leg is assumed a powered �yby and the corresponding calculations can be used.

For all the problems, the J2 e�ect is ignored. Since Lambert's problem can have multiple

solutions, the maximum number of revolutions is set to 5 and the best solution from Lambert's

problem (lowest cost) is selected as the trajectory for the current leg.

To illustrate how this problem is a VSDS optimization problem, two sample solutions are shown

as chromosomes in Figure 10. In this example, the hidden genes are shown with gray color. The

top part of the �gure shows the chromosomes in HGGA, with hidden genes and equal lengths, and

the bottom part of the �gure shows the equivalent chromosomes with no hidden genes and di�erent

lengths. As seen, depending on the number of �ybys and DSMs, the length of the solutions can be

variable. In the �rst solution, there is one �yby and one DSM, and in the second solution there

are two �ybys and two DSMs. Assume that it is required to send a spacecraft to planet Jupiter

with the lowest cost (fuel consumption) within certain ranges for launch and arrival dates. The two

solutions shown in Figure 10 can be interpreted as follows:

1. First Solution: A trajectory with one �yby around Venus (Earth-Venus-Jupiter) and one DSM

in the second leg.

2. Second Solution: A trajectory with two �ybys around Venus and Earth (Earth-Venus-Earth-

Jupiter or EVEJ) and two DSMs in the �rst and the third legs.
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Fig. 10: An example of two di�erent solutions for an interplanetary trajectory problem in HGGA

(Earth to Jupiter), and the equivalent chromosomes with no hidden genes in GA.

This is a VSDS problem; the proposed tags/Alleles mechanisms can be used to search for the

optimal solution and architecture.

IV. Numerical Results

In this paper, two benchmark problems are investigated: Earth to Jupiter and Earth to Saturn.

The best known solutions for these problems can be found in the European Space Agency (ESA)

website [48] and also in [41, 49]. Each problem is solved in two phases. In the �rst phase, it is

assumed that there are no DSMs (zero-DSM phase) and a sub-optimal �yby sequence is obtained.

The second phase is a multi-gravity-assist with DSMs phase (MGADSM phase) that uses a �xed

�yby sequence (obtained in the �rst step) to optimize the rest of the design variables including the

DSMs in the mission. This approach has shown to be computationally e�cient [41] compared to a

single model where all the variables including DSMs and �yby sequences are optimized together. For

all the problems, the genes mutation probability is 0.01, the elite count is 10% of the population size,

the crossover probability is 0.95, and the function tolerance (stopping condition of the algorithm) is

10−12. For the sake of comparison, the lower and upper boundaries of the variables in all problems

are compatible with the work done in [41, 48, 49].
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A. Earth - Jupiter Mission Trajectory Optimization

The variable boundaries are listed in Table 2. The spacecraft can �yby around up to two

planets in the solar system and there can be up to two DSMs in each leg. Hence, the chromosome

has two genes for the �yby planets in the zero-DSM phase, and each �yby planet can be any one

from one (Mercury) to eight (Neptune). Each �yby gene carries the planet identi�cation number.

One tag (two tags in the case of using the Alleles concept) is assigned to each �yby gene and if the

tag of any of the �ybys is one, the corresponding �yby is hidden. For example assume that the values

of �ybys are three (�rst �yby is around the third planet-Earth) and �ve (second �yby is around the

�fth planet-Jupiter). If the tags are [1, 0], the �yby around Earth is hidden and the solution has

only one �yby around Jupiter. Similarly, for the MGADSM phase, there can be a maximum two

DSMs in each leg. Since the maximum number of �ybys is two, the maximum number of legs is

three, and hence, the maximum number of DSMs is six. For each DSM, we need to compute the

optimal time (TDSM ) at which this DSM occurs. A gene and a tag are added for each DSM time

TDSM , and hence, there are six gens and six tags for TDSMi (i = 1 · · · 6) in this mission. Note

that if a �yby is hidden, then its leg disappears and all the DSMs in that leg automatically become

hidden. Note also that even if a �yby exists, a DSM in its leg can be hidden depending on the

value of its own tag. The range for each DSM is set between [−5,−5,−5] km/s and [5, 5, 5] km/s

as shown in Table 2. So, the chromosome will have genes for 6× 3 = 18 scalar components of the

DSMs. Note that these 18 genes are classi�ed in groups of three genes; hence if one DSM is hidden

then its three genes get hidden together. The TOF for each leg is between 80 and 800 days except

the last one. The duration of the last leg is determined by the launch and arrival dates and the

TOF of the other legs. There is a gene for each TOF in the mission. Hence, we have three genes for

the TOFs in this Jupiter mission. Note that there are no tags associated with the TOF genes since

the state of each gene (hidden or active) is determined based on the �yby tags. If a �yby exists

then there is an active gene for a TOF associated with it. Two genes for the two �yby altitudes hp

and two genes for the two �yby plane angles η are added. Similar to the TOF variables, no tags are

needed for the hp and η genes. There are also six genes for the departure impulse, �ight direction,

the arrival date and the departure date.
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Table 2: Lower and upper bounds of Earth-Jupiter problem

Design Variable Lower Bound Upper Bound

Flyby 1 planet 1 (Mercury) 8 (Neptune)

Flyby 2 planet 1 8

DSMi (km/s), i = 1 · · · 6 [−5,−5,−5] [5, 5, 5]

Flight Direction Posigrade Retrograde

Departure Date (t0) 01 Sep.2016 30 Sep.2016

Arrival Date (tf ) 01 Sep.2021 31 Dec.2021

TOF (days) [80, 80] [800, 800]

Flyby normalized pericenter altitude (hp) [0.1, 0.1, 0.1] [10, 10, 10]

Flyby plane rotation angle (η) (rad) [0, 0, 0] [2π, 2π, 2π]

Epoch of DSMs (εi, i = 1 · · · 6) 0.1 0.9

The population size is set to 500 and the number of generations is 500. Each simulation is

repeated 100 times for the purpose of statistical analysis on the e�ciency of the method. This

problem is solved using di�erent mechanisms and the cost values of each mechanism in the zero-

DSM and the MGADSM models are reported in Table 3. All the mechanisms could �nd the optimal

�yby sequence which is Earth-Venus-Earth-Jupiter (EVEJ) in their zero-DSM model. Based on the

results of Table 3, the Stochastic Mechanism can �nd the lowest cost solution (10.1308 km/s) with

one DSM in the �rst leg, while the Logical Mechanism results in the the highest cost. The detailed

solution of the Stochastic Mechanism is presented in Table 4 and Figure 11.

Table 3: Cost values of Earth-Jupiter problem using di�erent Mechanisms

Mechanism Zero-DSM model (km/s) MGADSM model (km/s)

Stochastic Mechanism 10.1612 10.1308

Logical Mechanism 11.0580 10.9822

Short Mechanism 11.2590 10.4483

Long Mechanism 13.2707 10.5075

Alleles 10.2374 10.1741
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Table 4: Solution of Earth-Jupiter problem using Stochastic Mechanism

Mission parameter Zero-DSM model MGADSM model

Departure Date 05− Sep− 2016, 17 : 20 : 00 03− Sep− 2016, 15 : 08 : 25

Departure Impulse (km/s) 3.5233 3.4488

DSM date − 14− Jan− 2017, 06 : 36 : 34

DSM impulse (km/s) − |[0.0225, 0.0354,−0.0147]| = 0.0444

Venus �yby date 05− Sep− 2017, 14 : 13 : 06 06− Sep− 2017, 17 : 54 : 14

Post-�yby impulse (km/s) 1.5476× 10−7 2.3533× 10−5

Pericenter altitude (km) 1290.1954 876.0221

Earth �yby date 29−Mar − 2019, 22 : 43 : 33 29−Mar − 2019, 04 : 20 : 01

Post-�yby impulse (km/s) 0.4402 0.4478

Pericenter altitude (km) 637.8000 637.8000

Arrival date 21− Sep− 2021, 16 : 22 : 30 18− Sep− 2021, 03 : 33 : 26

Arrival impulse (km/s) 6.1961 6.1897

TOF (days) 364.8702, 570.3545, 906.7354 368.1152, 568.4346, 903.9676

Mission duration (days) 1840.5174 1844.499

Motion direction posigrade posigrade

Mission cost (km/s) 10.1612 10.1308

B. Earth-Saturn Mission Trajectory Optimization (Cassini 2)

A more complicated trajectory is the Cassini 2 mission that was designed by NASA, European

Space Agency, and Italian Space Agency to discover the planet Saturn. The mission consists of

a satellite that orbits Saturn and a lander for its moon Titan [50]. We consider the problem of

designing the trajectory from Earth to rendez-vous with Saturn. The high number of potential

�ybys and the wide ranges for the design variable make this problem challenging. Here, a launch

window of 30 days is selected for the mission for the sake of comparison with the reported results

in the literature [41, 51]. The upper and lower boundaries of the design variables are shown in

Table 5.

The goal is to optimize the trajectory to Saturn as a VSDS problem with unknown number

of �ybys and DSMs. The maximum number of �ybys is set to four (with four corresponding tags
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Fig. 11: EVEJ Trajectory for MGADSM Model using Stochastic Mechanism

Table 5: Lower and upper bounds of Earth-Saturn problem

Design Variable Lower Bound Upper Bound

Flyby #i planet, i = 1 · · · 4 2 (V enus) 5 (Jupiter)

DSMi(km/s), i = 1 · · · 5 [−5,−5,−5] [5, 5, 5]

Flight Direction Posigrade Retrograde

Departure Date 01 Nov.1997 01 Dec.1997

Arrival Date 01 Jan.2007 30 Jun.2007

TOF (days) [100, 100, 30, 400] [400, 500, 300, 1600]

Flyby normalized pericenter altitude [0.05, 0.05, 0.15, 0.7] [5, 5, 5.5, 290]

Flyby plane rotation angle (rad) [−π,−π,−π,−π] [π, π, π, π]

Epoch of DSM (εi, i = 1 · · · 5) 0.01 0.9

in the zero-DSM phase) and the maximum number of DSMs in each of the �ve legs is one (with

�ve corresponding tags in the MGADSM phase). For both phases, the population size is 500. The

number of generations is selected to be 400 for the zero-DSM phase and 500 for the MGADSM

phase. A niching method is used to help the optimization algorithm explore more of the design

space [29, 41, 52]. In this niching method, every 20 generations, the current best solutions and

other solutions with similar �yby sequences are given high cost. Moreover, every �ve generations
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(a) EVVEJS trajectory (b) Inner planets

Fig. 12: EVVEJS Trajectory for MGADSM Model using Stochastic Mechanism

a random solution is inserted in place of an elite solution. In doing so, the stochastic, logical, and

Alleles mechanisms were able to �nd the optimal �yby sequence. Out of ten identical simulations,

the stochastic mechanism can �nd the optimal sequence seven times (success rate of 70%), the

logical mechanism two times (success rate of 20%), and the Alleles method �ve times (success rate

of 50%). The short and long mechanisms were not able to �nd the optimal �yby sequence. For the

MGADSM phase, only the mechanisms that were able to �nd the optimal sequence are investigated.

The results are summarized in Table 6. The Stochastic Mechanism has the lowest cost of 8.4457

km/s with one DSM in the �rst and second leg (Table 7). The Logical Mechanism and the Alleles

concept found solutions with higher cost values of 9.0539 km/s and 10.1364 km/s, respectively. The

Stochastic Mechanism trajectory is shown in Figure 12.

Table 6: Results of Earth-Saturn problem using di�erent Mechanisms

Mechanism success rate of Zero-DSM model cost of MGADSM model (km/s)

Stochastic Mechanism 70% 8.4457

Logical Mechanism 10% 9.0539

Short Mechanism 0% −

Long Mechanism 0% −

Alleles 50% 10.1364
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Table 7: Solution of Earth-Saturn problem using stochastic mechanism

Mission parameter Zero-DSM model MGADSM model

Departure Date 15−Nov − 1997, 08 : 53 : 42 14−Nov − 1997, 11 : 01 : 28

Departure Impulse (km/s) 3.2676 3.2782

DSM date − 08−Mar − 1998, 19 : 51 : 44

DSM impulse (km/s) − |[0.16194− 0.43175− 0.21757]| = 0.50987

Venus �yby date 02−May − 1998, 08 : 45 : 56 29−Apr − 1998, 02 : 02 : 05

Post-�yby impulse (km/s) 1.8240 0

Pericenter altitude (km) 22685.3828 2066.8258

DSM date − 25−Nov − 1998, 05 : 56 : 38

DSM impulse (km/s) − |[0.39217− 0.0014362− 0.10418]| = 0.40577

Venus �yby date 27− Jun− 1999, 09 : 46 : 18 26− Jun− 1999, 11 : 10 : 42

Post-�yby impulse (km/s) 1.8873 1.19153× 10−7

Pericenter altitude (km) 12518.5172 605.2880

Earth �yby date 19−Aug − 1999, 15 : 52 : 32 19−Aug − 1999, 16 : 16 : 48

Post-�yby impulse (km/s) 6.7970e− 07 0.00031764

Pericenter altitude (km) 1966.2076 1855.5100

Jupiter �yby date 31−Mar − 2001, 08 : 45 : 42 29−Mar − 2001, 09 : 31 : 40

Post-�yby impulse (km/s) 1.7135e− 05 0.00022016

Pericenter altitude (km) 4920495.3477 4975803.05136

Arrival date 13−May − 2005, 08 : 21 : 04 22−Mar − 2007, 08 : 14 : 11

Arrival impulse (km/s) 4.2469 4.2513

TOF (days) 167.99, 421.04, 53.25, 589.70, 2199.35 165.81, 423.41, 53.78, 588.35, 2183.54

Mission duration (days) 3431.3442 3414.8886

Mission cost (km/s) 11.2259 8.4457

V. Discussion

The GTOP database consists of a wide variety of problems to asteroids and di�erent planets,

including Saturn and Mercury. The HGGA mechanisms in this paper are tested on Cassini 2 and

Earth to Jupiter problems. The results presented in this paper show that the proposed mechanisms
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are capable of �nding the optimal architecture of the mission (optimal �yby sequence as well as

optimal number of DSMs).

The trajectory from Earth to Jupiter has been previously investigated using di�erent evolution-

ary methods. For the sake of comparison, only the methods that assume an impulsive thrust are

considered here. Olympio and Marmorat solved this problem using the primer vector theory [51].

By assuming a �xed �yby sequence as EVEJ and setting the variable ranges close to Table 2, a

total cost of 10.267 km/s was found. The HGGA method with feasibility criteria (original HGGA)

was also tested on this problem and found a solution of cost 10.178 km/s [41]. The Dynamic-size

multiple population Genetic algorithm has also been tested on this problem and the cost of its solu-

tion is 10.125 km/s [49]. If the duration of the mission increases, the total cost would decrease. This

has been shown in the works done by Musegaas [53] and Myatt et. al. [30]. Musegaas solved the

Earth to Jupiter problem as a tuning step for a mission to Saturn (EVEJS). A �xed �yby sequence

and large mission duration (almost 20 years and eight months) are assumed in solving the problem.

The spacecraft can have powered �ybys and is captured at Jupiter. No DSMs are assumed during

the trajectory and by optimizing only the event times, the cost found is 7.0144 km/s. Myatt et al.

solved the same problem assuming non-powered �ybys and found a solution with a cost of 7.5483

km/s. The total time of the mission in here is not allowed to exceed �ve years and hence higher

cost values are found. The cost found by Stochastic Mechanism is 10.1308 km/s which is slightly

better than the solution found by the original version of the HGGA.

For the mission to Saturn, initial investigations show that the cost function is sensitive to the

events dates (dates of performing DSMs and �ybys). As an example, consider the variation of the

cost function with the �rst �yby pericenter altitude hp. Figure 13a shows the variation of the

cost function with the pericenter altitude when all other variables are �xed at their optimal values;

clearly the optimal solution corresponds to the red star in this �gure. Figure 13b on the other hand

shows the variation of the cost function with the pericenter altitude when the launch date is varied

to a value di�erent from its optimal value, while still keeping all other variables at their optimal

values. Two observations can be noted from Figure 13. First, the impact of changing the launch

date is signi�cant on the cost; this can be depicted by comparing the cost values between the two
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(a) All variables optimal (b) All variables optimal except t0

Fig. 13: Cost value vs. pericenter altitude of �rst �yby

�gures (the vertical axis) with 50 days di�erence in their launch dates. Second, when the launch

date is not optimal (Figure 13b) the line relating the cost to hp is misleading to the optimizer.

When the launch date is optimal, the cost decreases with decreasing hp, while that is not the case

when the launch date is not optimized. Hence, when optimizing the MGADSM phase, a small range

is assumed around the zero-DSM variables.

The mission to Saturn has been investigated in many papers in di�erent formats. EVEJS, Casini

1, Cassini 2 (easy and complete versions) are some of the variations on the mission that have been

investigated. For the Cassini 2 (easy version), the minimum cost reported in the literature is 8.385

km/s when solving the VSDS problem [41] and it is 8.282 km/s when solving the problem assuming

a known �xed �yby sequence [54, 55]. This problem is also solved using the PaGMO software using

di�erential evolution and genetic algorithms [53]. PaGMO is an optimization software in which

the user can de�ne the problem and the optimization algorithm. The lowest cost found in this

reference is 8.2379 km/s given a known �xed �yby sequence and one DSM. Other references have

reported close cost values for this problem with a known �xed �yby sequence [56�58]. A list of

these solutions can be found in the GTOP website [48]. In this study, only three mechanisms (the

Stochastic, the logical, and the Alleles) were able to �nd the optimal �yby sequence. The Stochastic

Mechanism found a cost of 8.4457 km/s for this mission, with one DSM in the �rst leg and one

DSM in the second leg. Despite that this cost is slightly higher than the best known solution, the
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main advantage of the proposed method is its capability of searching for the optimal �yby and DSM

architecture.

In all the tested problems, the Stochastic Mechanism found the lowest cost compared to the

other mechanisms investigated in this paper. In the next section some statistical analysis is done

on the mechanisms and their performance is compared.

VI. Conclusions

This paper demonstrated that the hidden genes genetic algorithm - with new evolution mech-

anisms for tags - has the capability of searching for the optimal architecture and solution in space

trajectory optimization problems. The concepts of tags and Alleles in hidden genes are introduced

in this paper, and di�erent evolution mechanisms for the tags are investigated and compared based

on their performance. These mechanisms found di�erent solutions of di�erent cost values and dif-

ferent success rates. In all the test cases, the stochastic mechanism could �nd the best �yby and

DSM sequence, as well as the lowest cost value compared to other mechanisms.
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