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The concept of hidden genes was recently introduced in ge-
netic algorithms to handle systems architecture optimization
problems where the number of design variables is variable.
Selecting the hidden genes in a chromosome determines the
architecture of the solution. This paper presents two cate-
gories of mechanisms for selecting (assigning) the hidden
genes in the chromosomes of genetic algorithms. These
mechanisms dictate how the chromosome evolve in the pres-
ence of hidden genes. In the proposed mechanisms, a tag is
assigned for each gene; this tag determines whether the gene
is hidden or not. In the first category of mechanisms, the tags
evolve using stochastic operations. Eight different variations
in this category are proposed and compared through numer-
ical testing. The second category introduces logical opera-
tions for tags evolution. Both categories are tested on the
problem of interplanetary trajectory optimization for a space
mission to Jupiter, as well as on mathematical optimization
problems. Several numerical experiments were designed and
conducted to optimize the selection of the hidden genes al-
gorithm parameters. The numerical results presented in this
paper demonstrate that the proposed concept of tags and the
assignment mechanisms enable the hidden genes genetic al-
gorithms to find better solutions.

1 Introduction

Systems architecture optimization problems arise in
several applications such as in automated construction (in
which hundreds or thousands of robots fabricate large, com-
plex structures), autonomous emergency response, and smart
buildings, transportation, medical technology, and electric
grids [1]. In these complex systems, the automated sys-
tem design optimization is crucial to achieve design objec-
tives. The task of design optimization includes optimizing
the system architecture (topology) in addition to the system
variables. Optimizing the system architecture renders the
problem a Variable-Size Design Space (VSDS) optimization
problem (the number of design variables to be optimized is a
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variable.) Consider, for example, the optimization of a space
interplanetary trajectory. The objective is to design a trajec-
tory for a spacecraft to travel from the home planet to the tar-
get planet with, for instance, a minimum fuel consumption.
As can be seen in Figure 1, the spacecraft can apply Deep
Space Maneuvers (DSMs) which are propulsive impulses
used to change the velocity of the spacecraft instantaneously;
these DSMs consume fuel proportional to the amount of the
DSMs impulse. The spacecraft can also benefit from free
change in momentum, through as many as needed fly-bys of
other planets. When the spacecraft performs a fly-by maneu-
ver, we need to determine the height of closest approach to
the fly-by planet as well as the plane of the fly-by maneuver.
Hence, by changing the number of fly-bys the total number
of variables change.
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Fig. 1: Interplanetary Trajectory Optimization Problem Topology

The segment between any two planets is called a leg. A
leg can have any number of DSMs. The architecture of a
solution refers to the sequence of fly-bys and the number of
DSMs in each leg. The determination of the mission archi-
tecture then means the determination of the number of fly-
bys, the planets of fly-bys, and the number of DSMs in each
leg. Other non architecture variables include launch and ar-



rival dates, dates and times of fly-bys, dates and times of
DSMs, amounts and directions of DSMs impulses. This is a
VSDS optimization problem.

Another example is the optimization of a microgrid sys-
tem where there are several energy sources and co-located
energy storage devices that can either sink or source power
with their corresponding sources. The net power at each
source/storage is metered to the grid main bus using a boost
converter. For an efficient design of the microgrid, the num-
ber of storage elements (N) and their capacities need to be
optimized. Storage is expensive and designing a microgrid,
with storage sized properly, is an open problem. Associated
with computing the optimal N is the optimal values for the
duty ratios at the converters that controls the power metered
to the main bus from each source. A more complex situation
is when we have M microgrids that have the ability to inter-
connect. This provides a large number of permutations for
exchanging power.

Systems design optimization problems are usually re-
plete with local minima. Hence a global search algorithm
is usually needed for optimizing the system variables, such
as genetic algorithms (GAs) [2], particle swarm optimiza-
tion [3], ant colony optimization [4], or differential evolu-
tion [5]. In VSDS optimization, the problem can be formu-
lated as follows:

Minimize f(¥,N)

o 1
h(z) =0, M

X,
Subjectto  g(¥) <0, ¥<x<H

where X = [x,x2, ...,xN]T, N is the number of design vari-
ables, ¥ and ¥ are the upper and lower bounds of the vari-
ables X, respectively. The number of variables N in this for-
mulation is variable, and its value dictates the architecture of
the solution. The number of inequality constraints g and the
number of equality constraints h, each is also a variable.
The research on developing algorithms that can han-
dle VSDS optimization problems (sometimes referred to as
variable length optimization) has started since about two
decades. GAs are not suitable for VSDS problems because
they are designed to work only on problems of fixed number
of variables. Reference [6] presents a variable length ge-
netic programming, and compares it to the simulated anneal-
ing and the stochastic iterated hill climbing methods, on pro-
gram discovery problems. A VSDS GA is presented in [7]
in which a random operator is introduced to change the chro-
mosome length, for the problem of Kauffman NK model.
This random operator depends on the identity of genes which
is given by their position relative to one end of the genotype.
Reference [8] is a continuing work of [7] and analyzes the
optimal location for the crossover point in VSDS problems.
When two parents have different chromosome lengths, and
given a selection for the crossover point in parent 1, refer-
ence [8] suggests that the crossover point in parent 2 be cho-
sen such that the difference between the swapped segments
is minimized. The method proposed in [8] is a search on
all the possible crossover points in parent 2 to find the best
cutoff point. The VSDS GA in reference [9] uses a two-

point crossover, with different cutoff points in each parent,
resulting in different lengths of the children chromosomes.
This method is most useful in problems with variables of the
same identity, like angles of a polyhedral where adding or
removing one angle will result in a new polyhedral (e.g. tri-
angle to rectangle or vice versa). Reference [10] presents
a number of variable length representation evolutionary al-
gorithms that improves the sampling of a VSDS, with ap-
plication in evolutionary electronics. In reference [11], the
number of different chromosome lengths is set a priori, and
both parents have the same crossover point (same gene in-
dex of cutoff). Therefore the length of the chromosome is
switched from parents to children in [11] (the length of child
2 is equal to length of parent 1 and length of child 1 is equal
to length of parent 2). This method does not provide infor-
mation regarding the optimal length of a solution. A different
approach in VSDS GA is to have equal-length chromosomes
in each generation, yet the chromosome length is allowed to
change among different generations as presented in [12, 13].
In this method, the GA starts with short-length chromosomes
and the best solution in a generation is transferred to the
next generation with a longer chromosome length. In this
way, the GA handles fixed-size chromosomes in each gener-
ation, and there is no need to define new evolutionary op-
erations for GA. A dynamic-size multiple population ge-
netic algorithm was developed in [14] where each genera-
tion consists of a number of sub-populations; all chromo-
somes in each sub-population are of the same length. Hence
each sub-population evolves over subsequent generations as
in a standard GA. The size of each sub-population, how-
ever, changes dynamically over subsequent generations such
that more fit sub-populations are allowed to increase in size
whereas lower fit sub-populations decreases in size. This ap-
proach has been applied to the trajectory optimization prob-
lem and demonstrated success in finding best know solution
architectures. The computational cost of this method, how-
ever, is relatively high since it implements GA over several
sub-populations in parallel. Also, only a finite number of ar-
chitectures (assumed a priori) can be investigated using the
method in [14]. A structured chromosome genetic algorithm
was developed in [15, 16] where the standard one layer chro-
mosome is replaced with a multi-layer chromosome for cod-
ing the variables; the number of genes in one layer is dic-
tated by the values of some of the genes in the upper layers.
Hence, it was possible to code solutions of different architec-
tures. Yet, this structured-chromosome approach introduces
new definitions for the crossover operation such that mean-
ingful swapping between chromosomes of different layers is
guaranteed. Some other algorithms are designed for specific
problems. For instance, references [17] and [18] present tai-
lored algorithms that search for the optimal structural topol-
ogy in truss and frame structures, respectively. The disser-
tation in [19] presents a study on topology optimization of
nanophotonic devices and makes a comparison between the
homogenization method [20] and genetic algorithms [2]. As
can be seen from the above discussion, many of the VSDS
optimization algorithms are problem specific. The dynamic-
size multiple population genetic algorithm has a high compu-



tational cost [14]. The structured chromosome genetic algo-
rithm is relatively complex to develop since it requires new
definitions for all GAs operations.

Inspired by the concept of hidden genes in biology, ref-
erence [21] presented the method of Hidden Genes Genetic
Algorithms (HGGA) for solving VSDS optimization prob-
lems. In space trajectory optimization, the HGGA success-
fully found the best known solution architectures as reported
in [22,23]. Genetic algorithms is one of the methods being
used for systems architecture optimization problems that are
not VSDS. It is because the HGGA is based on genetic algo-
rithms that it can handle systems architecture optimization
problems. The added capability of the HGGA is that it can
optimize among different solution architectures and can also
develop new architectures that might not be known a priori,
and hence it can handle VSDS problems. The method used in
reference [21] to determine which genes are hidden in each
chromosome in each generation, however, was very primi-
tive. In [21], genes in a chromosome will only be hidden
if a chromosome represents a non-feasible solution, Hence,
the HGGA will not attempt to hide genes if the chromosome
is a feasible solution. Subsequent developments on HGGA
has introduced tags for the genes [24], where each gene is
assigned a binary tag that determines whether it is hidden or
not; hence a gene can be hidden even in feasible solutions if
hiding that gene results in a more fit solution. In this paper,
the problem of selecting the hidden genes in each generation
is addressed. This paper develops mechanisms for the tags
to evolve over generations. Two new concepts for hidden
genes selection are presented in this paper. Section 2 presents
a review for the most recent developments on HGGA. Sec-
tion 3 presents the new methods of tags evolution. Section 4
presents VSDS mathematical functions and tests on the tags
evolution methods. Section 5 presents the results of imple-
menting these methods to solve an interplanetary space tra-
jectory optimization problem. Finally, Section 6 presents a
statistical analysis for the proposed methods.

2 Hidden Genes Genetic Algorithms
Section 2.1 presents necessary background material.

Section 2.2 is a brief description from reference [21] that
shows how HGGA works.

2.1 The Hidden Genes Concept in Biology

In genetics, the deoxyribonucleic acid (DNA) is orga-
nized into long structures called chromosomes. Contained
in the DNA are segments called genes. Each gene is an in-
struction for making a protein. These genes are written in a
specific language. This language has only three-letter words,
and the alphabet is only four letters. Hence, the total num-
ber of words is 64. The difference between any two per-
sons is essentially because of the difference in the instruc-
tions written with these 64 words. Genes make proteins ac-
cording to these words. Since, not all proteins are made in
every cell, not every gene is read in every cell. For exam-
ple, an eye cell doesn’t need any breathing genes on. And
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Fig. 3: Hidden genes and effective genes in two different
chromosomes

so they are shut off in the eye. Seeing genes are also shut
off in the lungs. Another layer of coding tells what genes a
cell should read and what genes should be hidden from the
cell [25]. A gene that is being hidden, will not be transcribed
in the cell. There are several ways to hide genes from the
cell. One way is to cover up the start of a gene by chem-
ical groups that get stuck to the DNA. In another way, a
cell makes a protein that marks the genes to be read; Fig-
ure 2 is an illustration for this concept. Some of the DNA
in a cell is usually wrapped around nucleosomes but lots of
DNA are not. The locations of the nucleosomes can control
which genes get used in a cell and which are hidden [25].

2.2 Concept of Optimization
Using Hidden Genes Genetic
Algorithms

In the HGGA, the concept
of hidden genes is used in GA
optimization to hide some of the
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ble chromosome. In the hidden genes concept, all chromo-
somes in the population are allocated a fixed length equal to
Lyax. In a general solution (a point in the design space), some
of the variables (part of the chromosome) will be ineffective
in objective function evaluations; the genes describing these
variables are referred to as hidden genes. The hidden genes,
however, will take part in the genetic operations in generating
future generations. To illustrate this concept, consider Figure
3. Suppose we have two chromosomes, the first chromosome
is represented by five genes (represented by five binary bits in
this example) and the second chromosome is represented by
three genes. Suppose also that the maximum possible length



for a chromosome in the population is fixed at 7. Hence, we
can say that the first chromosome is augmented by two hid-
den genes and the second chromosome is augmented by four
hidden genes. The hidden genes are not used to evaluate the
the fitness of the chromosomes. Because all chromosomes
have the same length, standard definitions of genetic algo-
rithms operations can still be applied. Mutation may alter
the value of a hidden gene. A crossover operation may swap
parts of the chromosome that have hidden genes. A hidden
gene in a parent may become an effective gene in the off-
spring. These hidden genes that become effective take part
in the objective function evaluations in the new generations.
Figure 4 shows a simple example for two parents with hidden
genes and the resulting children after a crossover operation.
In figure 4, genes are binary numbers and hidden genes are
shown by grey color. The crossover point is between gene 2
and gene 3. As can be seen, the parent chromosomes swap
the genes from crossover point and as a result the gene values
change in both of the children chromosomes, and the num-
ber of hidden genes and/or the location of the hidden gene
change. Assigning which gene in the children that need to
be hidden is crucial for the efficiency of HGGA; assignment
mechanisms are developed in this paper.

3 Hidden Genes Assignment Methods

This paper addresses the question of which genes are
selected to be hidden in the HGGA, in each chromosome,
in each generation, during the search for the optimal so-
lution (optimal configuration). This mechanism of assign-
ing hidden genes in a chromosome is vital for the efficient
performance of HGGA. In previous work of HGGA [21],
the mechanism that was used to assign the hidden genes
(called “feasibility mechanism”) was primitive. The feasi-
bility mechanism rule assumes initially no hidden genes in
a chromosome; if the obtained chromosome is feasible then
there is no hidden genes. If the solution is not feasible, then
starting from one end of the chromosome the algorithm hides
genes - one by one - until the chromosome becomes a feasi-
ble chromosome.

In genetics, as discussed in Section 2.1, a cell makes a
protein that marks the genes to be read. Inspired by genetics,
it is proposed to use a tag for each of the genes that have
the potential to be hidden (configuration gene) [24]. This
tag determines whether that gene is hidden or not. The tag
is implemented as a binary digit that can take a value of ‘1’
or ‘0’, as shown in Figure 5. For each gene x; that can be
hidden, a tag; is assigned to decide whether it is hidden or
not. If tag; is 1, then x; is hidden, and if it is O, x; is active.

The values of these tags evolve dynamically as chro-
mosomes change during the optimization process. Prelim-
inary work in [24] suggests mechanisms for tags evolution.
This paper presents two different concepts for tags evolution.
Both concepts are shown below with different variations on
each concept.

3.1 Logical evolution of tags

During the chromosome crossover operation, the tags
for the children are computed from the tags of the parents,
using the logical OR operation. Using a logical operation
is not new to GA. Reference [27] used them in the chromo-
somes crossover operation in GAs. Reference [28] presents
a crossover operation where the similar genes in the parents
are copied to the two children while the remaining genes in
each child are randomly chosen from the two parents. Here,
however, the logical operator is applied only on the tags. The
crossover of two parents results in two children. Three logics
are studied in this paper for the logical evolution of tags:

Logic A: For one child, a gene is hidden if the same gene is
hidden in any of the parents (Hidden-OR). For the sec-
ond child, a gene is active if the same gene is active in
any of the parents (Active-OR). It is possible to think
of the logic of the second child as the AND logical op-
eration when used with the hidden state — that is in the
second child a gene is hidden if the same gene is hid-
den in both of the parents (Hidden-AND). The resulting
children from crossover operation is shown in Figure 6
along with the resulting new tags for the children.

Logic B: The Hidden-OR logic is used for both children.
Even though the tags will be the same in both children,
the two children represent two different solutions be-
cause they have different gene values.

Logic C: The Active-OR logic is used for both children.

3.2 Stochastic evolution of tags

In this concept, the tags are evolved using crossover
and/or mutation operations, in a similar way to that of the
design variables. Eight mechanisms are investigated using
this concept. These mechanisms are:

Mechanism A: tags evolve through a mutation operation
with a certain mutation probability. In this mechanism,
the tags are separate from the design variables in the
chromosome.

Mechanism B: tags evolve through mutation and crossover
operations. In this mechanism, the tags are considered
as discrete variables similar to the design variables in the
chromosome. The tags are appended to the design vari-
ables; and hence their values are optimized along with
the other variables through the selection, crossover, and
mutation operations. In this mechanism the number of
design variables is increased. The computational cost of
evaluating the cost function is not changed though.

Mechanism C: tags evolve through a crossover operation.
In this mechanism, the tags are considered as discrete
variables similar to the design variables in the chromo-
some; yet only crossover operation can be applied to the
tags.

Mechanism D: tags evolve through a mutation operation.
In this mechanism, the tags are considered as discrete
variables similar to the design variables in the chromo-
some; yet only mutation operation is applied to the tags.
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The mutation probability in this mechanism is the same
as that used to mutate the main chromosomes.

Mechanism E: tags crossover independently from the
genes. In other words, the tags may swap while the
genes do not, or vise versa. This mechanism can be
interpreted as a 2 — D multiple crossover operator, one
direction through tags and one direction through genes.
Before applying the crossover operator, tags undergo a
mutation operation.

Mechanism F: tags crossover using a logical fitness guided
(arithmetic) crossover in which two intermediate chro-
mosomes are produced. In these intermediate chromo-
somes, the genes are produced from a single crossover
operator on parents and the tags are the outcome of the
Active-OR logic on the parents’ tags. In other words,
parent X will have intermediate offspring Xx, and parent
Y will have intermediate offspring Yy using the arith-
metic crossover operation. The actual offspring is then
created by a fitness guided crossover operation on the
parents, and it is closer to the parent whose intermediate
offspring has better cost.

Mechanism G: the arithmetic crossover is used with a mod-
ified cost function based on the number of genes that
are hidden. The offspring is biased toward better par-
ent (lower cost) with more hidden genes. The cost
function is modified as follows: fioqified(X) = f(X) —

M (flag;), where flag; is the value of the tag for gene
i.

Mechanism H: the arithmetic crossover is used with a mod-
ified cost function based on the number of hidden genes.
The offspring is biased toward better parent (lower
cost) with less hidden genes. The cost function is

fmodified(X) = f(X) +Z?i1<flagi)'

The last four mechanisms (E through H) are presented
in detail in reference [24]; hence no results will be presented

for them in this paper. However, rankings are presented in
Section 6 for all the mechanisms for comparison. Also, the
numerical results presented in this paper will be compared to
those presented in [24]. Numerical testing for the first four
mechanisms (A through D) is presented in Section 4.

The HGGA method presented in this paper is relatively
simple to implement. The genes undergo the standard GAs
operations while the binary tags undergo different opera-
tions depending on the selected mechanism/logic as detailed
above. Hence any existing code for GAs can be appended
by a code that handles the tags, to create the proposed VSDS
GAs.

4 Test Cases: VSDS Mathematical Functions

Multi-minima mathematical functions can be very use-
ful in testing new optimization algorithms. For example,
some mathematical functions can be used to tune the tags
mutation probability for the different mechanisms presented
in this paper, before they are used to solve more computa-
tionally intense problems. Three benchmark mathematical
optimization problems were modified to make them VSDS
functions, so that they can be used to test the HGGA. These
functions are: the Egg Holder, the Schwefel 2.26, and the
Styblinski-Tang functions. These functions have special
structure; they are designed to test the effectiveness of global
optimization algorithms. The general concept of modifying
these functions to be VSDS is as follows. Consider the opti-
mization cost function defined as:

N
F(X)=Y f(x) )

i=1

For each gene x;, if its associated tag, tag;, is 1 (hidden)
then the gene x; is hidden and hence f(x;) is set to zero (does
not exist). This is consistent with the physical system test
cases presented in Section 5. Unlike the hidden gene tags,
the chromosomes evolve through the standard GA selection,
mutation and crossover operations. For the chromosomes,
a single point crossover and an adaptive feasible mutation
operators are selected.

In the test cases presented in this section, the population
size is 400, the number of generations is 50, the elite count is
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Fig. 6: Tags of children as computed using the logic A

20, the genes mutation probability is 0.01, and the crossover
probability is 0.95. For the purpose of statistical analysis,
each numerical experiment is repeated n times (n identical
runs) and the success rate in finding the optimal solution
is assessed. The success rate S, is computed as S, = j,/n,
where n is the number of runs and j, is a counter that counts
how many times the optimal solution is obtained as the solu-
tion at the end of an experiment [29].

4.1 Results Using Stochastically Evolving Tags
4.1.1 Schwefel 2.26 Function
The Schwefel 2.26 function is defined as follows:

3

subject to —500 < x; < 500.

Here it is assumed that N = 5 (maximum possible num-
ber of variables is 5). Minimizing f(X), the optimal solution
is known, and it is fy,;; = —418.9829. First, the standard
GA is used to solve this problem. In using the standard GA,
all variables are active. The results show that a minimum of
—418.8912161 is obtained using the standard GA. For the
HGGA, there are N tags in this case. The results of HGGA
Mechanism A for different mutation probability values are
presented in Table 1.

As shown in Table 1, the minimum obtained function
value is —418.8967549 which is lower than the solution ob-
tained using the standard GA. The occurrence probability
(success rate) for Mechanism A is 100%. For Mechanism
B, the minimum obtained function value is —418.4088183
with occurrence probability of 100%. For Mechanism D,
the results show that the minimum obtained function value
is —418.1721324 with occurrence probability of 90%. For
Mechanism C, the minimum obtained function value is

Table 1: Mechanism A: Tags Separated and Mutated

Mutation Probability Function Occurrence

of Tags Value Probability
0.00001 —418.8803137 100
0.0001 —418.889191 100
0.001 -418.8967549 100
0.005 —418.1629931 80
0.01 —418.2677072 80
0.02 —416.8354092 20
0.03 —418.8471854 90
0.04 —417.941699 90
0.1 —418.7225599 50

—418.2119 with occurrence probability of 100%. The re-
sults of these four HGGA mechanisms on the Schwefel 2.26
function are summarized in Figure 7, where the percentages
on the figure indicate the success rate of the mechanism.

4.1.2 Egg Holder Function
The Egg Holder function is defined as follows:

N

~1
Y filxisxisn)
i=1
N

—1
—(xi+1 —|—47)Sll’l( Xit+1 +0.5X,’ +47)

i=1

fX)

—xisin(/x; — xi41 — 47)

“

where —512 < x; <512.
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Fig. 7: Comparison of Three HGGA tags mechanisms - us-
ing Schwefel 2.26 Function

This is an interesting case study for the HGGA. Each
function fi(x;,x;+1) is a function of two variables. Hence if
a variable x; is hidden, this does not necessarily mean the
function f; goes to zero. There are few ways of handling this
type of functions depending on what these functions repre-
sent in a physical system. For example, in the interplanetary
trajectory optimization problem (will be discussed in detail
later in this paper), an event of planetary fly-by is associ-
ated with few variables, of them are the fly-by height and
the fly-by plane orientation angles. If one of these variables
is hidden then that implies the whole fly-by event is hidden
and hence the other variables in this event are also hidden.
This example suggests that a function f;(x;,x;+1) (could be
representing the cost of a fly-by) would assume a value of
zero if any of the variables x; or x;;; is hidden. In other sit-
uations, however, this is not the case. A function f;(x;,x;11)
may have a non-zero value despite one of the variables x; or
x;+1 being hidden. Here in this mathematical function, a tag
tag; is assigned to each function f; and hence the tag; value
determines whether the value of the function f; is zero or not.

First, the standard GA is used to optimize this function
assuming N = 5. The best solution found by the standard GA
has a function value of —3657.862773. For the HGGA, there
are N — 1 tags for the N — 1 functions f;. Different mutation
probability values are tested for Mechanism A and the results
are presented in Table 2 for N = 5.

As shown in Table 2, the mutation probability of 0.03
has the lowest cost function of —3692.314081 with occur-
rence probability of 60%. This solution is better than the
solution obtained using the standard GA.

A similar analysis is conducted for Mechanism B.
The results show that the lowest obtained function value
is —3599.845154 with mutation probability of 0.0001 and
occurrence probability of 10%. For Mechanism D, the
crossover and mutation operations are applied to the N de-
sign variables (x;) and only mutation is applied for the rest
N — 1 variables (the tags). The results show that the low-
est obtained function value is —3484.255119 with mutation

Table 2: Mechanism A: Tags Separated and Only Mutated

Mutation Probability Cost Occurrence

of Tags Value Probability
0.00001 —3615.942419 40
0.0001 —3216.79243 100
0.001 —3390.917369 10
0.005 —3655.26687 20
0.01 —3499.743532 10
0.02 —3424.28003 10
0.03 -3692.314081 60
0.04 —3640.861368 20
0.1 —3587.802092 10

probability of 0.01 and occurrence probability of 10%. For
Mechanism C, the tags are variables (total number of GA
variables 2N — 1) and crossover and mutation operations are
carried out on the N design variables. Only the crossover
operation is applied on the next N — 1 variables (the tags).
The minimum obtained function value is —3559.5751 with
occurrence probability of 10%. Mechanism A produced the
best solution in this test for the Egg Holder function. The re-
sults of these tests are summarized in Figure 8, where the per-
centages on the figure indicate the success rate of the mech-
anism.
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Fig. 8: Comparison of Three HGGA tags mechanisms - us-
ing Egg Holder Function



4.1.3 Styblinski-Tang Function
The Styblinski-Tang function is defined as:

(xi—16x7 +5%).  (5)

1=
N =

Il
-

N—1
FX) =Y filxi,xin) =
i=1

4

subject to —10 < x; < 10. It is assumed that N = 5. Stan-
dard GA results in a minimum obtained function value of
—195.8304861. For the HGGA Mechanism A, the obtained
function value is —195.8306992, with a mutation probability
of 0.03, with occurrence probability of 100%.

For Mechanism B, the results show that the minimum
obtained function value is —195.828109 with mutation prob-
ability of 0.01 and occurrence probability of 100%. For
Mechanism D, the results show that the minimum obtained
function value is —195.8261996 with mutation probability of
0.005 and occurrence probability of 100%. For Mechanism
C, the minimum obtained function value is —195.82982 with
occurrence probability of 100%.

4.2 Results Using Logically Evolving Tags

The logical mechanisms for tags assignment presented
in Section 3.1 are tested on the three mathematical functions
described above. The results are summarized in Table 3 that
lists the obtained solution using each Logic, for each of the
functions.

Table 3: Solutions obtained using logical evolution methods
of HGGA

Function Logic A Logic B Logic C
Egg Holder —3386.2499 —3192.6139 —3634.1438
Schwefel 2.26  —418.9635 —415.8967 —418.9632
Styblinski-Tang ~ —195.8280 —195.8293 —195.8242

Comparing the results obtained in this section to the re-
sults obtained using the stochastic assignment mechanisms,
it can be concluded that for the Egg Holder function, Logic C
works best among all the methods while Mechanism A works
best for the Schwefel 2.26 and the Styblinski-Tang functions.

5 Test Cases: Interplanetary Trajectory Optimization
In general, interplanetary trajectory optimization is usu-
ally a challenging problem, and in some cases it is nearly
impossible to find the optimal solution. Several examples
of such complex problems can be found in The Global Tra-
jectory Optimization Competition online portal of the Euro-
pean Space Agency [30]. A typical problem statement can
be written as follows: For a given range of the departure date
from the home planet Earth, a given range of the arrival date
to a target planet, and a given dry mass of the spacecraft,

find the mission architecture (that is: how many fly-bys in
the mission, and how many DSMs in each leg), as well as
the dates and times of fly-bys, the fly-bys planets, the dates
and times of DSMs, and the amounts and directions of these
DSMs, and the exact launch and arrival dates, such that a
given objective is optimized (e.g. the fuel mass needed for
the whole mission is minimized). This VSDS optimization
problem is used in this paper to test the ability of the HGGA,
with the new definitions of hidden genes tags and evolution
mechanisms, in autonomously searching for the optimal ar-
chitecture as well as the non-architecture variables. This type
of problems is characterized by the high computational cost
of evaluating the cost function; and hence the high compu-
tational cost of the optimization process in general. Both
Logic A and Mechanism A for evolution of hidden genes
tags are tested. For each interplanetary trajectory optimiza-
tion problem, the numerical experiment is repeated identi-
cally 100 times and the success rate is calculated.

5.1 Earth - Jupiter Mission Using HGGA

The Earth-Jupiter mission is optimized using the HGGA
and the results are compared to the best known solution in
the literature. The design variables and their given upper and
lower bounds are listed in Table 4. In this test, it is assumed
that the maximum number of fly-bys is 2. Hence the chromo-
some has 2 genes for the fly-by planets; each gene carries the
planet identification number (the planet identification num-
ber ranges from 1 to 8 for all the planets in the solar system
as shown in Table 4). Each of these two genes has a tag. If
both tags have a value of 1, then the two genes are hidden and
that solution has no fly-bys. If one gens is hidden and one is
active, then the solution has one fly-by and the fly-by planet
identification number is the value of that gene. The same
concept is applied regarding the DSMs. In this test case it is
assumed that the maximum number of DSMs in each leg is
2. Since the maximum number of fly-bys is 2 then the maxi-
mum number of legs is 3, and hence the maximum number of
DSMs is 6. For each DSM, we need to compute the optimal
time (TD) at which this DSM occurs. A gene and a tag are
added for each DSM time TD, and hence there are 6 genes
and 6 tags for TD; (i = 1---6) in this mission. Note that if
a fly-by is hidden, then its leg disappears and the DSMs in
that leg automatically become hidden. Note also that even
if a fly-by exists, a DSM in its leg can be hidden depending
on the value of its own tag. Each DSM is an impulse repre-
sented by a vector of three components (it has the units of ve-
locity). So, the chromosome will have genes for 6 x 3 = 18
scalar components of the DSMs. Note that these 18 genes
are grouped in groups of three genes since each three are the
components of one DSM vector; hence if one DSM is hid-
den then its 3 genes get hidden together. Table 4 shows the
ranges for 6 DSMs, each has 3 components. The Time Of
Flight (TOF) in each leg is also a variable; there is a gene
for each TOF in the mission. Hence in this Jupiter mission,
we have 3 genes for the TOFs. Note that there are no tags
associated with the TOF genes since the state of each gene
(hidden or active) is determined based on the fly-by tags. If



a fly-by exists then there is an active gene for a TOF asso-
ciated with it. There is at least one TOF in a mission; this
case of only one TOF corresponds to the case of no fly-bys.
To complete a fly-by maneuver, we need to calculate the op-
timal values for the normalized altitude % of the spacecraft
above the planet as well as the plane angle 1 of the maneu-
ver. Hence, two genes for the altitudes and two genes for the
angles are added. Similar to the TOF variables, no tags are
needed for the 7 and 1 genes. There are also 6 genes for the
departure impulse, flight direction, the arrival date and the
departure date.

Table 4: Lower and upper bounds of Earth-Jupiter problem

Design Lower Upper
Variable Bound Bound
planet of Fly-by #1 1 (Mercury)  8(Neptune)
planet of Fly-by #2 1 8
Epoch of DSM (TD;),i=1---6 0.1 0.9
DSM,; vector (km/s), i=1---6  [=5,—5,—5] 5,5,5]
TOF; (days),i=1---3 80 800
Flyby altitudes h;, i =1---3 0.1 10
Flyby angle (rad) ;, i=1---3 0 2n
Departure Impulse (km/s) [-5,-5,-5] 5,5,5]
Flight Direction Posigrade Retrograde
Departure Date 01 Sep.2016 30 Sep.2016
Arrival Date 01 Sep.2021 31 Dec.2021

Due to the high computational cost of evaluating the fit-
ness of a solution and hence the high computational cost of
searching for the optimal solution, the problem is usually
solved in two steps [23]. The first step is to assume no DSMs
in the trajectory, and this step is called zero-DSM. In the sec-
ond step, the fly-by planets sequence is obtained from the
first step, and held fixed, to search for the optimal values of
the remaining variables; this step is called the Multi Grav-
ity Assist with Deep Space Maneuvers (MGADSM). Each
of the two steps has an element of the architecture to be op-
timized: the first step optimizes the sequence of fly-bys and
the second step optimizes the number of DSMs in each leg.
This two-step approach is detailed in reference [23], and has
shown to be computationally efficient. The number of gen-
erations and population size are selected to be 100 and 300,
respectively.

5.2 Earth - Jupiter Mission: Numerical Results and
Comparisons

All mechanisms evolving the tags over subsequent gen-

erations were tested on the Earth-Jupiter problem. Mecha-

nism A (with a mutation probability of 5%) generated the

best solution and so its solution is presented here in detail.
The solution of the first phase shows that the trajectory con-
sists of 2 fly-bys around planets Venus and then Earth; the
mission sequence is then Earth-Venus-Earth-Jupiter (EVEJ).
The second phase results in adding one DSM, and the total
mission cost is 10.1266 km/sec (the fuel consumption can be
measured in velocity units). The resulting mission is detailed
in Table 5.

Also both Logic C and Logic A were tested on this prob-
lem; logic A demonstrated superiority compared to logic C
in this problem and hence the only the results of logic A are
here presented. The total cost for the mission is 10.1181
km/sec. The detailed results of both steps are presented in
Table 6.

Comparing the results of Logic A with Mechanism A,
we can see that the cost of the mission using Logic A is
slightly better than that obtained using Mechanism A. The
mission architecture is the same from both methods, while
the values of the other variables are slightly different. The
success rate of an algorithm is a measure for how many times
the algorithm finds the best found solution in a repeated ex-
periment. This experiment was repeated 200 times using
Logic A and the success rate is 75.5%, as shown in Figure 14.

Previous solutions in the literature for this problem can
be divided into two categories. The first category of methods
do not search for the optimal architecture; rather the trajec-
tory is optimized for a given architecture. Reference [31],
for instance, presents a minimum cost solution trajectory for
this Earth-Jupiter mission, assuming a fixed planet sequence
of EVEJ. The departure, arrival, and fly-bys dates were also
assumed fixed, with a launch in 2016 and a mission duration
of 1862 days. The primer vector theorem solution has four
DSMs. Two DSMs are applied in the first two legs. The total
cost for this solution is 10.267 km/s, which is about slightly
higher than the obtained cost in this paper. The method pre-
sented in this paper, however, has the advantage of the au-
tonomous search for the optimal architecture of the solution.
The obtained solution in this paper has the same planet se-
quence of EVEJ but a different DSM architecture compared
to [31]. Reference [23] presents the solution to this prob-
lem using the HGGA but without the tags concept. Refer-
ence [23] implements a simple feasibility check in assigning
the hidden genes in each chromosome. The solution in [23]
also finds the planet sequence of EVEJ, and has a total mis-
sion cost of 10.182 km/sec, which is slightly higher than the
cost obtained in this paper. This problem was also solved
using Mechanisms E and F (presented in Section 3) and the
results were presented in [24]. The total cost obtained us-
ing Mechanism E is 10.1438 km/s and using Mechanism F
is 10.9822 km/s, which are higher than the cost obtained in
this paper. The mission trajectory obtained using Mechanism
A is shown in Figure 9.

As a demonstration for how the tags evolve over sub-
sequent generations, consider this Earth-Jupiter problem
solved using Logic C. The population size is 300 and the
number of generations is 100. Six tags are examined. Fig-
ure 10 shows the number of times each tag has a value of ' I’
in each generation. For example, tag 6 takes a value of 1’



Table 5: HGGA solution of Earth-Jupiter problem using Mechanism A

Mission parameter

Zero-DSM model (first step)

MGADSM model (second step)

Departure Date
Departure Impulse (km/s)
DSM; date
DSM; impulse (km/s)
Venus flyby date
Post-flyby impulse (km/s)
Pericenter altitude (km)
Earth flyby date
Post-flyby impulse (km/s)
Pericenter altitude (km)
Arrival date
Arrival impulse (km/s)
TOF (days)
Mission cost (km/s)

11 —Sep —2016, 04 : 50 : 27

31 —Aug —2016,02:15:15

3.6283 3.4414
— 26— Oct —2016,21:29:29
— 0.036516
07 —Sep—2017,01:58:51 05 —Sep—2017,09:52: 46
0.031108 0.001704
1333.7876 1255.2411
03 —Apr—2019,09:55:30 29 —Mar—2019,09 : 56 : 34
0.4685 0.4522
637.7999 637.8000
25 — Dec — 2021, 23 : 05 : 00 25 —Dec —2021, 18 : 23 : 09
6.2813 6.1948
360.88083,934.21184,636.66743  370.3177,570.0026,902.3518
10.4092 10.1266

Table 6: HGGA solution of Earth-Jupiter problem using Logic A

Mission parameter

Zero-DSM model (first step)

MGADSM model (second step)

Departure Date
Departure Impulse (km/s)
DSM date
DSM impulse (km/s)
Venus flyby date
Post-flyby impulse (km/s)
Pericenter altitude (km)
Earth flyby date
Post-flyby impulse (km/s)
Pericenter altitude (km)
Arrival date
Arrival impulse (km/s)
TOF (days)

Mission cost (km/s)

01 —Sep—2016,22:58:19
3.4811

29 —Aug —2016,16: 04 : 38
3.1398
07 — Oct —2016,05: 57 : 10

— 0.34746
05 —Sep—2017,10:42:20 06 —Sep —2017,19:14:50
0.006200 1.9788¢ — 05
1330.9042 972.1739
29 —Mar —2019,23 :48 : 29 29 —Mar—2019, 14 : 31 :32
0.4398 0.4396
637.8000 637.8000
19 — Sep —2021, 03 : 07 : 38 23 —Sep—2021,15:01:36
6.1999 6.1891
368.4889,570.5459,904.1383  373.1321,568.8033,909.0209
10.1299 10.1181

in all the population members in generations 55 and above.
In the 30 generation, for instance, tag 6 takes a value of ’1’
in only 40 chromosomes and takes a value of ’0’ in the other
260 chromosomes. The other 5 tags converge to a value of
"0’ in the last population in all the chromosomes.

6 Statistical Analysis

A statistical analysis is conducted on the methods pre-
sented in this paper. Two different analysis tools are im-
plemented. The first is evaluating the success rate for each
method in solving different problems. The second tool ranks
the proposed algorithms using the Sign test [32].

For each mathematical function presented in Section 4,
the success rate of each logical and stochastic mechanism
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Fig. 10: Evolution of tags using Logic C in the Earth-Jupiter
problem

is calculated numerically. By repeating the same numerical
experiment, the obtained solution in each experiment is com-
pared to the best obtained solution and a success rate can be
updated as the experiment being repeated. For each of the
three logical mechanisms presented in this paper, the success
rates in finding the best solution for the Schwefel 2.26 func-
tion is shown in Figure 12. Logic B has a success rate of
about 70% which is less than that of logics A and C, which
is about 100%. For each of the three logical mechanisms
presented in this paper, the success rates in finding the best
solution for the Egg Holder function is shown in Figure 11.
Logic B has a success rate less than that of logics A and C.
Both logics A and C settle at a success rate of about 30%. In
all three mathematical functions, Logic A and Logic C have
very close success rates and Logic B has a lower value for
the success rate.

For the stochastic mechanisms presented in this paper,
the success rate of the Schwefel 2.26 function is shown in
Figure 13. In Figure 13, the mutation rate of Mechanism A
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Fig. 11: Success rate versus number of runs for Egg Holder
function using three different logics for tags evolution
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Fig. 12: Success rate versus number of runs for Schwefel
2.26 function using three different logics for tags evolution

is 0.001, for Mechanism B is 0.01, and for Mechanism D is
0.03. As shown in Figure 13, Mechanisms A, B, and C have
higher success rates compared to Mechanism D. Note that
Mechanism D has also resulted in higher function values.

The success rate was also computed for the Earth-Jupiter
trajectory optimization problem, using both Mechanism A
and Logic A. The results are plotted in Figure 14. The suc-
cess rate for both approaches is about 75%.

The Sign test is a pairwise comparison between different
algorithms. It has been applied on the algorithms presented
in this paper. Each algorithm is ranked based on the total
number of cases in which the algorithm produces the best
function value. Table 7 summarizes the results obtained in
Section 4, where the best function value obtained using each
algorithm is listed. Table 7 also lists the results obtained us-
ing Mechanisms E, F, G, and H which are detailed in ref-
erence [24]; they are used here for the purpose of ranking.
Listed also in Table 7 is the solutions obtained using the No-
tag HGGA which is originally developed in reference [21].



Table 7: Best objective function values of all the test cases obtained from all algorithms

Egg Holder Schwefel 2.26  Styblinski-Tang
Logic A —3386.2499 —418.9635 —195.8280
Logic B —3192.6139 —415.8967 —195.8293
Logic C —3634.1438 —418.9632 —195.8242
Mechanism A —3692.314081 —418.8967 —195.8306992
Mechanism B —3599.845154 —418.4088 —195.828109
Mechanism C —3559.5751 —418.2119 —195.82982
Mechanism D~ —3484.255119 —418.1721 —195.8261996
Mechanism E —3552.8947 —418.2850 —195.8298
Mechanism F —3644.2279 —418.0799 —195.8278
Mechanism G —2571.8028 —375.3514 —191.8393
Mechanism H —2134.7217 —303.5320 —194.5325
No-tag HGGA —2749.2646 —335.1844 —156.6646
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Fig. 13: Success rate of the Schwefel 2.26 function for dif-
ferent stochastic mechanisms

Fig. 14: Success rate versus number of runs for the Earth-
Jupiter trajectory optimization problem using Mechanism A
and Logic A

Using the data presented in Table 7, the Sign rank is
computed by counting how many times each algorithm re-
sulted in the best function value among all functions. Ta-
ble 8 lists the Sign rank for each algorithm. Mechanism A
then Logic A have the highest ranks. It is to be noted here,
though, that this metric is best when the number of tested
functions is high.



Table 8: Sign test ranks

Sign rank Sign rank
No-tag HGGA 0 Mechanism A 2
Mechanism B 0 Mechanism C 0
Mechanism D 0 Mechanism E 0
Mechanism F 0 Mechanism G 0
Mechanism H 0 Logic A 1
Logic B 0 Logic C 0

7 Conclusion

The concept of binary tags is introduced in genetic algo-
rithms to enable hiding some of the genes in a chromosome,
so that they can be used to search for optimal architectures in
VSDS problems. The proposed binary tags concept mimics
biological cells in hiding the genes that are not supposed to
be effective in the cell, while they could be effective in other
cells. Mechanisms for assigning the chromosome hidden
genes are proposed and investigated in this paper. Two cate-
gories of mechanisms for evolving the values of these tags in
subsequent generations are proposed in this paper. The first
one uses logical operations to evolve the tags while the other
one uses stochastic operations for tags evolution. Numeri-
cal tests were conducted on mathematical optimization prob-
lems as well as the interplanetary trajectory optimization for
a spacecraft mission from Earth to planet Jupiter. The imple-
mentation of the new hidden genes assignment mechanisms
to the space trajectory optimization problem and the math-
ematical optimization problems demonstrated its capability
in searching for the optimal architecture, in addition to im-
proving the solution compared to the original hidden genes
genetic algorithm approach that does not implement the tags
concept. It is demonstrated in this paper that, for the tra-
jectory optimization problem, it is possible to autonomously
compute the optimal number of fly-bys, the planets to fly-by,
and the optimal number of deep space maneuvers, in addi-
tion to the rest of the design variables using the proposed al-
gorithms. Statistical analysis conducted in this paper on the
mathematical optimization problems showed that, in terms
of optimality of the solution, Mechanism A and Logic A per-
formed better than the other algorithms.
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