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I. Background and Introduction

A systems architecture optimization problem is characterized by being a variable-size design

space (VSDS) problem; i.e. the number of variables is variable. To see that, consider a space

mission from Earth to Jupiter. Consider a solution to the trajectory optimization problem that has

two fly-bys and another solution that has three fly-bys. While the two solutions are for the same

optimization problem (same objective function), the number of variables in one solution is different

from the number of variables in the other solution (adding a fly-by implies adding some variables

such as the fly-by hight and the fly-by plane). Hence, the design space dimension (size) varies among

different solutions. There are different deterministic, heuristic, and hybrid algorithms proposed for

the interplanetary trajectory optimization problems. References [1, 2] use deterministic algorithms

based on grid or tree search. Heuristic algorithms include genetic algorithms (GAs), differential

evolution, particle swarm optimization, adaptive simulated annealing [3–6]. Reference [7–9] use

hybrid methods like Multistart, monotonic basin hopping algorithm, and machine learning. In some

of these algorithms either a pruning method is applied to limit the possible mission structures, or

the solution structure (fly-by sequence) is assumed known a priori. Recent studies on variations

of GAs, including hidden genes genetic algorithms (HGGAs), have been able to solve trajectory

optimization problems in the general form with unknown fly-bys and DSMS.

In standard GAs, the variables of the optimization problem are coded as genes; each solution
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is a chromosome. In Figure 1, a solution with l variables is shown as a chromosome with l genes

g1, g2, . . . , gl. The genetic operations of selection, mutation, and crossover are applied on a popula-

tion of these chromosomes. Through generations (iterations), theses populations evolve toward the

optimal solution. All the GA operations are defined on fixed-length chromosomes; and hence the

standard GAs can only handle problems of Fixed-Size Design Space (FSDS).

Fig. 1 Solutions are represented as chromosomes (string of genes) in standard GA.

The biologically inspired concept of hidden genes was recently proposed in evolutionary algo-

rithms and hidden genes genetic algorithms were introduced to model this type of VSDS optimization

problems. Figure 2 shows an illustration for a chromosome in HGGA. A binary tag is appended to

each gene. This binary tag determines whether the gene is hidden or active. When a gene is hidden,

it does not get transcribed during the objective function evaluation. In other words, although the

hidden gene exists in the chromosome, it does not affect the fitness (or objective function value) of

the solution. It does carry information to the next generation though. This concept of hidden genes

enables solutions of different lengths to be coded in chromosomes of equal lengths. For instance,

in a space trajectory optimization problem, a solution that has two fly-bys would have the same

chromosome length as that of a solution that has three fly-bys, the only difference would be in the

number of hidden genes in each chromosome.

Fig. 2 Tags and genes in a solution of HGGA.

The HGGAs were implemented to optimize interplanetary space trajectories where it demon-

strated the capability of searching for the optimal number of fly-by maneuvers needed for the

mission, along with the fly-by planets, the number of deep space maneuvers and their direction and

magnitude, in addition to the rest of the trajectory design variables [10, 11].
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In the evolution process, chromosomes (solutions) evolve over subsequent iterations generating

new solutions. In HGGAs, the genes evolve in the same way as that in the GAs, using selection,

crossover, and mutation operations. The tags have different mechanisms for evolution that are

introduced in [10]. In one mechanism, the tags evolve through stochastic operations, while in

another one the tags evolve through logical operations. The performance of these mechanisms is

tested on different VSDS problems, including space trajectory optimization problems. Although the

HGGAs converge toward optimal solutions and find best known solutions for benchmark problems as

reported in [10], there is no analytical proof that the HGGAs, with the tags evolution mechanisms,

are convergent. In [12], a simple implementation of a HGGA is presented where no tags are used

for hiding the genes. Rather, a simple criterion is used to determine which genes are hidden in a

chromosome depending on the feasibility of the solutions. Then, Holland’s schema theorem [13] is

implemented to prove the convergence of that simple HGGA. Some previous works on GA, however,

argue that the detailed behavior of the GA can not be explained by the Schema Theorem [14, 15].

Hence, with the introduction of the new evolution mechanisms, a more comprehensive investigation

of the HGGAs properties and convergence characteristics is needed.

This paper presents a convergence analysis that proves HGGAs generate a sequence of solutions

with the limit value of the global optima. For an analytical proof, the homogeneous finite Markov

models of different mechanisms proposed in [10] are derived, and the convergence of the HGGAs with

tag evolution mechanisms are investigated. The optimization problem is considered a maximization

problem with strictly positive values for the objective function. In a multi-gravity-assist space

trajectory optimization problem, the objective function can be defined as 1/fu > 0, where fu is the

fuel consumption. Hence, the problem can be treated as a maximization problem. In section IA,

a review for the Markov model for binary canonical genetic algorithms (CGAs) is presented and

its convergence is analyzed. Section II briefs the tag evolution mechanisms. In section III, the

transition matrix of different HGGA mechanisms are derived and the convergence conditions are

investigated. Section IV presents numerical tests carried out on a space trajectory optimization

problem.

3



A. Markov Chain Model of Genetic Algorithms

The stochastic dependency between successive populations is created by applying selection,

mutation, and crossover operators to the current population to produce the next population. Hence,

the GA is a stochastic process in which the state of each population only depend on the state of the

immediate predecessor population. Therefore, the GA can be modeled as a Markov process [16].

Several studies have investigated the convergence behavior of the GA explicitly using the Markov

chain analysis [16–20]. The minimum conditions for convergence of EGAs in the realm of Markov

chain model can be found in details in [16, 20, 21]. Here, these conditions are briefly reviewed and

utilized to derive the convergence conditions for the HGGAs. The GA is a Markov process and its

transition matrix can be calculated. It will be shown that the GA transition matrix is reducible.

Hence, the ergodic theorem for reducible transition matrix can be used to prove that ergodicity is a

sufficient condition for convergence. It is assumed that this analysis is in the domain of binary genetic

algorithms with bits as variables. The materials of this section are a nearly verbatim adaptation of

works done by Rudolph [20] and Davis [16]. We start with a review for few basic definitions:

• Column-allowable matrix: a square matrix that has at least one positive entry in each column.

• Stochastic matrix: a non-negative matrix A = (aij)i,j=1,...,n is said to be stochastic if∑
j=1,...,n aij = 1, for each i = 1, ..., n.

• Arithmetic crossover: a crossover that linearly combines two parents to get one child. The

child is the weighted average of the parents as follows:

C = λPt1 + (1− λ)Pt2 (1)

where C is the child, Pt1 and Pt2 are the parents, and λ is a random number in (0, 0.5).

• Reducible matrix: if matrix A = (aij)i,j=1,...,n is non-negative and can be brought into the

form

D 0

R T

 by applying the same permutations to rows and columns, it is called a reducible

matrix. Note that D and T should be square matrices.

The finite state space S of a Markov chain has the cardinality of |S| = n, where the states are
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numbered from 1 to n. Let l be the chromosome length, M = 2l be the constant population size,

and m = 2nl. Assume that the simple GA consists of three standard operations: selection (S),

mutation (M), and crossover (C). To transform any state i to state j, the transition product

matrix CMS is used and the convergence of the GA depends on this transition matrix [21]. The

transition matrix of a finite Markov chain consists of the transition probabilities from state i to j,

i.e. P = (pij). For each entry,
∑|S|

j=1(pij) = 1 for all i ∈ S. The GA transition product matrix

(CMS) is a Markov probability matrix (P).

First few needed theorems and lemmata are listed here:

Lemma 1: Let C, M and S be stochastic matrices, where M is positive and S is column-

allowable. Then the product CMS is positive [20].

Theorem 1: Let P be a primitive stochastic matrix. Then Pk converges as k →∞ to a positive

stable stochastic matrix P∞ = 1′p∞ , where p∞ = p0. limk→∞Pk = p0P∞ has nonzero entries

and is unique regardless of the initial distribution [20].

Theorem 2: Let P be a reducible stochastic matrix defined as:

D 0

R T

 where D is an m×m

primitive stochastic matrix and R,T 6= 0. Then

P∞ = lim
k→∞

Pk = lim
k→∞

 Dk 0∑k−1
i=0 TiRDk−i T k

 =

D∞ 0

R∞ 0

 (2)

is a stable stochastic matrix with P∞ = l′p∞, where p∞ = p0P
∞ is unique regardless of the

initial distribution, and p∞ satisfies: p∞i > 0 for 1 ≤ i ≤ m and p∞i = 0 for m < i ≤ n [20].

Theorem 3: The transition matrix of the GA with mutation probability pm ∈ (0, 1), crossover

probability pc ∈ [0, 1] and proportional selection is primitive [20].

Corollary 1: The CGA with parameter ranges as in Theorem 1 is an ergodic Markov chain, i.e.,

there exists a unique limit distribution for the states of the chain with nonzero probability to be

in any state at any time regardless of the initial distribution. This is an immediate consequence of

Theorems 1 and 2 [20].

Theorem 4: The CGA with parameter ranges as in Theorem 3 does not converge to the global
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optimum [20].

Theorem 5: In an ergodic Markov chain the expected transition time between initial state i and

any other state j is finite, regardless of the states i and j [20].

Theorem 6: The canonical GA as in Theorem 3 maintaining the best solution found over time

after selection converges to the global optimum [20].

To maintain the best solution over time, the population is enlarged by adding the super in-

dividual to it. The term super individual is used for the solution that does not take part in the

evolutionary process. Hence, the cardinality of the state space grows from 2nl to 2(n+1)l. The super

individual is placed at the leftmost position in the (n+ 1)-tuple and can be accessible by π0(i) from

a population at state i, where π0(i) is a function that calls the super individual from population i.

The super individual does not take part in the evolutionary process, therefore, the extended

transition matrices for crossover C+, mutation M+, and selection S+ can be written as [20]:

C+ =



C

C

...

C


,M+ =



M

M

...

M


,S+ =



S

S

...

S


(3)

Then we can write:

C+M+S+ =



CMS

CMS

...

CMS


(4)

where C+, M+, and S+ are block diagonal matrices and each of the 2l square matrices C, M

and S are of size 2nl × 2nl, and CMS > 0.

The upgrade matrix U is a matrix that upgrades the solutions in the population based on their

objective function value (fitness). An intermediate state containing a solution with an objective
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value better than the super individual will upgrade to a state where the super individual equals

the better solution. Let b be the best individual of the population at state i, excluding the super

individual. By definition, uij = 1 if f(π0(i)) < b, otherwise uii = 1. Therefore, there is one entry

in each row and for every state j with f(π0(j)) < max[f(πk(j))|k = 1 . . . n], the elements will be

uij = 0 for all is. Hence, the structure of the upgrade matrix can be written as [20]:

U =



U11

U21 U22

... ... ...

U2l,1 U2l,2 ... U2l,2l


(5)

where the sub-matrices Uab are of size 2nl × 2nl. If the optimization problem has only one

global solution, then only U11 is a unit matrix, and all other matrices Uaa with a ≥ 2 are diagonal

matrices with some zero diagonal elements, and some unit diagonal elements. Recall that in this

Markov model for GA, P = CMS and hence the transition matrix for the GA becomes:

P+ =



P

P

...

P





U11

U21 U22

... ... ...

U2l,1 U2l,2 ... U2l,2l


=



PU11

PU21 PU22

... ... ...

PU2l,1 PU2l,2 ... PU2l,2l


(6)

Note that PU11 = P > 0. The sub-matrices PUa1, where a ≥ 2, are gathered in a rectangular

matrix R 6= 0. Note that The PU1j = 0 where ∀j > 1. Then comparing Eq. (6) to Eq. (2), we can

see that limk→∞P+k is unique regardless of the initial distribution, concluding in the convergence

of the canonical GA.

Note that to make the extended transition matrix in the form of Eq. (6), we assumed that

C, M, and S are stochastic, positive, and column-allowable. Therefore, the extended transition

matrices C+, M+, and S+ are stochastic and positive. The above proof also shows that the P+ in

Eq. (6) is a reducible matrix. Since PU11 > 0 (PU11 corresponding to the D matrix in Theorem
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2), then using Theorem 2 we can show that the GA converges to the optimal solution in the limit.

In section III, these matrices are explicitly derived and it is shown that in the HGGA, the C, M,

and S are stochastic, positive, and column-allowable.

II. Tags Evolution Mechanisms in HGGA

Chromosomes evolve over successive generations. Genes along with their tags go through evo-

lutionary operations. Genes evolve through the standard operations defined in the CGA. The tags,

however, may evolve with different operations. A set of operations used to evolve tags is here re-

ferred to as a mechanism for tags evolution. There are 12 different mechanisms for tags evolution

that will be investigated in this paper. The complete explanation of these mechanisms can be found

in [10]. Here, a brief description of each mechanism is provided. In the mechanisms that have a

crossover operator for the tags, the singe-point crossover is used, unless otherwise stated. Some

of the evolution mechanisms are logical. Here we introduce two definitions. Consider two parents

selected for reproduction and consider one offspring child. The Hidden-OR evolution logic is defined

as follows: a gene in the child chromosome is hidden if the same gene is hidden in any of the parents.

The Active-OR evolution logic is defined as: a gene is active in the child if the same gene is active

in any of the parents.

1. Mechanism A: tags evolve using a crossover operator. The crossover point location in the tags

can be different from that in the genes. Before the crossover, tags go through a mutation with

probability of 10%.

2. Mechanism B: When two parents are selected for reproduction, then the process of evolving

the tags is as follows:

i - produce two temporary children through a single-point crossover operation on genes,

and an Active-OR logic on tags. Both of these temporary children will have the same

tags.

ii - calculate the fitness value of these two temporary children, f̄1 and f̄2.

iii - consider the parents chromosomes (genes and tags) as points in IRL+Lt space where Lt
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is the number of tags.

iv - the child (output of Mechanism B) is the weighted arithmetic crossover on the parents

and is closer to the parent that has better fitness f̄ for its temporary child.

For example, for the IR3 space in Figure 3, the child is closer to parent 1 because its temporary

child has better fitness value. λ is a random number in (0, 0.5). If f̄1 = f̄2, then the child can

be randomly closer to either parents.

Fig. 3 Representation of arithmetic crossover in IR3.

In this mechanism, the mutation operator is only allied to the genes.

3. Mechanism C: The arithmetic crossover operator is used for the genes only. The tags

in the child will have the same tags of one of the parents depending on the value of(
fm1

= f +
∑Lt

i=1 tagi

)
, where f is the fitness of the parent. The offspring tags will be the

same as that of the parent that has better value of
(
fm1 = f +

∑Lt

i=1 tagi

)
. In other words,

this mechanism favors higher number of hidden genes.

4. Mechanism D: same as Mechanism C, but the offspring tags have the same values as that

of the parent with better value of
(
fm2

= f −
∑Lt

i=1 tagi

)
. In other words, this mechanism

favors less number of hidden genes.

5. Mechanism E: tags evolve only through a mutation operation with a certain mutation proba-

bility different than the mutation probability of the genes. So, two parents are selected; then

mutation for the genes is carried out and another mutation for the tags is carried out. These

two parents then go through a crossover operation on the genes with a certain probability as
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in the CGA, while the tags remain unchanged during this crossover operation.

6. Mechanism F: tags are considered as discrete variables where they are appended to the genes

to create a long chromosome that has both genes and tags. Then the mutation and crossover

operations are carried out in a similar way to that of the CGA.

7. Mechanism G: this mechanism is similar to Mechanism F except that the tags do not go

through a mutation operation.

8. Mechanism H: this mechanism is similar to Mechanism F except that the tags do not go

through a crossover operation. This is carried out by limiting the crossover point to be within

the genes only.

9. Alleles: two tags are assigned for each gene, one recessive and one dominant. First, the

mutation operation is carried out in the genes and tags. Then, a single-point crossover operator

is applied to the genes, and a two-point crossover operator is applied to the tags such that the

crossover point in the dominant and recessive tags are similar.

10. Logic A: the member of the current generation (n̄) is split into two groups of equal size. For

the first group, the Active-OR logic is used for tags evolution (a gene is active in the child if

the same gene is active in any of the parents). For the second group, the Hidden-OR logic is

used for tags evolution (a gene is hidden in the child if the same gene is hidden in any of the

parents).

11. Logic B: similar to Logic A; but the Hidden-OR logic is used for all the members in the

generation.

12. Logic C: similar to Logic A; but the Active-OR logic is used for all the members in the

generation.

III. Markov Chain Model of Hidden Genes Genetic Algorithm

The HGGA using any of the stochastic or logical mechanisms, defined in section II, is here

proved to be convergent. The approach to prove that these HGGA mechanisms are convergent, in

general, is as follows:
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First we show that the HGGA can be modeled as a Markov process. Then it is shown that

the selection, mutation, and crossover matrices have the properties described in Lemma 1.

Therefore, the extended transition matrix of HGGA is reducible and can be written in the

form of Eq. (6). Finally, Theorem 2 can be used to prove the convergence.

Similar to the canonical GA, any future state of the HGGA population is only dependent on the

current population and is independent from the previous history. Hence, if the transition product

matrix CMS of a HGGA mechanism is stochastic, then the HGGA with that mechanism can be

considered as a Markov processes.

To prove that the CMS matrix is stochastic and primitive, the intermediate matrices of C, M

and S need to be derived. They are derived in this section. It is assumed that the single-point

crossover is selected for the genes, unless otherwise stated. The number of genes is L and the

number of the tags is Lt. H(i, j) is the Hamming distance between the genes of i and j (number

of bits that must be altered by mutation to transform the genes of j into the genes of i) and is

0 ≤ H(i, j) ≤ L. Ht(i, j) is the Hamming distance between the tags of i and j (number of bits that

must be altered by mutation to transform the tags of j into the tags of i) and is 0 ≤ Ht(i, j) ≤ Lt. In

all the mechanisms, the genes go thorough selection, mutation, and crossover similar to the standard

genetic algorithm and only the tags evolution is different.

The transition probability matrices determine the probability of transferring a solution i to

solution j; that is to change the L genes of solution i to be the same as the L genes of solution j,

and change the Lt tags of solution i to be the same as the Lt tags of solution j.

A. Selection Matrix S

The selection operator for the HGGA is not different from that of a canonical GA one. For

example, for a fitness proportionate selection, the probability that a solution i is selected only

depends on the objective value, which in turn is a function of the values of the genes as well as the

values of the tags. Hence, the selection matrix is computed for the HGGA in a similar way to that

of the GA as follows.

The probability of selecting a solution i ∈ S, from a population described by the probability
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distribution vector n̄ ∈ S′ is [16]:

P1(i|n̄) =
n(i).R(i)∑

j∈S n(j).R(j)
(7)

where n̄ = (n(0), n(1), ..., n(2l − 1)) is the current generation and n(i) represents the number of

occurrences of solution i, and R(i) is the objective value for solution i and is strictly positive.

Therefore, given the present generation is n̄, the conditional probability of the successor generation

m̄ is a multinomial distribution [16]:

P1(m̄|n̄) =

(
M

m̄

)∏
i∈S

P1(i|n̄)m(i) (8)

where,

(
M

m̄

)
=

M !∏
i∈S (m(i)!)

(9)

The transition probability matrix of the Markov chain where only the selection operation is applied

is P̄ = [P1(m̄|n̄)]. This matrix is positive, stochastic, and column-allowable. Hence, the transition

matrix due to only selection operation in HGGA is stochastic, positive, and column-allowable.

B. Mutation M and Crossover C Matrices

In this section, the explicit formulation of mutation and crossover matrices are derived and

it is shown that for all of the mechanisms, the mutation matrix is stochastic and positive and the

crossover matrix is stochastic. The general scheme for deriving these matrices is first presented; then

followed by its application to each mechanism. Assume a nonzero value for the mutation probability,

i.e., 0 < pm(k) ≤ 1/2. In the mutation operation in the CGA, the probability of transforming j into

i can be calculated as pH(i,j)
m (1−pm)L−H(i,j). Thus the transition probability, due to both selection

and mutation operations, is [16]:

P2(i|n̄) =
∑
j∈S

pH(i,j)
m (1− pm)L−H(i,j)P1(j|n̄) =

1

(1 + α)L

∑
j∈S

αH(i,j)P1(j|n̄), n̄ ∈ S′, i ∈ S (10)
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where α =
pm

1− pm
.

∴ P2(i|n̄) =

∑
j∈S α

H(i,j)(n(j).R(j))

(1 + α)L.
∑

k∈S n(k).R(k)
(11)

The multinomial distribution for P2(m̄|n̄) can be defined as [16]:

P2(m̄|n̄) =

(
M

m̄

)∏
i∈S

P2(i|n̄)m(i) (12)

Then the transition matrix of selection and mutation would be P̄ = [P2(m̄|n̄)]. Note that α is

positive for 0 < pm ≤ 1/2. As can be seen from Eq. (11), since α is positive, R is positive, and

n ≥ 0, then the P̄ matrix is primitive.

Regarding the crossover operation, assume that a single-point crossover is applied. The new

function I(i, j, k, s) is defined where i,j, k ∈ S, and s ∈ [1, ..., L − 1] is a bit string. The selected

parents are i, j and k is a potential descendant string after a crossover at random location s which

is assumed uniformly distributed. If k is produced by crossing i and j at the location s, then

I(i, j, k, s) = 1, otherwise I(i, j, k, s) = 0. The conditional probability of producing k via selection

and crossover operations can be derived as [16]:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

(
P1(i|n̄).P1(j|n̄).

pc
L− 1

∑
s

I(i, j, k, s)

)
+ (1− pc).P1(k|n̄) (13)

Therefore the conditional probability of producing k via selection, mutation, and crossover opera-

tions is [16]:

P3(i|n̄) =
1

(1 + α)L

∑
j∈S

αH(i,j)P ′2(j|n̄) (14)

Then:

P3(m̄|n̄) =

(
M

m̄

)
.
∏
i∈S

P3(i|n̄)m(i) (15)
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By inspection of Eq. (13) and Eq. (14), it can be seen that this three-operator Markov chain is

primitive. Then, based on the results of section IA this GA model, maintaining the best solution

found over time, converges to the global optimum.

Here, the above results are applied to each of the HGGA mechanisms.

• Mechanism A: In this mechanism, the tags can crossover independently from the genes and

there is is a 10% mutation probability in the tags. This implies that the intermediate transition

matrix for mutation (M) consists of two parts, where the Hamming distance of H(i, j) is the

number of bits in the genes only that need to be altered by mutation, and Ht(i, j) is the

number of bits in the tags only that need to be altered by mutation. Hence the probability

can be described as follows:

P2(i|n̄) =
∑
j∈S

pH(i,j)
m (1− pm)L−H(i,j)p

Ht(i,j)
mt (1− pmt)

Lt−Ht(i,j)P1(j|n̄) (16)

Note that the probability that solution j is transfered to solution i is p
H(i,j)
m (1 −

pm)L−H(i,j)(0.1)Ht(i,j)(0.9)Lt−Ht(i,j) > 0 for all i, j ∈ S when 0 < Pm < 0.5. Thus, M is

positive. For the crossover operation:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

(
P1(i|n̄)P1(j|n̄)

pc
L− 1

1

Lt − 1

∑
s

I ′(i, j, k, s, st)

)
+ (1− pc)P1(k|n̄) (17)

The I ′(i, j, k, s, st) takes values {0, 1}, where 1 shows that child k (genes and tags) is produced

by the crossover of parents i and j at site s in the genes and at site st in the tags. Therefore,

the conditional probability of constructing a bit string k via selection, mutation, and crossover

operations in HGGA is:

P3(i|n̄) =
1

(1 + α)L+Lt

∑
j∈S

αH(i,j)P ′2(j|n̄) (18)

Then the transition matrix for Mechanism A can be computed by substituting Eq. (18) into

Eq. (15). Note that L is replaced by L+Lt to account for the additional tags. By inspection

14



of Eq. (18), it can be concluded that this transition matrix of HGGA with mechanism A is

stochastic and positive.

• Mechanism B: In this mechanism, the tags are considered as design variables in the crossover

operation. The arithmetic crossover is used in this mechanism, where the number of variables

in this case is L+Lt. Hence, it can be concluded that the crossover transition matrix P ′2(k|n̄)

(defined in Eq. (13)) for mechanism B is stochastic. The mutation operation in mechanism B

is similar to that of mechanism A, and hence the mutation transition matrix P2(i|n̄) can be

computed using Eq. (25) for mechanism B, which is positive when 0 < Pm < 0.5. Finally, the

P2(i|n̄) and P ′2(k|n̄) matrices are used to compute P3(m̄|n̄) using Eqs. (14) and (15). Then

the overall transition matrix P3(m̄|n̄) is primitive for mechanism B.

• Mechanism C: here an arithmetic crossover operation is used for the genes, while the tags

are copied from one of the parents as described in Section II. The selection and crossover

transition probability is defined as follows:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

P1(i|n̄)P1(j|n̄)pcFA(i, j, k, λ)FT1
(i, j, k, fm1

(i), fm1
(j)) + (1− pc)P1(k|n̄)

(19)

where FA is 1 if the arithmetic crossover of genes in parents i and j, along with the weight

coefficient λ result in the genes of solution k; otherwise FA = 0. Also, FT1
is 1 if the tags of

solution k are similar to the tags of the parent that has better fm1
; otherwise FT1

= 0. For

example, if parents i and j are selected and their modified cost values are fm1(i) and fm1(j)

(defined in Section II, Mechanism C), then if fm1
(i) is better than fm1

(j) and the tags of k

are similar to the tags of i, then FT1
= 1; otherwise FT1

= 0. Hence, the resulting crossover

probability matrix is stochastic. The Mutation operation is similar to that of mechanisms A

and B, and therefore, it is stochastic and positive.
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• Mechanism D: similar to mechanism C, the crossover probability can be written as:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

P1(i|n̄)P1(j|n̄)pcFA(i, j, k, λ)FT2
(i, j, k, fm2

(i), fm2
(j)) + (1− pc)P1(k|n̄)

(20)

where FA is 1 if the arithmetic crossover of genes in parents i and j along with weight the

coefficient λ result in the genes of solution k; otherwise FA = 0. Also, FT2 is 1 if the tags of

solution k are similar to the tags of the parent that has better fm2
; otherwise FT2

= 0. Hence,

the resulting crossover probability matrix is stochastic. The Mutation operation is similar to

that of mechanisms A and B, and therefore, it is stochastic and positive.

• Mechanism E: tags evolve through a mutation operation with a certain mutation probability.

Let pmt be the mutation probability of the tags, then:

P2(i|n̄) =
∑
j∈S

pH(i,j)
m (1− pm)L−H(i,j)p

Ht(i,j)
mt (1− pmt)

Lt−Ht(i,j)P1(j|n̄) (21)

which is stochastic. Also since pm and pmt are positive and less than 0.5, then P2(i|n̄) is

positive. The crossover is only applied to the genes in this mechanism, hence:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

(
P1(i|n̄).P1(j|n̄).

pc
L− 1

∑
s

I(i, j, k, s)

)
+ (1− pc).P1(k|n̄) (22)

Similar to the CGA, the matrix P ′2(k|n̄) above is stochastic.

• Mechanism F: In this mechanism, the tags are considered as discrete variables similar to the

design variables in the chromosome. The crossover and mutation operations are performed on

all the variables (genes and tags). The mutation transition probability is then as follows:

P2(i|n̄) =
∑
j∈S

pH(i,j)+Ht(i,j)
m (1− pm)L+Lt−H(i,j)−Ht(i,j)P1(j|n̄) (23)

which results in a positive and stochastic mutation matrix. Also the stochastic crossover
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transition probability can be calculated as follows:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

(
P1(i|n̄).P1(j|n̄).

pc
L+ Lt − 1

∑
s

I(i, j, k, s)

)
+ (1− pc).P1(k|n̄) (24)

• Mechanism G: In this mechanism, the tags are considered as discrete variables similar to the

design variables in the chromosome; yet only the crossover operation is applied to the tags.

Since there is no mutation in the tags, the mutation transition probability is as follows:

P2(i|n̄) =
∑
j∈S

pH(i,j)
m (1− pm)L+Lt−H(i,j)P1(j|n̄) (25)

which results in a positive and stochastic mutation matrix. The stochastic crossover proba-

bility matrix is similar to Eq. (24).

• Mechanism H: In this mechanism, the tags are considered as discrete variables similar to

the design variables in the chromosome; yet only the mutation operation is applied to the

tags. Hence, the mutation matrix is similar to Eq. (23) which is stochastic and positive. The

crossover probability matrix is similar to Eq. (22); which is stochastic.

• Alleles: In this concept, the HGGA is developed by simulating alleles and considering two tags

for each gene, one recessive and one dominant. The alleles go through mutation and crossover.

Let the length of the alleles be 2Lt, and let Ha be the Hamming distance between the tags of

the i and j alleles (number of bits that must be altered by mutation to transform the tags of

j into the tags of i). The maximum of Ha is 2Lt. Since all the bits go through mutation with

probability pm, the mutation conditional probability can be calculated as:

P2(i|n̄) =
∑
j∈S

pH(i,j)+Ha(i,j)
m (1− pm)L+2Lt−H(i,j)−Ha(i,j)P1(j|n̄) (26)

which results in a stochastic and positive mutation matrix. There are two crossover points,

one in the genes and one in the tags such that st ∈ [1, ..., Lt− 1]. The crossover points in tags
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(st) are similar in the dominant and recessive alleles. Hence:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

(
P1(i|n̄).P1(j|n̄).

pc
L− 1

.
1

Lt − 1

∑
s

I ′(i, j, k, s, st)

)
+ (1− pc).P1(k|n̄)

(27)

where I ′(i, j, k, s, st) is 1 if the crossover of i and j at site s in genes and site st in tags produce

k, otherwise I ′(i, j, k, s, st) = 0. The crossover matrix in Eq. (27) is stochastic.

• Logic A: the member of the current generation (n̄) is split into two groups of equal size. For

the first group, the Hidden-Or logic is applied on the tags and for the other half, the Active-Or

logic is used in the tags. There is no mutation in the tags; hence the mutation probability

matrix is defined as in Eq. (25). Let FHO and FAO be functions that can have values of 0 or 1.

If the Hidden-Or operator on the tags of i and j results in the tags of k, then FHO(i, j, k) = 1,

otherwise FHO(i, j, k) = 0. If the Active-Or operator on the tags of i and j results in the tags

of k, then FAO(i, j, k) = 1, otherwise FAO(i, j, k) = 0. For the first half of the children the

crossover probability matrix is then:

P ′2(k|n̄1) =
∑
i∈S

∑
j∈S

P1(i|n̄1).P1(j|n̄1).FHO(i, j, k).
pc

L− 1

∑
s

I(i, j, k, s) + (1− pc).P1(k|n̄1)

(28)

and for the second half of the children:

P ′′2 (k|n̄2) =
∑
i∈S

∑
j∈S

P1(i|n̄2).P1(j|n̄2).FAO(i, j, k).
pc

L− 1

∑
s

I(i, j, k, s) + (1− pc).P1(k|n̄2)

(29)

Where n̄1 represents one half of the GA search space, and n̄2 represents the other half of the

GA search space. The conditional probability of producing k with i and j via selection and

crossover is P ′2(k|n̄1)× P ′′2 (k|n̄2), which results in a stochastic matrix.

• Logic B: The Hidden-OR logic is used for both children. Even though the tags will be the same

in both children, the two children represent two different solutions because they have different
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gene values. There is no mutation for the tags, hence, the mutation probability matrix is

defined as in Eq. (25). The crossover probability matrix is:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

P1(i|n̄).P1(j|n̄).FHO(i, j, k).
pc

L− 1

∑
s

I(i, j, k, s) + (1− pc).P1(k|n̄) (30)

Both mutation and crossover matrices are stochastic; in addition the mutation conditional

probability is positive.

• Logic C: The Active-OR logic is used for both children. Even though the tags will be the

same in both children, the two children represent two different solutions because they have

different gene values. The mutation probability matrix is defined as in Eq. (25). The crossover

probability matrix is:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

P1(i|n̄).P1(j|n̄).FAO(i, j, k).
pc

L− 1

∑
s

I(i, j, k, s) + (1− pc).P1(k|n̄) (31)

Both mutation and crossover matrices are stochastic; in addition the mutation conditional

probability is positive.

By calculating the C, M, and S matrices of different mechanisms, we can now continue on the

convergence analysis. As shown, the mutation matrices in all the mechanisms are stochastic and

positive. The selection matrix is also stochastic and positive; and hence it is column-allowable. Also

the crossover matrices are stochastic. Hence, the CMS matrix is positive (Lemma 1). Since the

HGGA maintains the best solution found over time after selection, Theorem 6 can be used to prove

that all mechanisms of HGGA presented above are convergent.

IV. Statistical Analysis

The results of the previous section show that the HGGAs using any of the proposed tags

evolution mechanisms are convergent. Here, some mechanisms are tested on an interplanetary

trajectory problem and their numerical convergence is investigated. The problem of interplanetary

trajectory optimization is defined as finding the minimum cost trajectory of a spacecraft, traveling
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from one celestial body to another. The cost of the mission is the spacecraft fuel consumption (fu)

and the objective function is to maximize 1/fu. The trajectory is determined through finding the

position and velocity vectors of the spacecraft at any moment. The spacecraft can have multiple

fly-bys and/or deep-space maneuvers (DSMs). This type of problem is a VSDS system architecture

optimization problem, where the number of variables can change based on the topology of the

solution. Several global trajectory optimization methods have been proposed to solve the mutli-

gravity assist deep-space maneuvers (MGADSM) problem.

It has been demonstrated that the HGGAs can search for optimal solution architectures, and

find the optimal topology for bench mark interplanetary trajectory optimization problems [10, 12].

In this section, the Earth-to-Jupiter and Earth-to-Mars space missions are selected to numeri-

cally investigate the convergence of Mechanisms A, B, C, and D. Note that the variables for both

of the problems are considered continuous in this section.

The Earth-to-Jupiter trajectory optimization problem is defined as finding the optimal fuel

consumption trajectory of a spacecraft traveling from Earth to Jupiter, constrained to a maximum

of two fly-bys around any two planets in the solar system, and a maximum of two DSMs in each leg

(a leg is a trajectory segment between two successive fly-bys). The launch time must be between

1−30 September 2016 and the arrival time must be between 1 September to 31 December 2021. The

time of flight for each leg can be between 80 and 800 days. The problem variables and their upper

and lower bounds are shown in Table 1. The variables that can be hidden are the fly-by planets

and the DSMs in each leg. Each planet in the solar system is given a number as indicator; with

Mercury as 1 and Neptune as 8. The The maximum number of fly-bys are two, hence two genes are

assigned for this variable. Each gene can have values between 1 and 8. For example, if the genes are

2 and 6, it means that the first fly-by is around Venus and the second fly-by is around Saturn. A

tag is assigned to each gene that determines if it is active or hidden. If a tag is 0, the corresponding

fly-by is active and if it is 1, that fly-by is hidden. For the same example with fly-bys around Venus

and Saturn, if the tag of the first fly-by is 0 and the tag of the second fly-by is 1 it means that the

solution has only one fly-by around Venus. The genes go through selection, mutation, and crossover

operations and the tags go through the evolutionary mechanisms defined in Section II. Similarly,
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since there are maximum three legs and maximum two DSMs in each leg, there are six genes for

the DSMs variables. Each gene has a tag that determines if the DSM is active or not. Keep in

mind that there are some dependent variables in the problem. For example, if a DSM is hidden,

the corresponding maneuver time, magnitude, and direction are hidden too. Although there is no

need to define new tags for them as their status can be determined by the tags of the DSM.

Table 1 Lower and upper bounds of Earth-to-Jupiter problem

Design Variable Lower Bound Upper Bound

Number of fly-bys 0 2

Fly-by planet 1 (Mercury) 8 (Neptune)

Number of DSMs in each mission leg 0 2

Flight Direction Posigrade Retrograde
Departure Date 01 Sep.2016 30 Sep.2016
Arrival Date 01 Sep.2021 31 Dec.2021

Time Of Flight (TOF) (days) 80 800

Fly-by normalized pericenter altitude 0.1 10

Fly-by plane rotation angle (rad) 0 2π

Epoch of DSM 0.1 0.9

DSM (km/s) −5 5

In the HGGAs simulations, the number of populations is 200 and the number of generations is

200. The problem is solved five times and results show that the mechanisms are convergent. The ob-

jective value versus number of generations is shown in Figure 4 for Mechanism C. Other mechanisms

have similar trends as Mechanism C. A sample trajectory of Earth-to-Jupiter using Mechanism A

is shown in Figure 5. In this figure, the cost of Earth-to-Jupiter mission is 10.1985 km/s.

Moreover, the same problem is solved 100 times (100 identical numerical experiments) for each

of the mechanisms A, B, C, and D, and the success rate of each of the mechanisms is assessed based

on these 100 runs. The success rate of 0.2 means that out of 100 runs, it is expected that 20 runs

generate a solution within an error of 5% of the best solution found overall.

As shown in the Figure 6, the success rates also converge, although different mechanisms

have different success rates. Using Mechanism D, the success rate is the highest and is around

55%. Mechanism C has the lowest success rate of 20%. Keep in mind that the performance of

the mechanisms can not be compared based on only the success rate, since a mechanism with high

success rate might have a poor average objective value. The figures of this section are only provided
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Fig. 4 Convergence of 5 runs for mechanism C in Earth-to-Jupiter mission.

Fig. 5 Earth-to-Jupiter trajectory using Mechanism A

for convergence investigation of the mechanisms.
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Fig. 6 Success rate of different mechanisms in Earth-to-Jupiter mission.
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Conclusions

The HGGAs are designed to handle the optimization of variable-sized design space problems,

where there is one or two tags assigned to each gene to determine its active/hidden status. The

genes evolve through selection, mutation, and crossover operators, while the tags can evolve through

several evolution mechanisms designed specifically for them. In this paper, the convergence of differ-

ent HGGA tags evolution mechanisms are investigated. The HGGAs are modeled as homogeneous

finite Markov processes where selection, mutation, and crossover matrices are derived for each of

the mechanisms. It is shown that if the mutation probability is non-zero and the algorithm keeps

the best solution found over time, the investigated HGGA mechanisms converge toward the global

optimum. The convergence of some of the mechanisms is demonstrated numerically in this paper

on a space trajectory design optimization problem and the success rate is assessed numerically for

some of the algorithms.
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