Convergence Analysis of Hidden Genes Genetic

Algorithms in Space Trajectory Optimization

Shadi A. Darani' and Ossama Abdelkhalik?
Michigan Technological University, Houghton, Michigan 49931-1295.

I. Background and Introduction

A systems architecture optimization problem is characterized by being a variable-size design
space (VSDS) problem; i.e. the number of variables is variable. To see that, consider a space
mission from Earth to Jupiter. Consider a solution to the trajectory optimization problem that has
two fly-bys and another solution that has three fly-bys. While the two solutions are for the same
optimization problem (same objective function), the number of variables in one solution is different
from the number of variables in the other solution (adding a fly-by implies adding some variables
such as the fly-by hight and the fly-by plane). Hence, the design space dimension (size) varies among
different solutions. There are different deterministic, heuristic, and hybrid algorithms proposed for
the interplanetary trajectory optimization problems. References [1, 2] use deterministic algorithms
based on grid or tree search. Heuristic algorithms include genetic algorithms (GAs), differential
evolution, particle swarm optimization, adaptive simulated annealing [3-6]. Reference [7-9] use
hybrid methods like Multistart, monotonic basin hopping algorithm, and machine learning. In some
of these algorithms either a pruning method is applied to limit the possible mission structures, or
the solution structure (fly-by sequence) is assumed known a priori. Recent studies on variations
of GAs, including hidden genes genetic algorithms (HGGAs), have been able to solve trajectory
optimization problems in the general form with unknown fly-bys and DSMS.

In standard GAs, the variables of the optimization problem are coded as genes; each solution
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is a chromosome. In Figure 1, a solution with [ variables is shown as a chromosome with [ genes
91,92, ---,9;- The genetic operations of selection, mutation, and crossover are applied on a popula-
tion of these chromosomes. Through generations (iterations), theses populations evolve toward the
optimal solution. All the GA operations are defined on fixed-length chromosomes; and hence the

standard GAs can only handle problems of Fixed-Size Design Space (FSDS).
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Fig. 1 Solutions are represented as chromosomes (string of genes) in standard GA.

The biologically inspired concept of hidden genes was recently proposed in evolutionary algo-
rithms and hidden genes genetic algorithms were introduced to model this type of VSDS optimization
problems. Figure 2 shows an illustration for a chromosome in HGGA. A binary tag is appended to
each gene. This binary tag determines whether the gene is hidden or active. When a gene is hidden,
it does not get transcribed during the objective function evaluation. In other words, although the
hidden gene exists in the chromosome, it does not affect the fitness (or objective function value) of
the solution. It does carry information to the next generation though. This concept of hidden genes
enables solutions of different lengths to be coded in chromosomes of equal lengths. For instance,
in a space trajectory optimization problem, a solution that has two fly-bys would have the same
chromosome length as that of a solution that has three fly-bys, the only difference would be in the

number of hidden genes in each chromosome.
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Fig. 2 Tags and genes in a solution of HGGA.

The HGGAs were implemented to optimize interplanetary space trajectories where it demon-
strated the capability of searching for the optimal number of fly-by maneuvers needed for the
mission, along with the fly-by planets, the number of deep space maneuvers and their direction and

magnitude, in addition to the rest of the trajectory design variables [10, 11].



In the evolution process, chromosomes (solutions) evolve over subsequent iterations generating
new solutions. In HGGAs, the genes evolve in the same way as that in the GAs, using selection,
crossover, and mutation operations. The tags have different mechanisms for evolution that are
introduced in [10]. In one mechanism, the tags evolve through stochastic operations, while in
another one the tags evolve through logical operations. The performance of these mechanisms is
tested on different VSDS problems, including space trajectory optimization problems. Although the
HGGASs converge toward optimal solutions and find best known solutions for benchmark problems as
reported in [10], there is no analytical proof that the HGGAs, with the tags evolution mechanisms,
are convergent. In [12], a simple implementation of a HGGA is presented where no tags are used
for hiding the genes. Rather, a simple criterion is used to determine which genes are hidden in a
chromosome depending on the feasibility of the solutions. Then, Holland’s schema theorem [13] is
implemented to prove the convergence of that simple HGGA. Some previous works on GA, however,
argue that the detailed behavior of the GA can not be explained by the Schema Theorem [14, 15].
Hence, with the introduction of the new evolution mechanisms, a more comprehensive investigation
of the HGGAs properties and convergence characteristics is needed.

This paper presents a convergence analysis that proves HGGAs generate a sequence of solutions
with the limit value of the global optima. For an analytical proof, the homogeneous finite Markov
models of different mechanisms proposed in [10] are derived, and the convergence of the HGGAs with
tag evolution mechanisms are investigated. The optimization problem is considered a maximization
problem with strictly positive values for the objective function. In a multi-gravity-assist space
trajectory optimization problem, the objective function can be defined as 1/f, > 0, where f, is the
fuel consumption. Hence, the problem can be treated as a maximization problem. In section I A,
a review for the Markov model for binary canonical genetic algorithms (CGAs) is presented and
its convergence is analyzed. Section II briefs the tag evolution mechanisms. In section III, the
transition matrix of different HGGA mechanisms are derived and the convergence conditions are
investigated. Section IV presents numerical tests carried out on a space trajectory optimization

problem.



A. Markov Chain Model of Genetic Algorithms

The stochastic dependency between successive populations is created by applying selection,
mutation, and crossover operators to the current population to produce the next population. Hence,
the GA is a stochastic process in which the state of each population only depend on the state of the
immediate predecessor population. Therefore, the GA can be modeled as a Markov process [16].
Several studies have investigated the convergence behavior of the GA explicitly using the Markov
chain analysis [16-20]. The minimum conditions for convergence of EGAs in the realm of Markov
chain model can be found in details in [16, 20, 21]|. Here, these conditions are briefly reviewed and
utilized to derive the convergence conditions for the HGGAs. The GA is a Markov process and its
transition matrix can be calculated. It will be shown that the GA transition matrix is reducible.
Hence, the ergodic theorem for reducible transition matrix can be used to prove that ergodicity is a
sufficient condition for convergence. It is assumed that this analysis is in the domain of binary genetic
algorithms with bits as variables. The materials of this section are a nearly verbatim adaptation of

works done by Rudolph [20] and Davis [16]. We start with a review for few basic definitions:
e Column-allowable matrix: a square matrix that has at least one positive entry in each column.

e Stochastic matrix: a non-negative matrix A = (a;;)i j=1,..n is said to be stochastic if

dj=1.. n0ij =1, foreachi=1,.,n.

e Arithmetic crossover: a crossover that linearly combines two parents to get one child. The

child is the weighted average of the parents as follows:
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where C' is the child, P;, and P;, are the parents, and X is a random number in (0,0.5).

e Reducible matrix: if matrix A = (a;;)i j=1,....» iS non-negative and can be brought into the

D 0
form by applying the same permutations to rows and columns, it is called a reducible

RT

matrix. Note that D and T should be square matrices.

The finite state space S of a Markov chain has the cardinality of |S| = n, where the states are



numbered from 1 to n. Let [ be the chromosome length, M = 2! be the constant population size,
and m = 2", Assume that the simple GA consists of three standard operations: selection (S),
mutation (M), and crossover (C). To transform any state ¢ to state j, the transition product
matrix CMS is used and the convergence of the GA depends on this transition matrix [21]. The
transition matrix of a finite Markov chain consists of the transition probabilities from state ¢ to 7,
ie. P = (p;;). For each entry, leszll(p”) =1 for all ¢ € S. The GA transition product matrix
(CMS) is a Markov probability matrix (P).

First few needed theorems and lemmata are listed here:

Lemma 1: Let C, M and S be stochastic matrices, where M is positive and S is column-
allowable. Then the product CMS is positive [20].

Theorem 1: Let P be a primitive stochastic matrix. Then Pk converges as k — oo to a positive

stable stochastic matrix P> = 1’p™ , where p™ = p°.limy_,oo P¥ = p°P> has nonzero entries

and is unique regardless of the initial distribution [20].

D 0
Theorem 2: Let P be a reducible stochastic matrix defined as: where D is an m x m
RT
primitive stochastic matrix and R, T # 0. Then
D* 0 D> 0
P> = lim P* = lim = (2)
k—oo k—oo k—1 i k—i k
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is a stable stochastic matrix with P> = 'p®>, where p™ = p,P* is unique regardless of the
initial distribution, and p™ satisfies: p$°® > 0 for 1 < < m and p® = 0 for m < i < n [20].

Theorem 3: The transition matrix of the GA with mutation probability p,, € (0, 1), crossover
probability p. € [0, 1] and proportional selection is primitive [20].

Corollary 1: The CGA with parameter ranges as in Theorem 1 is an ergodic Markov chain, i.e.,
there exists a unique limit distribution for the states of the chain with nonzero probability to be
in any state at any time regardless of the initial distribution. This is an immediate consequence of
Theorems 1 and 2 [20].

Theorem 4: The CGA with parameter ranges as in Theorem 3 does not converge to the global



optimum [20].

Theorem 5: In an ergodic Markov chain the expected transition time between initial state ¢ and
any other state j is finite, regardless of the states i and j [20].

Theorem 6: The canonical GA as in Theorem 3 maintaining the best solution found over time
after selection converges to the global optimum [20].

To maintain the best solution over time, the population is enlarged by adding the super in-
dividual to it. The term super individual is used for the solution that does not take part in the
evolutionary process. Hence, the cardinality of the state space grows from 2 to 2("*D! The super
individual is placed at the leftmost position in the (n+ 1)-tuple and can be accessible by 7 (¢) from
a population at state i, where mo(¢) is a function that calls the super individual from population 4.

The super individual does not take part in the evolutionary process, therefore, the extended

transition matrices for crossover CT, mutation M, and selection S* can be written as [20]:

Then we can write:

CMS
CMS
crMtSt = (4)

CMS

where CT, M™, and ST are block diagonal matrices and each of the 2! square matrices C, M
and S are of size 2™ x 2™ and CMS > 0.
The upgrade matrix U is a matrix that upgrades the solutions in the population based on their

objective function value (fitness). An intermediate state containing a solution with an objective



value better than the super individual will upgrade to a state where the super individual equals
the better solution. Let b be the best individual of the population at state i, excluding the super
individual. By definition, w;; = 1 if f(mo(¢)) < b, otherwise u;; = 1. Therefore, there is one entry
in each row and for every state j with f(mo(j)) < maz[f(mr(j))|k =1...n], the elements will be

u;; = 0 for all ¢s. Hence, the structure of the upgrade matrix can be written as [20]:

Ull

Uy Uy

U21,1 U2172 U2l72l

where the sub-matrices Uy, are of size 2™ x 27!, If the optimization problem has only one
global solution, then only Uy, is a unit matrix, and all other matrices U,, with a > 2 are diagonal
matrices with some zero diagonal elements, and some unit diagonal elements. Recall that in this

Markov model for GA, P = CMS and hence the transition matrix for the GA becomes:

P U11 PUl 1
n P Uy Uy PU,; PU,
Pt = = (6)
P U2l’1 U21’2 U2l’2l PU2L’1 PU2Z’2 v PU2l,2l

Note that PU;; = P > 0. The sub-matrices PU,;, where a > 2, are gathered in a rectangular
matrix R # 0. Note that The PU;; = 0 where Vj > 1. Then comparing Eq. (6) to Eq. (2), we can
see that limy_,o, PT* is unique regardless of the initial distribution, concluding in the convergence
of the canonical GA.

Note that to make the extended transition matrix in the form of Eq. (6), we assumed that
C, M, and S are stochastic, positive, and column-allowable. Therefore, the extended transition
matrices C*, M1, and ST are stochastic and positive. The above proof also shows that the P in

Eq. (6) is a reducible matrix. Since PU;; > 0 (PUy; corresponding to the D matrix in Theorem



2), then using Theorem 2 we can show that the GA converges to the optimal solution in the limit.
In section III, these matrices are explicitly derived and it is shown that in the HGGA, the C, M,

and S are stochastic, positive, and column-allowable.

II. Tags Evolution Mechanisms in HGGA

Chromosomes evolve over successive generations. Genes along with their tags go through evo-
lutionary operations. Genes evolve through the standard operations defined in the CGA. The tags,
however, may evolve with different operations. A set of operations used to evolve tags is here re-
ferred to as a mechanism for tags evolution. There are 12 different mechanisms for tags evolution
that will be investigated in this paper. The complete explanation of these mechanisms can be found
in [10]. Here, a brief description of each mechanism is provided. In the mechanisms that have a
crossover operator for the tags, the singe-point crossover is used, unless otherwise stated. Some
of the evolution mechanisms are logical. Here we introduce two definitions. Consider two parents
selected for reproduction and consider one offspring child. The Hidden-OR evolution logic is defined
as follows: a gene in the child chromosome is hidden if the same gene is hidden in any of the parents.
The Active-OR evolution logic is defined as: a gene is active in the child if the same gene is active

in any of the parents.

1. Mechanism A: tags evolve using a crossover operator. The crossover point location in the tags
can be different from that in the genes. Before the crossover, tags go through a mutation with

probability of 10%.

2. Mechanism B: When two parents are selected for reproduction, then the process of evolving

the tags is as follows:

i - produce two temporary children through a single-point crossover operation on genes,
and an Active-OR logic on tags. Both of these temporary children will have the same

tags.
ii - calculate the fitness value of these two temporary children, f; and fs.

iii - consider the parents chromosomes (genes and tags) as points in RI*HE space where Ly



is the number of tags.

iv - the child (output of Mechanism B) is the weighted arithmetic crossover on the parents

and is closer to the parent that has better fitness f for its temporary child.

For example, for the IR? space in Figure 3, the child is closer to parent 1 because its temporary
child has better fitness value. A is a random number in (0,0.5). If f; = fo, then the child can

be randomly closer to either parents.
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Fig. 3 Representation of arithmetic crossover in IR®.

In this mechanism, the mutation operator is only allied to the genes.

. Mechanism C: The arithmetic crossover operator is used for the genes only. The tags
in the child will have the same tags of one of the parents depending on the value of
(fm1 =f+ Zle’l tagi), where f is the fitness of the parent. The offspring tags will be the
same as that of the parent that has better value of (fm1 =f+ Zf:tl tagi>. In other words,

this mechanism favors higher number of hidden genes.

. Mechanism D: same as Mechanism C, but the offspring tags have the same values as that
of the parent with better value of ( fma=f— Zf;l tagi). In other words, this mechanism

favors less number of hidden genes.

. Mechanism E: tags evolve only through a mutation operation with a certain mutation proba-
bility different than the mutation probability of the genes. So, two parents are selected; then
mutation for the genes is carried out and another mutation for the tags is carried out. These

two parents then go through a crossover operation on the genes with a certain probability as



in the CGA, while the tags remain unchanged during this crossover operation.

6. Mechanism F: tags are considered as discrete variables where they are appended to the genes
to create a long chromosome that has both genes and tags. Then the mutation and crossover

operations are carried out in a similar way to that of the CGA.

7. Mechanism G: this mechanism is similar to Mechanism F except that the tags do not go

through a mutation operation.

8. Mechanism H: this mechanism is similar to Mechanism F except that the tags do not go
through a crossover operation. This is carried out by limiting the crossover point to be within

the genes only.

9. Alleles: two tags are assigned for each gene, one recessive and one dominant. First, the
mutation operation is carried out in the genes and tags. Then, a single-point crossover operator
is applied to the genes, and a two-point crossover operator is applied to the tags such that the

crossover point in the dominant and recessive tags are similar.

10. Logic A: the member of the current generation (72) is split into two groups of equal size. For
the first group, the Active-OR logic is used for tags evolution (a gene is active in the child if
the same gene is active in any of the parents). For the second group, the Hidden-OR logic is
used for tags evolution (a gene is hidden in the child if the same gene is hidden in any of the

parents).

11. Logic B: similar to Logic A; but the Hidden-OR logic is used for all the members in the

generation.

12. Logic C: similar to Logic A; but the Active-OR logic is used for all the members in the

generation.

III. Markov Chain Model of Hidden Genes Genetic Algorithm
The HGGA using any of the stochastic or logical mechanisms, defined in section II, is here
proved to be convergent. The approach to prove that these HGGA mechanisms are convergent, in

general, is as follows:

10



First we show that the HGGA can be modeled as a Markov process. Then it is shown that
the selection, mutation, and crossover matrices have the properties described in Lemma 1.
Therefore, the extended transition matrix of HGGA is reducible and can be written in the

form of Eq. (6). Finally, Theorem 2 can be used to prove the convergence.

Similar to the canonical GA, any future state of the HGGA population is only dependent on the
current population and is independent from the previous history. Hence, if the transition product
matrix CMS of a HGGA mechanism is stochastic, then the HGGA with that mechanism can be
considered as a Markov processes.

To prove that the CMS matrix is stochastic and primitive, the intermediate matrices of C, M
and S need to be derived. They are derived in this section. It is assumed that the single-point
crossover is selected for the genes, unless otherwise stated. The number of genes is L and the
number of the tags is L;. H(i,j) is the Hamming distance between the genes of i and j (number
of bits that must be altered by mutation to transform the genes of j into the genes of i) and is
0 < H(i,j) < L. Hy(i,j) is the Hamming distance between the tags of i and j (number of bits that
must be altered by mutation to transform the tags of j into the tags of i) and is 0 < Hy(i,5) < L;. In
all the mechanisms, the genes go thorough selection, mutation, and crossover similar to the standard
genetic algorithm and only the tags evolution is different.

The transition probability matrices determine the probability of transferring a solution 7 to
solution j; that is to change the L genes of solution ¢ to be the same as the L genes of solution 7,

and change the L; tags of solution ¢ to be the same as the L; tags of solution j.

A. Selection Matrix S

The selection operator for the HGGA is not different from that of a canonical GA one. For
example, for a fitness proportionate selection, the probability that a solution i is selected only
depends on the objective value, which in turn is a function of the values of the genes as well as the
values of the tags. Hence, the selection matrix is computed for the HGGA in a similar way to that
of the GA as follows.

The probability of selecting a solution ¢ € S, from a population described by the probability

11



distribution vector n € S’ is [16]:

o )
Prliln) = = ) RG) @)

where i = (n(0),n(1),...,n(2" — 1)) is the current generation and n(i) represents the number of
occurrences of solution 4, and R(i) is the objective value for solution i and is strictly positive.
Therefore, given the present generation is 72, the conditional probability of the successor generation

M is a multinomial distribution [16]:

where,

(Anf) - He;\gmw )

The transition probability matrix of the Markov chain where only the selection operation is applied

is P = [Py(m|n)]. This matrix is positive, stochastic, and column-allowable. Hence, the transition

matrix due to only selection operation in HGGA is stochastic, positive, and column-allowable.

B. Mutation M and Crossover C Matrices

In this section, the explicit formulation of mutation and crossover matrices are derived and
it is shown that for all of the mechanisms, the mutation matrix is stochastic and positive and the
crossover matrix is stochastic. The general scheme for deriving these matrices is first presented; then
followed by its application to each mechanism. Assume a nonzero value for the mutation probability,
ie., 0 < pn(k) < 1/2. In the mutation operation in the CGA, the probability of transforming j into
i can be calculated as pit (7 (1 —pm)=~H3) Thus the transition probability, due to both selection

and mutation operations, is [16]:

. i _H(i.i . 1 i =\ = .
Py(iln) =Y plOI (1 = p) " HED Py (j0) = RETE > oD p(jln),ne S'ieS  (10)
jes s
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where oo = .
1- Pm

Yies @D (n(4).R(5))
(L+a)k. 3 esn(k).R(k)

. Pa(il) = ()

The multinomial distribution for Pz(m|@) can be defined as [16]:

M .
Py (mln) = 1= \m(i)
stmlm) = () TT Patilm) (12)
icS
Then the transition matrix of selection and mutation would be P = [Py(m|n)]. Note that « is

positive for 0 < p,,, < 1/2. As can be seen from Eq. (11), since « is positive, R is positive, and
n > 0, then the P matrix is primitive.

Regarding the crossover operation, assume that a single-point crossover is applied. The new
function I(4,j, k,s) is defined where 4,5, k € S, and s € [1,...,L — 1] is a bit string. The selected
parents are i, j and k is a potential descendant string after a crossover at random location s which
is assumed uniformly distributed. If %k is produced by crossing ¢ and j at the location s, then
1(i,j,k,s) = 1, otherwise I(i,7,k,s) = 0. The conditional probability of producing k via selection

and crossover operations can be derived as [16]:

EDES )Y (aum»aum»ﬁ’j -S04k, s>> +(-p)Pi(kl)  (13)

i€S jes

Therefore the conditional probability of producing k£ via selection, mutation, and crossover opera-

tions is [16]:

Py(il) = e 20 0O PAG) (19
JjES

Then:

Patalm) = (). [T Pati™ (15)

13



By inspection of Eq. (13) and Eq. (14), it can be seen that this three-operator Markov chain is
primitive. Then, based on the results of section I A this GA model, maintaining the best solution
found over time, converges to the global optimum.

Here, the above results are applied to each of the HGGA mechanisms.

e Mechanism A: In this mechanism, the tags can crossover independently from the genes and
there is is a 10% mutation probability in the tags. This implies that the intermediate transition
matrix for mutation (M) consists of two parts, where the Hamming distance of H (3, j) is the
number of bits in the genes only that need to be altered by mutation, and H(i,7) is the
number of bits in the tags only that need to be altered by mutation. Hence the probability

can be described as follows:

Py(iln) = S pHED (1 — py) - HEDIED (1 B 1) Py (f|7) (16)
jeES

Note that the probability that solution j is transfered to solution i is pﬁ(i’j)(l -

P ) H@2) (0.1)He (00 (0.9) Lo —He(03) > 0 for all 4,5 € S when 0 < P,, < 0.5. Thus, M is

positive. For the crossover operation:

_ [ oy P 1 . _

Py(kln) = Y3 <P1<z|n>P1<j|n> o e Zf'u,ms,st)) +(1-p)Pi(klA) (17
€S jeS s

The I'(i, j, k, s, s¢) takes values {0, 1}, where 1 shows that child k (genes and tags) is produced

by the crossover of parents ¢ and j at site s in the genes and at site s; in the tags. Therefore,

the conditional probability of constructing a bit string k via selection, mutation, and crossover

operations in HGGA is:

1

Ps(iln) = A+ a)itie > oI P(jln) (18)
jes

1+«

Then the transition matrix for Mechanism A can be computed by substituting Eq. (18) into

Eq. (15). Note that L is replaced by L + L; to account for the additional tags. By inspection

14



of Eq. (18), it can be concluded that this transition matrix of HGGA with mechanism A is

stochastic and positive.

Mechanism B: In this mechanism, the tags are considered as design variables in the crossover
operation. The arithmetic crossover is used in this mechanism, where the number of variables
in this case is L+ L;. Hence, it can be concluded that the crossover transition matrix Pj(k|7)
(defined in Eq. (13)) for mechanism B is stochastic. The mutation operation in mechanism B
is similar to that of mechanism A, and hence the mutation transition matrix P»(i|72) can be
computed using Eq. (25) for mechanism B, which is positive when 0 < P, < 0.5. Finally, the
Py(i|n) and Pj(k|7) matrices are used to compute P3(m|7i) using Egs. (14) and (15). Then

the overall transition matrix Ps(7m|7) is primitive for mechanism B.

Mechanism C: here an arithmetic crossover operation is used for the genes, while the tags
are copied from one of the parents as described in Section II. The selection and crossover

transition probability is defined as follows:

P2/<k‘ﬁ) = ZZpl<i|ﬁ)P1(j|ﬁ)chA(i,j’ka )‘)FT1 (iaj7k7fm1 (i)afm1 (])) + (1 _pc)Pl(klﬁ’)
i€S jES

(19)

where F4 is 1 if the arithmetic crossover of genes in parents i and j, along with the weight
coefficient A result in the genes of solution k; otherwise Fiy = 0. Also, Frr, is 1 if the tags of
solution k are similar to the tags of the parent that has better f,,,; otherwise Fr, = 0. For
example, if parents ¢ and j are selected and their modified cost values are f,, (i) and fi,, (j)
(defined in Section II, Mechanism C), then if f,,, (¢) is better than f,,, (j) and the tags of k
are similar to the tags of 4, then Fr, = 1; otherwise Fr;, = 0. Hence, the resulting crossover
probability matrix is stochastic. The Mutation operation is similar to that of mechanisms A

and B, and therefore, it is stochastic and positive.

15



e Mechanism D: similar to mechanism C, the crossover probability can be written as:

Py(k|n) = > Pi(iln) Pr(jln)peFali 3, ks N Fry (i, 4, K, fons (), fina (4)) + (1= pe) P (K|7)
€S jes

(20)

where F4 is 1 if the arithmetic crossover of genes in parents ¢ and j along with weight the
coefficient A result in the genes of solution k; otherwise Fy = 0. Also, Fr, is 1 if the tags of
solution k are similar to the tags of the parent that has better f,,; otherwise Frr, = 0. Hence,
the resulting crossover probability matrix is stochastic. The Mutation operation is similar to

that of mechanisms A and B, and therefore, it is stochastic and positive.

e Mechanism E: tags evolve through a mutation operation with a certain mutation probability.

Let p,,¢ be the mutation probability of the tags, then:

Zp[;[(z j) )L*H(i,j)pyHn;(ivj)(l _ p7'Lt)Lt7Ht(i’j)P1 (]|77L) (21)
JeSs

which is stochastic. Also since p,, and p,,; are positive and less than 0.5, then Py (i|n) is

positive. The crossover is only applied to the genes in this mechanism, hence:

Py(kln) =" (Pl iln).Py(j Pc Z] i, ik, s ) + (1 —pe).Pi(kln)  (22)

i€S jeS

Similar to the CGA, the matrix Pj(k|n) above is stochastic.

e Mechanism F: In this mechanism, the tags are considered as discrete variables similar to the
design variables in the chromosome. The crossover and mutation operations are performed on

all the variables (genes and tags). The mutation transition probability is then as follows:

i) =Y pAED TG (1 p, Yl b HED=H@D) Py () (23)
jES

which results in a positive and stochastic mutation matrix. Also the stochastic crossover

16



transition probability can be calculated as follows:

Py (k|n) ZZ(H )-Pi( ]|n)m212 Jr ks S)) + (1 =pe).Pi(kln)  (24)
i€S jeS

Mechanism G: In this mechanism, the tags are considered as discrete variables similar to the

design variables in the chromosome; yet only the crossover operation is applied to the tags.

Since there is no mutation in the tags, the mutation transition probability is as follows:

) =3 pAED(1 — p, ) L HED Py (i) (25)
jES

which results in a positive and stochastic mutation matrix. The stochastic crossover proba-

bility matrix is similar to Eq. (24).

Mechanism H: In this mechanism, the tags are considered as discrete variables similar to
the design variables in the chromosome; yet only the mutation operation is applied to the
tags. Hence, the mutation matrix is similar to Eq. (23) which is stochastic and positive. The

crossover probability matrix is similar to Eq. (22); which is stochastic.

Alleles: In this concept, the HGGA is developed by simulating alleles and considering two tags

for each gene, one recessive and one dominant. The alleles go through mutation and crossover.

Let the length of the alleles be 2L;, and let H, be the Hamming distance between the tags of
the ¢ and j alleles (number of bits that must be altered by mutation to transform the tags of
Jj into the tags of 7). The maximum of H, is 2L,. Since all the bits go through mutation with

probability p,,, the mutation conditional probability can be calculated as:

= Y pHED G (1 p,, ) EHLHED —Ha6D) P (j]7) (26)
JES

which results in a stochastic and positive mutation matrix. There are two crossover points,

one in the genes and one in the tags such that s; € [1,..., Ly — 1]. The crossover points in tags
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(s¢) are similar in the dominant and recessive alleles. Hence:

Py(k|n) ZZ(H i[m).-Py(j|m). _1 Lt_IZI zy,ksst>+(1—p6).P1(k|ﬁ)

€S jeS

(27)

where I'(i, 4, k, s, s¢) is 1 if the crossover of 7 and j at site s in genes and site s; in tags produce

k, otherwise I'(i, 7, k, s, s¢) = 0. The crossover matrix in Eq. (27) is stochastic.

Logic A: the member of the current generation (72) is split into two groups of equal size. For
the first group, the Hidden-Or logic is applied on the tags and for the other half, the Active-Or
logic is used in the tags. There is no mutation in the tags; hence the mutation probability
matrix is defined as in Eq. (25). Let Fgo and Fao be functions that can have values of 0 or 1.
If the Hidden-Or operator on the tags of ¢ and j results in the tags of k, then Fro(i,j, k) = 1,
otherwise Fo(i,j, k) = 0. If the Active-Or operator on the tags of i and j results in the tags
of k, then Fao(4,j,k) = 1, otherwise Fao(i,7,k) = 0. For the first half of the children the

crossover probability matrix is then:

Py(k|ny) = ZZPl i|n1).P1(j|71).Fro (i, 4, k pc ZI 1,7, k,8) + (1 — pe).Pr(k|nq)
€S jeS

(28)

and for the second half of the children:

Py(klnz) = 35" Pi(iln).Pu(jlnz)-Fao(i, j. k pc ZI i gk, s) + (1 — po).Py(k|fz)
€S jeS

(29)

Where 711 represents one half of the GA search space, and 7o represents the other half of the
GA search space. The conditional probability of producing k£ with ¢ and j via selection and

crossover is Pj(k|nq) x Py (k|ns2), which results in a stochastic matrix.

Logic B: The Hidden-OR logic is used for both children. Even though the tags will be the same

in both children, the two children represent two different solutions because they have different
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gene values. There is no mutation for the tags, hence, the mutation probability matrix is

defined as in Eq. (25). The crossover probability matrix is:

i€S jeS s
Both mutation and crossover matrices are stochastic; in addition the mutation conditional

probability is positive.

e Logic C: The Active-OR logic is used for both children. Even though the tags will be the
same in both children, the two children represent two different solutions because they have
different gene values. The mutation probability matrix is defined as in Eq. (25). The crossover

probability matrix is:

Pa(kln) =3 > Pi(iln)Pr(jln)-Fao (i, k). ij o> (k) + (1= pe)-Pi(kln) - (31)
i€S jeS s
Both mutation and crossover matrices are stochastic; in addition the mutation conditional

probability is positive.

By calculating the C, M, and S matrices of different mechanisms, we can now continue on the
convergence analysis. As shown, the mutation matrices in all the mechanisms are stochastic and
positive. The selection matrix is also stochastic and positive; and hence it is column-allowable. Also
the crossover matrices are stochastic. Hence, the CMS matrix is positive (Lemma 1). Since the
HGGA maintains the best solution found over time after selection, Theorem 6 can be used to prove

that all mechanisms of HGGA presented above are convergent.

IV. Statistical Analysis
The results of the previous section show that the HGGAs using any of the proposed tags
evolution mechanisms are convergent. Here, some mechanisms are tested on an interplanetary
trajectory problem and their numerical convergence is investigated. The problem of interplanetary

trajectory optimization is defined as finding the minimum cost trajectory of a spacecraft, traveling
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from one celestial body to another. The cost of the mission is the spacecraft fuel consumption ( f,,)
and the objective function is to maximize 1/f,. The trajectory is determined through finding the
position and velocity vectors of the spacecraft at any moment. The spacecraft can have multiple
fly-bys and/or deep-space maneuvers (DSMs). This type of problem is a VSDS system architecture
optimization problem, where the number of variables can change based on the topology of the
solution. Several global trajectory optimization methods have been proposed to solve the mutli-
gravity assist deep-space maneuvers (MGADSM) problem.

It has been demonstrated that the HGGAs can search for optimal solution architectures, and
find the optimal topology for bench mark interplanetary trajectory optimization problems [10, 12].

In this section, the Earth-to-Jupiter and Earth-to-Mars space missions are selected to numeri-
cally investigate the convergence of Mechanisms A, B, C, and D. Note that the variables for both
of the problems are considered continuous in this section.

The Earth-to-Jupiter trajectory optimization problem is defined as finding the optimal fuel
consumption trajectory of a spacecraft traveling from Earth to Jupiter, constrained to a maximum
of two fly-bys around any two planets in the solar system, and a maximum of two DSMs in each leg
(a leg is a trajectory segment between two successive fly-bys). The launch time must be between
1—30 September 2016 and the arrival time must be between 1 September to 31 December 2021. The
time of flight for each leg can be between 80 and 800 days. The problem variables and their upper
and lower bounds are shown in Table 1. The variables that can be hidden are the fly-by planets
and the DSMs in each leg. Each planet in the solar system is given a number as indicator; with
Mercury as 1 and Neptune as 8. The The maximum number of fly-bys are two, hence two genes are
assigned for this variable. Each gene can have values between 1 and 8. For example, if the genes are
2 and 6, it means that the first fly-by is around Venus and the second fly-by is around Saturn. A
tag is assigned to each gene that determines if it is active or hidden. If a tag is 0, the corresponding
fly-by is active and if it is 1, that fly-by is hidden. For the same example with fly-bys around Venus
and Saturn, if the tag of the first fly-by is 0 and the tag of the second fly-by is 1 it means that the
solution has only one fly-by around Venus. The genes go through selection, mutation, and crossover

operations and the tags go through the evolutionary mechanisms defined in Section II. Similarly,
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since there are maximum three legs and maximum two DSMs in each leg, there are six genes for
the DSMs variables. Each gene has a tag that determines if the DSM is active or not. Keep in
mind that there are some dependent variables in the problem. For example, if a DSM is hidden,
the corresponding maneuver time, magnitude, and direction are hidden too. Although there is no

need to define new tags for them as their status can be determined by the tags of the DSM.

Table 1 Lower and upper bounds of Earth-to-Jupiter problem

Design Variable Lower Bound Upper Bound‘
Number of fly-bys 0 2
Fly-by planet 1 (Mercury) 8(Neptune)
Number of DSMs in each mission leg 0 2
Flight Direction Posigrade  Retrograde
Departure Date 01 Sep.2016 30 Sep.2016
Arrival Date 01 Sep.2021 31 Dec.2021
Time Of Flight (TOF) (days) 80 800
Fly-by normalized pericenter altitude 0.1 10
Fly-by plane rotation angle (rad) 0 2
Epoch of DSM 0.1 0.9
DSM (km/s) -5 5

In the HGGAs simulations, the number of populations is 200 and the number of generations is
200. The problem is solved five times and results show that the mechanisms are convergent. The ob-
jective value versus number of generations is shown in Figure 4 for Mechanism C. Other mechanisms
have similar trends as Mechanism C. A sample trajectory of Earth-to-Jupiter using Mechanism A
is shown in Figure 5. In this figure, the cost of Earth-to-Jupiter mission is 10.1985 km/s.

Moreover, the same problem is solved 100 times (100 identical numerical experiments) for each
of the mechanisms A, B, C, and D, and the success rate of each of the mechanisms is assessed based
on these 100 runs. The success rate of 0.2 means that out of 100 runs, it is expected that 20 runs
generate a solution within an error of 5% of the best solution found overall.

As shown in the Figure 6, the success rates also converge, although different mechanisms
have different success rates. Using Mechanism D, the success rate is the highest and is around
55%. Mechanism C has the lowest success rate of 20%. Keep in mind that the performance of
the mechanisms can not be compared based on only the success rate, since a mechanism with high

success rate might have a poor average objective value. The figures of this section are only provided
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Conclusions

The HGGAs are designed to handle the optimization of variable-sized design space problems,
where there is one or two tags assigned to each gene to determine its active/hidden status. The
genes evolve through selection, mutation, and crossover operators, while the tags can evolve through
several evolution mechanisms designed specifically for them. In this paper, the convergence of differ-
ent HGGA tags evolution mechanisms are investigated. The HGGAs are modeled as homogeneous
finite Markov processes where selection, mutation, and crossover matrices are derived for each of
the mechanisms. It is shown that if the mutation probability is non-zero and the algorithm keeps
the best solution found over time, the investigated HGGA mechanisms converge toward the global
optimum. The convergence of some of the mechanisms is demonstrated numerically in this paper
on a space trajectory design optimization problem and the success rate is assessed numerically for

some of the algorithms.
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