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Abstract: The widespread application of phasor measurement units has improved grid operational
reliability. However, this has increased the risk of cyber threats such as false data injection attack that
mislead time-critical measurements, which may lead to incorrect operator actions. While a single
incorrect operator action might not result in a cascading failure, a series of actions impacting critical
lines and transformers, combined with pre-existing faults or scheduled maintenance, might lead to
widespread outages. To prevent cascading failures, controlled islanding strategies are traditionally
implemented. However, islanding is effective only when the received data are trustworthy. This paper
investigates two multi-objective controlled islanding strategies to accommodate data uncertainties
under scenarios of lack of or partial knowledge of false data injection attacks. When attack information
is not available, the optimization problem maximizes island observability using a minimum number
of phasor measurement units for a more accurate state estimation. When partial attack information
is available, vulnerable phasor measurement units are isolated to a smaller island to minimize the
impacts of attacks. Additional objectives ensure steady-state and transient-state stability of the
islands. Simulations are performed on 200-bus, 500-bus, and 2000-bus systems.

Keywords: controlled islanding; cyber security; emergency control; false data attack; wide-area
control and stability; phasor measurement units; uncertainty

1. Introduction
Controlled islanding, as a last resort solution, prevents cascading failures by isolating

the faulty regions from the rest of the grid and creating smaller partitions that rapidly
restore [1,2]. Islanding aims to: (1) minimize the total line power flow disconnection
to enhance the system transient stability [3–6], and (2) minimize the imbalance of load
generation in each island to enhance the steady-state stability [7–9].

Controlled islanding is particularly effective assuming that the received information
about the system is trustworthy, an assumption that does not hold under unobservable
cyber attacks. Undetected cyber attacks, such as data injection, falsify the measurements of
the phasor measurement units (PMUs) in load injection buses [10–13]. Such attacks may
result in incorrect estimation of bus voltages and angles, affecting island re-synchronization
and system recovery. The problem is compounded in large power grids when monitoring
the enormous volume of activity inside the network becomes extremely difficult, let alone
the discovery of threats.

This paper considers how measurement uncertainties, under the lack of or partial
information on compromised measurements, affect the outcome of controlled islanding.
Specifically, false data attacks changing steady-state conditions are considered. The main
scope of the study is to strengthen the existing islanding process by considering uncertain-
ties in the PMU measurement in the islanding formulation and enabling a prompt response
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and recovery. To our knowledge, this is the first paper to accommodate PMU measurement
uncertainties in traditional controlled islanding.

Figure 1 illustrates the overall process developed in the paper. With no prior knowl-
edge of false measurements, designing a recovery approach is inherently complex. Suppose
that the vulnerable PMUs that provide synchronized measurements are unknown. In that
case, the attack impacts are minimized by creating islands that require minimal PMU mea-
surements for maximum observability in state estimation. To the best of our knowledge,
the problem of creating maximally observable islands with minimum PMUs has not been
addressed before. In contrast, if the operators can further identify the potential attack
location by analyzing PMU measurements [14], the mentioned mitigation approach isolates
vulnerable PMUs to only a small part of the system while creating stable and observable
islands. The dynamics of the system during islanding is incorporated by considering the
coherency of generators [2].

Figure 1. The developed controlled islanding process for system recovery from a successful cyber
attack under PMU measurement uncertainty.

The main contributions of this paper over the existing methods are summarized
as follows.

1. Incorporating measurement uncertainties: Two new strategies are developed for
controlled islanding without or with partial knowledge of false measurements. Con-
trolled islanding is formulated as a multi-objective optimization problem that yields
stable and observable islands while ensuring that wrong PMU measurements impact
a minimal number of partitions.

2. Minimizing the loss of observability: A new method is developed to minimize the loss
of observability during the partition process. This approach is efficient when reliable
state estimation solutions are sought for the newly-formed islands with minimum
PMUs in each island.

3. Comprehensive islanding solutions: Trade-offs between different objectives such as
island size, observability, load-generation imbalance, and power flow disconnection
are investigated using various optimization methods while taking into account the
number of islands, generator coherency, and dynamic stability of the system.

The rest of this paper is organized as follows: Section 2 briefly outlines the background
and motivation of the problem addressed in this paper. Sections 3 and 4 develop controlled
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islanding strategies considering uncertainties without the knowledge or partial attack
information, respectively. Section 5 presents additional objectives for steady-state and
transient stability and outlines constraints related to the partition and structural connectivity
of the islands. Section 6 formulates the islanding problem as a multi-objective optimization.
The simulation results and the discussion are given in Section 7, followed by the concluding
statements in Section 8.

2. Background and Motivation
PMUs significantly enhance situational awareness of the grids by providing accurate

real-time measurements. These measurements improve network observability and result
in precise state estimation solutions. However, PMUs are considered vulnerable to so-
phisticated cyberattacks [10–12,15]. Attacks can inject false data in voltage and current
measurements to alter the estimated states [10,11] or modify time stamps to change phase
angle measurements [12]. The worst case attacks could be unobservable [11] and result
in incorrect power flow estimation, generator dispatch, and line overload [16,17]. False
measurements may result in a series of incorrect operator actions impacting critical lines
and transformers, resulting in load shedding and unintentional islanding [18,19]. In combi-
nation with prior system faults, wrong actions have been responsible for major cascading
blackouts in the past [20].

Cascading blackouts can be prevented at the regional level by installing event-based
and parameter-based remedial action schemes (RAS). However, improper coordination,
erroneous RAS interactions [21], or targeted attacks against RAS [22] can cause additional
outages. Controlled islanding is the last resort RAS that prevents widespread outages by
partitioning the system into several independent and stable islands. However, any islanding
decision to stabilize the power system is only effective when the received measurements
are trustworthy.

Sophisticated false data injections may prevent system operators from identifying
what part of the network is compromised. Although most research explores preventive
schemes using model-based and data-driven techniques described in the comprehensive
survey in [14], there is considerably less focus on recovery strategies. In [23], reclosing
strategic lines that limits inrush currents and power swings is suggested as recovery when
attacks result in multiple line trips. Another solution proposed in [24] is to resupply the
lost loads with autonomous battery backup systems independent of a central controller.
This paper focuses on developing controlled islanding strategies that are robust against
false data injections on measurements under two distinct scenarios:
1. Scenario 1 under complete uncertainty: maximize the island observability with a

minimum number of PMUs; and
2. Scenario 2 under partial uncertainty: isolate vulnerable PMUs to a small island.

In Scenario 1, it is assumed that attacks, such as coordinated data and RAS attacks [22],
have already resulted in the evolution of subsequent physical failures. With no knowledge
of the cause of failures, the operators doubt the fidelity of the received data. In Scenario 2,
it is assumed that partial information on potentially vulnerable PMUs is available using
methods such as those presented in [14].

3. Islanding under Complete Uncertainty
In this section, a controlled islanding strategy with two competing objectives will be

developed to (1) maximize the observability of islands and (2) minimize the number of PMU
measurements utilized. The most notable advantage is that more resources can be deployed
to secure a small subset of PMUs for maximal observability, leading to more reliable state
estimation and improving the island re-synchronization process. The minimum number of
retained PMUs for observability also depends on the additional steady-state and transient
stability objectives described in Section 5.3. Note that this paper only considers steady
state observability for the purpose of state estimation of bus voltage and angles, and not
dynamic observability of generator state variables such as rotor speeds and rotor angles.
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To formulate the problem of islanding under complete uncertainty, the power network
is represented as a graph G(N ,Z), where N is the set of buses and Z is the set of lines [3].
A small number of PMUs are placed on critical elements (defined as large generators and
lines with large power flows). The limited PMUs on critical elements are assumed secure by
prior cyber security design [25]. All other PMUs are assumed to be vulnerable to attacks.
The set of lines with secure and non-secure PMU measurements are denoted by ZS and
Z\S, respectively.

3.1. Objective 1: Maximize Island Observability
A non-PMU bus is observable when it is incident to a line with a current phasor

measurement from a neighboring PMU [26]. The loss of observability occurs when lines
with measurements are disconnected during islanding [26]. This paper explores a new
scenario that leads to a further loss of observability.

Consider the situation when the system is impacted by sophisticated false data attacks
that may remain undetected for a long time [13]. While a single operator action might
not result in a cascading outage, a series of incorrect actions impacting critical lines and
transformers, combined with pre-existing faults or scheduled maintenance, may result in
a widespread blackout. Prompt controlled islanding decisions are imperative for stabil-
ity. In the absence of any information on the trustworthiness of the measurements, the
approach introduced here aims to use only a fraction of non-secure PMUs rather than
all for maximal island observability. This problem has two competing objectives. Hence,
depending upon the number of non-secure PMU measurements retained, some buses may
not remain observable.

Overall, the loss of observability is considered under two situations—(1) when lines
with measurements are disconnected during islanding, and (2) when possibly compromised
non-secure PMU measurements are discarded. Two binary variables are defined to take
into account both the situations. The variable zi,j, 8(i, j) 2 Z denotes a line status as,

zi,j =

(
0 if line (i, j) is disconnected
1 if line (i, j) is in service

(1)

and di,j, 8(i, j) 2 Z\S denotes the measurement status as,

di,j =

(
1 if line measurement (i, j) is retained
0 if line measurement (i, j) is discarded

(2)

Note that lines with secure measurements can be disconnected during islanding.
However, their measurements are never intentionally discarded. Non-secure lines can be
disconnected, and their measurements discarded, which is accounted for by the product of
the two binary variables, di,jzi,j.

Remark 1. The product of the two binary variables di,jzi,j is denoted by another binary variable
vi,j and the following set of linear constraints,

vi,j  di,j (3)

vi,j  zi,j (4)

vi,j � di,j + zi,j � 1 (5)

The constraints (3) and (4) imply vi,j = 0 when di,j = 0 or zi,j = 0, and (5) implies vi,j = 1
only when both variables are one.
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An observability decision matrix Z 2 Rm⇥m is defined as,

Z =

"
ZS 0

0 Z\S

#
=

2

66666664

.
zj,k

.
0

0
.

vi,j
.

3

77777775

(6)

where sub-matrices ZS and Z\S correspond to secure lines (j, k) 2 ZS and non-secure lines
(i, j) 2 Z\S, respectively.

Next, a matrix H is constructed that represents the topological observability at the
bus/branch level using the line current measurements. The elements of H corresponding
to states Vi and Vj are set to one when there exists a line current measurement between
nodes i and j, and zero otherwise [27],

H =


HS

H\S

�
=

V̂i . V̂k . V̂j V̂n2

6666664

3

7777775

. . . . . . .
Ij,k 0 0 1 . 1 0
. . . . . . .
. . . . . . .

Ii,j 1 0 0 . 1 0
. . . . . . .

(7)

The sub-matrices HS, H\S correspond to the secure and non-secure lines, respectively.
The system is fully observable when the gain matrix G = H

T
H has a full rank [27]. To

incorporate the measurement uncertainties during controlled islanding, a new gain matrix
is constructed as,

G = (ZH)T(ZH) = H
T

Z
T

ZH = H
T

ZH (8)

Here, Z is a binary diagonal matrix and, hence, Z
T

Z = Z. When diagonal elements
of Z become zero during controlled islanding, it drives an entire column of G to zero. In
this scenario, a node becomes unobservable if it is not observed directly or indirectly by
another PMU.

The overall objective is to maximize the observability of the system for a more reliable
state estimation of the islands. The objective function for observability is defined as,

F̃1 = rank(H
T

ZH) (9)

The rank(H
T

ZH) = rank(G) is the number of the corresponding non-zero eigenval-
ues. As G is positive semi-definite, rank(G) is quasiconcave and NP-hard to maximize.
Instead, rank(G) is replaced by trace(G), which serves as a convex proxy [28]. Hence, (9)
becomes convex as,

F1 = trace(H
T

ZH) (10)

Remark 2. The convex proxy or convex hull of a function is the largest convex under-estimator
of the function. If f(G) = rank(G), then fhull(G) = ||G||⇤ = Âm

i=1 si(G), where ||G||⇤ is the
nuclear norm and si is the ith singular value. As G is symmetric and positive semi-definite, the
singular values are equal to the eigenvalues. Thus, ||G||⇤ = trace(G), which is a convex function.

Remark 3. The expression trace(H
T

ZH) in (10) creates matrices that hold binary variables
(instead of floating-point numbers), which becomes computationally expensive for large power
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systems. Instead, using the properties of the trace of matrix products, the term in (10) is conveniently
written as,

trace(H
T

ZH) = trace(ZHH
T) = Zi,i

n

Â
j=1

H2
ij (11)

3.2. Objective 2: Minimize the Number of Retained PMUs
In the previous section, objective 1 was formulated for maximum observability for

a reliable state estimation. The challenging problem now is to utilize only a minimum
number of non-secure PMU measurements for the same. This approach minimizes the
resources needed during the post-attack recovery by securing only a small subset of PMUs.
With di,j in (2) indicating whether a measurement is retained or not, the objective function
for retaining a minimum number of additional non-secure PMUs is written as,

F2 = Â
(i,j)2Z\S

bidi,j (12)

where bi is a weight which defines the measure of vulnerability for PMU i. One way to
calculate bi is to measure how frequently PMU i appears in all possible attack scenarios.
Such attack scenarios, based on the locations of load injection buses, can be simulated using
the algorithm in [13].

While retaining (discarding) a noncritical PMU, all line current measurements associ-
ated with that PMU are retained (discarded). This is achieved by an additional constraint,

di,j = di,k 8k, 8(i, j), (i, k) 2 Z\S (13)

Combining objectives F1 and F2 allows maximizing island observability using a minimum
number of non-secure PMUs under situations when attacks remain completely unknown.

4. Islanding under Partial Uncertainty
In this section, a new controlled islanding strategy under partial information on

cyberattacks is developed to (1) isolate vulnerable PMUs and (2) maximize the observability
of the islands. The size of the island also depends on the additional stability objectives
described in Section 5.3.

4.1. Objective 1: Isolate PMUs under Attack
Consider false data injections that alter specific PMU measurements to bypass the

state estimator. Partial information on potentially vulnerable PMUs can be identified
by scanning ports, user logs, and registry entries [29]. False measurements are also dis-
cerned by analyzing PMU measurements using model-based and data-driven detection
techniques [14,30]. With model-based approaches, false data may be partially detected by
(1) estimation-based methods that compare estimated states with state measurements and
(2) direct calculation-based methods that combine measurements and system parameters
to detect anomalies. On the other hand, data-driven methods employ supervised and
unsupervised machine learning algorithms to detect anomalies in data. It should be noted
that the detection of false data is outside the scope of this paper.

Assume node i is vulnerable based on the partial information received from any of the
described methods. The objective is to isolate all possible vulnerable PMUs into a single
island. The idea is illustrated in Figure 2. Centered at node i, all nodes Ni at a radius R are
labeled as vulnerable. We employ a breadth-first search for this purpose, where the search
starts at the root node i and explores all neighboring nodes at the same level before moving
to the next depth [31]. The value of R may be determined on the basis of the architecture of
the PMU communication network. The process is repeated for each suspected node.
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Now, define a binary variable xi, 8i 2 N for the placement of node i in an island as,

xi,h =

(
1 if node i is in island h
0 otherwise

(14)

The overall objective is to minimize the size of the island with vulnerable PMUs. The
objective function is defined as,

F3 = x1,h + x2,h + . . . + xn,h =
n

Â
i=1

xi,h (15)

In (15), h = 1 is explicitly set to indicate that all potentially compromised PMUs
are contained in partition ‘1’. This smaller partition is denoted by sub-graph G 0 ✓ G.
When combined with the additional objectives described in Section V, the optimization
problem in (15) isolates all possible vulnerable PMUs in a single island while creating
stable partitions.

Figure 2. Scenario 2: (a) PMUs (shaded nodes) identified as untrustworthy, (b) 1-hop and (c) 2-hop
distance neighbors. All PMUs at R-hop distance are assumed to be vulnerable and isolated in a small
island. Additional nodes are added during the optimization process to maintain island stability and
observability.

4.2. Objective 2: Maximize Island Observability
We introduce an additional objective to maximize the observability of the newly

formed islands. Buses may lose observability when multiple lines are disconnected during
islanding [26]. An observability decision matrix is defined as,

Z = diag(zi,j) 8(i, j) 2 Z\S (16)

where zi,j is described in (1). The decision matrix Z takes into account the impact of
physical line disconnection on system observability. The optimization problem is defined
as maximizing the trace(H

T
ZH), where H is the topological observability matrix described

in (7). This problem is similar to (10) defined in Section 3.1.

5. Stability Objectives and Islanding Constraints
5.1. Stability Objectives

For Scenario 1 and Scenario 2, additional objectives are considered to maintain the
load-generation balance and the transient stability of the system.

Consider Pi as the net power injected at node i. Minimizing the load-generation
imbalance in each island is defined as [32],

F̃4 =
K

Â
h=1

�����

n

Â
i=1

Pixi,h

����� (17)
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To tackle the absolute values, the equation in (17) is written as a linear program by
introducing slack variables. Let the slack variable Sh = Ân

i=1 Pixi,h denote the mismatch in
island h. Hence, (17) can be written with additional constraints as,

F4 =
k

Â
h=1

Sh (18a)

n

Â
i=1

Pixi,h � �Sh (18b)

n

Â
i=1

Pixi,h  Sh (18c)

Balanced islands prevent frequency excursions, minimize load interruption, and
reduce dependence on black-start units.

On the other hand, minimizing the line power flow disconnection prevents the creation
of islands with a negative transient stability margin and avoids system collapse [3]. The
objective function for the total line power flow disconnection is defined as [6],

F5 = Â
(i,j)2Z

1
2
(1 � zi,j)Pi,j (19)

5.2. Identifying Coherent Generators
While securing the power grid from compromised PMU measurements is critical, an

islanding solution should consider the dynamic stability of the system. The dynamics of
the system are considered by grouping coherent generator clusters together [33]. The steps
to identify the coherent generators, while not the focus of this paper, are briefly outlined
below. Due to space limitations, the readers are referred to our previous work in [32] for
more details.

First, different fault scenarios are simulated, and the generator rotor angle data are
obtained. Typically, generators close to the fault location have fast non-coherent motion
while those further away exhibit slow coherent motions [33]. Next, a hierarchical clustering
method is employed on rotor angle time-series data to group the slow coherent motions.
The similarity in characteristics of the time-series data is computed using the correlation
metric—machines that exhibit coherency have higher rotor angle correlations. The closeness
between generator clusters is evaluated based on the shortest distance between two points
in each cluster. When groups of generators have a large inter-cluster distance, they are
identified as separate set of coherent generators. In this paper, two and four coherent sets
of generators are considered for controlled islanding.

5.3. Partitioning and Connectivity Constraints
The binary variables zi,j and xi,h are coupled through another binary variable wi,j,h

as [6],

zi,j = Â
h

wi,j,h (20)

wi,j,h  xi,h (21)

wi,j,h  xj,h (22)

zi,j = zj,i (23)

The constraint restricting a node to a single island is given by,

Â
h

xi,h = 1 (24)



Energies 2022, 15, 5723 9 of 27

Additionally, ensuring at least M nodes are present in an island is enforced by
the constraint,

Â
i2N

xi,h � M (25)

For each island h, one bus j is designated as a source node to: (a) act as a reference bus
for state estimation, and (b) ensure islands are connected. The source node is set as,

uj,h = 1 j 2 Ns (26)

To ensure the islands are connected, an arbitrary network flow variable fi,j,h 2 R is
defined as,

0  fi,j,h  nzi,j (27)

The source variable and the connectivity flow variable together ensure that the op-
timization problem yields connected islands by exploiting basic network flow concepts.
If a unit flow fi,j,h is sent from uj,h to each node in area h and if each node consumes one
unit flow (with fi,j,h and f j,i,h being the node inflow and outflow, respectively), islands are
connected when,

uj,h Â
i2N

xi,h � xj,h + Â
i,j2N ,
(i,j)2Z

fi,j,h = Â
i,j2N ,
(j,i)2Z

f j,i,h (28)

6. Multi-Objective Optimization
The two islanding strategies under cyberattack uncertainties are formulated as multi-

objective optimization problems, which find pertinent trade-offs between all the afore-
mentioned objective functions. The multi-objective optimization problem for Scenario 1 is
written as,

minimize F = [F1, F2, F4, F5] =

[� trace(H
T

ZH),| {z }
observability

Â
(i,j)2Z\S

bidi,j,

| {z }
retained PMUs

k

Â
h=1

Sh

| {z }
imbalance

, Â
(i,j)2z

1
2
(1 � zi,j)Pi,j

| {z }
power flow disconnection

]

subject to (3)–(5), (13), (18b)–(18c), (20)–(28)

(29)

Here, di,j, vi,j, zi,j, xi,h, wi,j,h 2 {0, 1} and Sh, fi,j,h 2 R are the optimization decision
variables. Similarly, the multi-objective optimization problem for Scenario 2 is written as,

minimize F = [F1, F3, F4, F5] =

[� trace(H
T

ZH),| {z }
observability

Â
i

xi,h=1,

| {z }
island size

k

Â
h=1

Sh

| {z }
imbalance

, Â
(i,j)2z

1
2
(1 � zi,j)Pi,j

| {z }
power flow disconnection

]

subject to (18b)–(18c), (20)–(28)

(30)
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Here, zi,j, xi,h, wi,j,h 2 {0, 1} and Sh, fi,j,h 2 R are the optimization decision variables.
Any optimal solution for (29) and (30) is a Pareto optimal (non-dominated) solution. Due
to the competing nature of the objectives, no ideal solution exists that simultaneously
minimizes every objective. The choice of an acceptable solution depends on the preference
of the reliability coordinator overseeing the islanding.

6.1. Solution Approaches
The multi-objective optimization problems are solved using different methods [34], as

shown in Table 1, categorized into two types—(1) hierarchical and (2) scalarization.

Table 1. Multi-objective Optimization Solution Methods.

Solution Formulation

Hierarchical
minimize Fi i = 1, . . . , 4
subject to Fj  F⇤

j + hj j = 1, . . . , i � 1

Weighted-sum minimize Â4
i=1 giFi

e-constraint
minimize Âi giFi + Âj rjFj i 6= j
subject to Fj  ej j = 1, . . . , i � 1, i + 1, . . . 4

Weighted
Chebyshev

minimize b + Â4
j=1 rjFj

subject to gi[F⇤
i � Fi]  b i = 1, . . . , 4

Benson minimize Â4
i=1 bi

subject to F0
i � Fi = bi i = 1, . . . , 4

The hierarchical approach assigns objective priorities and solves each objective itera-
tively and is given as,

minimize Fi i = 1, . . . , 4
subject to Fj  F⇤

j + hj j = 1, . . . , i � 1 (31)

The tolerance hj allows for defining optimal solution degradation. For example, let
minimizing load-generation imbalance be of high priority and maximizing the rank be of
low priority. Let the optimal solution for minimizing load-generation imbalance be 20 MW.
When the solution degradation h1 = 5 MW, the optimization problem will tolerate a non-
optimal solution of 20 + 5 = 25 MW or better for the imbalance while maximizing rank.

The scalarization processes are classified into methods that specify (1) a posteriori
or (2) a priori articulation of preferences, respectively [35]. Posteriori techniques, such as
weighted sum and e-constraint approaches, find a wide range of solutions with different
trade-offs. A priori approaches [35], such as Chebyshev’s and Benson’s, incorporate a
reference point representing a solution that the operator aspires.

The weighted sum approach captures the relative importance among all objectives Fi
through operator-specified weights gi > 0 as,

minimize Â4
i=1 giFi (32)

The e-constraint approach transforms trivial objectives into bounded constraints with
operator-specified tolerances and optimizes only the most critical objective(s) as,

minimize Âi giFi + Âj rjFj i 6= j
subject to Fj  ej j = 1, . . . , i � 1, i + 1, . . . 4

(33)

The tolerances reflect the extent the system operators can relax the objectives without
incurring significant risks. Extremely tight tolerances may result in an empty feasible space.
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The weighted Chebyshev’s approach minimizes the maximum weighted difference be-
tween the current solution and a reference point F⇤

i as,

minimize b + Â4
j=1 rjFj

subject to gi[F⇤
i � Fi]  b, i = 1, . . . , 4

(34)

The reference solution is considered the best solution each objective can achieve in
the feasible region, and Chebyshev’s approach aims to find the closest solution to this
ideal solution [34]. The term Âj rjFj, with a small positive scalar rj, ensures a strict non-
dominated solution.

For Benson’s approach, the system operator selects a non-optimal reference point
F0

i as,
minimize Â4

i=1 bi
subject to F0

i � Fi = bi, i = 1, . . . , 4
(35)

Benson’s approach then generates a Pareto-optimal solution that is farthest away from
the dominant reference solution [34].

A combination of cutting planes and branch-and-bound method [36] is used to solve
the mixed integer optimization problem in (29) and (30). In this process, all integer variables
are first relaxed, and valid inequalities are generated to constrain the feasible solution set
such that the extreme points are binary. The feasible region is then divided into subsets,
and the optimization problem is solved for each subset. The optimality gap is set to zero to
ensure both the linear relaxations of the integer problem and the dual of the relaxation have
feasible integral solutions. For more details on generating valid inequalities, the readers
are referred to [37].

By varying (a) the scalarization parameters, (b) the objective priority, and (c) the
objective degradation tolerances, the system operators may obtain a wide range of solutions
for the islanding problem.

6.2. Improving Computation Time
Controlled islanding is a general graph partition problem that is NP-hard, i.e., there

exists no known algorithm to solve the problem in polynomial time [7]. Three steps are
taken to improve the computation time. First, assuming the available blackstart capability,
the objective function to minimize the total load-generation imbalance in each island in (18)
is converted into an inequality constraint as Âk

h=1 Sh  eload. Similarly, the objective
function in (15) is converted to a constraint Ân

i=1 xi,h=1  esize to ensure that the maximum
size of the island with vulnerable PMUs is limited to a pre-determined fraction of the
entire system. Second, when information on power system components not affected by
cyber-attacks (such as nodes with secure PMUs) is available, such components are pre-
assigned as not vulnerable. Pre-assignment of buses has been shown to drastically reduce
the computation time [6]. Third, the integrality constraints on some or all binary variables
are relaxed until binary solutions are obtained.

7. Case Studies
Under complete and partial uncertainty, the developed controlled islanding strategies

are tested on the synthetic Illinois 200-bus, South Carolina 500-bus, and Texas 2000-bus
systems [38]. A branch-and-cut approach [36] is employed to solve the multi-objective
mixed-integer program in Gurobi on an Intel(R) i5-4460, 3.20 GHz with 16 GB RAM.

7.1. Test Case and Parameter Setup
Most digital relays these days are equipped with PMUs (e.g., widely used Schweitzer

Engineering Laboratories relays). Hence, it is reasonable to assume a certain availability
of PMU measurements throughout the system in the near future [39–41]. With this as-
sumption, the power system network is made observable through optimal PMU placement
schemes [42]. We consider two schemes to demonstrate the applicability of the developed
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approach under a diversity of PMU placements: (1) each bus is observed at least once, and
(2) each bus is observed at least twice to protect against the loss of a single PMU [43]. The
detailed case descriptions, including the total number of secure and non-secure PMUs, are
summarized in Table 2. The weights gi associated with the four objectives, and tolerances
eload and esize are given in Table 3. The reference solutions for Chebyshev’s and Benson’s
approach are given in Tables 4 and 5, respectively. All bi are set to 1 assuming no prior
information on attack is available.

Table 2. Details of the Studied Test Cases.

System Load Gen # Secure # Non-Secure # Non-Secure
(MW) (MW) PMUs PMUs (Obs = 1) PMUs (Obs = 2)

200 1750 1765 25 46 130
500 7750 7832 63 176 394
2000 67,109 68,728 132 589 1247

Table 3. Scalarization Parameters.

System g1 g2 g3 g4 eload esize

200 0.1 1 1 1 10 40
500 0.01 1 1 1 30 50

2000 0.01 0.1 1 1 50 350

Table 4. Reference Solutions for Chebyshev’s Approach.

System Rank Size (G0)⇤
Imbalance

(MW) Flow Out (MW)

200 412 29 0 28.03
500 1000 80 10 400.0

2000 4232 303 0 5373.29
⇤ Size(G 0) refers to the size of the island with vulnerable PMUs.

Table 5. Reference Solutions for Benson’s Approach.

System Rank Size (G0) Imbalance
(MW) Flow Out (MW)

200 400 50 20 50
500 1000 200 350 2000

2000 4000 400 20 7000

7.2. Performance of Controlled Islanding under Complete Uncertainty
For Scenario 1 under complete uncertainty, the observability of islands is maximized

using a minimum number of non-secure PMUs, while maintaining island stability. The
power system network is divided into two or four islands based on two coherent sets of
generators [32]. With no prior information on false data, each non-critical PMU is assumed
equally vulnerable, and the corresponding weights bi are set to one.

7.2.1. Partitioning into Two Islands
The hierarchical approach in Table 1 is used to solve the problem. Figures 3 and 4

demonstrate the performance of the islanding strategy developed for systems where each
node is observed by a single PMU or by at least two PMUs, respectively. The following
observations are noted. For all three systems in Figure 3, retaining 100% of non-secure PMUs
does not ensure full observability after islanding, i.e., a 100% rank is not achieved, because
lines disconnected result in loss of observability. On the other hand, the disconnected lines
during islanding in Figure 4 do not result in a loss of observability due to the presence of
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redundant PMU measurements. For the same reason, as the number of retained non-secure
measurements is decreased, the system observability decreases at a steeper rate in Figure 3
compared to Figure 4.

Figure 3. Scenario 1: Maximizing island observability with the minimum number of non-secure
measurements—single observable system with two islands.

Figure 4. Scenario 1: Maximizing island observability with minimum non-secure measurements—
double observable system with two islands.

The hierarchical optimization allows assigning individual importance to objectives
during the islanding process. Consider one case for the 200 bus system—when maintaining
transient-stability has a higher priority, the line flow disconnection is 240.05 MW at the
expense of 348.62 MW of load-generation imbalance. When maintaining load-generation
balance has a higher priority, the islands have a 17.57 MW imbalance, and 437.61 MW
line flow is disconnected. Similar results are noted for the 500-bus and 2000-bus systems.
This demonstrates that a small number of non-secure PMUs can maximize the island
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observability while maintaining island stability. Once selected PMUs are retained, the
actual PMU measurements can now be used to obtain the steady state bus voltage and
angle estimation for the smaller partitions. The dynamic stability of the islands is later
investigated in Section 7.4.

7.2.2. Partitioning into Multiple Islands
The hierarchical optimization approach is extended to cases where the system is

partitioned into multiple smaller islands where each bus is observed only once. Consider
the 200-bus system with the set of coherent generators given in [32]. The multi-objective
optimization is solved and the system is partitioned into 4 islands. In this case, the objective
degradation for rank is set to 10, which allows the later objectives to degrade the earlier
objective of rank off its optimal value by 10. Table 6 summarizes the results of islanding
considering different objective priorities. Similar observations to Section 7.2.1 are noted.
Consider the case when the highest priority is assigned to rank in row 2, a total of 178 buses
remain observable, while 100% non-secure measurements are retained. As observed
previously, the reduction in the number of observable buses occurs due to increase in the
number of multiple line disconnections when creating more islands.

Table 6. Hierarchical optimization for the 200-bus system: 4 islands.

Optimal Solution [Priority, Degradation]

Rank % Meas Retained Imbalance (MW) Flow Out (MW)
(Non-Secure) |S1|+ |S2|+ |S3|+ |S4|

173 [3, 10] 100 [4, 0] 445.48 [2, 0] 294.15 [1, 0]
178 [1, 10] 100 [4, 0] 675.52 [2, 0] 428.09 [3, 0]
163 [3, 10] 93.33 [4, 0] 17.57 [1, 0] 527.98 [2, 0]

7.3. Performance of Controlled Islanding under Partial Uncertainty
For Scenario 2 under partial knowledge of an attack, the size of the island with vul-

nerable PMUs is minimized while maximizing observability, steady-state, and transient
stability. The redundant PMU placement is considered for the studies.

7.3.1. Identification of Attack Buses
First, potential attackable nodes are identified following the approach in [13]. For the

200-bus, 500-bus, and 2000-bus systems, the load injection nodes {17, 18}, {100, 101}, and
{657, 663} are identified to be under attack. Next, all neighboring PMUs at a distance of
R = 3 are labeled as vulnerable. The parameter R can be tuned when more information
on the extent of attack becomes available. The dependency of the island size on the value
of R is illustrated later in Section 7.3.4. Depending on the distribution of zero injection
buses in the network, a total of 27, 9, and 19 buses are initially designated as untrustworthy
for the 200, 500, and 2000-bus systems, respectively. The total number of buses flagged as
potentially vulnerable will vary when different candidate nodes are chosen for attack. A
wide range of solutions are obtained by varying the objective priority and the degradation
tolerance of the solution using the hierarchical optimization approach.

7.3.2. Partitioning into Two Islands
The solutions obtained by varying the objective priority and the degradation toler-

ance are summarized in Table 7–9. First, Table 7 illustrates the effect of optimal solution
degradation. Compare rows 1 and 3 of Table 7. With an objective degradation tolerance
of 50 MW for flow disconnection and 10 MW for load-generation imbalance in row 3, the
size of the uncertain island G 0 decreases from 42 to 38, and the imbalance improves from
9.8 MW to 0.07 MW. The improvements, come at the expense of a 7.7 MW increase in flow
outages. The system remains 98% observable (as seen from rank) in both cases. Similar
observations are noted in Table 9 for the 2000-bus system.
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Table 7. Scenario 2: Hierarchical optimization for a 200-bus system.

Optimal Solution [Priority, Degradation]

Rank Size (G0) Imbalance (MW) Flow Out (MW) Time (s)
|S1|+ |S2|

196 [3, 0] 42 [2, 0] 9.80 [4, 0] 28.03 [1, 0] 0.27
197 [3, 0] 29 [2, 0] 32.3 [4, 0] 54.16 [1, 50] 0.36
197 [3, 0] 38 [2, 0] 0.07 [4, 10] 35.76 [1, 50] 0.69

Table 8. Scenario 2: Hierarchical Optimization for a 500-bus system.

Optimal Solution [Priority, Degradation]

Rank Size (G0) Imbalance (MW) Flow Out (MW) Time (s)
|S1|+ |S2|

499 [3, 0] 107 [2, 0] 649.16 [4, 0] 649.16 [1, 0] 0.19
500 [1, 0] 196 [3, 0] 1610.0 [4, 0] 1465.1 [2, 0] 0.30
498 [2, 0] 11 [1, 0] 124.22 [4, 0] 867.36 [3, 0] 0.15

Table 9. Scenario 2: Hierarchical Optimization for a 2000-bus system.

Optimal Solution [Priority, Degradation]

Rank Size (G0) Imbalance (MW) Flow Out (MW) Time (s)
|S1|+ |S2|

1979 [4, 0] 312 [1, 0] 370.5 [2, 0] 8519.1 [3, 0] 511.5
1980 [4, 0] 352 [1, 40] 0.01 [2, 0] 5650.4 [3, 0] 131
1891 [4, 0] 351 [1, 40] 8.9 [2, 10] 5526.9 [3, 0] 3.4

The impact of objective prioritization is explored in Table 8 for the 500-bus system.
Here, the priority = 1 corresponds to the objective of the highest importance, and the
priority = 4, the lowest. Consider row 1 in Table 8—649.16 MW line power flow is
disconnected because the top priority is to minimize the total flow disconnection. When
maximizing observability is of interest in row 2, complete observability is maintained at the
expense of large islands with uncertain PMUs, a significant imbalance of 1610 MW, and a
large power flow disconnection of 1465 MW. When isolating attack is the top priority in row
3, the vulnerable PMUs are contained in an island of 2.2% of the entire system. However,
such a small island may not survive independently without generators. Hence, a suitable
prioritization between the four objectives is necessary to maintain island stability. This
example shows the flexibility of designing islands that cater to a particular need during
islanding. The dynamic stability of the islands is investigated in Section 7.4.

The solutions obtained from the hierarchical optimization approach are compared to
different scalarization methods. Here, Scenario 2 is considered for comparison purposes.
The results of the scalarization methods, using the parameters in Tables 3–5, are summarized
in Tables 10–12. As an example, Figure 5 illustrates the two partitions corresponding to
row 1 of Table 10.

Table 10. Scenario 2: Scalarization Results for the 200-Bus System.

Scalarization Rank Size (G0) Imbalance (MW) Flow Out (MW)
|S1|+ |S2|

Weighted-Sum 197 38 0.07 35.76
e-Constraint 196 39 2.93 34.98
Chebyshev 197 38 0.07 35.76

Benson 197 38 0.07 35.76
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Table 11. Scenario 2: Scalarization Results for the 500-Bus System.

Scalarization Rank Size (G0) Imbalance (MW) Flow Out (MW)
|S1|+ |S2|

Weighted-Sum 499 111 3.7 850.82
e-Constraint 498 116 12.69 847.07
Chebyshev 498 113 26.69 833.83

Benson 499 111 3.7 850.82

Table 12. Scenario 2: Scalarization Results for the 2000-Bus System.

Scalarization Rank Size (G0) Imbalance (MW) Flow Out (MW)
|S1|+ |S2|

Weighted-Sum 1982 375 2.0 5470.56
e-Constraint 1982 350 24.72 5513.70
Chebyshev 1979 340 1.85 5727.20

Benson 1980 353 0.02 5501.86

Figure 5. Partition of the 200-bus system into two islands corresponding to row 1 of Table 10.

7.3.3. Partitioning into Multiple Islands
The problem of partitioning the system into multiple smaller islands is considered next.

Four coherent generator groups are assumed to exist for the 200-bus system [32]. The group
of vulnerable buses was chosen to be 17, 18, 19, 20, 21, 39, 83, 85, 109, 120, 134, 186. This group
was assigned to the closest coherent generator set based on electrical distance. Figure 6
illustrates the four partitions obtained using the weighted-sum scalarization process. It is
observed that the size of the island with vulnerable buses is now 28.5% of the entire system.
The increase in size is attributed to assignment of coherent generators and, subsequently,
additional nodes to yield lower load-generation imbalance. The remaining three islands
have low MW imbalances. A total of 494 MW of line flow is disconnected while 191 buses
remain observable.
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Figure 6. Partition of the 200-bus system into four islands corresponding to Scenario 2.

7.3.4. Effect of Attack Radius R on Size of Vulnerable Island
The design of islands is further investigated considering different attack radius R.

Quite often, the actual extent to which the attack has compromised the PMU network may
not be accurately determined under rapidly evolving power system situations in real-time.
Tables 13 and 14 illustrate the size of the vulnerable island under different values of R. With
larger R, more buses are deemed vulnerable. While a very large value of R is impractical,
more reasonable values can be obtained by identifying the underlying architecture of the
PMU-PDC communication network between different areas.

Table 13. Effect of attack radius R on the size of vulnerable islands: 200-bus system.

Optimal Solution [Priority, Degradation]

R Rank Size (G0) Imbalance (MW) Flow Out
(MW) Time (s)

|S1|+ |S2|
3 198 66 3.94 107.93 0.71

4 198 85 1.82 108.99 0.57

5 196 103 2.78 126.12 0.42

6 196 110 11.96 116.93 0.33

7 196 120 8.74 257.32 0.27
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Table 14. Effect of R on size of vulnerable island: 500-bus system.

Optimal Solution [Priority, Degradation]

R Rank Size (G0) Imbalance (MW) Flow Out
(MW) Time (s)

|S1|+ |S2|
2 500 7 153.28 385.91 3.31

3 497 206 5.64 378.62 1.19

4 498 254 4.02 449.39 5.16

5 500 258 19.96 1266.38 1.68

The results conducted on the test systems in this section demonstrate that the proposed
recovery scheme effectively isolates attacks while creating stable and observable islands.
The optimal islanding decisions ultimately depend on how operators choose to strike a
balance between multiple competing objectives.

7.4. Dynamic Simulations
To avoid a total system blackout, it is necessary to ensure the smaller islands are

transient stable during controlled islanding. While the objective function in Equation (19)
prevents disconnections of lines with large power flow [3], it is important to assess the
transient stability of the newly formed islands through time-domain simulations (TDS).
The TDS are performed using DSAToolsTM and the Transient Stability Index (TSI) of the
smaller partitions are reported. The TSI of the system is calculated as [44],

TSI =
360 � dmax
360 + dmax

⇥ 100 (36)

where dmax represents the maximum angle difference between any two generators in an
island at any particular time. Here, TSI is generally considered as the smallest index among
all islands in the system. In this paper, transient studies are performed on the 200-bus and
the 500-bus systems.

For Scenario 1, Figures 7 and 8 illustrate the transient stability through time-domain
simulations. Figure 7a,b show that the generator rotor angles in both islands are transient
stable. The frequency of the islands in Figure 7c are 60.03 Hz and 59.96 Hz, respectively.
These deviations are caused by imbalances of 183.11 MW and 165.51 MW in islands 1 and
2, respectively. Furthermore, the bus voltages in Figure 7d are within the acceptable limits
of 0.90 p.u. and 1.1 p.u. Similar observations are noted for the 500-bus system in Figure 8.

For Scenario 2, Figures 9 and 10 illustrate the transient stability results. Figure 9a,b
show that the generator rotor angles in both islands are stable. The frequency of the islands
in Figure 9c are 60.01 Hz and 59.99 Hz, respectively. Furthermore, the bus voltages in
Figure 9d are well within the acceptable limits of 0.90 p.u. and 1.1 p.u. The transient
stability indices, obtained using DSAToolsTM time-domain simulations, are summarized in
Table 15.
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Figure 7. Scenario 1—controlled islanding in the 200-bus system at t = 2 s, corresponding to
hierarchical approach. Relative rotor angles for all generators for (a) island 1 and (b) island 2,
(c) frequency, and (d) p.u. bus voltages for all buses in the system. TSI = 75.71.

Figure 8. Scenario 1—controlled islanding in the 500-bus system at t = 2 s, corresponding to
hierarchical approach. Relative rotor angles for all generators for (a) island 1 and (b) island 2,
(c) Frequency, and (d) p.u. bus voltages (� 345 kV buses only). TSI = 72.38.
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Table 15. Transient Stability Index.

System Scenario 1 Scenario 2

Hierarchical Weighted
Sum

e-
Constraint

Chebyshev Benson

200-bus 75.71 76.55 74.47 76.55 76.55
500-bus 72.38 62.16 58.59 61.20 62.14

Figure 9. Scenario 2—controlled islanding in 200-bus system at t = 2 s, corresponding to weighted-sum,
Chebyshev and, Benson’s approaches in Table 10. Relative rotor angles for all generators for (a) island 1, and
(b) island 2, (c) frequency, (d) p.u. bus voltages for all buses in the system. TSI = 76.55.

Figure 10. Scenario 2—500-bus-controlled islanding at t = 2 s, corresponding to weighted-sum
approach in Table 11. (a) Relative rotor angles for all generators in Island 1, (b) Relative rotor angles
for all generators in Island 2, (c) Frequency, (d) p.u. bus voltages (�345 kV buses only). TSI = 62.16.
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The results for partitioning the system into four smaller islands, corresponding to
Figure 6, are demonstrated in Figures 11 and 12. The rotor angles in Figure 11 and the
frequency in Figure 12a demonstrates the dynamic stability of the four smaller partitions.
However, it is observed in Figure 12b that few buses have low voltages post partition.
Corresponding to Figure 6, buses with low voltage are 59, 74, 138, 139, 171, 190, 195, 196,
and 197 in island 1 and 7, 8, 43, 86, 110, 112, 116, 117, 132, 141, 144, 148, and 162 in island 4.
The buses with low voltages are shown in Figure 12c. The cause of low voltages on these
two neighboring clusters of buses is attributed to the following—(1) there is a lack of local
reactive power production in these two clusters, and (2) a total of 29.32 MVAR of reactive
power flow is disconnected during islanding. There are two possible mitigation strategies
to overcome this problem—(1) incorporate a reactive power term in the objective function
of the optimization problem for controlled islanding [4], or (2) reduce the MVAR load post
islanding. As demonstrated in [4], incorporating additional objectives solves the reactive
power problem, however, for our study, this increases the number of objective functions
to five, which may become difficult for the operator to optimize. Instead, post islanding
MVAR load shedding is employed near the affected buses after which voltages return to
near nominal values as shown in Figure 12d.

Figure 11. Scenario 2—200-bus-controlled islanding at t = 2 s into 4 islands, corresponding to
Figure 6. (a) Relative rotor angles for all generators in Island 1, (b) Relative rotor angles for all
generators in Island 2, (c) Relative rotor angles for Island 3, (d) Relative rotor angles for Island 4.
TSI = 76.38.

These results demonstrate that the optimization problem can successfully create stable
partitions while minimizing the impact of attacks.

Irrespective of which optimization algorithm the operator uses, the proper way for
system operators to use the results of the optimization are as follows: (1) The set of trans-
mission lines to be disconnected for controlled islanding is the output of the optimization
problem. (2) All circuit breakers (CB), installed on two ends of the candidate lines, are
then identified. These circuit breakers can be directly controlled by the operator through
relays at the local user interface or at the remote control center. (3) Multiple CB can be
tripped from SCADA, the communication protocol being the Distributed Network Protocol
3 (DNP3) protocol. In general, the DNP3 outstation runs on substation relay, in this case,
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PMU such as SEL 421 [45]. On the other hand, the DNP3 Master is on SCADA. The remote
circuit breaker trip commands to go from the DNP3 master to the substation relay through
the communication path comprising the SCADA gateway router and the substation gate-
way. (4) Once the breakers are opened and the system is partitioned into smaller islands,
the operators can use real-time PMU measurements from selected devices to estimate the
steady states of the islands using SE.

Figure 12. Scenario 2—200-bus-controlled islanding at t = 2 s into 4 islands, corresponding to
Figure 6. (a) Frequency of all generators, (b) voltage of all buses without reactive power correction,
(c) buses with low voltages, (d) voltage of all buses with reactive power correction.

7.5. Computation Time
The computation times for the hierarchical optimization are summarized in Tables 7–9

while those for the scalarization approaches are given in Table 16. The comparison demon-
strates that hierarchical approaches often lead to more solution time for large systems,
because the hierarchical technique solves multiple single-objective problems iteratively.
However, the provision for optimal solution degradation makes the hierarchical approach
particularly attractive for larger power systems when prompt islanding decisions are
needed at the expense of non-optimal but acceptable solutions.

Table 16. Simulation Time (s) with and without Relaxation.

System 200-bus 500-bus 2000-bus

Relaxation No Yes No Yes No Yes

Weighted Sum 0.07 0.05 0.43 0.21 69.96 0.70
e-Constraint 0.00 0.00 13.01 0.60 10.00 1.58
Chebyshev 0.15 0.00 1.68 0.44 148.82 2.85

Benson 0.15 0.033 1.61 0.28 14.64 6.72

Table 9 illustrates the effect of solution degradation in reducing the computation time
from 511 s to 3.4 s for the 2000-bus system—a reduction of almost 99% at the expense of
4.45% decrease in observability and 8.9 MW increase in imbalance. Solution degradation
offers similar flexibility as the e-constraint approach. This makes the hierarchical process
more intuitive as preferences on objectives are assigned according to their importance.
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In contrast, the correct choice of weights in scalarization methods may not be readily
determined unless multiple optimizations are solved. Furthermore, the reference solutions
for Chebyshev and Benson’s approach have to be pre-determined, which may not be
feasible during the fast islanding process. A drawback of the hierarchical technique is that
the number of additional constraints imposed in each iteration increases as the number of
objectives increases. However, this is of little concern as the number of objectives is limited
to four in this paper. Overall, the hierarchical approach offers greater flexibility in designing
islands in a very short period at the expense of non-optimal but acceptable solutions.

To further improve the solution time, the integrality constraints are relaxed. For
example, when variables zi,j and wi,j are relaxed in the 200-bus system, binary solutions
are promptly obtained. Similarly, zi,j is relaxed for the 500 and the 2000-bus systems. The
computation times with these relaxations are given in Table 16.

Overall, the time from initiation to completion of the recovery process can be deter-
mined as follows. For Scenario 1, in the absence of any attack information, system operators
may doubt the fidelity of the data depending on the evolution of steady-state failures, which
may take dozens of minutes [46]. For Scenario 2, partial knowledge on compromised data
may be obtained in sub-seconds, assuming a learned (data-driven) offline model is already
available [14]. The time to solve the optimization problem developed in this paper is less
than a second to a few seconds (from Section 7.5). Finally, assuming that the line open status
signals are sent to the correct set of circuit breakers, it will take a few cycles (incorporating
communication delays) for the circuit breakers to respond to the islanding commands.

7.6. Comparison of Multiple Solutions
Figure 13 demonstrates Pareto-optimal solutions for the 200-bus and the 500-bus

systems. The approach introduced in this paper allows system operators to create islands
considering a broad spectrum of choices, which affects the islands’ operation. For example,
a loss of substantial MW flow disconnection negatively impacts the transient stability
of the system, thereby increasing the chances of further outages. On the other hand,
low observability increases dependency on pseudo-measurements and yields poor state
estimation results. Furthermore, a higher load-generation imbalance results in load loss,
large frequency excursions, and increased reliance on black-start units.

Figure 13. Pareto-optimal solutions: rank vs. MW line flow disconnection for (a) 200-bus, (b) 500-bus,
load generation imbalance vs. MW line flow disconnection for (c) 200-bus, (d) 500-bus, and rank vs.
size of vulnerable island for (e) 200-bus, (f) 500-bus.
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7.7. Limitations
The first limitation arises when attacks are distributed and span multiple regions. In

such scenarios, isolating vulnerable PMUs in one single island is not desired. While such
large-scale distributed attacks are rare due to the inherent security measures of the electric
grid, they are not impossible given a large attacker budget. The developed method can
be extended to create multiple smaller islands to isolate attacks. However, this approach
comes at the expense of an increase in the number of binary variables, longer computation
times, and difficulties in the coordination of multiple smaller islands. This work makes
a practical assumption where different power system areas have different cyber security
policies, and considers attacks against single cyber security architecture, thereby isolating
all potential vulnerable nodes in a single island.

The second limitation arises when ample integration of renewables introduces new
sets of dynamic stability constraints to the power system. We acknowledge that this
limitation cannot be solely tackled by enclosing coherent synchronous generators in one
island. Controlled islanding with renewables is a separate problem related to islanding
itself and is currently outside the scope of this paper.

In the future, we will explore approximation algorithms [47] to further reduce the
complexity of the optimization problem. These approximation techniques can help find
near-optimal solutions and accelerate computation times when a prompt and reliable
islanding solution is desired. Moreover, the set of candidate lines for controlled islanding
depends on real-time system conditions and is not fixed. Additional studies leveraging
the line topology status are needed to ensure that the line open signal is sent to the correct
breakers during partitioning.

8. Conclusions
This paper presents controlled islanding methods that incorporate different degrees

of uncertainty in PMU measurement. Uncertainties are considered under the lack of or
partial information on the reliability of PMU measurements originating from sophisticated
false data injection attacks. When attacks remain undetected, the impact of measurements
in each island is minimized by creating islands that require a minimal number of PMU
measurements for a state estimation solution. This allows system operators to allocate
additional security to a minimum number of nodes on the network, thus improving
recovery plans. When partial information on bad data is available, the impact is minimized
by isolating vulnerable PMUs in a single island. This prevents malicious attacks from
spreading to larger sections of the grid.

The major findings of this paper are summarized as follows.

1. Under complete attack uncertainty with different numbers of PMUs in the original
system, it was observed that redundant PMUs played a major role in retaining more
observable sections of the newly formed islands.

2. Under partial attack uncertainty, it was found that a smaller island was sufficient to
isolate all vulnerable PMUs into a single region.

3. Various multi-objective optimization methods are compared based on the number
of iterations, number of parameters, optimal solution, and the total run time. It was
found that the hierarchical approach is particularly attractive in providing acceptable
controlled islanding solutions incorporating objective priority and optimal solution
degradation when considering multiple competing objectives.

4. It was observed that partitioning the power system into multiple smaller islands using
the proposed approach created partitions with sufficient steady-state and transient
stability margins and maximal observability.

5. Lastly, it was found that accurate islanding solutions were obtained when integral
constraints on some binary variables were relaxed in the optimization problem and
certain objective functions were converted into bounded constraints, thereby reducing
computation time.
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Our findings demonstrate that it is feasible to successfully limit the impact of bad
PMU data while creating islands. The developed approach offers considerable flexibility to
operators in designing islands that cater to a particular objective. The improvements in
traditional islanding address post-incident analysis, enable quick recovery, and ensure con-
tinuity of grid operations. Such a consistent and collaborative approach will help contain
threats and help power utilities minimize operational losses and financial threats in the face
of contingencies. In the future, additional studies will be conducted to incorporate commu-
nication delays in circuit breaker operations, incorporate dynamic stability constraints due
to renewables, and further improve the computation time of controlled islanding.
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Abbreviations
The following abbreviations are used in this manuscript:

Z Set of transmission lines
ZS,Z\S Set of lines with secure and non-secure PMU measurements, respectively
N Set of nodes
Ns Set of source nodes
Pi Net injection measurement at node i
Pi,j Active powerflow measurement on line (i, j)
H Matrix for topological observability
HS, H\S Observability sub-matrices for secure and non-secure PMU measurements, respectively
G System gain matrix
Z Observability decision matrix
ZS, Z\S Decision sub-matrix for lines with secure and non-secure measurements, respectively
h Number of islands
n, l Number of nodes and lines, respectively
m Number of PMU measurements
zi,j Line (i, j) connectivity status variable
xi,h Node i placement in island h status variable
wi,j,h Coupling variable between xi,h and zi,j
di,j Line measurement status variable
vi,j Linearization variable zi,j
fi,j,h Network connectivity flow variable
Sh Slack variable for load-generation balance
b Weight associated with non-secure PMU
gi Weight associated with objective function
h Tolerance for optimal solution degradation
e Tolerance for bounded constraint
F⇤

i Reference solution for Chebyshev’s method
F0

i Reference solution for Benson’s method
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