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Cells maintain a stable size as they grow and divide. Inspired by the available experimental data, most proposed
models for size homeostasis assume size-control mechanisms that act on a timescale of one generation. Such
mechanisms lead to short-lived autocorrelations in size fluctuations that decay within less than two generations.
However, recent evidence from comparing sister lineages suggests that correlations in size fluctuations can
persist for many generations. Here we develop a minimal model that explains these seemingly contradictory
results. Our model proposes that different environments result in different control parameters, leading to
distinct inheritance patterns. Multigenerational memory is revealed in constant environments but obscured when
averaging over many different environments. Inferring the parameters of our model from Escherichia coli size
data in microfluidic experiments, we recapitulate the observed statistics. Our paper elucidates the impact of the
environment on cell homeostasis and growth and division dynamics.
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Cell size is a dynamic property of cells important for
optimizing nutrient intake [1,2], accommodating intracellu-
lar content [2,3], and maintaining uniformity in tissues [4].
Cell size fluctuations are significant, yet constrained [5], sug-
gesting active mechanisms of size control that go beyond
initiating division a certain amount of time after birth [6–9].
Experiments and theory in recent years have revealed different
phenomenological classes of size control [6,10–13]; connec-
tions between control of size, growth, and DNA replication
[6,14–18]; and a surprising degree of heterogeneity in con-
trol mechanisms across, and even within, species [7,12,19].
Despite tremendous progress, basic questions remain open.
In particular, it is still unclear whether deviations from the
average size dissipate over one or many generations, and why
the measured control parameters appear to vary so widely,
even within lineages of the same population [12].

Most experiments suggest that deviations from the aver-
age cell size last for only a generation or so. Specifically,
microfluidic experiments with bacteria using devices such
as the “mother machine” [5] generally find an exponentially
decaying autocorrelation function (ACF) in cell birth size
An = e−n/nA with nA ≈ 1 generation [10,12,16,19]. Recently,
however, experiments that track two lineages born from the
same mother cell (a “sisters machine”) [20] have found
something different. Measuring the Pearson cross-correlation
function (PCF) between birth sizes in these experiments has
also revealed an exponential decay, Pn = e−n/nP , but with
nP ≈ 3.5 generations [Fig. 1(a), green]. Surprisingly, these
same experiments show nA ≈ 1 generation for the lineages’
ACF [Fig. 1(a), black], consistent with the mother machine
experiments (see Supplemental Material [21] for details of
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how correlation functions are calculated in theory and exper-
iments). This raises the question of whether size deviations
last for only a generation, as implied by nA, or for multiple
generations, as implied by nP. More generally, it raises the
question of how a signal is transiently more correlated with
another signal than with itself.

It is expected that size deviations dissipate within a gen-
eration in the context of adder size control [7,9,11,16,22,23].
Adder control means that a cell adds a constant amount to
its birth size before dividing. To see the connection between
adder control and how long size deviations last, consider a
cell born with size xn that grows exponentially for an elapsed
phase φn, the product of the growth rate and cell cycle time
[Fig. 1(b)]. After division, the daughter with fraction fn will
have birth size xn+1 = fnxneφn . Defining εn = ln(xn/x∗) as
the logarithmic deviation of the cell’s birth size from the
population-averaged birth size x∗, this expression becomes

εn+1 = εn + δn + ηn, (1)

where δn = φn − ln 2 and ηn = ln(2 fn) are deviations of the
phase and fraction from their expected values for size dou-
bling. Experiments in Escherichia coli have shown that ηn is
Gaussian and uncorrelated between generations [24]. In this
case, size control implies that the phase corrects for deviations
in the birth size [10,12,19,22,25],

δn = −βεn + ξn, (2)

where the homeostasis parameter β sets the strength of the
correction, and ξn is uncorrelated Gaussian noise in the correc-
tion process. The values β = 0, 1/2, and 1 correspond to the
timer, adder, and sizer rules, respectively [6,12]. Experiments
in bacteria generally observe a range of β values, centered
around 1/2 corresponding to the adder rule [7,12,19,26].

Combining Eqs. (1) and (2) gives a process εn+1 = (1 −
β )εn + ηn + ξn whose ACF An = (1 − β )n and PCF Pn =
(1 − β )2n are straightforward to calculate [21]. For β =
1/2, we thus have nA = −1/ ln(1 − β ) ≈ 1.4 generations and
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FIG. 1. (a) In the sisters machine (inset), a mother cell initiates
two sister lineages in a common V-shaped channel [20]. Experiments
[20] show that the autocorrelation function (ACF, black) for the cell
birth size decays more quickly than the Pearson cross-correlation
function between sister lineages (PCF, green). Here n = 0 is the
shared mother cell. (b) A cell grows exponentially from an ini-
tial birth size xn to a final division size xneφn , then divides by a
fraction fn.

nP = nA/2 ≈ 0.7 generations. While we see that nA is about
one generation for adder control, this framework cannot ex-
plain why nP is observed in experiments to be multiple
generations. Indeed, it is not clear from this framework how
nP could be larger than, not smaller than, nA. Instead, we see
that two noisy signals decorrelate twice as quickly from each
other as each does from itself.

Here we resolve this disagreement between theory and
experiment by going beyond the standard model of cell size
control in Eqs. (1) and (2). Our fundamental premise is that
the environment plays a defining role in setting the size control
parameters, and that different channels within a microfluidic
device are subject to different environments [27,28]. Because
obtaining correlation functions from data often requires av-
eraging over many channels to obtain sufficient statistics
[12,19,20], we hypothesize that the averaging process ob-
scures long timescales in some correlation functions (An) but
not others (Pn). Inferring the parameters of our model from
single-lineage autocorrelation data in E. coli, we find that this
is indeed the case, suggesting that size correlations are multi-
generational but dynamically diverse across environments.
Our results suggest that size autocorrelations are compatible
with an adder rule on average, but reveal the strong influence
of a heterogeneous environment on individual lineages.

Before describing our main model, we first rule out the pos-
sibility that short autocorrelations and long cross-correlations
between two lineages can be explained by the presence
of common environmental fluctuations [29]. In principle, a
signal with long intrinsic memory would exhibit short auto-
correlations if this memory were overpowered by short-lived
environmental noise. If this noise were common to both sig-
nals, the long memory would be expected to survive in the
signal difference and therefore in the cross-correlation func-
tion. To investigate this possibility, we replace the noise term
ξn in Eq. (2) with a long-lived, lineage-intrinsic component
y(i)
n and a short-lived, environmental component χn,

δ(i)
n = −βε (i)

n + y(i)
n + χn, (3)

FIG. 2. The presence of common environmental fluctuations
cannot explain the short-lived ACF and long-lived PCF observed in
experiments [Fig. 1(a)]. (a) A long-lived protein y regulates cell size
in two lineages subject to fast environmental noise χ (inset). The
PCF [Eq. (5)] decays more slowly than the ACF [Eq. (4)] but has a
large asymptote P∞. (b) No parameters can explain the experimental
timescale difference and zero asymptote. β = 0.6 and μ = 0.3 in (a);
σ 2

η = 0.0225, σ 2
ζ = 0.01 and σ 2

χ = 0.04 in (a) and (b).

where i = {1, 2} denotes each of the two sister lineages. Note
that the intrinsic component y(i)

n depends on the lineage i,
whereas the environmental component χn does not. By giv-
ing the intrinsic component, the dynamics y(i)

n+1 = μy(i)
n + ζ (i)

n

with uncorrelated Gaussian noise ζ (i)
n , we allow for long-

lived memory that approaches (1 − μ)−1 generations as μ

approaches one. A natural interpretation of y is the fluc-
tuations in cellular protein content that regulates a cell’s
growth and metabolism and is inherited from one generation
to the next. The environmental component χn is uncorrelated
Gaussian noise.

Eliminating δ(i)
n from Eqs. (1) and (3) gives ε

(i)
n+1 = (1 −

β )ε (i)
n + y(i)

n + η(i)
n + χn, a dynamics for size fluctuations ε

that depends on ε itself and on y, as depicted in the inset of
Fig. 2(a). We solve for the ACF and PCF of ε (i)

n by explicit
iteration [21]. Defining b = 1 − β, we obtain

An ∝ c1b
n + c2μ

n, (4)

Pn ∝ c0 + c3b
2n + c4μ

2n + c5b
nμn, (5)

where c0 = σ 2
χ/ f , c1 = (σ 2

χ + σ 2
η )/ f − bσ 2

ζ / f gh, c2 = μσ 2
ζ

/ghk, c3 = σ 2
ζ / f g2 + σ 2

η / f , c4 = σ 2
ζ /g2k, c5 = −2σ 2

ζ /g2h,
f = 1 − b2, g = μ − b, h = 1 − μb, and k = 1 − μ2. Each
σ 2
i is the variance of the corresponding noise term, and the

proportionality constants in Eqs. (4) and (5) are set by the
normalization condition A0 = P0 = 1. Because Eqs. (4) and
(5) are not single exponential decays, we define a charac-
teristic timescale as [30] τC = ∑∞

n=0(Cn −C∞)/(C0 −C∞)
for C ∈ {A,P}. Neglecting the fraction noise σ 2

η (experiments
show that ση ≈ 10% [12]), this gives

P∞ = ρ

ρ + 

, (6)

τA = 1

β
+

(
1

1 − μ

)[
μ(1 + b)

1 + μb+ ρ

]
, (7)

τP = 1

1 − b2
+ 1

1 − μ2
+ 2bμ

1 − b2μ2
, (8)
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(a) (b) (c)

FIG. 3. Different dynamics in different environments. (a) Experimental birth size ACFs from single lineages in different channels [20]
range from oscillatory to simple decay. (b) Our model includes size correction (β) and phase dependence (λ), with β and λ unique for each
channel. (c) The model exhibits three stable dynamic regimes for the ACF, depending on the values of the damping rate r = (1 + β − λ)/2
and the squared underdamped frequency ω2 = β − r2.

where ρ = σ 2
χhk/σ

2
ζ and 
 = (hk + f h − 2 f k)/g2. We see

that as μ approaches one, the second term in Eq. (8) domi-
nates, and the PCF indeed becomes long-lived. However, for
the ACF to remain short-lived (τA ∼ 1/β), we see that the
second term in Eq. (7) must remain small, requiring ρ � 1.
This condition increases the long-time cross-correlation P∞,
as seen in Eq. (6).

The requirement ρ = σ 2
χhk/σ

2
ζ � 1 makes sense because,

for short extrinsic noise to wash out long intrinsic memory,
the noise must be strong (σ 2

χ � σ 2
ζ ). The fact that this then

increases P∞ also makes sense because strong extrinsic noise
leaves two signals strongly correlated indefinitely. The net
result is that the PCF timescale cannot be longer than the
ACF timescale without a large PCF asymptote, as illustrated
in Fig. 2(a). In fact, numerically probing all values of μ and
β (with σ 2

η nonzero), we find no value of �τ = τP − τA and
P∞, consistent with the experimental observations of �τ > 0
and P∞ = 0 [Fig. 2(b)]. We conclude that the observations
in Fig. 1(a) cannot be explained by the presence of common
environmental fluctuations.

If the environment is not providing strong fluctuations,
is it playing an alternative role? To obtain insight into this
question, we recognize that ACFs from individual lineages in
different channels exhibit different dynamic behaviors, rang-
ing from simple decay to oscillations [Fig. 3(a)] [12,19,20].
Oscillations in single-lineage ACFs could reflect insufficient
data [16,19], although they persist even for lineages with
hundreds of generations [12], suggesting that they may reflect
genuine overcorrection in size control. We have checked using
simulations that genuine oscillations are detectable for N �
20 generations (Fig. S1 [21]), and therefore we only analyze
experimental lineages at least this long.

To explain the heterogeneity of dynamic behaviors, we
hypothesize that the size-control parameters are a function
of the environment, and that different channels have differ-
ent environments. Environmental heterogeneity could be due
to nutrient gradients on the length scale of the entire mi-
crofluidic device or mechanical differences among channels

(mechanical forces limit growth in narrow channels, and ac-
tual channel widths can be different from designed widths
[27]). Indeed, recent experimental analysis has shown that
cells in different channels fluctuate around different home-
ostatic set points [24,28], consistent with the hypothesis of
different environments.

To investigate this hypothesis, we modify Eq. (2) as

δ(i)
n = −βε (i)

n + λδ
(i)
n−1 + ξ (i)

n , (9)

where now ξ (i)
n is uncorrelated Gaussian noise. The new term

in Eq. (9), λδ
(i)
n−1, introduces a dependence of the phase on its

value in the previous generation. Physiologically, this depen-
dence could result from the inheritance of fluctuations in key
growth-control factors, such as ribosomes, RNA polymerases,
and other proteins, from one generation to the next [24].
The dependence could be positive or negative, depending on
whether the inherited factor primarily affects the growth rate
or the cell cycle time [31]. Indeed, a similar term emerges
naturally (along with β) from a systematic autoregression
analysis of single-cell growth data [24], providing experimen-
tal evidence for the dependence [32]. In principle, λ could be
perturbed by modulating the growth control factors, and β is
known to increase for slower-growing cells [16,33].

As illustrated in Fig. 3(b) (top), Eqs. (1) and (9) con-
tain feedback via (i) β, which compensates for a larger
birth size via a smaller phase, and (ii) λ, which accounts
for the generational dependence of the phase. Together,
these terms produce damped, oscillatory dynamics, which
can be seen by the following mapping: rearranging Eqs. (1)
and (9) as εn+1 − εn = δn + ηn and δn+1 − δn = −βεn + (λ −
β − 1)δn + (ξn+1 − βηn), we can approximate their left-hand
sides as time derivatives and combine them, yielding ε̈ +
2rε̇ + (r2 + ω2)ε = ψ , where r = (1 + β − λ)/2, ω2 = β −
r2, and ψn = ξn+1 + ηn+1 − ληn. These are the dynamics of
a simple harmonic oscillator with damping rate r and under-
damped frequency ω, driven by noise ψ .

Importantly, the parameters β and λ (and thus r and ω2)
are the same for each of the two lineages i in a channel
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but vary from channel to channel [Fig. 3(b), bottom]. The
question is whether different values of r and ω2 can capture
the dynamic heterogeneity observed in the experiments, and
whether averaging over these values results in the observed
auto- and cross-correlations.

To address this question, we solve for the ACF and PCF of
ε (i)
n in Eqs. (1) and (9) using the Z transform (the discrete-time

analog of the Laplace transform) [21]. We obtain

An ∝ q−an− + q+an+, (10)

Pn ∝ s−a2n
− + s+a2n

+ − 2san−a
n
+, (11)

where a± = 1 − r ± √−ω2; the coefficients q±, s±, and s are
functions of a±; and the noise strengths σ 2

η and σ 2
ξ [21], and

again the proportionality constants, are set by A0 = P0 = 1.
Stability requires |a±| < 1, equivalent to the conditions ω2 >

−r2, ω2 > −(r − 2)2, and ω2 < −r(r − 2) [21] [bordering
parabolas in Fig. 3(c)]. Damped oscillations occur when ω2 >

0 [horizontal line in Fig. 3(c)]. Alternation, which is unique
to discrete systems when the ACF is dominated by a term
with a factor of (−1)n, occurs when r > 1 [21], [vertical line
in Fig. 3(c)]. Together, these conditions give three dynamic
regimes, illustrated in Fig. 3)c) [see Fig. S2(a) [21] for these
regimes in the space of β and λ]. In particular, we see that
simple decay (blue) and oscillations (red) are possible, as ob-
served in the data. Oscillations are not possible in the standard
model with λ = 0 [gray parabola in Fig. 3(c)].

Addressing whether our model explains the correlation
data requires determining in which dynamic regimes the ex-
periments lie. To this end, we estimate the parameters r and ω2

in two ways. First, we perform a least-squares fit of Eq. (9) to
each single-lineage dynamics, as a planar equation for δ(i)

n ver-
sus (ε (i)

n , δ
(i)
n−1); second, we fit Eq. (10) to each single-lineage

ACF (see Ref. [21] for details). Consistent with our hypothesis
[Fig. 3(b), bottom], in both cases we allow the r and ω2 values
to be different for different channels, but we require them to be
the same for sister lineages in the same channel by combining
the two sums of squares during fitting (relaxing this constraint
results in a similar distribution of fitted values, Fig. S2(b)
[21]). The resulting values of r and ω2 for the two methods are
shown in Fig. 4(a) (red and blue, respectively; see Fig. S2(a)
[21] for these data in the space of β and λ). Values from data
in a different growth condition also lie in the same parameter
region (Fig. S2(b) [21]).

We see in Fig. 4(a) that the parameters inferred using either
method generally lie in the decaying and oscillatory regimes
(pink) but not the alternating regime (white). The parameters
inferred from the ACF fits (blue) span a larger range than those
inferred from the dynamics (red), but each case populates
both regimes with various frequencies and damping strengths.
Neither is confined to the standard model (gray parabola). Fur-
thermore, the regime does not correlate with the length of the
lineage [size of circle; see Fig. S2(b) for clarity], suggesting
that observed dynamic features are not artifacts of insufficient
data.

We therefore ask whether averaging over the decaying and
oscillatory regimes [pink in Fig. 4(a)] is sufficient to explain
the correlations observed in experiments. Performing this av-
erage, we obtain the results in Fig. 4(b) (pink). We see that the

FIG. 4. Comparing theory and experiment. (a) r and ω2 fitted
from experimental single-lineage dynamics [red, Eq. (9)] or ACFs
[blue, Eq. (10)]. Circle size: Lineage length N [top legend; see
Fig. S2(b) for clarity]. (b) ACF [Eq. (10)] and PCF [Eq. (11)],
averaged over r and ω2 values from a (pink regions), compared with
experimental results. σ 2

η = 0.09 and σ 2
ξ = 0.04 in (a) and (b).

averaged ACF is a relatively smooth function that decays in
about a generation, consistent with the experimental averaged
ACF [Fig. 4(b), black]. Evidently, oscillations with different
frequencies are largely washed out in the averaging process
[12,19], producing an apparent fast decay. We also see that
the averaged PCF exhibits a longer timescale than the ACF,
consistent with the experimental data [Fig. 4(b), green]. The
reason is that an individual channel’s PCF does not oscillate,
even when the ACF does, because the PCF reports on the
difference between two oscillatory signals, not the signals
themselves. Consequently, the averaged PCF is sensitive to
its longer-lived samples, whereas the averaged ACF appears
short-lived due to the washout of many oscillation periods.

We have put forward a minimal model for cell size control
that resolves the empirical paradox of short-lived autocorre-
lations but long-lived cross-correlations in cell size. We have
found that cell-size memory is longer-lived than previously
appreciated but is obscured in autocorrelations due to de-
structive interference among many oscillation periods. The
results suggest that control parameters depend sensitively on
the environment and that the environment varies considerably
within a multichannel microfluidic device, as has been sug-
gested [27] and demonstrated [24,28] previously.

The dynamics in Eq. (9) go beyond the standard model of
cell size control (λ = 0) and have a structure motivated by re-
cent single-cell growth experiments [24]. Parameters inferred
from these dynamics [Fig. 4(a), red] occupy the same regimes
but nevertheless a narrower range than parameters inferred
from the ACFs [Fig. 4(a), blue], suggesting that the dynamics
may be incomplete. A more accurate dynamical model might
include nonlinear terms, relate more than two consecutive
generations, or involve time-dependent parameters (we have
checked in Fig. S3 [21] that temporal parameter fluctuations
have little effect on the correlation functions). Equations (1)
and (9) are not unique in generating Eqs. (10) and (11), and it
will be interesting to see whether the dynamic control mecha-
nism can be better pinpointed in future work.

Our central prediction that heterogeneous environments
obscure multigenerational timescales in the averaged ACF
could be tested by modulating the degree of heterogeneity in
the channel environments. To the extent that the heterogeneity
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is nutrient-limited, it could be modulated either by flowing
nutrients overtop the cell traps, which would reduce hetero-
geneity, or by inducing chemical gradients along the device,
which would increase heterogeneity. Both are feasible options
for future experiments.

We thank Michael Vennettilli for introducing us to the
Z transform. This work was supported by National Sci-
ence Foundation Grants No. DMS-2245816 to A.M. and
H.S., No. PHY-2118561 to A.M., and No. PHY-2014116
to H.S.
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SUPPLEMENTAL MATERIAL

Equivalence of theoretical calculation and experimental computation of ACF and PCF

For the ACF, we define the average on a per-lineage basis (Fig. 3c). Then, we average the ACFs over all lineages
(Fig. 4b). This is standard practice in the analysis of experimental data [12, 19, 20], including the data in Figs. 3a
(single lineage) and 1a/4b (averaged ACFs). For the PCF, we take the average per pair of lineages, then we average
the PCFs over all pairs (Fig. 4b). Experimentally, it is not possible to take the average per pair of lineages because
there is only one pair per trap per generation. Therefore, experimentally, the global average is taken [20], including
in Fig. 1a/4b. We now show that these two procedures are equivalent when lineage data is properly normalized with
this lineage standard deviation as done in experiments. The definition of the global average used in experiments for
the PCF is [20]

P (t) =
1

�y(1)(t)�y(2)(t)

NX

i=1

(y(1)i (t)� hy(1)(t)i)(y(2)i (t)� hy(2)(t)i), (S1)

where y(t) is any variable of interest, i indicates a pair of sisters (or equivalently, one trap of the sisters machine) and
N is the total number of pairs in the system. Since the sisters lineages are statistically identical, �y(1)(t) = �y(2)(t)

and we drop the superscript. This enables us to write eq. S1 as

P (t) =
1

�
2
y(t)

NX

i=1

(y(1)i (t)� hy(1)(t)i)(y(2)i (t)� hy(2)(t)i), (S2)

Assuming there are k sub-populations each containing p number of pairs (p1, p2, p3, .., pk) such that N =
Pk

↵ p↵, we
can write eq. S1 as

P (t) =
1

�
2
y(t)

� p1X

i=1

(y(1)i (t)� hy(1)(t)i)(y(2)i (t)� hy(2)(t)i) +
p2X

i=1

(y(1)i (t)� hy(1)(t)i)(y(2)i (t)� hy(2)(t)i)

+ ..+
pkX

i=1

(y(1)i (t)� hy(1)(t)i)(y(2)i (t)� hy(2)(t)i)
�
,

(S3)

which can be written more concisely as

P (t) =
1

�
2
y(t)

kX

↵=1

p↵X

i↵=1

(y(1)i↵
(t)� hy(1)(t)i)(y(2)i↵

(t)� hy(2)(t)i). (S4)

Similar argument can be used to show that �2
y(t) can be written as �2

y(t) =
Pk

↵=1

Pp↵

i↵=1 (y
(1)
i↵

(t)� hy(1)(t)i). To write
everything more concisely we make use of the observation that the numerator of eq. S4 is the sum of sub-populations
covariances and the denominator is the sum of the sub-populations variances, giving

P (t) =
1

Pk
↵=1 �

2
y↵(t)

kX

↵=1

cov(y(1)↵ (t), y(2)↵ (t)). (S5)

Normalizing each sub-population by the sub-population standard deviation so that each sub-population have a stan-

dard deviation of 1, making cov(y(1)↵ (t), y(2)↵ (t)) ! 1
�2
y↵

cov(y(1)↵ (t), y(2)↵ (t)) and �
2
y↵(t) ! 1. The theory assumes a very

large number of lineages in the ensemble at steady state which makes the standard deviation of a sub-population at
any moment of time equal to the total standard deviation of the sub-population (�2

y↵(t) = �
2
y↵
). Therefore, eq. S5

becomes

P (t) =
1

k

kX

↵=1

cov(y(1)↵ (t), y(2)↵ (t))/�2
y↵
, (S6)
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that is exactly an average of the sub-populations PCF’s and can be written as

P (t) =
1

k

kX

↵=1

p↵(t) = hp(t)i. (S7)

In this picture, each sub-population is governed by the same dynamical parameters. Experimentally, we have only one
lineage per a set of parameters. To make theoretical progress, we therefore consider each lineage as a sub-population
of the larger ensemble.

Standard model (Eqs. 1 and 2)

This model can be represented using one equation by substituting Eq. 2 into Eq. 1. This becomes

✏
(i)
n+1 = (1� �)✏(i)n + ⌘

(i)
n + ⇠

(i)
n . (S8)

where the superscript (i) indicates lineage and the subscript n indicates generation. Iterating Eq. S8 explicitly we get

✏
(i)
1 = (1� �)✏(i)0 + ⌘

(i)
0 + ⇠

(i)
0 ,

✏
(i)
2 = (1� �)✏(i)1 + ⌘

(i)
1 + ⇠

(i)
1

= (1� �)2✏(i)0 + (1� �)⌘(i)0 + (1� �)⇠(i)0 + ⌘
(i)
1 + ⇠

(i)
1 ,

✏
(i)
3 = (1� �)✏(i)2 + ⌘

(i)
2 + ⇠

(i)
2

= (1� �)3✏(i)0 + (1� �)2⌘(i)0 + (1� �)⌘(i)1 + ⌘
(i)
2 + (1� �)2⇠(i)0 + (1� �)⇠(i)1 + ⇠

(i)
2 .

A pattern becomes evident and allows us to write a closed form for the cell size equation

✏
(i)
n = (1� �)n✏(i)0 +

n�1X

m=0

(⌘(i)m + ⇠
(i)
m )(1� �)n�m�1

, (S9)

where ✏
(i)
0 is the initial cell size of lineage i.

Autocorrelation Function

The size ACF is defined by

A(n) / lim
n0!1

h✏(i)n+n0✏
(i)
n0 i. (S10)

Substituting Eq. S9 into Eq. S10 to calculate size ACF we find

A(n) / lim
n0!1

⇥
(1� �)2n

0+nh✏(i)0 ✏
(i)
0 i+

n+n0�1X

m=0

n0�1X

k=0

(h⌘(i)m ⌘
(i)
k i+ h⇠(i)m ⇠

(i)
k i)(1� �)2n

0+n�m�k�2
⇤
, (S11)

where ⇠ and ⌘ are delta correlated white noises defined as

h⇠(i)m ⇠
(j)
k i = �

2
⇠�mk�ij ,

h⌘(i)m ⌘
(j)
k i = �

2
⌘�mk�ij ,

(S12)

and �
2
k is the variance of the corresponding noise. It can be read o↵ from Eq. S9 that 1 � � must be less than 1

for the model to be stable, allowing for the first term of the autocorrelation to go to zero in the limit n0 ! 1. The
autocorrelation function then becomes

A(n) / lim
n0!1

n0�1X

k=0

(�2
⌘ + �

2
⇠ )(1� �)2n

0+n�2k�2
. (S13)
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This summation is just a finite geometric series which can be done, and then we take the limit,

A(n) / (1� �)n

�(2� �)
, (S14)

which when normalized becomes

A(n) = (1� �)n. (S15)

Pearson Correlation Function

The PCF is defined as

P (n) / h✏(1)n ✏
(2)
n i. (S16)

Substituting Eq. S9 into S16 results in

P (n) / (1� �)2nh✏20i, (S17)

where ✏
(1)
0 is equal to ✏

(2)
0 due to the fact that sister cells share the same mother. Using Eqs. S12 we could also

eliminate noise correlation between sister cells. Normalizing the PCF we find

P (n) = (1� �)2n. (S18)

Model with common environmental fluctuations (Eqs. 1 and 3)

Similar to the standard model, the same analysis can be repeated. We start by combining Eqs. 1 and 3, then iterate
model equations to get

✏
(i)
1 = (1� �)✏(i)0 + y

(i)
0 + ⌘

(i)
0 + ��1,

✏
(i)
2 = (1� �)✏(i)1 + y

(i)
1 + ⌘

(i)
1 + �0

= (1� �)2✏(i)0 + (1� �)��1 + �0 + (1� �)y(i)0 + y
(i)
1 + (1� �)⌘(i)0 + ⌘

(i)
1 ,

✏
(i)
3 = (1� �)✏(i)2 + y

(i)
2 + ⌘

(i)
2 + �1

= (1� �)3✏(i)0 + (1� �)2��1 + (1� �)�0 + �1

+ (1� �)2y(i)0 + (1� �)y(i)1 + y
(i)
2 + (1� �)2⌘(i)0 + (1� �)⌘(i)1 + ⌘

(i)
2 .

Since � is a delta correlated white noise, we can shift its index by 1. We can find a closed form for the cell size

✏
(i)
n = (1� �)n✏(i)0 +

n�1X

m=0

(�m + ⌘
(i)
m + y

(i)
m )(1� �)n�m�1

. (S19)

A similar procedure can be done for the dynamics of y (below Eq. 3),

y
(i)
n+1 = µy

(i)
n + ⇣

(i)
n . (S20)

The resulting closed form equation is

y
(i)
n = µ

n
y
(i)
0 +

n�1X

k=0

⇣
(i)
k µ

n�k�1
. (S21)

Eq. S21 can be inserted into Eq. S19 resulting in

✏
(i)
n = (1� �)n✏(i)0 +

n�1X

m=0

(�m + ⌘
(i)
m + µ

m
y
(i)
0 +

m�1X

k=0

⇣
(i)
k µ

m�k�1)(1� �)n�m�1

= (1� �)n✏(i)0 +
n�1X

m=0

(�m + ⌘
(i)
m + µ

m
y
(i)
0 )(1� �)n�m�1 +

n�1X

m=1

m�1X

k=0

⇣
(i)
k µ

m�k�1(1� �)n�m�1
.

(S22)
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Autocorrelation Function

Substituting Eq. S22 into S10 we get

A(n) / lim
n0!1

⇥
(1� �)2n

0+nh✏(i)0 ✏
(i)
0 i+ h✏(i)0 y

(i)
0 i(

n+n0�1X

m=0

µ
m(1� �)2n

0+n�m�1 +
n0�1X

m=0

µ
m(1� �)2n

0+n�m�1)

+ hy(i)0 y
(i)
0 i

n+n0�1X

m=0

n0�1X

k=0

µ
m+k(1� �)2n

0+n�m�k�2 +
n+n0�1X

m=0

n0�1X

k=0

(h�m�ki+ h⌘(i)m ⌘
(i)
k i)(1� �)2n

0+n�m�k�2

+
n0�1X

m=1

m�1X

k=0

n+n0�1X

p=1

p�1X

q=0

h⇣(i)k ⇣
(i)
q iµm+p�k�q�2(1� �)2n

0+n�m�p�2
⇤
.

We use the same noise correlations in S12 (with ⇠ ! ⇣) with the addition of the correlation for the shared noise �

h�m�ki = �
2
��mk. (S23)

This simplifies the ACF to

A(n) / lim
n0!1

⇥
(1� �)2n

0+nh✏(i)0 ✏
(i)
0 i+ h✏(i)0 y

(i)
0 i(

n+n0�1X

m=0

µ
m(1� �)2n

0+n�m�1 +
n0�1X

m=0

µ
m(1� �)2n

0+n�m�1)

+ hy(i)0 y
(i)
0 i

n+n0�1X

m=0

n0�1X

k=0

µ
m+k(1� �)2n

0+n�m�k�2 +
n0�1X

k=0

(�2
⌘ + �

2
�)(1� �)2n

0+n�2k�2

+ �
2
⇣

n0�1X

m=1

m�1X

k=0

n+n0�1X

p=m+1

µ
m+p�2k�2(1� �)2n

0+n�m�p�2 + �
2
⇣

n0�1X

m=1

mX

p=1

p�1X

q=0

µ
m+p�2q�2(1� �)2n

0+n�m�p�2
⇤
.

We can notice that some of the sums have the form of a geometric series that has a known closed form. Using this
result, the ACF becomes

A(n) / lim
n0!1

⇥
(1� �)2n

0+nh✏(i)0 ✏
(i)
0 i+ h✏(i)0 y

(i)
0 i(1� �)2n

0+n�1
⇣1� ( µ

1�� )
n+n0

1� µ
1��

+
1� ( µ

1�� )
n0

1� µ
1��

⌘

+ hy(i)0 y
(i)
0 i(1� �)2n

0+n�2
⇣1� ( µ

1�� )
n+n0

1� µ
1��

⌘⇣1� ( µ
1�� )

n0

1� µ
1��

⌘
+ (1� �)2n

0+n�2(�2
� + �

2
⌘)
⇣1� 1

(1��)2n0

1� 1
(1��)2

⌘

+ �
2
⇣

n0�1X

m=1

m�1X

k=0

n+n0�1X

p=m+1

µ
m+p�2k�2(1� �)2n

0+n�m�p�2 + �
2
⇣

n0�1X

m=1

mX

p=1

p�1X

q=0

µ
m+p�2q�2(1� �)2n

0+n�m�p�2
⇤
.

It can be read o↵ from Eqs. S19 and S21 that the factors 1� � and µ must be less than 1 for the model to be stable.
Otherwise, cell size and the internal component y will diverge for later generations. Using this condition along with
taking the limit n0 ! 1, the ACF simplifies to

A(n) / (�2
⌘ + �

2
�)

(1� �)n

1� (1� �)2
+ lim

n0!1

⇥
�
2
⇣

n0�1X

m=1

m�1X

k=0

n+n0�1X

p=m+1

µ
m+p�2k�2(1� �)2n

0+n�m�p�2

+ �
2
⇣

n�1X

m=1

mX

p=1

p�1X

q=0

µ
m+p�2q�2(1� �)2n

0+n�m�p�2
⇤
.

Using Mathematica to simplify the result of the remaining summations and taking the limit, the ACF has the final
form

A(n) / �
2
�

(1� �)n

1� (1� �)2
+ �

2
⌘

(1� �)n

1� (1� �)2
� �

2
⇣

(1��)n+1

1�(1��)2 + µn+1

µ2�1

(µ+ � � 1)(1 + µ(� � 1))
, (S24)
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which can be normalized and written as

A(n) =
1

ZA

�
c1 (1� �)n + c2 µ

n
�
, (S25)

with

c1 =
(�2

⌘ + �
2
�)

1� (1� �)2
�

�
2
⇣ (1� �)

(µ+ � � 1)(1 + µ(� � 1))(1� (1� �)2)
,

c2 =�
�
2
⇣µ

(µ+ � � 1)(1 + µ(� � 1))(µ2 � 1)
,

ZA =c1 + c2.

This is equivalent to the form in Eq. 4.

Pearson Correlation Function

Substituting Eq. S22 into Eq. S16 and noticing that the h⇣(1)n ⇣
(2)
n i and h⌘(1)n ⌘

(2)
n i noise terms collapse to zero according

to Eqs. S12, we find

P (n) / (1� �)2nh✏20i+ 2
n�1X

m=0

µ
m(1� �)2n�m�1h✏0y0i+

n�1X

m=0

n�1X

r=0

µ
m+r(1� �)2n�m�r�2hy20i

+
n�1X

m=0

n�1X

r=0

h�m⇣ri(1� �)2n�m�r�2

= (1� �)2nh✏20i+ 2(1� �)2n�1
⇣1� ( µ

1�� )
n

1� µ
1��

⌘
h✏0y0i

+ (1� �)2n�2hy20i
⇣1� ( µ

1�� )
n

1� µ
1��

⌘2
+ �

2
�

⇣1� (1� �)2n

�(2� �)

⌘

= (1� �)2nh✏20i+ 2(1� �)n
⇣
µ
n � (1� �)n

� + µ� 1

⌘
h✏0y0i

+ hy20i
⇣ (1� �)n � µ

n

� + µ� 1

⌘2
+ �

2
�

⇣1� (1� �)2n

�(2� �)

⌘
,

where ✏
(1)
0 , y(1)0 are equal to ✏

(2)
0 , y(2)0 due to the fact that sister cells share the same mother. Now the task is to find

the initial moments of the system h✏20i, hy20i, and h✏0y0i. The moments are defined as

h✏20i = lim
n!1

h✏2ni, (S26)

hy20i = lim
n!1

hy2ni, (S27)

h✏0y0i = lim
n!1

h✏nyni, (S28)

which can be found to be

h✏20i =
�
2
� + �

2
⌘

�(2� �)
+ �

2
⇣

µ(� � 1)� 1

�(2� �)(µ2 � 1)(1 + µ(� � 1))
, (S29)

hy20i =
�
2
⇣

1� µ2
, (S30)

h✏0y0i =
�
2
⇣µ

(1 + µ(� � 1))(1� µ2)
. (S31)

Eqs. S29, S30 and S31 can be derived using the same methods used in the derivation of the ACF. Plugging the
moments equations in the equation for the PCF and normalizing, we find the normalized PCF to be

P (n) =
1

ZP

�
c0 + c3 µ

n(1� �)n + c4 µ
2n + c5 (1� �)2n

�
, (S32)
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where

c0 =
�
2
�

�(2� �)
,

c3 =�
2�2

⇣

(µ(� � 1) + 1)(µ+ � � 1)2
,

c4 =�
�
2
⇣

(µ+ � � 1)2(µ2 � 1)
,

c5 =�
�
2
⇣

�(� � 2)(µ+ � � 1)2
�

�
2
⌘

�(� � 2)
,

ZP =c0 + c3 + c4 + c5.

This is equivalent to the form in Eq. 5.

Model with phase dependence (Eqs. 1 and 9)

This model is described by two coupled equations making it impossible to obtain a closed form for cell size ✏n from the
recurrence relations. Instead, we utilize a method that allows us to transform discrete recursion relations to algebraic
equations that can be solved and inverted back to get the solution. This is the method of the --z-transformation. In
the --z-transformation ✏n ! E(--z) with E(--z) =

P1
n=0 ✏n --z

�n and the inversion equation ✏n = 1
2⇡i

H
E(--z)--zn�1 d--z. To

apply this to the model equations we multiply Eqs. 1 and 9 with --z and sum over n from n = 0 to n = 1. The
transformation is

✏
(i)
n ! E

(i)(--z) , ✏
(i)
n+1 ! --z(E(i)(--z)� ✏0),

�
(i)
n ! �(i)(--z) , �

(i)
n+1 ! --z(�(i)(--z)� �0),

⌘
(i)
n ! H

(i)(--z) , ⇠
(i)
n ! Z

(i)(--z),

where

E
(i)(--z) =

1X

n=0

✏
(i)
n --z�n

,

�(i)(--z) =
1X

n=0

�
(i)
n --z�n

.

Eqs. 1 and 9 then become

E
(i)(--z)(--z � 1) =--z✏0 +�(i)(--z) +H

(i)(--z), (S33)

�(i)(--z)(--z � �) =--z�0 � � --z(E(i)(--z)� ✏0) + Z
(i)(--z). (S34)

We can write Eqs. S33 and S34 in matrix form as

✓
--z � 1 �1
� --z --z � �

◆ 
E

(i)(--z)
�(i)(--z)

!
=

 
--z✏0 +H

(i)(--z)
--z�0 + �✏0 --z + Z

(i)(--z)

!
, (S35)

with solution

E
(i)(--z) =

Z
(i)(--z) + �0 --z +H

(i)(--z)(--z � �) + ✏0 --z(--z + � � �)

--z(--z + � � �� 1) + �
, (S36)

�(i)(--z) =
Z

(i)(--z)(--z � 1)�H
(i)(--z)--z� + �0 --z(--z � 1)� ✏0 --z�

--z(--z + � � �� 1) + �
. (S37)

Now it is a problem of inverting Eq. S36 using ✏
(i)
n = 1

2⇡i

H
E

(i)(--z)--zn�1 d--z. Inverting at this stage is di�cult because

of the noise terms Z(i)(--z) and H
(i)(--z). Instead we carry on our calculation for the ACF and PCF and do the integral

at the end to benefit from the noise properties h⇠(i)m ⇠
(j)
n i = �

2
⇠�mn�ij and h⌘(i)m ⌘

(j)
n i = �

2
⌘�mn�ij .
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Autocorrelation Function

The ACF is given by

A(n) / lim
n0!1

h✏(i)n+n0✏
(i)
n0 i = lim

n0!1

�1

4⇡2

I I
hE(i)(--z1)E

(i)(--z2)i--zn
0�1

1 --zn+n0�1
2 d--z1d--z2. (S38)

Using Eq. S36 we find

hE(i)(--z1)E
(i)(--z2)i =

hZ(i)(--z1)Z(i)(--z2)i+ --z1 --z2h�20i+ (--z1 � �)(--z2 � �)hH(i)(--z1)H(i)(--z2)i
(--z1(--z1 + � � �� 1) + �)(--z2(--z2 + � � �� 1) + �)

+
--z1 --z2(--z1 + � � �)(--z2 + � � �)h✏20i+ --z1 --z2(--z2 + � � �)h�0✏0i

(--z1(--z1 + � � �� 1) + �)(--z2(--z2 + � � �� 1) + �)
,

(S39)

with

hZ(i)(--z1)Z
(j)(--z2)i =

1X

n=0

1X

m=0

h⇠(i)m ⇠
(j)
n i--z�n

1 --z�m
2 =

1X

n=0

1X

m=0

�
2
⇠�mn�ij --z

�n
1 --z�m

2 =
�
2
⇠�ij

1� 1
--z1 --z2

,

hH(i)(--z1)H
(j)(--z2)i =

1X

n=0

1X

m=0

h⌘(i)m ⌘
(j)
n i--z�n

1 --z�m
2 =

1X

n=0

1X

m=0

�
2
⌘�mn�ij --z

�n
1 --z�m

2 =
�
2
⌘�ij

1� 1
--z1 --z2

.

(S40)

Substituting Eqs. S40 in S39, then S39 in S38, the ACF can be found applying the residue theorem to be

A(n) =
1

ZA

�
q�a

n
� + q+a

n
+

�
, (S41)

as in Eq. 10, where

a± =
�� � + 1±

p
(� � �� 1)2 � 4�

2
, |a±| < 1 (Stability Condition) (S42)

q± =±
[�(1 + a

2
±)� a±(1 + �

2)]�2
⌘ � a±�

2
⇠

(a2± � 1)
, (S43)

ZA =q� + q+. (S44)

Given that, as defined in the main text,

r = (1 + � � �)/2, !
2 = � � r

2
, (S45)

Eq. S42 becomes a± = 1� r ±
p
�!2. Furthermore, one can verify from Eq. S42 that

� = a+a�, � = (a+ � 1)(a� � 1). (S46)

Thus, because � and � are functions of a±, it is clear that q± is a function of a± and the noise strengths �2
⌘ and �

2
⇠

as given by Eq. S43.

Pearson Correlation Function

Similarly the PCF is

P (n) / h✏(1)n ✏
(2)
n i = �1

4⇡2

I I
hE(1)(--z1)E

(2)(--z2)i--zn�1
1 --zn�1

2 d--z1d--z2, (S47)

and

hE(1)(--z1)E
(2)(--z2)i =

hZ(1)(--z1)Z(2)(--z2)i+ --z1 --z2h�20i+ (--z1 � �)(--z2 � �)hH(1)(--z1)H(2)(--z2)i
(--z1(--z1 + � � �� 1) + �)(--z2(--z2 + � � �� 1) + �)

+
--z1 --z2(--z1 + � � �)(--z2 + � � �)h✏20i+ --z1 --z2(--z2 + � � �)h�0✏0i

(--z1(--z1 + � � �� 1) + �)(--z2(--z2 + � � �� 1) + �)

=
--z1 --z2h�20i+ --z1 --z2(--z1 + � � �)(--z2 + � � �)h✏20i+ --z1 --z2(--z2 + � � �)h�0✏0i

(--z1(--z1 + � � �� 1) + �)(--z2(--z2 + � � �� 1) + �)
. (S48)
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Using residue theorem we find

P (n) /
⇣
a
n
� � a

n
+

a� � a+

⌘2
h�20i+

⇣
a
n
�(a� + � � �)� a

n
+(a+ + � � �)

a� � a+

⌘2
h✏20i

+ 2
⇣
a
n
� � a

n
+

a� � a+

⌘⇣
a
n
�(a� + � � �)� a

n
+(a+ + � � �)

a� � a+

⌘
h�0✏0i,

(S49)

with moments

h✏20i = lim
n!1

h✏2ni =
�
2
⇠ (1 + a+a�) + �

2
⌘(�

2(a�a+ + 1)� 2�(a� + a+) + a�a+ + 1)

(a2� � 1)(a2+ � 1)(1� a�a+)
,

h�20i = lim
n!1

h�2ni =
2�2

⇠ (a+ � 1)(a� � 1) + �
2
⌘�

2(a+a� + 1)

(a2� � 1)(a2+ � 1)(1� a�a+)
,

h✏0�0i = lim
n!1

h✏n�ni =
�
2
⇠ (a+ � 1)(a� � 1) + �

2
⌘�(��(a+ + a�) + a+a� + 1)

(a2� � 1)(a2+ � 1)(a�a+ � 1)
.

(S50)

Substituting Eqs. S50 into S49 the PCF can be written as

P (n) =
1

ZP

�
c3 a

2n
� + c4 a

2n
+ + c5 a

n
�a

n
+

�
, (S51)

as in Eq. 11, where

c3 =
h�20i+ 2h�0✏0i(a� + � � �) + h✏20i(a� + � � �)2

(a� � a+)2
,

c4 =
h�20i+ 2h�0✏0i(a+ + � � �) + h✏20i(a+ + � � �)2

(a� � a+)2
,

c5 =
�2h�20i � 2h✏0�0i(a� + a+ + 2(� � �))� 2h✏20i(a+(� � �) + (� � �)2 + a�(a+ + � � �))

(a� � a+)2
,

ZP =h✏20i = c3 + c4 + c5.

From Eqs. S46 and S50 it is clear that c3, c4, and c5, which are called s�, s+, and s in the main text, are functions
of a± and the noise strengths �2

⌘ and �
2
⇠ .

Stability

To determine the range of parameters over which the model is stable we can write the model in terms of a transition
matrix

 
✏
(i)
n+1

�
(i)
n+1

!
=

✓
1 1
�� �� �

◆ 
✏
(i)
n

�
(i)
n

!
. (S52)

Iterating Eq. S52 gives

 
✏
(i)
n+1

�
(i)
n+1

!
=

✓
1 1
�� �� �

◆n
 
✏
(i)
0

�
(i)
0

!
. (S53)

We write Eq. S53 as

X(n+ 1) = A
n
X(0). (S54)

Defining D
n = PA

n
P

�1 and Y (n) = PX(n), we get

Y (n+ 1) = D
n
Y (0), (S55)
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where D is a diagonal matrix

D =

✓
a+ 0
0 a�

◆
, (S56)

with a± = (�� � + 1±
p
(� � �� 1)2 � 4�)/2 the eigenvalues of A. Thus Dn =

✓
a
n
+ 0
0 a

n
�

◆
. In the limit n ! 1 the

system should approach steady state such that

DY = Y (S57)

which has the solution Y = 0. This can only be achieved if |a±| < 1. Using the definitions in Eq. S45, a± becomes

a± = 1� r ±
p
�!2. (S58)

For the case !
2
> 0, the stability condition |a±| < 1 implies (1� r)2 + !

2
< 1, or

!
2
< �r(r � 2). (S59)

For the case !
2
< 0, a± is real, and the stability condition reads a+ < 1 and �a� < 1. The first condition implies

1� r +
p
�!2 < 1, or

!
2
> �r

2
. (S60)

The second condition implies �(1� r �
p
�!2) < 1, or

!
2
> �(r � 2)2. (S61)

The conditions in Eqs. S59, S60 and S61 define the outer boundaries in Fig. 3c.

Dynamic regimes

Oscillation occurs when Eq. S58 becomes complex, or

!
2
> 0. (S62)

This condition defines the oscillatory regime in Fig. 3c. Alternation occurs when a� is negative and its magnitude is
larger than that of a+. These properties endow the dominant term of the ACF with a factor of (�1)n, which causes
it to alternate sign each generation. We will first assume that a� is negative, then verify this assumption post hoc.
The magnitude condition in this case reads �a� > a+, or �(1� r �

p
�!2) > 1� r +

p
�!2, which simplifies to

r > 1. (S63)

We now verify that a� is negative for r > 1. Solving the definition a� = 1 � r �
p
�!2 for r, the condition r > 1

reads 1� a� �
p
�!2 > 1, or a� < �

p
�!2. When

!
2
< 0, (S64)

we see that a� is less than a real, negative quantity, and thus a� is negative. Therefore, Eqs. S63 and S64 define the
alternating regime in Fig. 3c.

Inferring parameter values from the data

In all fits, the two sister lineages were fit simultaneously to obtain a single set of parameters (�,�) that capture
the shared dynamics of both lineages. The dynamics fitting to data was conducted using linear regression analysis
in Matlab, utilizing built-in functions. Standard error (SE) of the fit was obtained within Matlab. The ACF fit of
sister lineages to data was conducted using non-linear fit functions in Matlab. An approximation of SE of the fit
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was obtained from the covariance matrix of the fit parameters. The covariance matrix (C) can be obtained from the
Jacobian matrix of the residuals (J) as follows

H = J
T
J , (S65)

C = H
�1

, (S66)

where H is the hessian matrix, Jnj = @rn
@aj

, rn = Ãn � A(n;a) is the residual of the ACF fit at the n
th generation,

Ã is the vector of measured ACF, and a are the model parameters � and �. SE in each parameter is then SE(ai) =p
Cii ⇥MSE, where MSE is the mean squared error of the fit. In what follows we prove this relation.
We start by linearizing the ACF and calculating the residuals of the fit as follows

A = Xa, (S67)

r = Ã�A = Ã�Xa, (S68)

where X is a generic matrix of time functions. It is important to notice that X is related to the Jacobian by
Xnj = �@rn

@aj
= �Jnj , making the covariance matrix C = X

T
X. To find the best fit of the parameters, we minimize

the sum of squares of the residuals

S =
NX

n=1

r
2
n, (S69)

where N is the number of generations in a lineage. This sum can be expanded as

S =
NX

n=1

(Ãn �
MX

i=1

Xniai)(Ãn �
MX

j=1

Xnjaj)

=
NX

n=1

(Ã2
n � 2Ãn

MX

j=1

Xnjaj +
MX

i,j=1

XniaiXnjaj).

We then take the derivative of S with respect to the parameters

S

ak
= 0 =

NX

n=1

(�2Ãn

MX

j=1

Xnj�jk +
MX

i,j=1

XniXnj(ai�jk + �ikaj)),

where � is the Kronecker delta. Further simplification results in

NX

n=1

MX

i=1

XniXnkai =
NX

n=1

ÃnXnk, (S70)

which is the matrix equation

X
T
Xa = X

T
Ã. (S71)

This can be very easily solved for the parameters a

a = (XT
X)�1

X
T
Ã = CX

T
Ã. (S72)

The error in each parameter can be found through the relation

�a = CX
T
�Ã. (S73)

This illustrates that the error in each parameter is a↵ected by the error in the data. The covariance of a is then

�
2
a = h�a�aT i = hCX

T
�Ã(CX

T
�Ã)T i = CX

T h�Ã�Ã
T iXC

T
. (S74)

We assume that the data is statistically uncorrelated making h�Ã�Ã
T iij = �

2
i �ij . The variance of the data can be

approximated by the mean squared error of the fit which we invoke here making h�Ã�Ã
T iij = MSE ⇥ �ij , therefore

eq. S74 becomes

�
2
a = C ⇥MSE, (S75)
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which means that SE for parameter i is SE(ai) = �aii =
p
Cii ⇥MSE.

Once we have the SE in parameters a, we are able to invoke the relation �
2
bi

=
PM

j=1 �
2
aj
( @bi
@aj

)2 to find SE in b,

assuming that the covariance of parameters is zero. Using the definitions in Eqs. S45, we find the SE in r and !
2 to

be

SE(r) =
1

2

p
SE(�)2 + SE(�)2, (S76)

SE(!2) =
1p
2

p
(1� � + �)2SE(�)2 + (1 + � � �)2SE(�)2. (S77)

Supplementary Figures

FIG. S1. Frequency fit from the ACF with N = 20 generations vs. actual frequency [! =
p

� � r2 with r = (�� � + 1)/2] for
sampled frequencies within our model’s oscillatory regime. Approximately 90% of fitted frequencies correlate with the actual
frequency, while the remainder are false negatives (fitted ! = 0).
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FIG. S2. (a) Phase space of dynamic regimes from Fig. 3c and data from Fig. 4a, here plotted in the space of � and �. (b)
Red, blue: Data from Fig. 4a without error bars to see circle sizes. Cyan: Fits of Eq. 10 to ACF data in a di↵erent growth
condition, LB at 37� (all other data is LB at 32�). Gray: Fits of Eq. 10 to ACF data without the condition that sister lineages
have the same parameter values.

FIG. S3. Ornstein–Uhlenbeck simulations were performed to test the robustness of our results to time varying parameters.
Each parameter, � and � (here given by the ACF fits), fluctuates around its mean according to an Ornstein-Uhlenbeck process
with the specified timescale ⌧ and standard deviation �. We see that the correlation functions are robust to these parameter
fluctuations: the theoretical curves are recovered in the limit of weak, fast noise, as expected (left); and the central observation
that the PCF has a longer timescale than the ACF remains robust, even for ⌧ as large as 4 generations or � as large as 2 (right).
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