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Abstract— This paper demonstrates how quantum optimal
control can be used to perform shaken lattice interferometry.
The first objective is to translate the five fundamental stages
of interferometry (splitting, propagation, reflection, counter
propagation and recombination) into quantum optimal control
problems parametrized by the time horizon of each stage.
The timing of each stage is then studied in relationship to
its overall influence on the interferometer performance. This is
done by comparing the population distributions obtained for a
range of different accelerations and using Fisher information
to estimate the sensitivity of the resulting accelerometer. These
encouraging results highlight the effectiveness of quantum
optimal control for the the design of next-generation atom-
based interferometers.

I. INTRODUCTION

Light-based interferometry has been a useful tool for
metrology since Michelson and Morley’s experiments [1].
Applications of light-based interferometry cover a wide
range of measurements, from rotational motion [2] to even
gravitational waves [3]. The basic principle behind interfer-
ometers is to superimpose two beams of light that generate
different interference pattern based on the variation of a
quantity to be measured. As shown in Figure 1a, this is
achieved by submitting a single beam of light to the five
fundamental interferometry stages: Splitting, propagation,
reflection, counter propagation and recombination.

Atom-based interferometry, first demonstrated in [4], is a
relatively recent technology that is widely acknowledged to
have the potential of achieving a higher degree of accuracy
than its light-based equivalent. Atom-based interferometers
have already been used to measure dark energy [5], gravita-
tional waves [6], and gravity gradients [7]. Although atom-
based interferometers are expected to revolutionize strategic
applications such as space navigation [8] and gravity moni-
toring [9], the overall technology is still under development.

The pioneering work featured in [10] showed that the
accuracy of atom-based interferometers can be improved by
trapping the atoms in an optical lattice and using the lattice
to perform the five stages of interferometry. Although the
general feasibility of this approach (known as “shaken lattice
interferometry”) has been demonstrated experimentally [11],
additional research is required to identify the most promising
shaking function for achieving the behavior illustrated in
Figure 1b. Prior work has mostly focused on data driven
approaches such as Nelder-Mead [12] and Q-learning [13].
However, recent results suggest that quantum optimal control

The authors are with the University of Colorado, Boulder. This research
is supported by the US National Science Foundation through the award
QII-TAQS 1936303.

Fig. 1. a) The Michelson laser interferometer. First, the light is split
into two beams that propagate until hit the mirror. After reflection, they
counter propagate and are recombined. The interference pattern obtained
at the recombination stage is then used to determine the position s of the
mobile mirror. b) Ideal atom interferometer. The cloud of atoms is split into
two clouds that propagate with opposite momentum. After reflection, they
invert directions and finally recombine. The population distribution at the
end of the recombination stage can theoretically be used to determine the
acceleration acting on the system.

offers an attractive alternative for the robust and efficient
manipulation of atoms trapped in an optical lattice [14].

The objective of this paper is to demonstrate that quantum
optimal control can be used to succesfully perform shaken
lattice interferometry. The timing requirements for each stage
are characterized and numerical simulations are used to
estimate the sensitivity of the resulting system when used
as an accelerometer. The paper is organized as follows.
Section II introduces the notations used in this paper. Section
III presents the model for the shaken lattice interferometer.
Section IV converts each of the five stages of interferometry
into quantum optimal control problems. Section V discusses
the timing of each stage and their effect on the interferometer.
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Finally, Section VI shows how the shaken lattice interferom-
eter can be used to measure accelerations.

II. NOTATION

For the purposes of this article, we use |ψ⟩ to denote
a complex column vector and ⟨ψ| to denote its complex-
conjugate transpose. Given two unit vectors satisfying
⟨ψ|ψ⟩ = 1 and ⟨ν|ν⟩ = 1, the two vectors are equal, i.e.,
|ψ⟩ = |ν⟩, if and only if ⟨ψ|ν⟩ = 1. The two vectors are
instead equal up to a global phase θ, i.e.,

∃θ ∈ [0, 2π) : |ψ⟩= |ν⟩ eiθ, (1)

if and only if |⟨ψ|ν⟩| = 1. Given a matrix Ψ, we use ∥Ψ⟩⟩
to denote the column-wise vector concatenation

∥Ψ⟩⟩ =

∥∥∥∥∥
[

|
ψ1
|

|
ψ2
|
. . .

|
ψn
|

]〉〉
=


ψ1

ψ2

...
ψn

 (2)

and ⟨⟨Ψ∥ to denote the complex-conjugate transpose of ∥Ψ⟩⟩.
Moreover, we use 0n, In, and Jn to denote the n×n matrix
of zeros, the identity matrix of size n, and the backward
identity matrix of size n, respectively. Moreover, we use ⊗
to denote the Kronecker product.

III. MODELING

Consider a cloud of ultracold atoms trapped in an optical
lattice. Let µ denote the mass [kg] of the individual atoms
and let k = 2π/λ be the angular wavenumber of the laser
beam, where λ is its wavelength [m]. As detailed in [15], the
momentum distribution of this quantum system is governed
by the Schrödinger equation

i |ψ̇⟩ = H(u) |ψ⟩ , (4)

where |ψ(t)⟩ ∈ Cn is the momentum distribution, u(t) ∈ R
is phase of the optical lattice,

H(u) = ωR

(
H0 +H1 sin(u) +H2(1− cos(u)

)
(5)

is the Hamiltonian, and H0, H1, H2 are given in (3). The
model parameters are the recoil frequency ωR = ℏk2/2µ,
where ℏ ≈ 1.055 · 10−34J s is the reduced Planck constant,
the optical depth of the lattice α = 10, and the number
of Bloch basis functions N = 4 used to approximate the
wavefunction, which ultimately determines the state vector
length n = 2N + 1. To simplify the model, we assume
hereafter ωR = 1 Hz, which is physically equivalent to
measuring the system’s timescale in units of ω−1

R .

IV. CONTROL DESIGN

The objective of this section is to convert each of the
five stages of interferometry into quantum optimal control
problems to be solved using the approach detailed in [16].

A. Propagation & Counter Propagation

The two propagation steps consist in letting the clouds
of atoms move opposite to (or towards) each other. Rather
than actively forcing the system, we wish to achieve a
state of “free propagation” where the atoms have sufficient
momentum to clear the peaks of the optical lattice on their
own. To do so, consider the propagation period Tp > 0 such
that u(t) = 0, ∀t ∈ [0, Tp). During this interval, the dynamic
behaviour of (4)-(5) is

i |ψ̇⟩ = H0 |ψ⟩ . (6)

Let λj and νj be an eigenpair such that H0 |νj⟩= λj |νj⟩ .
Given the initial condition |ψ(0)⟩= |νj⟩ eiθ with θ ∈ [0, 2π),
the analytical solution to the unforced system (6) is

|ψ(t)⟩ = |νj⟩ ei(θ−λjt), ∀t ∈ [0, Tp), (7)

which satisfies ⟨ψ(t)|ψ(0)⟩ = e−iλjt, ∀t ∈ [0, Tp). In other
words, if |ψ(0)⟩ is an eigenstate of the free Hamiltonian
H0, the momentum distribution of the system will remain
unchanged (up to a rotating global phase) as long as the
control input satisfies u(t) = 0.

To achieve free propagation, it is therefore sufficient to
identify an eigenvector of H0 that features an equal and
opposite momentum distribution. Due to the periodic nature
of the optical lattice, this property is satisfied by every even-
numbered eigenvector [17]. Figure 2 shows the momentum
distribution of the fourth eigenvector |ν4⟩, which was se-
lected based on a trade-off between achieving a large splitting
momentum, while also limiting the bandwidth of the shaking
function required to achieve splitting.

B. Splitting & Recombination

Having identified a suitable eigenstate for free propaga-
tion, the objective of the splitting step is to steer the quantum
system from the ground state |ψ(0)⟩ = |ν1⟩, which is the
lowest-energy state where most atoms are trapped in the
potential wells of the lattice, to the free propagation condition
|ψ(Ts)⟩ = |ν4⟩ eiθ, where most (≈ 98%) of the atoms are
propagating with a momentum of ±4ℏk.

Since the global phase θ ∈ [0, 2π) is irrelevant, the control
objective can be written in terms of minimizing the squared
Hilbert-Schmidt distance ∆(|ψ⟩,|ν4⟩) := 1− |⟨ψ|ν4⟩|2. This
cost function, however, is non-convex with respect to |ψ⟩.
To obtain a convex formulation, we leverage the property
⟨ψ|ψ⟩ = 1, to rewrite the squared Hilbert-Schmidt distance
as

∆(|ψ⟩,|ν4⟩) = ⟨ψ|P4 |ψ⟩ , (8)

where P4 = I−|ν4⟩⟨ν4| is a positive semidefinite matrix. The
splitting function us(t), t ∈ [0, Ts), can then be obtained by
solving the quantum optimal control problem

min
1

2
⟨ψ(Ts)|P4 |ψ(Ts)⟩+

1

2

∫ Ts

0

ρu(t)2dt (9a)

s.t. i |ψ̇⟩ = H(u) |ψ⟩ , |ψ(0)⟩ = |ν0⟩ , (9b)
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H0=



4N2 −α
4

−α
4 4(N−1)2 −α

4
. . . . . . . . .

−α
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4
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4

−α
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4
. . . . . . . . .

−α
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4
−α

4 4N2



H1=


0 iα4

−iα4 0 iα4
. . . . . . . . .

−iα4 0 iα4
−iα4 0



H2=


0 α

4
α
4 0 α

4
. . . . . . . . .

α
4 0 α

4
α
4 0


(3)

Fig. 2. Momentum distribution of the fourth eigenvector |ν4⟩ of the
free Hamiltonian H0. All atoms with a given momentum feature an equal
counterpart with opposite momentum. Moreover, most (≈ 2 (0.7)2 = 98%)
of the atoms have a momentum of ±4ℏk, which means that the system can
be described by two large clouds are separating from each other with a
relative momentum of 8ℏk.

where Ts > 0 is the splitting time (to be determined) and
the scalar ρ = 0.01 penalizes the control effort while still
being negligible with respect to the terminal cost.

As for the recombination step, its objective is to steer
the system from the free counter-propagation eigenstate |ν4⟩
back to the ground state |ν1⟩. Due to the reversable nature
of quantum systems, the recombination function can be
obtained by a simple time-reversal of the splitting function.

C. Reflection

The objective of the reflection step is to invert the momen-
tum of each atom cloud so that they all start propagating in
the opposite direction. This can be achieved by performing a
unitary transformation that maps the orthonormal basis ∥In⟩⟩
onto its mirror opposite −∥Jn⟩⟩. Unfortunately, the resulting
optimization problem would feature a state vector of size
n2 = (2N + 1)2, which is computationally intensive even
for relatively small N .

To simplify the optimal control problem, we note that there

is no need to perform a full unitary transformation. Indeed,
since the system is propagating in the fourth eigenstate,
the reflection step can mostly be achieved by reflecting the
eigenvector |ν4⟩ onto itself. With this in mind, consider

|ν−4 ⟩ =

IN 0
0N

 |ν4⟩ ,

|ν+4 ⟩ =

0N 0
IN

 |ν4⟩ .

(10)

Since |ν4⟩ is a odd vector (i.e., it satisfies |ν4⟩ = −Jn |ν4⟩
as shown in Figure 2), we note that |ν+4 ⟩ = −Jn |ν−4 ⟩ and
viceversa. Therefore, given the matrices

U+
4 = [ |ν−4 ⟩ |ν+4 ⟩ ],

U−
4 = [ |ν+4 ⟩ |ν−4 ⟩ ], (11)

the reflection of the fourth eigenstate is achieved by mapping
∥U+

4 ⟩⟩ onto its mirror opposite ∥U−
4 ⟩⟩ = −Jn∥U+

4 ⟩⟩. Given
the matrix Ψ ∈ Cn×2, the reflection step can then be written
as the quantum optimal control problem

min
1

2
|∥Ψ(Tr)⟩⟩ − ∥U−

4 ⟩⟩|2 + 1

2

∫ Tr

0

ρu(t)2dt (12a)

s.t. i∥Ψ̇⟩⟩=[I2 ⊗H(u)]∥Ψ⟩⟩, ∥Ψ(0)⟩⟩=∥U+
4 ⟩⟩, (12b)

where Tr > 0 is the reflection time (to be determined). Note
that, unlike the splitting/recombination steps, the quantum
optimal control problem (12) must account for the global
phase of the system to achieve perfect reflection. This is
done by penalizing the squared error of ∥Ψ(Tr)⟩⟩ − ∥U−

4 ⟩⟩.
The solution to (12) is denoted as ur(t), t ∈ [0, Tr).

V. INTERFEROMETER DESIGN

Having solved for the individual steps of the interferome-
ter, we define the overall shaking function as

u(t) =



us(t), t ∈ [0, T1),

0, t ∈ [T1, T2),

ur(t− T2), t ∈ [T2, T3),

0, t ∈ [T3, T4),

us(T5 − t), t ∈ [T4, T5),

0, t ≥ T5

(13)
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Fig. 3. Optimal shaking function obtained for the reflection step, given
Tr = 2.88ω−1

R . The function features a noticeable even symmetry, despite
the fact that the quantum optimal control problem formulation (12) does
not explicitly enforce any symmetry requirements.

where T1 = Ts, T2 = T1+Tp, T3 = T2+Tr, T4 = T3+Tp,
and T5 = T4 + Ts. This function is parameterized by the
splitting time Ts, the propagation time Tp, and the reflection
time Tr. Each of these parameters can significantly influence
the sensitivity of the interferometer and will be addressed in
the following subsections.

A. Propagation Time

In analogy to classic interferometers, the sensitivity of the
shaken lattice interferometer is proportional to the distance
traveled by the atoms. Intuitively, the propagation time
should therefore be “as large as possible”, while being
limited by the size of the instrument itself. Notably, the total
distance traveled by a cloud of atoms of mass µ propagating
with a momentum of 4ℏk for a time of Tp would be

∆p =
4ℏk
µ
Tp. (14)

Given a realistic propagation distance of ∆p = 1 mm, the
nominal propagation time would be Tp = 922ω−1

R . For
the purpose of this paper, however, we are going to limit
ourselves to Tp = 10ω−1

R due to the computational cost
required to accurately solve the Schrödinger equation for the
full range of accelerations detailed in Section VI. Note that,
since u(t) = 0 during the entirety of the propagation stage,
the choice of Tp has no influence on the overall shape of the
shaking function.

B. Reflection Time

To pick a suitable reflection time Tr, it is important to
note that the quality of reflection is very sensitive to the
fundamental frequency of the shaking function ur(t). As
detailed in [13], a suitable frequency for reflecting |ν4⟩ is the
difference between the second and fourth eigenvalue, which
equals 12ωR. The reflection time can then be chosen as five

Fig. 4. Optimal splitting function obtained for Ts = 10 ω−1
R .

Fig. 5. Optimal splitting function obtained for Ts = 2 ω−1
R .

and a half cycles of the fundamental frequency, i.e.

Tr = 5.5 · 2π

12ωR
≈ 2.88 ω−1

R . (15)

Interestingly enough, when this particular time horizon is
used for the quantum optimal control problem (12), the
resulting shaking function ur(t) is symmetric (see Figure 3),
despite the fact that symmetry is never explicitly enforced.
This symmetry disappears when Tr is chosen arbitrarily.

C. Splitting Time

The selection of an appropriate splitting time does not
benefit from any particular guidelines. Intuitively, the split-
ting time should be “as short as possible” to mimic an
instantaneous operation while still being sufficiently large
to allow enough time for the atoms to react. Figures 4
and 5 illustrate the splitting function us(t) obtained for
Ts = 10ω−1

R and Ts = 2ω−1
R , respectively. Their comparison

suggests that longer splitting times require lower amplitudes

4596

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on September 21,2023 at 16:39:34 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Position distribution of the cloud of ultracold atoms during all five
phases of the interferometer under zero acceleration, given a splitting time
Ts = 10 ω−1

R . Although many atoms split into two counter-propagating
clouds, a significant number of atoms break off into unfocused beams that
are not reflected and do not recombine at the end.

Fig. 7. Position distribution of the cloud of ultracold atoms during all five
phases of the interferometer under zero acceleration, given a splitting time
Ts = 2ω−1

R . The atoms predominantly split into two clouds traveling with
a momentum of ±4ℏk, which are then reflected and recombined correctly.
Although the figure still presents some undesirable tails, the majority of the
atoms recombine in the same place where they started.

and smaller bandwidths, but provides little insight into which
value is better suited for the interferometer.

To select a suitable splitting time, Figures 6 and 7 show
the position distribution of the atom cloud when performing
all five stages of the interferometer. These figures were
obtained by convoluting the ground state |ν1⟩ with a narrow
Gaussian function and computing the Fourier transform of
the resulting momentum distribution. Comparison between
these two figures shows that shorter splitting times provide
better results (i.e. higher density of atoms propagating with a
momentum of ±4ℏk) when considering realistic momentum
distributions. Further reduction of the splitting time, i.e.
Ts < 2ω−1

R , led to inadequate solutions of the quantum
optimal control problem, thereby suggesting that the atoms
need at least two units of recoil time to move from the ground
state to the target eigenstate.

Fig. 8. Population distribution P (p|a) of three different acceleration
values: a = −4×10−4aR, a = 0, and a = 4×10−4aR. Each acceleration
features a very different population, making it possible to estimate the
acceleration that gave rise to a specific population measurement.

VI. ACCELEROMETER

Having obtained a suitable shaking function (13), the
objective of this section is to perform a preliminary charac-
terization of the expected performance for the shaken lattice
interferometer. To this end, we first need to convert the
dimensionless units used so far to the experimental units for
real-world implementation. Notably, we consider rubidium
atoms (µ = 1.44×10−25 kg), trapped in an optical lattice
formed by counter-propagating laser beams with wavelength
λ = 852 nm. We can then compute the recoil frequency

ωR =
ℏk2

2µ
=

ℏ(2π/λ)2

2µ
= 1.99× 104 Hz (16)

and the recoil acceleration

aR = ωR
ℏk
µ

= 107 m/s2 ≈ 10 g, (17)

where g is the gravitational acceleration.
The next step is to determine the behavior of the interfer-

ometer when subject to different accelerations. To this end,
we simulate the response of the interferometer for a range of
acceleration varying between ±6×10−3aR (±60 mg) with a
resolution of ∆a = 10−5aR (100 µg). For each acceleration,
we compute the momentum population distribution as

P (p|a) = |ψ(T5)|2N+1−p, p ∈ [−N,N ] (18)

where |ψ|j is the absolute value of the j−th element of the
complex vector |ψ⟩. This quantity represents the probability
that a momentum measurement will output the value 2pℏk,
given an acceleration a. For example, Figure 8 shows the
population distributions P (p|a) obtained for three different
accelerations a = −4×10−4aR, a = 0, and a = 4×10−4aR.
Since the population distribution is unique for each accelera-
tion, it can be used to solve the inverse problem of estimating
the acceleration from a given population measurement.
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Fig. 9. Expected standard deviation of the measurement error obtained
with the proposed interferometer, given M = 104 trapped ultracold atoms
for different propagation times Tp. As Tp increases, the accuracy of the
instrument also increases.

To characterize the sensitivity of the instrument (i.e., how
well it is possible to recover the true acceleration value from
a given population), we compute the Fisher information

I(a) =

N∑
p=−N

1

P (p|a)

[
∂P (p|a)
∂a

]2
, (19)

which provides an approximate estimate for the accuracy of
the accelerometer. Notably, the variance of the acceleration
error satisfies

σ2(a) ≥ 1

I(a)M
, (20)

where M = 104 is the number of atoms trapped in the
optical lattice. Figure 9 depicts the standard deviation of the
acceleration error obtained for fairly small propagation times
Tp. Even under these conditions, we note that the standard
deviation is already quite reasonable, as it is represents a
0.1% error on the acceleration measurement. These results
suggest that, for more a realistic propagation time Tp ≈
1000ω−1

R , the accuracy of the accelerometer could be as
low as 0.1µg. Proving this, however, would either require
simulations with numerical accuracy that goes beyond the
scope of this paper or experimental calibration.

VII. CONCLUSION

This paper demonstrates that quantum optimal control can
be used to successfully design a shaken lattice interferometer.
After converting the five fundamental steps of interferometry
into quantum optimal control problems, we find that the time
horizons for each step play important roles in regard to the
performance of interferometry: reflection is very sensitive
to the control horizon and should be chosen based on the
eigenvalues of the Hamiltonian, splitting should be as fast as
possible to ensure a proper behavior for non-ideal momentum
distributions, and propagation should be as long as possible
to increase sensitivity. Numerical simulations showcase the

potential of the interferometer by using the Fisher informa-
tion to quantify the expected standard deviation when the
population distribution is used to estimate the acceleration
acting on the system. These encouraging results represent a
first step in the development of a new paradigm for atom-
based interferometry. Future work will focus on validating
these control laws on experimental hardware, thereby verify-
ing that each interferometer stage is performed correctly, and
then calibrating the accelerometer to quantify its accuracy.
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