RECIPE: Rateless Erasure Codes Induced by
Protocol-Based Encoding

Jingfan Meng Ziheng Liu
Georgia Tech University of Utah
jfmeng @gatech.edu ziheng.liu@utah.edu

Abstract—LT (Luby transform) codes are a celebrated family
of rateless erasure codes (RECs). Most of existing LT codes were
designed for applications in which a centralized encoder possesses
all message blocks and is solely responsible for encoding them into
codewords. Distributed LT codes, in which message blocks are
physically scattered across multiple different locations (encoders)
that need to collaboratively perform the encoding, has never
been systemically studied before despite its growing importance
in applications. In this work, we present the first systemic study of
LT codes in the distributed setting, and make the following three
major contributions. First, we show that only a proper subset
of LT codes are feasible in the distributed setting, and give the
sufficient and necessary condition for such feasibility. Second,
we propose a distributed encoding protocol that can efficiently
implement any feasible code. The protocol is parameterized by
a so-called action probability array (APA) that is only a few
KBs in size, and any feasible code corresponds to a valid APA
setting and vice versa. Third, we propose two heuristic search
algorithms that have led to the discovery of feasible codes that
are much more efficient than the state of the art.

I. INTRODUCTION

Rateless erasure codes (REC) [1] are a powerful tool for
reliable data transmission. LT (Luby transform) codes [2]
are the best-known family of REC. LT codes are attractive
for network applications, because they have both high cod-
ing efficiency and low decoding time complexity (using the
peeling algorithm [3]). Most existing LT codes were designed
for applications in which a centralized encoder possesses all
message blocks and is solely responsible for encoding them
into codewords. However, the past two decades has seen
some applications in which the message blocks are physically
scattered across multiple different locations (encoders) that
need to collaboratively perform the encoding.

In this work, we perform the first systemic study of LT codes
in the distributed setting, by posing three research questions.
Our starting question is “Does the distributed setting impose
certain additional constraints that make some LT codes not
realizable (feasible)?” Since the answer to this question is yes,
as we will explain shortly, it leads to two more questions. Our
second question is “Can we design an distributed encoding
protocol that can be parameterized to realize (implement) any
feasible LT code, and has low computational and storage
overheads for the encoders?” Our third question is “Can we
find good codes (with high coding efficiency) within this
restricted (feasible) family?”

Yiwei Wang Jun Xu
Georgia Tech Georgia Tech
ywang3607 @gatech.edu jx@cc.gatech.edu

In this work, we make three major contributions by defini-
tively answering these three questions, respectively. Our first
contribution is to show that only a proper subset of LT codes
are feasible in the distributed setting, and to give the sufficient
and necessary condition for an LT code to be feasible. Our sec-
ond contribution is to propose a distributed encoding protocol
that can efficiently implement any feasible code. Hence, we
call both this protocol, and the family of codes it generates,
RECIPE (Rateless Erasure Codes Induced by Protocol-based
Encoding). We say a code is RECIPE-feasible if it belongs to
this family. The ultimate goal of the RECIPE coding theory
is to discover RECIPE-feasible codes that can achieve high
coding efficiencies. However, to search for such codes appears
challenging, as we will elaborate in Section V. Our third
contribution is two heuristic search algorithms' that have led
to the discovery of RECIPE-feasible codes that are much more
efficient than the state of the art [4].

II. BACKGROUND AND FORMULATION
A. Centralized LT codes and XOR Degree Distributions

In this section, we provide a brief introduction to centralized
LT coding concepts, terms, and notations. Let U be the set of
message blocks to be encoded (for transmission) and k = |U];
k is called block size in the literature. Each LT codeword is
an XOR sum of d distinct, randomly selected, message blocks.
We refer to this set (of message blocks) as the XOR-set in the
sequel. This random selection is required to be uniform in the
sense that, for any ¢ < k, all (’f) ways (of selecting 7 distinct
message blocks from U to XOR together) must be equally
likely. We refer to this requirement as the uniformity condition
in the sequel. This d, which is called the XOR degree, is in
general a random variable. We call the probability distribution
of d XOR degree distribution (XDD) and denote it as [in this
paper. Thanks to the uniformity requirement, any LT coding
scheme is uniquely determined and hence defined by its XDD
iZ. Throughout this paper, we write a rightward arrow on the
top of /i to emphasize that it is a vector of k scalars, in which
the i*" scalar is denoted by (7).

B. Path Tracing: Our Distributed LT Coding Problem
In this section, we describe the path tracing problem that
our RECIPE coding theory is designed to tackle. Probabilistic

I'We will release all source codes and resulting XDD distributions on https:
/lcc.gatech.edu/home/jx.

in-band network telemetry (PINT) is an emerging protocol
framework for real-time data center network (DCN) mea-
surement and monitoring [4], [5]. An important PINT task
is path tracing [6]-[8]. In path tracing, each participating
switch (router) probabilistically encodes its (switch) ID into
a dedicated “PINT field” contained in each packet transiting
through the switch; this field is typically short (say no more
than 16 bits) to keep the bandwidth overhead of the path
tracing operation small. The goal of path tracing is for the
destination host of a flow of packets to recover the entire
network path this flow had traversed, from the codewords
(“PINT field” values) of these packets.

Formally, path tracing can be modeled as a distributed LT
coding problem as follows. Consider a path tracing instance
in which a source node SRC sends a flow of packets to a
destination node DST, following a path that contains switches
1, 2, ---, k in that order. This instance corresponds to a
coding instance, in which the & switches are the encoders that
each possesses a message block (which is its own switch ID),
and DST is the decoder. The “PINT field” in each packet is
a codeword-in-progress when the packet traverses along the
path from SRC to DST. The distributed coding problem is
how these k switches should collaboratively encode each such
codeword so that DST can recover the entire path from as
few packets (codewords therein) as possible (i.e., achieve high
coding efficiency), which is important for such an LT code to
be useful in a data center network environment in which the
vast majority of flows contain no more than several packets.

In this instance, each switch ¢ along the path can “do
something” to a codeword-in-progress C' only during the
packet’s “brief stay” at . In other words, whatever ¢ decides
to do to C, it is a one-shot online decision. As shown
in [4], there are only three conceivable LT coding actions
can do to C (probabilistically): Add (XOR its ID M; with
C), Skip (do nothing to C), and Replace (C with M;).
These three actions are however sufficiently expressive, since
it will become intuitive to readers that they themselves do
not constrain in any way how “large and rich” the RECIPE-
feasible family (of codes) can be.

Rather, what makes this coding problem challenging and
“shapes” the RECIPE-feasible family is the following con-
straint imposed by the data center network environment. The
constraint is that every switch (encoder) has to be stateless
and “weightless” in the sense it performs the same extremely
simple (“weightless”) LT encoding processing on every tran-
siting packet without consciously knowing which path (coding
instance) this packet travels (belongs to) or the path length.
This constraint is necessary for a path tracing operation to
incur minimal systems overheads at data center switches, since
at any moment a switch may be on the paths of millions of dif-
ferent source-destination flows, each of which corresponds to a
different coding instance. Under this constraint, every switch
has to probabilistically perform Add, Skip, or Replace,
with the same probability parameter settings (that we will
elaborate in Section III), on each packet (the codeword-in-
progress therein) transiting through it, independently.

We now elaborate, using the coding instance above, on
the aforementioned “not knowing the path length”, since it is
arguably the most consequential part of the stateless constraint.
In general, any switch 4, ¢ = 1,2 --- k, does not know
the exact value of k (the block size of this instance) when
processing a packet (codeword-in-progress) belonging to this
instance. To be more precise, switch ¢ knows its “position”
¢ (from the time-to-live (TTL) field in the IP header of the
packet), but not k—i (“how far away” the packet is from DST).
This constraint implies that, at any switch ¢ (1 <4 < k) in this
instance, the codewords-in-progress (contained in the packets
of the flow) after being processed by switches 1 through i
must be (the realizations of) a valid code in the sense the
(XOR-set distribution of the) code satisfies the uniformity
condition and hence can be characterized by an XDD that
we denote as fi;. This is because any switch ¢ could be
the last switch in another coding instance I' (of length i),
and in this case the codewords-in-progress that switch ¢ (in
instance I') transits are the final codewords. This constraint
also implies that a (parameterized) RECIPE protocol should
induce the same XDD ji; for all instances (in the network)
of size (length) ¢, since the probabilistic “decision logic”
(whether the action should be Add, Skip, or Replace) at
switches 1 through ¢ in all such instances are identical due to
the stateless constraint. Hence a RECIPE protocol, which is
run concurrently by numerous coding instances of different
path lengths in a data center network, generally induces a
sequence of XDDs [i1, fi2, - , jix (one for each path length),
where K is the maximum path length (i.e., diameter) in the
network. Our aforementioned first contribution is to discover
the necessary and sufficient condition these X XDDs need to
satisfy for their “concatenation” to become a RECIPE-feasible
code.

Throughout this work, for ease of presentation, we assume
that the PINT field in each packet has the same length as
the ID of a switch, and that an LT codeword is the XOR
sum of switch IDs. The PINT paper [4] has proposed several
solutions for cases in which the PINT field is shorter, such as
hash-compressing the switch IDs or fragmenting a switch ID
across multiple packets.

C. PINT: The State of the Art Path Tracing Code

The only prior work on the topic of distributed LT coding
for path tracing is PINT [4], which proposed a reasonably good
code, but did not develop any theory. In comparison, this work
gets to the bottom of the problem, explores the entire design
space, and reaps the reward of discovering much more efficient
codes than the PINT code.

The PINT code can be considered a linear combination of
two (what we now call) RECIPE codes (XDD sequences). In
the first code, each packet, when arriving at its destination,
carries in its codeword a uniformly and randomly chosen
switch ID along its path. This code is produced by switches
performing reservoir sampling. The second code is produced
by every switch XOR-ing its switch ID to the codeword con-
tained in an arriving packet with a fixed probability p. In the

resulting code (XDD sequence), each jiy, k =1,2,--- | K, is
precisely Binomial(k,p). Neither code is efficient. PINT [4]
uses a linear combination of these two inefficient codes that
is, surprisingly, much more efficient than both.

III. RECIPE AND ITS VARIANT

In this section, we first present (in Section III-A) the
baseline RECIPE protocol, called RECIPE-d, that requires
each codeword-in-progress C' to be accompanied with the
value of d, the current XOR-degree of C'. This requirement
increases the coding overhead by a few (say 6) bits per packet
(as d < 64 in any current communication network). This
extra coding overhead can be eliminated using a streamlined
variant of RECIPE that we call RECIPE-t and present in
Section III-B. RECIPE-t can induce any RECIPE-feasible code
approximately but accurately, at the tiny cost of requiring each
encoder (switch) to store a small (no more than 1MB in size)
precomputed table. RECIPE-d and RECIPE-t are the second
aforementioned contribution of this work.

A. Degree-Based RECIPE (RECIPE-d)

Algorithm 1: RECIPE-d protocol by switch 3.

1 Retrieve hop count ¢, XOR degree d, and codeword C'
from pkt;

2 v+ h(i, pkt); // velo1)
3 if v < pa(i,d) then

4 ‘ C—CoM; // Add action
5 else if v < pa(i,d) + pgr(i,d) then

6 ‘ C+ M, // Replace action
7 else

8 | Do nothing; // Skip action
9 Update d accordingly;

[y
=)

Write d and C back to the packet.

Alg. 1 shows how a switch whose ID is M processes a
packet pkt (the codeword-in-progress C therein) transiting
through it, using the RECIPE-d protocol (that is run by
all switches with the same parameter setting). As shown in
Lines 3 through 9, the switch performs one of the three
aforementioned actions (Add, Skip, and Replace) on C
with probability pa(i,d), ps(i,d), and pr(i,d) respectively.
Here ¢ is how far (in number of hops) this switch is away
from the SRC of pkt, which as mentioned earlier can be
inferred from pkt’s TTL; d is the current XOR-degree of
C' (that RECIPE-d “pays” to know as mentioned earlier).
As such, the RECIPE-d protocol is parameterized by the
2D array (pA(i’d)vpsu’d)va(ivd))’ i =0,1,---, K and
d=1,2,---,i— 1, that we call the action probability array
(APA). How to set (probability values in) APA so that the
resulting RECIPE-d protocol induces a valid and a good code
will be studied in Section IV and Section V, respectively.
RECIPE-d is stateless since the (random) action the switch
performs on pkt depends only on ¢ and d, but not on the flow
(coding instance) pkt belongs to.

In any LT coding scheme, to decode a set of codewords,
the host (in our case the DST) must know the XOR-set of
each codeword in the set. Alg. 1 uses a standard (in computer
science) derandomization technique called global hashing that
allows the DST of pkt to recover the XOR-set of C as follows.
A global hash function h(-, -) is shared among all switches and
hosts in the network. As shown in Lines 2 through 9, the exact
realized action this switch performs on pkt is determined by
the hash value v = h(i, pkt). When pkt reaches DST, DST can
infer the XOR-set of C' therein from the hash values h(i, pkt),
1 =1,2,.--, that DST itself can compute.

B. Table-based RECIPE (RECIPE-t)

Consider a hypothetical path of maximum possible length
K and a packet pkt that travels down the hypothetical path
to its_> DST. We define the following (random) action vec-
tor act £ (act(1),act(2),--- ,act(K)), where each act(i),
i =1,2,---, K, is the random action that switch ¢ performs
on pkt (the codeword C' therein). Recall that in RECIPE-
d, switch i realizes only act(i) according to the hash value
v = h(i,pkt) and the APA that parameterizes the protocol.
The idea of RECIPE-t is to let every switch store an (iden-
tical) copy of a precomputed (via Monte-Carlo simulation of
RECIPE-d) action vector sample table (AVST) whose rows are
independent realizations of the random vector act. Suppose
the AVST has L rows (independent samples) that we denote
as acty, acta, -+, actr,. When pkt travels down its path, all
switches along the path collaboratively sample one uniformly
random (across [L] £ {1,2,---,L}) row [in AVST (i.e.,
acty); and for ¢ = 1,2,---, switch ¢ performs act;(i) on
the codeword contained in the packet. This sampling (of ()
is done collaboratively using a different global hash function
g(pkt) (than h(%, pkt)). In theory, when L tends to infinity, the
(approximate) XDD sequence RECIPE-t induces converges to
the actual XDD it tries to “simulate”. In practice, L = O(10*)
is large enough to achieve a very close approximation, as will
be shown in Figure 2.

IV. RECIPE-FEASIBLE XDD SEQUENCES

In this section, we state the first aforementioned contribution
of this paper: the sufficient and necessary condition for an
XDD sequence to be RECIPE-feasible. The sufficiency proof
also explains how APA should be set to induce a RECIPE-
feasible XDD sequence. The RECIPE coding theory in this
and the next two sections will be developed for RECIPE-
d, with the understanding that we can approximate any pa-
rameterized (by APA) RECIPE-d using its streamlined variant
RECIPE-t.

To begin with, we introduce a notation that makes our pre-
sentation easier. Consider any XDD ji; in the XDD sequence.
Recall that the uniformity condition means that for any d < ¢,
the probability for every size-d subset of [i] to be the XOR-set
of C is identical. We denote this probability by ¢;(d), which
is equal to u;(d)/ (f]) by definition. Throughput this section,
we denote an XDD sequence by ¢i,qs, -,k instead of

My 2y LK

The following theorem shows that the family of RECIPE-
feasible codes corresponds to a (K (K + 1)/2)-dimensional
polytope bounded by the following linear constraints (facets).

Theorem 4.1: An XDD sequence q1, G2, - - - , Gk is RECIPE-
feasible if and only if forany 2 <: < K,1 <d <i—1,it
holds that

gi—1(d) > ¢i(d) + ¢;(d + 1). (1)

The necessity part of Theorem 4.1 is proved in Appendix A
in [9], and its sufficiency part follows from the following
APA designation that instantiates any RECIPE-feasible XDD
sequence ¢1,d2, - , K.

e For ¢ = 1, the first switch always replaces the (initially

empty) codeword by its ID, like in PINT. In other words,
we let p4(1,0) =0, ps(1,0) =0, and pr(1,0) = 1.
e Forany2<i< Kand1<d<1i—1, welet

pa(i,d) = ¢i(d+1)/qi—1(d),
ps(i,d) = qi(d)/qi-1(d), 2
pr(i,d) =1—pa(i,d) — ps(i,d).
In the interest of space, we prove in Appendix B in [9]
that the APA entries in (2) are well-defined for any RECIPE-
feasible XDD sequence, and that a RECIPE-d protocol thus

parameterized satisfies the uniformity condition and induces
the XDD sequence q1, G2, , (k-

V. SEARCH FOR GOOD XDD SEQUENCES

It is very challenging to discover efficient codes in the
RECIPE-feasible family for two reasons. First, the search for
good codes has to work with the aforementioned (K (K +
1)/2)-dimensional RECIPE-feasible polytope. Second, for a
distributed LT code (XDD sequence) ji1, fis,- - ,jflx to be
considered good (in terms of coding efficiency), every ji,
k=1,2,---, K, needs to be good, because if ji;- for a certain
path length k* is bad, then all coding instances of path length
k* have low efficiency.

In this section, we propose two heuristic algorithms for
searching for good RECIPE-feasible codes. The first algo-
rithm, called HRS and to be described in Section V-A, searches
over the entire RECIPE-feasible polytope. The second, called
QPS and to be described in Section V-B, searches over
a much smaller polytope called invariant (RECIPE-feasible)
sequences, but is much more computationally efficient in
exploring the smaller polytope. As a result, when K is large
(say in hundreds), only QPS can output good codes (on every
k) “in due time”. We will plot the XDD of a “good” RECIPE
code found by QPS in Appendix D in [9].

A. Heuristic Reversed Search (HRS)

Our first search algorithm, called heuristic reversed search
(HRS), is to greedily solve a series of K subproblems that
each has O(K) variables to work with. The idea is to find
good XDD’s hop-by-hop in the reversed order (from last to
first) while conforming to (1). We start with an XDD iy at
the last hop. The default choice is Robust Soliton [2] due to
its high coding efficiency. Then, for i = K, K — 1,---,2,

we iteratively search for a good XDD ji; 1 (for one hop
earlier) in the RECIPE-feasible region (that satisfies (1) under
current ¢ and XDD ;). It is straightforward to show that every
subproblem thus formulated is feasible.

HRS is reasonably computationally efficient for K values
that are not too large (say K < 128). However, since the
search for ji;_; depends on ji;, fi;—1 “inherits” any coding
inefficiency of ji;. As a result, when K is larger than 100 or
so, iy found by HRS are not very efficient except when k
gets close to (the last hop) K.

B. Quadratic Programming Search (QPS)

Our second scheme, called quadratic programming search
(QPS), searches over only invariant (XDD) sequences (defined
next) in the RECIPE-feasible polytope.

Definition 5.1: An XDD sequence is invariant (at each hop)

if and only if for every XOR degree d = 1,2,--- | K — 2,
pa+1(d) = pate(d) = = px(d).
By this definition, every invariant XDD sequence is fully
parameterized by the K scalars in i (thus we drop the
subscript K in the following theorem). Furthermore, as a direct
corollary of Theorem 4.1, the following theorem shows that
the subspace of XDD sequences that are both invariant and
RECIPE-feasible is a K-dimensional polytope.

Theorem 5.2: An invariant XDD sequence is RECIPE-
feasible if and only if for every d = 1,2,--- | K — 2,
u(d) > (d+1)/d- u(d+1).

Example 5.3: It is not hard to verify that the truncated
(at £ = 1,2,---, K) Soliton distributions (see [2]), when
concatenated into an XDD sequence, is neither invariant nor
RECIPE-feasible. However, the following truncated XDDs jiy,
k=1,2,---, K, when concatenated into an XDD sequence,
is both invariant and RECIPE-feasible. We call this XDD
sequence Shifted Soliton, since each [y is a “cyclic shift” of
the truncated (at k) Ideal Soliton. We accidentally discovered
Shifted Soliton, which in turn inspired us to propose QPS (to
search for even better invariant sequences using computer).

pe(d) =1/[d(d+ 1)), d = 1,2, ...k — 1.
(k) = 1/k.

Since QPS searches (using a quadratic programming proce-
dure as we will describe in Appendix C in [9], which gives
QPS its name) over a K-dimensional “sub-polytope” (of in-
variant sequences) of the (K (K +1)/2)-dimensional RECIPE-
feasible polytope, it is much more computationally efficient
than HRS when K is large (say K > 100). Luckily, many
good XDD sequences still exist within this “sub-polytope”,
which can be (relatively) rapidly found by QPS.

VI. EVALUATION

In this section, we first compare SS (Shifted Soliton) and
(codes discovered by) HRS and QPS, against PINT, the state-
of-the-art distributed LT code. Then, we show that RECIPE-
t achieves a similar coding efficiency as RECIPE-d given a
moderately large AVST (no more than 1MB). We measure
coding efficiency by the average number of codewords needed

—4—PINT -e-SS —+—HRS —=—QPS

K=36 K=59 K=118 K=236
140 800
n 300
% 60 120 700
3 250 600
& 50 100
) 200 500
= 40 80
g 400
E 30 60 150 +
2 ; 300
00
g2 40 200
310 20 50 100
<
0 10 20 30 0 10 20 30 40 50 0 25 50 75 100 0 50 100 150 200
Path Length Path Length Path Length Path Length

Fig. 1. RECIPE codes vs PINT in terms of coding efficiency.

—<-L=1000 -e-L=10000 —*—L=30000 ——RECIPE-d(HRS)

Full figure 85 Zoomed in
80

2

E 70

S 60 80

5 50

Ba0 75

230

S20

© 704

210

<

0 10 20 30 40 50 51 53 55 57 59

Path Length Path Length

Fig. 2. RECIPE-t compared against RECIPE-d.

to completely decode a path (of £ hops). According to our
experiments, the comparison results are roughly the same
when other metrics such as the 99% quantile are used (see
Appendix D in [9]).
Comparison with PINT: We use the following two typical
values of network diameter K from the evaluation of PINT
in [4]: K = 36 (US Carrier dataset), and K = 59 (Kentucky
Datalink dataset). The other two diameter values, K = 118
and K = 236, result from fragmenting each switch ID in
Kentucky Datalink to 2 and 4 message blocks, respectively.
As shown in Figure 1, SS and QPS outperform PINT
consistently (i.e., for every possible path length) from 1 to 236.
HRS, however, underperforms PINT at small k£ values when
K is 118 or 236 due to the (cumulative) “inherited” coding
inefficiency (while searching backward from K') we mentioned
earlier. When the path length £ = K, SS, HRS and QPS all
outperform PINT significantly, by 24.5% to 58.8%, 33.4% to
66.7%, and 32.2% to 63.2%, respectively. QPS consistently
outperforms SS, which is expected since SS is discovered
by our “naked eye” in the same “subpolytope” whereas QPS
is by the computer. In the three experiments using Kentucky
Datalink (in which K > 59), HRS outperforms QPS roughly
when k£ > 0.75K, but underperforms QPS at shorter path
lengths by 7.6% (when k = 21 and K = 59) to 33.5% (when
k = 78 and K = 236), again due to the “inherited” coding
inefficiency problem.
RECIPE-t vs RECIPE-d: Figure 2 shows how the (AVST)
table size affects the coding efficiency with the path length
k varying between 1 and 59. Figure 2 contains three plots
representing RECIPE-t with table sizes of 1000, 10,000, and

30,000 rows respectively and one plot representing RECIPE-d
(which induces HRS). Figure 2 shows that as the table size
becomes larger, the coding efficiencies of RECIPE-t becomes
closer to those of RECIPE-d. The zoomed tail section (when &
gets close to K) plotted in Figure 2 shows that the difference
in coding efficiency between RECIPE-d and RECIPE-t is
negligible when the table has 30,000 rows (about 960 KB
in size). This is a small cost to pay (for each switch to store
this table) in exchange for packets not having to carrying the
XOR degree information in them.

VII. RELATED WORK

RECIPE codes are different than the so-called “distributed
LT codes” [10], [11] in literature. The latter codes are designed
for multiple-access relay channels, in which messages come
from multiple sources that do not communicate with each
other at all. These sources send LT codewords to a common
relay node, which further combines (XOR-merges) them to
improve the coding efficiency. Our setting is less restrictive
in the sense that sources (switches) are allowed to have some
limited communication through the TTL field and the XOR
degree (explicit in RECIPE-d and implicit in RECIPE-t).

VIII. CONCLUSION

As the first systemic study of LT codes in the distributed set-
ting, we make the following three contributions. First, we show
that not every LT code is feasible (n the distributed setting, and
give the sufficient and necessary condition for being RECIPE-
feasible. Second, we propose RECIPE, a distributed encoding
protocol that can efficiently implement any RECIPE-feasible
code. Third, we propose two heuristic search algorithms,
namely HRS and QPS, that have led to the discovery of
RECIPE-feasible codes that are much more efficient than
PINT, the state of the art.

Acknowledgment This material is based upon work supported
by the National Science Foundation under Grant No. CNS-
1909048 and CNS-2007006.

(1]

[2]

(3]

[4]

[5]

(6]

(71

(8]

(91

[10]

(1]

REFERENCES

J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” ACM SIGCOMM
Computer Communication Review, vol. 28, no. 4, pp. 56-67, 1998,
publisher: ACM New York, NY, USA.

M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on Founda-
tions of Computer Science, 2002. Proceedings. 1EEE Computer Society,
2002, pp. 271-271.

J. Jiang, M. Mitzenmacher, and J. Thaler, “Parallel peeling algorithms,”
ACM Transactions on Parallel Computing (TOPC), vol. 3, no. 1, pp.
1-27, 2017, publisher: ACM New York, NY, USA.

R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzen-
macher, “Pint: Probabilistic in-band network telemetry,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 662—680.

C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM, vol. 15, 2015.

V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazieres,
“Millions of little minions: Using packets for low latency network pro-
gramming and visibility,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 4, pp. 3—14, 2014, publisher: ACM New York, NY,
USA.

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), 2014, pp. 71-85.

P. Tammana, R. Agarwal, and M. Lee, “Simplifying datacenter network
debugging with {PathDump},” in /2th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 16), 2016, pp. 233-248.
J. Meng, Z. Liu, Y. Wang, and J. Xu, “Recipe: Rateless erasure codes
induced by protocol-based encoding (full version),” 2023. [Online].
Available: https://arxiv.org/abs/2305.03795

S. Puducheri, J. Kliewer, and T. E. Fuja, “Distributed It codes,” in 2006
IEEE International Symposium on Information Theory, 2006, pp. 987—
991.

——, “The design and performance of distributed It codes,” IEEE
Transactions on Information Theory, vol. 53, no. 10, pp. 3740-3754,
2007.

