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Fig. 1. On an example wavy hairstyle “Long”, we compare three techniques applicable to the Lagrangian/Eulerian hybrid strand-based hair
simulation techniques: the naive initialization that treats the given initial shape as the rest shape, the previous sag-free initialization approach [Hsu
et al. 2022], and ours. While both naive and previous sag-free initializations lead to hairs sliding down with gravity, our initialization can preserve
the given initial hairstyle shape by treating it as the intended shape in static equilibrium under gravity. The left is the guide hairs used for the
actual initialization and simulation, while the right shows the full hairs interpolated from the guide hairs.

Lagrangian/Eulerian hybrid strand-based hair simulation techniques have
quickly become a popular approach in VFX and real-time graphics applica-
tions. With Lagrangian hair dynamics, the inter-hair contacts are resolved
in the Eulerian grid using the continuum method, i.e., the MPM scheme
with the granular Drucker-Prager rheology, to avoid expensive collision
detection and handling. This fuzzy collision handling makes the authoring
process significantly easier. However, although current hair grooming tools
provide a wide range of strand-based modeling tools for this simulation
approach, the crucial sag-free initialization functionality remains often ig-
nored. Thus, when the simulation starts, gravity would cause any artistic
hairstyle to sag and deform into unintended and undesirable shapes.

This paper proposes a novel four-stage sag-free initialization framework
to solve stable quasistatic configurations for hybrid strand-based hair dy-
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namic systems. These four stages are split into two global-local pairs. The
first one ensures static equilibrium at every Eulerian grid node with ad-
ditional inequality constraints to prevent stress from exiting the yielding
surface. We then derive several associated closed-form solutions in the local
stage to compute segment rest lengths, orientations, and particle deforma-
tion gradients in parallel. The second global-local step solves along each hair
strand to ensure all the bend and twist constraints produce zero net torque
on every hair segment, followed by a local step to adjust the rest Darboux
vectors to a unit quaternion. We also introduce an essential modification
for the Darboux vector to eliminate the ambiguity of the Cosserat rod rest
pose in both initialization and simulation. We evaluate our method on a
wide range of hairstyles, and our approach can only take a few seconds
to minutes to get the rest quasistatic configurations for hundreds of hair
strands. Our results show that our method successfully prevents sagging
and has minimal impact on the hair motion during simulation.

CCS Concepts: « Computing methodologies — Physical simulation.

Additional Key Words and Phrases: Hybrid MPM-Hair, Inverse Modeling,
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1 INTRODUCTION

Hair simulations have long been an active research topic in com-
puter graphics that plays a critical role in the appearance and ani-
mation of humans and animals. Among various physically-based
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models, Lagrangian/Eulerian hybrid strand-based hair simulation
techniques [Fei et al. 2021a; Han et al. 2019; Jiang et al. 2017] have
quickly become very popular in both VFX and real-time applications,
achieving a superb balance between realism and performance over
the sheet- and volumetric-based methods [Koh and Huang 2001;
Wu and Yuksel 2016]. These hybrid techniques use Cosserat rod
theory [Kugelstadt and Schomer 2016] to model individual strand
deformations while relying on the continuum method, e.g., the MPM
scheme with the granular Drucker—Prager rheology, to handle con-
tacts between strands. With the prevalence of these simulations,
several hair grooming tools, such as Maya XGen, Yeti, and nHair,
have been introduced to aid artists in the creation of strand-based
visual hair models. However, since these tools do not model any
internal or external forces, the designed visual hair models are
rarely simulation-ready. Indeed, as soon as the simulation starts,
hair strands suffer from sagging (Fig. 1 left), i.e., unintended sliding
and deformation due to gravity ruins carefully handcrafted hairstyle.

Although there has been a successful attempt toward sag-free
hair modeling [Derouet-Jourdan et al. 2013], their method targets
a purely Lagrangian hair simulation system and solves for static
equilibrium configuration under Lagrangian contact forces. How-
ever, expensive hair-hair contact handling renders it impossible
to achieve real-time Lagrangian simulations. On the other hand,
extending their method to Lagrangian/Eulerian hybrid hair systems
can be non-trivial, since the hybrid method handles the frictional
contacts using the drastically different particles using the granular
Drucker—Prager rheology MPM scheme.

Recently, Hsu et al. [2022] introduced a general framework for sag-
free initialization of deformable simulations. This method utilizes an
efficient global-local optimizer to fine-tune rest configurations that
cancel out external forces (such as gravity and contacts). While this
is a highly-promising and flexible approach that works with various
simulation systems, hybrid hair simulations are not among them
(Fig. 1 middle). This is owing to the fact that the Cosserat rod model
tightly couples point-wise translational, segment-wise rotational,
and grid-wise contact degrees of freedom. Simply decomposing this
highly non-linear constrained problem into multiple small problems,
as in the previous work, is non-trivial. Canceling out the forces and
torques for such an intricate system requires substantially restruc-
turing the global-local optimization approach. This further applies
to stability-related concerns exacerbated by twisting and particle
slippage, for which the prior work presents no solutions. We see
this as a great missed opportunity as the fuzzy contact handling
of hybrid hair simulations naturally lends it to practical and useful
sag-free initialization.

In this paper, we propose a novel four-stage sag-free initialization
framework that is the first to solve stable quasistatic configurations
for hybrid strand-based hair systems (Fig. 1 right). We first intro-
duce an essential modification for the Darboux vector to eliminate
the ambiguity of the Cosserat rod rest pose in both initialization
and simulation. We further propose a four-stage sag-free initializa-
tion algorithm, which is split into two global-local pairs. The first
global-local pair ensures zero net force at every grid node, followed
by a second global-local pair that ensures zero net torque at every
hair segment. We enforce additional inequality constraints in the
first global stage to prevent stress from exiting the yielding sur-
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face and then derive several associated closed-form solutions and
constraints in the latter local stages to ensure computational effi-
ciency and simulation stability. To cancel out the torque produced
by the first global-local step, the second global-local step solves
along each hair strand separately to ensure zero net torque on every
hair segment, followed by a novel local quaternion adjustment to
ensure rest Darboux vectors to be unit quaternions. We show that
decomposing the highly non-linear quasi-static problem into multi-
ple small constrained linear problems is possible. And we prove that
our four-stage algorithm is guaranteed to yield feasible rest poses
with zero net force and torque.

We validate our method on an efficient hybrid GPU hair simu-
lator, which is built off of several existing techniques, including
the hybrid MPM method [Han et al. 2019], position-based Cosserat
rods [Kugelstadt and Schomer 2016], and the ASFLIP scheme [Fei
et al. 2021a]. We highlight our method in a row of benchmarks
with various hairstyles. As illustrated in Fig. 1, our method can find
sag-free rest configurations for the given wavy hairstyle, for which
our simulator yields stable animations.

2 BACKGROUND

This section first briefly reviews related work, and then introduces
the hybrid hair simulation method that our approach is based on.

2.1 Related Work

Hair Dynamic Models. Hair simulation is computationally inten-
sive due to the large number of hair strands (with about 100K strands
on an average human). In practical applications, engineers typically
use a number of representative primitives to simulate hair dynamics
rather than simulating every hair. Over the years, a row of simplified
hair representations has been proposed to approximate large bun-
dles of hairs at a low cost. These include 2D strips [Koh and Huang
2001], cubic lattice representations [Volino and Magnenat-Thalmann
2006], short hair strips [Guang and Zhiyong 2002], and volumet-
ric representations [Lee et al. 2019; Wu and Yuksel 2016]. These
representations can be converted to dense hair models at render
time. In comparison to these approaches, a more prevalent modeling
technique is to simulate a small number of guiding hair strands and
then recover the dense hair model via interpolation. Early works
model hair strands using mass-spring chains [Rosenblum et al. 1991]
or rigid multi-body chains [Anjyo et al. 1992; Chang et al. 2002],
but ghost particles [Umetani et al. 2015] or altitude springs [Selle
et al. 2008] are needed to take twisting effects into account for
modeling curly hairs. Recently, researchers have devised more phys-
ically accurate models of hair strands with bending and twisting,
such as the super-helix model [Bertails et al. 2006], Cosserat rod
elements (CoRdE) [Spillmann and Teschner 2007], discrete elastic
rods (DER) [Bergou et al. 2008], damped exponential time integrator
(DETI) model [Michels et al. 2015], and position-based Cosserat
rods [Kugelstadt and Schomer 2016].

Inter-Strand Contact Models. With a large number of hairs also
comes a massive number of complex inter-strand collisions and con-
tacts. Although the frictional contact between hairs can be resolved
using explicit hair geometries [Daviet 2020; Daviet et al. 2011; Kauf-
man et al. 2014], their exhaustive contact resolution is too costly



for real-time applications. In view of this, Hadap and Magnenat-
Thalmann [Hadap and Magnenat-Thalmann 2001] proposed a fluid-
inspired, hybrid formulation to resolve collisions on a background
Eulerian grid. Their result exhibits a significant speedup using a
grid resolution much coarser than the characteristic length of hair
strands. This idea has been extended to model volume-preserved
gross behavior [McAdams et al. 2009], frictional contacts [Jiang et al.
2017], and two-way coupling with fluids [Fei et al. 2017]. A com-
mon issue with hybrid formulation lies in the numerical viscosity
caused during particle-grid transfers. Han et al. [2019] proposed a
hybrid particle-grid solver to alleviate this issue. Recently, Fei et al.
[2021a] introduced the Affine-augmented Separable FLIP (ASFLIP)
scheme that utilizes both velocity and positional adjustments to
break the positional trap. Leveraging the power of GPU, the lat-
est GPU implementation can simulate hundreds of thousands of
MPM particles in real-time [Fei et al. 2021b]. In this work, we build
our efficient GPU-based hair simulator by combining ideas from
position-based Cosserat rods [Kugelstadt and Schomer 2016], hybrid
particle-grid solver using the granular Drucker-Prager rheology for
contacts [Han et al. 2019], and the ASFLIP scheme [Fei et al. 2021a].
Our forward hybrid hair simulation framework is capable of simu-
lating thousands of visually convincing hair strands in real-time.

Sag-free Initialization. Artists oftentimes design physical scenar-
ios by assuming they are in static force equilibrium. However, an
exact force equilibrium cannot be achieved without carefully tun-
ing the object’s material properties and relative rest configurations.
Without such fine-tuning, objects will gradually deviate from their
designed configurations under gravity, an artifact known as sagging.
A myriad of research has been devoted to automatically fine-tuning
physical scenarios to achieve force equilibrium. A large class of
techniques considers purely elastic objects and optimizes their rest
shapes. This method has been applied to design balloons [Skouras
et al. 2012], soft characters with actuators [Skouras et al. 2013],
deformable 3D printable objects [Chen et al. 2014; Mukherjee et al.
2018; Wang et al. 2015], rod structures [Miguel et al. 2016; Pérez
et al. 2015], and garments [Bartle et al. 2016]. To incorporate con-
tact models, Twigg and Kaci¢-Alesi¢ [2011] formulated the static
equilibrium problem as a complex nonlinear global optimization to
solve for rest configurations, such as the rest length of springs, for
multiple deformable objects modeled as mass-spring systems. Ly
et al. [2018] presented a sag-free initialization method for elastic
shells with frictional contact handling. The vertices in contact are
first constrained as static, and the results are then projected onto a
convex frictional cone. Hsu et al. [2022] solve the nonlinear global
optimization problem using a two-stage global-local optimization
with a generalized formula for handling various dynamic systems,
including FEM, MPM, and Position-Based Dynamics (PBD) with
frictional contacts. Our proposed approach uses the same decompo-
sition strategy but supports Cosserat rods while constraining the
solution to avoid plastic flow for the MPM scheme, among other
stability enhancements.

Unlike prior works, our initialization method can handle hybrid
Cosserat-MPM hair dynamics. A key challenge for sag-free hair
modeling is incorporating thousands of hair-body and hair-hair
collisions in the optimization formulation. Existing hair initialization
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technique relies on exhaustive hair simulation [Lee and Ko 2001]
or additional spring forces and constraints [Iben et al. 2019]. It
has been shown that, for a single hair strand modeled as a multi-
body chain, the static equilibrium state can be found using inverse
dynamics [Hadap 2006]. Derouet-Jourdan et al. [2010] proposed
an initialization approach for 2D super-helix model. Unfortunately,
all of these approaches initialize each strand separately without
considering contacts. Derouet-Jourdan et al. [2013] solves for the
inverse static equilibrium configuration with Lagrangian contact
forces as a well-posed constrained optimization problem. Their
method can initialize thousands of hair strands with contacts in
the order of a few seconds. Unfortunately, their method is designed
for the pure Lagrangian case with explicit frictional contacts. In
comparison, our approach also targets sag-free hair initialization
but for a completely different forward simulation system that is
more suitable for real-time applications. To our best knowledge, we
propose the first contact-aware sag-free initialization approach for
hybrid Lagrangian/Eulerian hair dynamics.

2.2 Hybrid Cosserat-MPM Hair Simulation

In this section, we describe the hybrid hair simulation method used.
Our algorithm is very similar to the prior hybrid work [Han et al.
2019] and takes the Lagrangian point of view and models each
hair strand as a Cosserat rod with time integration via extended
position-based dynamics (XPBD). The vertices of each hair strand
are further used as material particles in conjunction with the MPM
method to handle collisions on an auxiliary Eulerian grid. Although
such a hybrid framework has been proposed, we introduce essential
modifications to allow stable sag-free initialization, which will be
presented in the next section.

NN
AN

Fig. 2. Forward simulation pipeline: (a) integrate Cosserat rod us-
ing XPBD scheme to predict per-particle Lagrangian force, (b) compute
and transfer particle stress with predicted Lagrangian force to grid
nodes and update velocity at each grid node, (c) transfer velocity back
to the particle, and (d) advance particles based on the new velocity
from G2P.

We use subscript i as grid node indices, subscript p, p+, and pi4
as consecutive particle indices along the hair strand, and subscript s
as indices of hair segment between consecutive particles pair p and
p+. We use superscript n as timestep index. @ = {1, 2,3} indicates
the orthonormal vectors. To model twisting and bending, Cosserat
theory attaches a frame with each strand segment, denoted as a
quaternion q. q indicates the conjugate of a quaternion q and J(q)
indicates the imaginary component of q. Q and Qo indicate the
Darboux vector at the current and rest pose. As shown in Fig. 2, our
forward hair simulator uses a time-splitting scheme consisting of
the following steps:

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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2.2.1 Cosserat Rod Integration. We adopt the PBD frame-
work [Kugelstadt and Schémer 2016] to model each hair strand as
Cosserat rods and extend it to XPBD [Macklin et al. 2016]. This
step is performed independently for each hair strand. Cosserat rods
introduce a frame q; for each hair segment. As such, the o’th axis of
the frame is expressed as ds ¢ = qseqq,, Where e, are orthonormal
basis. The Cosserat dynamic is modeled with two constraints. The
stretch and shear constraint C3® ensures that the rod segment s is
nearly length-preserved and normal with the rod’s cross-section:
Ss 1

Cs*(xp %p,.qQs) = E(Xp - Xp,) —ds3, (1
with rest length lp. To model the bending and twisting behaviors,
an additional bend and twist constraint C2t is introduced between
two pairs of consecutive particles, quaternion of which denoted as
qs and qg, , to penalize the difference between the Darboux vector
Q at current and rest pose, which is given by:

Cls)t(qs,‘ISJ = Q(qs,‘Ia) - $Qo
. +1 for [|Q — Qoll? < ||Q + Qoll? (@)
T -1 for 1@ - QoI > Q@+ Qo

where ¢ is used to always move Q towards the nearest pole, since
both Q( and —Q¢ correspond to the same angle.

The energy potential E is further specified in terms of constraint
functions E¥ = %k*C?TC:, where % indicates constraint type and
k* indicates the corresponding stiffness. We can use the XPBD time
integrator to approximately solve each particle’s orientation q*+!,

angular Veloc1ty ®™1, temporary position XZ+1 and temporary

velocity v vp ! via the optimization:

on+l ~n+l1 _n+l n+1 ~
Xp 5 Vp Qs Wy argmm Z AL
Xp,Vp,Qs,Ws P

szn —o? +ZESS+ZE

where m,, is the particle mass and Lsis the segment inertial tensor.
To solve the optimization problem, an XPBD scheme is used to
calculate the stretch and shear iterants as:

Ilvp = VaII%+

®)

s = 0 (%p = Xp, +asesdslo — @A)
Wp + wp, + 12 (4w + @55)
AA AL
Axp = +Ts, Axp, = - los’ Agqs = —2AA5qs€s.

and the bend and twist iterants as:
_ ((_qus+ _ SQO) _ ghtpbt

ws + ws, + abt

A).bt —

5

Ags = qs, AP, Ags, = qsAAPY,

where A* is the Lagrange multiplier and @* is a block diagonal
compliance matrix corresponding to inverse stiffness. At the end
of each iteration, the rotation quaternion is normalized. We refer
readers to the previous work [Kugelstadt and Schomer 2016] for
more details on the XPBD integration of Cosserat rods.
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2.2.2  Particle Stress Computation. Instead of explicitly detecting
and resolving inter-hair contacts using Lagrangian geometries, we
follow the previous hybrid hair method [Fei et al. 2021a; Han et al.
2019] to resolve the contacts on the Eulerian grid with the elastoplas-
tic MPM scheme. Like traditional MPM methods, besides position
Xp and velocity Vp, each particle carries affine coeflicients Cp and
deformation gradient F,. We treat each particle as elastoplastic
material and follow standard MPM derivation [Klar et al. 2016] to
compute the per-particle stress tensor:

n__ 1L oY

n n\T
o, = W(E(Fp))(Fp) , 4)
with the material model:
(F) = ptr((In %)) + %/ltr(ln %2, )

where F = UXVT is the singular value decomposition, and y, A are
the Lamé parameters. It is worth noting that, for real-time perfor-
mance, we only resolve the contacts on the Eulerian grid, with-
out using explicit Lagrangian geometric correction for collision as
in [Han et al. 2019].

2.2.3  Particle-to-Grid (P2G) and Grid Update. After adjusting parti-
cle velocities and stress, the momentum P; is then transferred from
particles to the grid nodes, where explicit force computation is used
to update grid velocity:

=p! /Z Wipmyp. 6)
14

2.2.4  Grid-to-Particle (G2P). The final step updates particles’ ve-
locity VZ+1, position xzﬂ, affine coefficient C**1, and deformation

gradient Fg using the following ASFLIP scheme [Fei et al. 2021a]:

v"+1 = Z v i, + a(vp - Z viwip)
i
1’;“ 5+ At(z v wip + Bpa(vy Z Viwip))
i ™)
4 T
cptt = 7 Z:v,'-’+1 (xi = Xp)" wip
i
pn+l _ gn n n
FIHL = B+ AtV (v"),F
where « is a velocity adjustment and f3, is the parameter to avoid
the position trap caused by the numerical viscosity during particle-
grid transfers. Here, wj, is a standard B-spline quadratic kernel.
Finally, we project l:"zﬂ to derive FZ“ satisfying the following
Drucker—Prager yielding condition:

n+1
n+l _ tr(a )

cptr(o™) + —| <0, 8
F ( P ) P d ( )
F

where d = 2,3 as in 2D and 3D, and c¢g > 0 increases with amount of
friction between grains. We refer readers to the previous work [Klar

et al. 2016] for more details on this step.

3 METHOD

This section introduces our essential modifications to the hybrid
hair simulator that enables sag-free initialization and then describes
our four-stage sag-free solver with regularization techniques.



3.1 Maodifications to the Forward Simulator

We have briefly described the hybrid strand-based hair simulator
in Sec. 2.2; however, the existing framework contains ambiguities
during computation, which impedes the stability of sag-free Initial-
izations.

3.1.1  Augmented Darboux Vector. The following discrete Darboux
vector suggested by Kugelstadt and Schomer [2016]:

Q =2/)3(q,9s,), ©)

only takes the imaginary components and leads to an ambiguity
in the sign of the real part of q,qs, . As such, both the positive and
negative values of the real part become valid rest poses. Problemati-
cally, this does not represent the same angle but an axis-inverted
configuration instead and can be exceptionally prone to creating
instantaneous inversions of two axes as the angle between segments
approaches zero for highly bent hair. In order to resolve this ambi-
guity, we modify the definition of the discrete Darboux vector as
follows:

Q =2/lp(q9s, ). (10)

dictating the real and imaginary parts to completely remove ambi-
guity and allow the hair to return to a unique rest shape reliably.

M) —[ Y

2 M
(S N\ 8 O
Xp Qs Xpt Xpt qs Xp

ds 9s+ Qs+

Xpit Xpit
qas = (0.0, %~ %) a4 = (0.0, %, %)
Fig. 3. Those two configurations have the same discrete Darboux vec-
tor under the definition of [Kugelstadt and Schomer 2016] (ignoring
the real component), which introduces ambiguity. In practice, when
the angle between segments gets smaller, this manifests as an instan-

taneous inversion of two axes when the segments crossover.

Fig. 3 demonstrates ambiguous discrete Darboux vector suggested
by Kugelstadt and Schomer [2016], which only takes the imaginary
components. This leads to an ambiguity in the sign of the real part of
q,Qs, , while our augmented Darboux vector resolves this ambiguity
and significantly improves the simulation quality of twisting. In
summary, there are two ambiguities at play for the discrete Darboux
vector. The first is the ambiguity between the equivalent angles of
q and —q within the bending and twisting constraint. The second
ambiguity lies in the sign of the missing real component in the case
of the discrete Darboux vector. Our constraint formulation flips the
sign of q to resolve the first ambiguity and we augment the Darboux
vector to resolve the second ambiguity.

3.1.2  Lagrangian/Eulerian Coupling. Unlike previous works that

directly update position XZ” and velocity v;,’“ after Cosserat rod

integration for the next frame, we use it as the temporary velocity
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vi*1 to predict per-particle Lagrangian force £} as:

£ = my (V5 = Vi) /AL,
which is then transferred to the grid for the actual position and veloc-
ity update. This modification has two advantages. First, it prevents
hairs from exhibiting penetration during the Lagrangian update step.
Second, this later allows the contacts which, in this case, correspond
to our MPM forces to fully respond to the forces introduced by the
Lagrangian step. Note that, due to the relatively small hair radius,
we assume the hair segment’s angular velocities and rotations do
not impact MPM-hybridization. Thus, we updates gj;*' and w;“
directly to their configurations.

In P2G, we also account for additional per-particle Lagrangian
forces f;, computed by the previous step using XPBD. Summing up
the contributions, the linear momentum P of each grid node takes
the following form:

P! = At )" flwip — At )" V) det(Fp) oy Vwip+
P p

(11)
Z wipmp (Vi + Cp (x| — X)) + Atg Z WipMp,
P P

where the first term accounts for Lagrangian forces, the second
term is the traction force, the third term uses the affine-corrected
velocity [Jiang et al. 2015], and the last term is the gravitational
force.

3.2 Sag-free Initialization

Assuming that the initial state of the hair system is quasistatic,
ie., vg, wg, and C? are zero, the goal of the sag-free initialization
is to solve for stable rest configurations including q, Fp, lp, and
Qp, such that all future VZ, mg, v;l are zero under gravity and the
system remains quasistatic. This is a challenging problem because
our hybrid system chains these variables together into a complex
nonlinear pipeline spanning multiple systems. Our method follows
a similar idea as the two-stage approach introduced in [Hsu et al.
2022] and applies induction on the condition that v} = @} = vI' =0
to avoid deformation. Under this condition, all the variables become
intransient, and we can omit the superscript n without confusion.
We propose a four-stage approach:

(1) Global Force Step computes the Lagrangian force f, and
the volume-scaled stress o, = det(Fp)o, that cancel out
gravitational forces on each grid node.

(2) Local Force Step computes the rest length Iy for each stretch
and shear constraint, quaternion q for each hair segment, and
deformation gradient F, for each particle based on the result
from the previous global step.

(3) Global Torque Step computes the rest Darboux vector Qg
for each bend and twist constraint to cancel out the torque
produced by the quaternion q from the local-force step.

(4) Local Torque Step enforces that Qg correspond to a stable
unit quaternion under stability constraints.

We describe each of these four steps below and present our regular-
ization techniques:

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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3.2.1 Global Force Step. Thanks to our Lagrangian force transfer
scheme in Eq. 11, we can utilize the grid momentum to solve for the
hair static equilibrium state. In particular, our inductive condition
implies the third term in Eq. 11 evaluates to zero, and P; = 0;
otherwise, the G2P step would produce non-zero velocities. Put
together, and we have the following expression for each node i:

0= Z fpwip — Z Vf(,) det(Fp)opVwip + gz wipmp . (12)
P p P

The Lagrangian force f;, on each particle is the summation of
stretch and shear forces contributed by each neighboring segment
as £ = Xy £5°, where p can be either particle of segment s and
stretch and shear force £5° = —9E3* (Xp, Xp, )/ 9%p.

Among infinitely many solutions that can lead to quasistatic
configurations, we encourage small Lagrangian force f;, and the
volume-scaled stress &, under the quasistatic constraint since those
forces/stresses are related to the user-input material model and
should be unaltered as much as possible. More importantly, we can-
not accept just any o, due to the Drucker-Prager yielding condition,
and violating that would lead to plastic flow. Unfortunately, directly
solving Eq. 12 with the above constraints for rest configurations in
E®S and deformation gradient F;, in o is a non-convex optimization
problem, due to the Cosserat rod model (Eq. 1, 2) and the hypere-
lastic material model (Eq. 5). Even worse, the optimization would
be large-scale and involves all the hair segments, making a direct
numerical optimization prohibitively costly.

We propose a novel convexification technique to boost perfor-
mance significantly. Our idea is to leave the material model out of
the optimization and use the per-segment force f§° and per parti-
cle volume-scaled stress 6 as the decision variables to solve the
following Second-Order Conic Programming (SOCP):

argmin > [£55] + @ > 116511
ol S 7
P P P

. tr(ap)
Gp—

crtr(op) +

<0 Vp,
F

where o = 1e—2is a scaling factor used to bias for contacts. Note that
the second constraint is equivalent to the Drucker-Prager yielding
condition (Eq. 8), where det(F)) is positive due to our hyperelastic
material model. Although Eq. 13 is still large-scale, there exists
an efficient splitting algorithm [O’Donoghue et al. 2016] to solve
such a SOCP. Similar to the global-local algorithm [Hsu et al. 2022],
O’Donoghue et al. [2016] factorizes the global matrix only once
and then uses local steps to satisfy each conic constraint. In the
Appendix A, we show that Eq. 13 is always feasible.

3.2.2  Local Force Step. Given the per-segment force f° from global
step and per-particle volume-scaled stress p, we can solve the
inverse problem to recover rest configurations for each hair segment
and particle in parallel.

Local step for £5*. Given the f5°, the local step aims to find the rest
length [y for the stretch and shear constraint so that it can produce
a matching force. However, only tuning lp would expose one degree
of freedom, so the force can be only along the segment direction,
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while f§* can be arbitrarily given by the optimization in Eq. 13. To
match the degree of freedom, we must put the rest orientation qs
as the additional tunable parameter. To find [y and qs such that:

kS (xp — Xp,
£55= = (2P g ),
lo Iy

we notice that dg 3 must be a unit vector, i.e.:

2

IofSS  xp —Xp,
0 _ 2P 7P =1. (14)

= Io

The above equation is bi-quadratic in ly , which could lead to multiple
solutions for ly. We choose the solution that is closest to the current
segment length. After [y is computed, we solve for qs that rotates
es 3 to dg 3. Unfortunately, given f5°, there is no guarantee that Eq. 14
has a solution since the magnitude of compressive forces generated
by Eq. 14 is upper-bounded by definition. To ensure the solvability,
we could introduce the following hard constraint to Eq. 13 that
ensures the discriminant of Eq. 14 is positive:

2
(xp = xp,) T £5° [1xp — xp, | [PI1£5°]?
(kss)z -

2
llds311” =

)2 >0 Vs. (15)
Although the above hard constraint is a rotated quadratic cone
and can be readily handled by the splitting solver, enforcing it in
the global step often leads to no solution depending on the given
initial shape. Hence, we do not enforce that constraint in the global
step. Instead, we adjust the stiffness in the local step to ensure the
discriminant of Eq. 14 is positive and then solve for [y.

Local step for 6. Given o, we can recover Fj, based on the
hyperelastic material model defined in Eq. 5. Given the SVD decom-
position of 6 = UipV, the U, V component must be the same as
those of Fj,. We analytically solve for the diagonal component of
In(Z) via the following linear system:

T -1 ~
diag(In3) = [2v0u1 + V211 ] diag(%,),

where 1 is the all-one vector. We can then recover Fy, as F, =
Uexp(InZ)VT.

3.2.3 Global Torque Step. While the node force is canceled out in
the local-force step, additional torque can be induced by stretch
and shear energy E$°, denoted as 75°. Here we use 4D generalized
torque associated with an energy EX defined as: ¥ = —9E*/q;. To
prevent the hair segment from rotating, we solve the second global
step on each hair strand to achieve torque equilibrium. In particular,
we solve the temporary rest orientation Qo,s for segment s, such
that stretch and shear torque is canceled out by the twist and bend
torque for each hair segment s

i~ +Zz§t(§zo) =0 Vs, (16)
S

where IEt denotes the torque from the bend and twist constraint,
which is linearly related to Qq (we ignore s for brevity). The gener-
alized torque we solve in this step is temporary because it does not
satisfy the unity constraint: ||[pQo/2|| = 1. In the next step, we will
show how to adjust Qo to yield unit Q¢ without violating Eq. 16.



3.24 Local Torque Step. In
the local stage, we then need
to adjust Qo to Qp by ensur-
ing [[l0Qo/2]|| = 1. Further-
more, this needs to be done
while maintaining the zero net
torque condition. Interestingly,
for the consecutive segments
s and s;, any 4D generalized
torque along q,qs, would gen-
erate zero 3D torque. Hence,
there is always an orthogonal
decomposition of Qg = Qg || +
Qo,1 such that Q| = 1q,qs,
does not generate any torque for any real scaler ¢. For the derivation,
please refer to Appendix B.

Therefore, we could choose a scalar t such that Q is a unit quater-
nion. However, an arbitrary Qg can lead to an unstable dynamic
system in two cases. First, CP! relies on a non-smooth jump function
¢, which changes abruptly when the difference between ||Q — Q|
and ||Q + Qo| is close to zero. To avoid such abrupt change, we
need to choose Q that leaves enough margin between the two
values. Thus, we solve for the most stable Q( via the following local
optimization:

Fig. 4. We illustrate the cone
(blue), in which s 4 must stays
to avoid flipping of elements.

argmax || — Qol|* — 12 + Qol1?| (17)
1€21I=1,¢

s.t. ¢QO = S‘:ZO,J_ + tqsq5+’

where t is an auxiliary variable. A second unstable case happens
when the segment s, at its current- and rest-pose lies on two sides
of segment s. To keep these two poses on the same side of segment
s, we need the following additional constraint as shown in Fig. 4:
umﬂsmﬁ%mxﬂ¥ﬂﬂ, (18)
0
for some small constant margin €. Unfortunately, given the Qo
solved from the global-torque step, no remaining degree of freedom
can be used to satisfy Eq. 18. Hence, we enforce the above constraint
by raising the bending stiffness locally until Eq. 18 is met. Then, we
can use the new ||Q_ || to solve Eq. 17 for the final unit quaternion
Qp. In Appendix B, we derive the constraint in detail, provide a
closed-form solution for Eq. 17, and show that it is always feasible
given sufficiently large stiffness kb,

3.2.5 Regularization. In practice, the simple regularization from
Eq. 13 can yield unsatisfactory solutions. This is because, for the
Lagrangian force, we would like to penalize bending forces more
than stretching forces since relying on bending force often leads to
undesirable rest configuration as shown in Fig. 5. Regarding stretch-
ing force, we prefer tension forces over compression forces because
compression forces can result in follow-up bending along indefinite
directions. But the stretching stiffness of hair is often several magni-
tudes larger than the bending stiffness, which results in a relatively
small pocket of stability in the case of compression. To alleviate
this issue, we design an asymmetric regularization technique for
the global force step.
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=N

Ours w/o regularization Ours w/ regularization

]

Initial shape

Fig. 5. Given the initial rod (right), without Lagrangian force regu-
larization, we will get a rest configuration that relies on bending forces
to support itself, which is demonstrated by simulating the rod without
gravity (middle). Unfortunately, this bent shape is on the saddle point
and easy to deform. By penalizing bending forces more than stretching
forces, we get a more stable rest shape (right).

We first decompose f5° into tangent and normal components:
£55 = t528 + ng2l, (19)

where ns = (xp — Xp,)/l|Xp — Xp, || is the tangent direction and ts
are the two normal directions. We then decompose zI into positive
and negative components via the following constraints:

=2 AT > 0A <. (20)

For similar reasons, it would be better to use hydrostatic stress 24

(diagonal part) over deviatoric stress zg (off-diagonal part) of 7,
so we use the following decomposition:

Gp =15 +15. (21)

To enforce asymmetric regularization, we add Eq. 19, 20, 21 to Eq. 13
and replace the objective function with:

wt Z:(Z?"L)2 +w€ Z(zg_ - zg_*)2 +wh Z ||z§||2
N N N
d d 2 2
+wh Y 12012+ wo D)1
t

where z, zgi, zg, and zg are our new decision variables, and we
use wl = 1, w° = 104, w? = 10%, w¥ = 103, w° = 105 in all our
experiments. We also regulate using a bias value z?"~*. Empirically,
we find setting z!' ™ to be half the weight of a hair strand to yield
good results.

(22)

4 RESULTS

We implement our sag-free initialization via C++ using the Splitting
Conic Solver (SCS) [O’Donoghue 2021] and our forward hair simu-
lation based on a CUDA MPM implementation [Gao et al. 2018]. All
timings are measured on a desktop machine with a 3.4 GHz AMD
Ryzen 9 5950X CPU and an NVIDIA GeForce RTX 3090 GPU with
24 GB of memory, except forward simulation time and sag-free ini-
tialization time for the “Curly wig” hairstyle measured on a desktop
machine with a 3.7 GHz AMD Ryzen Threadripper 3970X CPU and
an NVIDIA GeForce RTX 3090 GPU with 256 GB of memory.

To verify the practicality of our method, we export four hairstyles
from MetaHuman in Unreal Engine. Given the hairstyle (full hairs),
we first randomly pick either 256 or 512 hair strands and uniformly
sample 16 particles per hair strand as guide hairs for sag-free ini-
tialization and forward simulation. Meanwhile, we build an interpo-
lation weight map between guide hairs and full hairs based on their
initial relative position. With the weight map, we reconstruct the

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Discrete Darboux vector [Kugelstadt and Schomer 2016]

C [vag//

Ours augmented Darboux vector

Frame 100 Frame 300 Frame 500 Frame 700

Fig. 6. Twisting rod: Comparison between discrete Darboux vector
(top) and our augmented Darboux vector (bottom). Our Darboux vector
definition uses both the real and imaginary parts to remove ambiguity
and improve curvature smoothness.

Discrete Darboux vector Ours augmented Darboux vector

Frame 1  Frame 30 Frame 300 Frame 1  Frame 30 Frame 300

Fig. 7. Zig-zag rod: Our method can initialize the sag-free rod based
on either the discrete Darboux vector (left) or our augmented Darboux
vector (right) in bend and twist constraints. The Zig-Zag rod that uses
the discrete Darboux vector cannot recover after being blown by the
wind due to the ambiguity in the Darboux vector computation. The
arrow indicates the force direction.

full hair at render time based on the new guide hair positions. Fig. 1
shows an example hairstyle with both guide and full hairs.

In the forward simulation, we use 64 iterations for each XPBD
step with a time step size of At = 1073, Thanks to our GPU imple-
mentation and efficient inter-hair contact handling over the grid, it
only takes 0.9 ms per timestep, including 64 XPBD iterations and
one MPM collision step, which makes the strand-based hair sim-
ulation accessible for real-time applications. Note that since our
vertices and grid size are relatively small, the reported simulation
time is dominated by the CUDA kernel launch overheads and can
be subject to further optimizations.

Fig. 6 shows that our augmented Darboux vector can significantly
improve the simulation quality of the twisting rod. Furthermore,
Fig. 7 demonstrates the ambiguity caused by the discrete Darboux
vector for sag-free initialization. The Zig-zag rods are modeled by
the bend and twist constraints based on either the discrete Darboux
vector (left) or our augmented Darboux vector (right). Although our
method can initialize both rods with a sag-free initial pose under
gravity, the rod with the discrete Darboux vector cannot recover its
initial shape after being blown by the wind due to the ambiguity in
the Darboux vector definition.

Fig. 8 demonstrates the importance of enforcing yielding condi-
tions during initializing a cluster of hairs lying on another bunch
initially. With either naive initialization or if we solve static equilib-
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1/ /i
| 7
)

\ Without enforcing

yielding constraint Ours final

Naive

Fig. 8. Drape: A cluster of hair strands laying on another cluster
initially. With either naive initialization (left) or if we solve the static
equilibrium state without considering Drucker—Prager yielding con-
dition (middle), hair strands slide down when the simulation starts,
while our initialization (right) can correctly solve inter-hair frictional
contacts and preserve the initial shape under the gravity.

-—

Wind direction

Naive

-—

Ours

Under wind

Gravity only

Fig. 9. Curly wig: We evaluate our method on the “Curly wig”
hairstyle extracted from the same data used in the prior work [Derouet-
Jourdan et al. 2013] with a similar number of hair strands. Using the
naive initialization (top row), the hairstyle breaks as soon as the simula-
tion starts due to the large sagging artifacts. Our sag-free initialization
(bottom row) can preserve the designed hairstyle while having similar
hair dynamics under blowing wind (right).

rium state without considering Drucker-Prager yielding condition,
hair strands slide down after the simulation starts.



Guide hairs

Naive [Hsu et al. 2022] Ours
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Full hairs

Naive [Hsu et al. 2022] Ours

Fig. 10. Long: The “Long” hairstyles initialized with the naive method, the previous sag-free initialization approach [Hsu et al. 2022], and ours
behave very similarly under the wind from the left. The left is the guide hairs used for the actual initialization and simulation, and the right shows

the full hairs interpolated from the guide hairs.

0e 9
eeQ

Guide hairs Front Back
Fig. 11. Afro: We show the guide hairs (leftmost), the front (second
leftmost), and back (second rightmost) views of full hairs under gravity,
where naive initialization causes significant volume loss while ours
can preserve the given hair shape. Meanwhile, our result (rightmost)
behaves very similarly to that of the naive method under the wind
force blowing from the left.

Naive

Ours

Under wind

To compare with the prior work [Derouet-Jourdan et al. 2013], we
perform sag-free initialization on the same hairstyle (Fig. 9) with a
similar number of hair strands (1024). Since their work uses explicit
contact handling while ours uses an inter-hair Eulerian grid, there is
no clear way to match the exact number of contacts. In our setup, we
use 32 particles per strand with a grid size of 1283, leading to 32555
occupied voxels. Since our system has six unknown variables for
each deformation gradient per particle and seven unknown variables
for constraints associated with per hair segment, we have a total
of 323584 unknown variables to solve for in our initialization step,
a much larger problem size than the prior work [Derouet-Jourdan
et al. 2013]. Even with a larger system to solve, our method can
still successfully initialize this challenging curly hairstyle without
sagging in 606.4 seconds. More importantly, it only takes 1.3 ms
per step to simulate the hybrid system with 1024 hair strands and
32768 particles, which shows the superiority of our frameworks
over previous methods.

To compare with another previous work [Hsu et al. 2022], we
use one step of the global-local solver to only solve for net force

Naive

Ours

» o

Under blowing wind

Gravity only

Fig. 12. Short: We evaluate our method on one “Short” hairstyle.
With the naive initialization (top row), the hairstyles break as soon
as the simulation starts. Our sag-free initialization (bottom row) can
preserve the designed hairstyles while having similar hair dynamics
under blowing wind (right).

in the “Long” example. Unfortunately, since the prior method does
not consider the net torque and cannot support bend and twist
constraints with quaternions and the Darboux vector, the hairstyle
initialized via the prior method breaks as soon as the simulation
starts (Fig. 1) as it does in the naive initialization. Fig. 10 further
demonstrates that all results present similar hair dynamics under
the blowing wind.

We further evaluate our method on three additional hairstyles,
including Afro (Fig. 11), Short (Fig. 12), and Middle (Fig. 14). Without
the correct sag-free initialization, the hairstyles deform once the sim-
ulation starts and significantly change the avatars’ appearances. Our
sag-free initialization preserves the designed hairstyles. “Long” and
“Middle” demonstrate our method with long hairstyles that contain
large overhangs in both the front and the back. “Afro” demonstrates
our approach can also work well for highly intertwined volumetric
hair.

Additionally, we use two common human head motions, head-
turning (Fig. 13) and dance (Fig. 14), to evaluate the simulation
quality of “Long” and “Middle”. As shown in Fig. 13, the hairstyle

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



1:10 « Jerry Hsu, Tongtong Wang, Zherong Pan, Xifeng Gao, Cem Yuksel, and Kui Wu

Naive

Ours

Fig. 13. Head-turning: We evaluate our method on the curly hairstyle with a moderate head-turning motion. Our sag-free initialization (top
row) can produce similar visual results as the one with naive initialization (bottom row) does while preserving the bangs.

Naive

Ours

Fig. 14. Dance: We further evaluate our result on the “Middle” hairstyle with an aggressive dance motion of the head. The Leftmost demonstrates
the guide hairs used for initialization and simulation, while the rest are the corresponding full hairs in the dance sequence. The hairs with naive
initialization (top row) cannot preserve the initialization and lead to intertwined (second rightmost), while ours (bottom row) has a much better

visual quality.

initialized with our method allows us to preserve both the initial
shape under static equilibrium and the dynamic motion under ani-
mation. The dynamics under motion remain visually similar, both
with and without our initialization. Note that Fig. 14 shows that with-
out our initialization, hairs become universally too soft to preserve
the hairstyle and later excessively intertwine with each other due to
the aggressive head motions. We list all physical parameters, input
parameters, and their resulting initialization metrics in Table 1. We
show the percentage of elements where material modifications take
place. Generally, hairstyles with curly hair exhibit more significant
local stiffening. In particular, any hairstyle or segment positioned
horizontally to gravity requires additional stiffening. This is often
required when sweeping strands on the forehead or extremely curly
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hair. We also list the equilibrium condition residual as force (in
Newtons) mean squared error (MSE) in Table 1.

To evaluate the scalability of our method, we initialize the “Curly
wig” with 128, 256, 512, and 1024 hair strands and 643, 643, 128,
and 1283 grid sizes, respectively. As shown in Fig. 15, the initial-
ization takes 27, 91, 129, and 606 seconds for different numbers
of hair strands, where we observe a roughly quadratic scaling in
initialization time as the number of hair strands increases under the
same grid size. In terms of the forward simulation, thanks to our
GPU-friendly implementation, it only takes 0.75, 0.78, 1.16, and 1.30
ms per step, respectively. The forward simulation performance is
highly related to the grid size as the MPM update dominates the
computation performance, and the Lagrangian rod integration is
reasonably fast. It is worth noting that our system can initialize up
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Table 1. Statistics and Performance of Initialization, and physical parameters and their resulting initialization metrics. * is measured on a
desktop machine with a 3.7 GHz AMD Ryzen Threadripper 3970X CPU with 256 GB of memory.

Model Strand # | Vertex # | Grid size | Valid node # | Initialization | k5 kPt | Friction coeff. | % stiffened | Force MSE
Drape 32 512 643 722 2.4s 20.0 3.0 0.7 1.2% 2.3e—4
Middle 256 4096 643 2769 434 s 20.0 5.0 0.2 18.9% 1.4e -3
Short 256 4096 643 1199 639 s 20.0 5.0 0.2 20.3% 1.4e -3
Afro 256 4096 323 2580 83.8 s 20.0 5.0 0.2 7.3% 1.6e — 3
Long 512 8192 1283 2705 247.5s 20.0 5.0 0.2 15.3% 1.2e — 2
Curly wig* 1024 32768 1283 32555 606.4 s 100.0 | 30.0 0.2 56.1% 7.2e — 2
Knit 1 1024 643 2378 2.3s 60.0 5.0 0.2 63.2% 1.4e — 2

(s) (ms)
800 1.6
600 1.2
400 0.8
200 0.4

— e L] 0.0

128 256 512 1024
= Initialization — Simulation

Fig. 15. Scalability: We initialize the “Curly wig” hairstyle with
128, 256, 512, and 1024 hair strands, respectively. The blue bars show
the initialization time in seconds, while the orange line indicates the
per-step simulation performance in ms.

to 32 thousand vertices (or 2048 - 4096 strands), which is limited by
the direct matrix solver used in our implementation.

Depending on the number of hair strands used, our method can
produce valid and stable solutions within several minutes for even
our largest examples, as shown in Table 1, where valid nodes indicate
the number of free grid nodes impacted by particles. The drape
example shown in Fig. 8 only takes around 2 seconds to initialize
for 32 guide hairs, and our largest example in Fig. 10 takes around
4 minutes to initialize for 512 guide hairs. In general, we observe
a roughly quadratic scaling in initialization time as the number of
guide hairs increases. However, as shown in Fig. 10, 512 strands
are more than dense enough such that the individual guide hairs
themselves could be rendered as hair strands without any bold spots.

Finally, we demonstrate an additional application of our method
in Fig. 16, where a single intertwined yarn forms a 9 X 9 knitted
swatch, and the yarn-yarn contacts keep the knit from unraveling.
Like other hairstyles, the knit sags with a naive initialization, while
our sag-free initialization maintains its original shape when the
simulation starts. Note that even without explicit geometric contact
detection, our forward simulator can still robustly capture yarn-yarn
contacts and avoid yarn pass-through.

5 CONCLUSION

We propose a novel sag-free initialization technique for hybrid hair
dynamics. Each hair strand is modeled as a Cosserat rod and inter-
hair collisions are handled on an Eulerian grid. To this end, we first
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Gravity only Under upward wind

Fig. 16. Knit: we initialize a 9 X 9 knit swatch with one intertwined
yarn. Like hairs, the knit sags with naive initialization (top), while
our sag-free initialization maintains its shape (bottom).

proposed a stabilized hair simulator with the augmented Darboux
vector. Next, we propose a four-stage algorithm to compute qua-
sistatic configurations and material parameters for both Lagrangian
rods and Eulerian particles. Our first two stages compute collision
forces and tune stretch and shear forces to cancel out external forces,
while our last two stages use twist and bend torques to cancel out
stretch and shear torques. We show that our algorithm is well-
defined and always yields a solution. Our experiments show that
our method can successfully compute the sag-free configuration for
various hairstyles.

6 LIMITATIONS AND FUTURE WORK

As future work, we plan to design a joint optimization formulation
to achieve sag-free initialization with fewer material parameter mod-
ifications. While some material modifications may be unavoidable
in specific inputs, the ramifications of minimizing local stiffening
during the optimization process remain unexplored.

Furthermore, as we focus heavily on real-time hair simulations,
our work begs a natural extension to applications in high-fidelity
offline applications. As we implement our algorithm using a direct
matrix solver, we are unfortunately limited in the input size, and
future work on a matrix-free solver is essential for extending our
method to large-scale offline simulations. As part of our scope, we
also leave as future work the extensions to wet hair simulations
using wet sand material models.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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A WELL-DEFINEDNESS OF MPM STEPS
We show that Eq. 13 can always be solved for a valid F, and f3®.

LEMMA A.1. Suppose each hair strand is one-end fixed. Given suffi-
ciently large k%, Eq. 13 with additional constraint Eq. 15 is feasible,
which can be solved for p, f*. A valid non-invertible F;, can then be
recovered from & .

Proor. First note that Eq. 13 endows a trivial feasible solution
of 6, = 0 and f, = m;g. Given f;, = m;g, we can solve for f5* via a
linear system. The linear system is independent for each hair strand.
Let us denote a hair strand as connected by a sequence of N particles

with indices:
<a(1),a(2), - ,a(N) >,

then the linear system takes the following form:

oc(l)a(Z)
-1 I f
a(zm@) “
-1 I £s8 far(N—l)
-1 ag\l—z)a(N—l) foz(N)
a(N-1)a(N)

where 55 indicates the stretch and shear force due to a seg-

Da(2
ment Con(n)ec(tu)lg particles @(1) and a(2), the lefthand side is full-
rank, and block tridiagonal, so we can always find a solution for f5°.
Here we do not need any equation for f, (1) since the hair strand
is one-end fixed. Therefore, Eq. 13’s feasible domain is non-empty
and must yield a solution Fy, £3°.

However, to ensure our Local-force step has a solution for Iy,
we need to add an additional constraint Eq. 15, with which Eq. 13
might not have a feasible solution. To ensure feasibility, we notice
that Eq. 15 must hold when k% — o, i.e., we can always increase
the stiffness parameter to ensure feasibility.

Finally, we show that, given &p, we can utilize the material model
to recover Fj,. We assume the SVD decomposition of 6, = UZ~IPV,
where the U, V component must be the same as those of F;, (see [Klar
et al. 2016] for detailed derivation of this result). By direct verifica-
tion, we have:

Gp=- V° (—‘/’(Fp(x))) FL

Zp =Vy (2pInZ + Atr(In D)N) .

We can solve for the diagonal component of In(X) via the following
linear system:

-1 .
diag(In%) = [2v0u1 + VIEAHT] diag(Z,),
where 1 is the all-one vector. We can then recover F), as:
Fp = Uexp(ln VT,
thus all is proven. O

In practice, we solve Eq. 13 without Eq. 15 and increase the k%
that violates the constraints. This strategy sacrifices optimality for
computational speed.
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B WELL-DEFINEDNESS OF TORQUE STEPS

For the global-local step of torque, we use 4D generalized torque
7s. We first reveal connection between generalized torque 75 and
conventional torque 7. After an infinitesimal ¢, the orientation is
updated by:

ot

—wsqs,
2 sQs

so the energy E;‘ is updated by:

. St JE¥
—(wsdt, T5) = §E < 2 —Wsqs, —— R > .

Comparing the two sides of the above equation and we immediately
have the following:

Ts(7s) = I(15qs)/2 — R(qs) T (zs). (23)

Global-Torque Feasibility. Next, we show that Eq. 16 must have a
solution.

LEMMA B.1. Suppose each hair strand is one-end fixed, the sys-
tem Eq. 16 is always well-defined and feasible.

Proor. By direct verification, we have the following analytic

bt bt
formula for 7" and 7,

T
Cbt zkbt _ _
TE§+ - _ kbtq_ cbt = L Qs+ (Q — 5Q0,55+)
s

T
bt 2Jcbt
Pt btz bt = qs(Q — sQ0,55+)-

S+s Qs+ l

Let us treat z¢, and 72t as auxiliary variables, we must have:

bt\~ bt\~T
(§) (g e
SS: S+Ss°
Qs Qs+

and it is easy to see that a(f and aaq_g are full-ranked, so their
inversion is well-defined and we can plug the following substitution:

T -T
o =(a9) (aQ) IR
S+s aq5+ aqs ss+

into the first part of Eq. 16 to eliminate 7% .. After the substitution,
we can write the linear system in matrix form as

bt
Tss+Tgsss

Taa@aG) 1

To(N-3)a(N-2)a(N-1) I
Ta(N—Z)a(N—l)a(N)

bt
Ta(a(2)a(3) TZ{S(Z)aB)

1(;z(N 3)a(N-2)a(N-1)
a(N 2)a(N-1)a(N)
where the lefthand side is clearly full-ranked. Here the notation
Ta(1)a(2)a(3) indicates the generalized torque on the segment con-
necting particles «(1) and «(2), due to bending and twisting energy
of two consecutive segments (one connecting (1) and «(2) and the
other one connectin a(2) and a(3)). Note that we do not need an

oz(N 2)a(N-1)
a(N 1)a(N)

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



1:14 « Jerry Hsu, Tongtong Wang, Zherong Pan, Xifeng Gao, Cem Yuksel, and Kui Wu

SS
a(Da(2)
fixed. Given the solution 7%, and 7%, we can recover Q, which

equation to cancel out 7 because the hair strand is one-end

is denoted as Q in our pipeline. This is clearly doable as the coef-

ficient matrices % and gq—% are full-ranked. Since the two linear

systems are equivalent (we use ‘[Et and r?}r as decisions variables,
while Eq. 16 use Qp), Eq. 16 is solvable. ]

Torque Decomposition. Since the conventional torque %ls’t is only
3D, we must have the following decomposition of Qg:

LEMMA B.2. Qq can be uniquely decomposed into a parallel com-
ponent Qq | with T5(Qq ) = 0 and an orthogonal component Qo, 1
with 75(Qo,1) = T5(Qo), such that Qy = QO,|| +Qq, ;.

Proor. By direct verification, we can find that:

75(qs) = 0.

This implies that any scalar multiple of qs will generate zero torque.
Therefore, we have the following result if Qy is a scalar multiple of

qs9s,

. 2kPtg
(0r2) = 2L i(q,09)
zkbt . .
== I_Ts(qs+(_ls(]s+5)
0
2kPte
=- Z_¢Ts(qs+(ls+(k5)
0
zkbt 3
- lo¢zs<qsa> ~o.

Now since qsqs, is a unit 4D vector, we immediately have:
Qo = Vec((ISQS+)VeC((ls(IS+)TQO Qo1 = Qo —Qq,

where vec(e) converts a quaternion into a 4D vector. m}

Torque Constraint Derivation. We first show that our constraint
can leave enough margin from the decision boundary of s:

LeMMA B.3. Suppose ||l0Q0.1 /2] < 1—€p, < 1, then [||Q — Q|| -

I+ Qol*] = BV1-(1-¢)%>0.
0

Proor. We have:

Q= Qoll* = 12 + Qoll| = 4lvec(Q)" vec(Qo)|

8 8
=4|vec(Q, )" vec(Q)| = E”QO,H” = E\/HQoII2 = 110,117
16
=—J1-(1-¢€)? >0,
12
0

where we have used the orthogonal decomposition of Q. O

Next, we show that our constraint can ensure the current- and
rest-segment s, are on the same side of's.

LEmMMA B.4. Suppose [|Qo, || < |13(Q)]|, then the current- and
rest-segment sy are on the same side of the plane passing through s
with normal s X (s X s) (see Fig. 4).
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Proor. We refer readers to Fig. 4 for the derivation of this proof.
In the current configuration, sy is rotated around s by the following
angle:

1
sin > £(s4,5) = 13 (/).

which is by the definition of our generalized Darboux vector. We
then denote the rest vector s of as so+ and sg 4+ is rotated around
s4+ by the following angle:

cos %A(so,Jr, s+) =‘R(l§QQO/4)
=12 /4R (QQy)
=lg /4V6C(Q)TVCC(Q())
=lo/2]|Qq, II-
In order for sp + to stay inside the blue cone in the inset, we can let:
lo/2l190,4]| = sin 3 £(s0.0,54) < sin 3 £(51,5) = [ 3o /2],
and all is proven. O

Local-Torque Solution. In order to solve Eq. 17, we notice from The-
orem B.3 that we need to make [|Q, || || as large as possible, or [|Q, . ||
as small as possible. Therefore, we first solve the following problem:

lo bt

argmin ||Qo || s.t. sQo =1tQ - St qsTs,s

0,L

which has a closed-form solution

i _ by .
Qo1 = |- veC(qsquVeC(qsquT] [— Py qs7e! } :

If the second constraint of Eq. 17 is violated, then our problem is
infeasible. Otherwise, we use QO,” to normalize Q. When infeasi-
bility is detected we increase kP until the second constraint is just
satisfied. This is always possible because Q ; can get arbitrarily
small as kP! increases.
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