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Multirobot Fully Distributed Active Joint
Localization and Target Tracking

Shaoshu Su, Pengxiang Zhu*,

Abstract—1In this article, we study the problem of multirobot
active joint localization and target tracking (AJLATT), where
a team of robots mounted with sensors of limited field
of view actively estimate their own and the target’s states
cooperatively. Each robot designs its motion strategy to gain
better estimation performance while avoiding collisions by using
only the information from itself and its one-hop communicating
neighbors. By leveraging the framework of joint localization
and target tracking (JLATT) presented in our previous work,
we propose two fully distributed algorithms that help each
robot design motion strategies to achieve better localization and
target tracking performance. These two algorithms are designed
from, respectively, the control and optimization perspectives.
The control-based algorithm is designed by incorporating the
estimated target’s and robots’ states and their uncertainties as
well as collision avoidance in the control policy. The optimization-
based algorithm minimizes an objective function involving both
the target’s and robots’ estimation uncertainties and a potential
function that helps each robot avoid collision and maintain
communication connectivity when the robot is planning its
motion. Monte Carlo simulations demonstrate our algorithms’
feasibility to solve the AJLATT problem, and performance
comparison between these two algorithms is given.

Index Terms— Distributed estimation, motion control, multi-
robot systems, target tracking.

I. INTRODUCTION

UTONOMOUS multirobot systems equipped with sen-

sors have attracted more and more attention in recent
years due to their wide applications in search and rescue,
region monitoring, area surveillance, and so on. Multirobot
systems have many appealing properties. In this work,
we focus on their usage for estimation. Compared with one
single robot, a multirobot system is able to obtain better
self-localization and target tracking performance by utilizing
abundant robot-to-robot and robot-to-target measurements as
well as information exchanged across the team. That property
plays an essential role in the applications of the multirobot
system, especially in the indoor scenario where it is hard
to receive the GPS signal. Besides, compared with a static
sensor network, a team of autonomous mobile sensors is more
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adaptive since it is much easier and more effective to be
deployed in an unknown environment.

There are many results on estimating the states of robots or
a target or both. Some works focus on multirobot cooperative
localization [1], [2], [3], [4], [5], [6], [7], [8], [9], where a
team of robots can improve their self-localization accuracy
by utilizing the mutual relative measurements and interacting
with their team members. Some other works focus on target
tracking [10], [11], [12], [13], [14], [15], where a static or
moving sensor network seeks to estimate the target’s state.
Here it is usually implicitly assumed that the sensors’ states
are known (no self-localization needed). There also appear
some later works that achieve the cooperative localization
and target tracking simultaneously, both in a centralized
[16], [17], [18] or fully distributed manner [19], [20].!
However, all the above works [1], [2], [3], [4], [5], [6], [7], [8],
(91, [101, [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]
have a limitation that the sensors or robots are either static or
move without a properly designed motion strategy to actively
localize themselves or track the target.

Some algorithms have been proposed to solve the problem
of active target tracking from the control or optimization
perspective. In the controls field, there are numerous results on
distributed tracking or leader-follower tracking (see, e.g., [21]).
However, in these results, both the robots’ and target’s states
are usually assumed to be known, and the emphasis is on
designing distributed controllers. In [22], the target’s state
is assumed to be an inaccurate variable, and a gradient-
based decentralized motion control strategy is developed
to drive a team of robots to estimate and actively track
the target’s state. Nevertheless, an all-to-all communication
network is required in this work. In [23], an information-driven
flocking algorithm is proposed to achieve the distributed target
state estimation. However, the estimator in [23] relies on a
restrictive assumption that the target is jointly observed by
each robot and its neighbors. As for the optimization-based
approaches, [24] presents an approach for a robot team to find
the local optimal action to maximize the knowledge about the
targets by using a greedy search. An algorithm is proposed
in [25] to analytically obtain the next global optimal sensing
locations for the robots. A nonmyopic search-based algorithm
is proposed in [26] to drive one robot to actively track the

"We use the term fully distributed to describe an algorithm that uses only
a robot’s own and one-hop neighbors’ information without the requirement
for global parameters, multihop information transmission, or multiple
communication iterations on certain quantities for iterative consensus-type
calculations per time instant.
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target by minimizing the logarithm of the determinant of the
target covariance obtained by the Kalman filter. An algorithm
is proposed in [27] to maximize the mutual information
between the robots’ measurements and their current belief
of the target position using an experimental time-of-flight
range sensor model for measurement and a Bayesian filter
for estimation. Nevertheless, all the above optimization-based
works are implemented in a centralized manner. In [28], the
approach in [26] is extended in a decentralized way, where
each robot in the team uses the coordinate descent method to
plan its motion sequentially. As a result, multihop information
transmission would be required in this approach. Besides,
in all of the works above, the robots’ states are assumed to
be accurately known, which is an unrealistic assumption in
practice.

There are some works addressing the active joint localiza-
tion and target tracking (AJLATT) problem, where motion
strategies are designed to improve the target tracking and/or
robot self-localization performance. Considering limited sens-
ing capabilities, Hausman et al. [29] developed an algorithm
which coordinates robots’ motions and switches the sensing
topology to minimize the uncertainty of the target state
estimate. Although this work estimates the robots’ states
together with the target’s state, it does not make improving
robot self-localization performance an objective in its
optimization problem. In [30], a gradient-based control policy
is designed to minimize the uncertainty of both the robots’
and the target’s states that are estimated by the Kalman—Bucy
filter. While these two works consider jointly estimating
both robots’ states and target’s state, their approaches are
centralized. Although the centralized approaches have the
advantage of the capability to obtain the optimal estimation
and planning performance, they also cause a heavy burden
in computation and communication. In [31], a distributed
method is proposed by using a Bayesian filter for estimation
and a gradient-based algorithm for control design. However,
the method requires multihop information transmission for
estimation and multihop information transmission or multiple
communication iterations for iterative consensus calculations
per time instant in its control design. As a result, the method
is not fully distributed. To the best of our knowledge, there
is no existing fully distributed algorithm solving the AJLATT
problem.

Considering all the limitations of the previous works,
we aim to propose fully distributed AJLATT algorithms. Our
previous work [20] introduces a framework to solve the pure
joint localization and target tracking (JLATT) problem without
active motion strategy design in a fully distributed manner.
Leveraging that framework, in this article, we move forward by
considering how to design fully distributed motion strategies
for each robot so that it can not only follow the target
but also achieve better self-localization and target-tracking
performance.

The contributions of this article are summarized as follows.
Based on our previous fully distributed JLATT framework,
two motion strategies are proposed from the control and
optimization perspectives to actively improve each robot’s
self-localization and target tracking performance. The control-
based algorithm is designed by incorporating the estimated
target’s and robots’ states and their uncertainties as well as
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collision avoidance in the control policy. The optimization-
based algorithm minimizes an objective function involving
both the target’s and robots’ estimation uncertainties and
a potential function that helps each robot avoid collision
and maintain communication connectivity when the robot
is planning its motion. Compared with the existing works
on active target tracking from the control or optimization
perspective, the current article is the first that solves the
AJLATT problem in a fully distributed manner (i.e., requiring
only one-hop information transmission, no global parameter
in the algorithm, and no multiple communication iterations
for iterative consensus-type calculations per time instant),
to the best our knowledge. Extensive Monte-Carlo simulations
are used to validate and compare the proposed control- and
optimization-based algorithms.

Some preliminary results of this article are presented
in our conference paper [32]. The current article expands
the conference version by introducing a control-based
approach and providing significantly additional simulation
results including comparison with the centralized counterparts,
adoption of different sensor models, and demonstration of
the role of the potential function in the optimization-based
approach.

II. PRELIMINARIES

A. Motion and Measurement Models

We consider the scenario where M robots track a target
on a surface. We use the vectors xf‘ and ka to represent,
respectively, the true state of robot i and the target at time
k. Their movements are driven by a nonlinear motion model

as follows:

k=1 k=1 k-1
X = fi(x L u wi) (M
k k=1 k=1 k-1
xng(xT JUup Wy ) 2)
where uffl and ul}*l are, respectively, the control inputs
for robot i and the target. wf_l ~ N0, Qf‘l) and

wkT_l ~ N(0, Q"T_l) are, respectively, the zero-mean white
Gaussian process noises for robot i and the target.

We define x¥ and X¥ as, respectively, robot i’s prior and
posterior estimates of its true state Xff s i’; , and f(’} as,
respectively, each robot i’s prior and posterior estimates of
the target’s state x’;l_ . Their corresponding approximated prior
and posterior covariances are defined as pf, pf, p., and pf;,
respectively.

At time k, if robot j or the target is within the sensing region
of robot i, robot i can obtain a robot-to-robot measurement
z% or a robot-to-target measurement z’jw. The measurement

models are defined as follows:

k k Gk k
Zr; = hij (Xi ’ Xj) + VR,
k k ok k
zy = hir(x}. X)) + Vi 7 (3)

I k k ~ k
where Vi N(Q, R) and Vg N(©O, R} are
the measurement noises assumed to be zero-mean white
Gaussian. The measurement noises are assumed to be mutually
uncorrelated across robots and uncorrelated with the process
noises.
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B. Graphs

In the team of M robots, a directed communication graph
G’C‘ = (V, Ef) is defined, where V = {Ry,..., Ry} is the
robot set and £ € V x V is the edge set representing the
communication links between robots at time k. If robot i
receives information from robot j at time k, then a directed
edge (j,i) exists in Eck. We assume that the self-edge (i, i)
exists in Sf, Vi € V, which means robot i can also use
the information from itself. At time k, the communicating
neighbor set of robot i is defined as /\/CkJ. ={l|,i) e Ef, Vi #
i, € V}. Then, the inclusive communicating neighbor set
of robot i is I, NE, U {i}. Similarly, we define a
directed sensing graph G¥ = (V, EF) to describe robot-to-
robot measurements, where Ef C V x V is the edge set, which
represents the detection links between robots at time k. If robot
i can detect robot j at time k, a directed edge (j, i) exists in
EX. At time k, we define robot i’s sensing neighbors (all robots
detected by robot i) as N¥, = {i|(l,i) € EX, VI #i,1 € V}.

We assume that for each robot, the communication radius
is larger than the sensing radii of all robots. Then when robot
i detects robot j, robot i can receive the information from
robot j.

C. Information Fusion Strategy

Consistency is a vital property for estimation. An estimate
pair (p¥, %%) is consistent if the true error covariance is
upper bounded by the estimated covariance as E{(x* — &)
(x* — %)} < p* [33]. An inconsistent estimate that underes-
timates the actual errors might eventually diverge. At time
k, given multiple consistent estimation pairs (f’f’ﬁf), i
1,...,n, of x*, we seek to compute an improved consistent
estimate (f)’;,f(’;) by using the covariance intersection (CI)

algorithm [34]
n —1
_ (z af(ﬁﬂ‘)
i=1
n
ﬁ:ﬁ{zhﬂwr%) @

where of € [0,1] and >/_,af = 1. The parameters o
are usually chosen to satisfy certaln optimal criterion such as
minimizing the trace of p. In order to reduce the computation

burden, we adopt a fast and simplified approach in [35] to
calculate af‘ as follows:

k_ l/tr(f)f.‘)
o = —
> (8

where tr(-) denotes the trace of a matrix.

®)

D. Joint Localization and Target Tracking

In this section, we briefly introduce our previous work
about JLATT [20]. In this work, each robot can estimate
the pose of itself (localization) and the state of a target
(tracking) using only its own information and the information
from its one-hop communicating neighbors while preserving
estimation consistency (up to linearization due to the EKF
framework).
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1) Robot Propagation: The estimate of robot i’s state and
its corresponding covariance are propagated at time k — 1 as
follows:

% = 0
B = o (0 !
= ory 3% Q) ©

where @' = @fi/oax)& w70, G =
(8f,/8w,)(Ak 1’ k=1 ), andQ—l Gk le I(Gk HT,

2) Target Propagatlon. Robot i propagates its estimate of
the target’s state and its corresponding covariance at time
k — 1 as follows:

X]; —g(kal k_],())
Pl = @k b (@6 ) + Q4!

= o, (B85 Q5 (7
where @' = (dg/axp) &y uf0), GE'o=
(8g/8wT><A“ wi!,0), and Q4 = GEIQE (G,

3) Robot State Update: To update the estimate of robot
i’s state, we first obtain the correction pairs (S];e,,a y’je”) and
(Sl;e T y’}e ) using robot i’s robot-to-robot measurements Zl;e,,’
l e /\ff , and robot-to-target measurement z’,‘”, respectively.

These correction pairs are calculated as follows:

Slfeil = (HfI)T(sz)AH (8a)
T ok —1 /=
Ve, = (HY) (RE) ™ (2, + HERE) (8b)
where HY = (Ohy /3x; k) (&, f) R, = RS + Ipl (HY)T,
l = (8h,1/8X1)(X ) and ZR, = ZIICQ[ — ,1(X,,Xl), and
ko= ()T (RY) HE 9
SRiT _( IT) ( 1T) iT ( a)
T, = —
Vi = (Hy) (Rh) ™ (zh, + HiR) (9b)

Where HY = (9hy/0xH) &, %5, R = RE + Hoph (HEDT,
1T_ (8th/8xT)(xk 'k) and ZRT —Z];er iT(if,i’}/_).
Then, we apply the CI algorithm (4) on these correction

pairs to compute a consistent (up to linearization) estimate X;

and its corresponding covariance p; as follows:

P = Z ’hlsR, + anSR T (10a)
leN?,
> vk, + Y (10b)
leNfi

where r/ ; € [0, 11, and nk v = 0if robot i cannot detect the tar-
get and otherwise 75} € [0, 1] subject to X", NE, ny 4l =1
The calculation of these n;; and nT follows the fast and
simplified approach (5) with (s R”) and (s RiT) ! playing the
role of the covariances.
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After we obtain the estimation pair (p¥, X¥) using relative
measurements and also the prior estimation pair (f)f.‘, if.‘) from
the robot propagation step, we can use the CI algorithm (4)
to fuse these two estimation pairs to obtain the posterior
estimation pair (p¥, X¥) as follows:

- ( ch(®h) ™+ b)) (11a)
=i (@) K+ s ") )
where ¢& and ¢f € [0, 1], subject to ¢f + ¢ = 1, are

calculated according to (5).

4) Target State Update: Similarly, for the target state
estimation, each robot i first collects the target correction
pairs (5'}]1, 5’1},7) from available robot-to-target measurements
calcull?ted by its inclusive communicating neighbors j,

€ Ic,i

- ~ T,~ 1~
S];?.fT = (H];T) (R];T) IHI;T (12a)

- e \T sk \— _
ylzce,-T = (H];T) (RI;‘T) (ZR T+ HJTXT>
where RA, = R:, + HE ph(HA )T,
Then, at tlme k, by combining all available target

correction pairs, we obtain an intermediate estimation pair as
follows:

(12b)

-1

B = 2. T¥kr (132)
=
Xo=ph | D ¥k (13b)
JeT¥,

where 77 = O if robot j cannot directly detect the target, and
0therw1se n € [0, 1] subject to ZKIA ’7, =1.

Then we fuse all available prior estimation pairs (pT , xT )
Vje Ik with the CI algorithm (4) as follows:

-1

-1
B = | 2 =i (ph) (142)
.EIf,i
%= (X (k) &, (14b)
JeTt,
where nj‘ € [0, 1], subject to > JeT, JT = 1, is calculated

according to (5).

Eventually, after obtaining the pairs (pT‘ , xT) and (pT , xT)
we calculate the posterior estimation pair (pTi,le_ ) of the
target as follows:

R Lr -1 =1\ !
Bl = (¢ (05) "+ i (85) ) (152)
R =1y ok~
X7 =y (QT. (B7) %7, + &7, (B) XI?) (15b)
where {ile and Qsz € [0, 1], subject to ;l.le + ;l.sz = 1, are

calculated according to (5).
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TABLE I
AJLATT BY ROBOT i

Initialization:
1 Initialize X9,p7, %7, , p7,, and set u; ' = 0.

At time k — 1
Information Exchange for AJLATT:

gh=1 ph=1 k= ok—

2.1 Send ¥~ pFt uwF2 fi(), % 1,pT to robot j,
zG./\/ijl.

2.2 Receive )Ef ,f)jc 17uk 250, x5 l,f)l;gl from

robot j, j € NF7 '

AJLATT Motion Planning:

3 (1) Calculate uffl using the control-based AJLATT
algorithm (19).

3 (2) Calculate uffl using the optimization-based AJLATT
algorithm (24).

Propagation:

4 Propagate robot 4’s estimate of its own state f{ffl and
covariance p*~! with the obtained u¥*~' using (6) and
the target’s state fc’i‘l and covariance 13]}:1 using (7) to
obtain X%, pF, 5{% and f)% .

At time k

Update:

51 Obtain the robot-to-robot measurements z’f{”, le N, f i

and robot-to-target measurement z}f{iT (if the target is
detected by robot ¢) and generate the corresponding
correctlon pairs (s%, l,lel) (sﬁ T,y’,‘ééiT),
(8%, 7, ¥k, 7) using (8), (9), (12).
52 Send (SRIT,leT) (P%,, X%, to robot j, i € N¥,.
53 Receive (5% T>S’Ifa ), (13’7“« ,)‘c’% ) from robot 7, j e Nk,
54 Calculate the posterior robot estimate pair (pl, %) using
(10), (11), and the posterior target estimate pair
(BT, X7, using (13), (14), (15).

III. ACTIVE JOINT LOCALIZATION
AND TARGET TRACKING

While our previous work [20] achieves fully distributed
JLATT, the robots’ motions are not actively controlled or
planned and they simply move around randomly. As a result,
the full potential to improve the localization and target tracking
performance is not exploited. In this article, we aim to actively
control the motions of the robots to achieve better localization
and target tracking performance than random movements.
We use the term AJLATT to emphasize the fact that we try
to not only estimate the states of the robots and the target but
also design proper control actions to improve the estimation
performance. Our goal is to design the control input uf.‘ for
each robot i modeled by (1) at each time k in a fully distributed
manner by using only its own information and the information
from its one-hop communicating neighbors. Next, we present
two approaches, one control based and the other optimization
based.

An overview of the proposed AJLATT algorithm is
summarized in Table I. In Step 3, we either implement our
control-based AJLATT algorithm in Step 3 (1) using (19) or
optimization-based AJLATT algorithm in Step 3 (2) using
(24) to solve the AJLATT problem. Detailed explanations
for these two algorithms are given in the following
Sections III-A and III-B.
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A. Control-Based Approach

In order to obtain a more accurate estimate of the target’s
state, one way is to approach the target. The first reason is that
the detection range of a sensor is limited in general. Besides,
the measurement noise usually has a positive relationship
with the measurement distance of the detected object during
a certain range interval. Second, when the robots move
closer to the target, they are closer to other robots, which
will also intuitively help improve self-localization. While the
distributed tracking problem has been studied in the controls
community extensively (see, e.g., [21]), most of the works
assume the poses of the robots and even the target are known
(no estimation needed), which is not realistic. Therefore,
in this section, we propose a fully distributed algorithm
to solve the AJLATT problem from the perspective of
control.

Consider robot i with the model

r() =w() (16)

where r;(t) = [x;(t), y;(t)]" is the position in 2-D, and
w; (1) = [uyi(2), uy,-(t)]T is the control input. The control input
u; () is designed for (16) as follows:

>

(o) +(oets)
= o) o

—ylri(t) —rr(0)]

u () =vr() —a

a7

where ry(¢) and vy (¢) are the target’s position and velocity in
2-D at time ¢, «, and y are two positive constants which are
used to adjust, respectively, the influence of the collision avoid-
ance term and active target tracking term, and the differen-
tiable, nonnegative functions Vit and V;; are, respectively, and
the potential function defined on, respectively, ||r; () —r7 ()]l
and |r;(t) — r;(@®)| for collision avoidance as detailed later.
In the following, we omit the time dependence (¢) for notation
simplicity.
The potential function V;; has the following properties.
1) V;; achieves its unique minimum when ||r; —r;| is equal
to its desired value d,,.
2) Vij —» oo if |Ir; —r;|| = d,, where d;, (0 < d;, < d,,;)
is the safe distance for collision avoidance.
3) 8Vl//3||l', —I'j” = 0, if ||I‘,' —I‘j” 2 R,’, where Ri > dai
denotes the communication radius of robot i.
The potential function Vjr is defined analogously.
Consider the Lyapunov function candidate

ZZVUMZVM yZHr,—rTn

1l]1

Define a; = —« Z;Zl(aVij/ar,-)T and b; = —a(dVip/or;))T —
y(@; — rr). Due to property (3) of V;;, we have
2@ Vijjor)T = 2 en, @ Vi;/0r;)T . It thus follows from
(16) to (17) that ¥; — vr = a; + b;. Note that (0V;;/0r;) =
—(dV;;j/0r;) and (dVir/or;) = —(0Vir/ory). The derivative

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 4, JULY 2023

of V is given by the following equation:

V:azzavw z%(fi_vT)

zl/l i=1

+y Z(r, —r)(
= aZZ

11]1
—|—Z i —V T Bﬁ T—i— (rj —rr)
T ar, ALY T

=— ZaiT(VT +a;+b;) — D (a; +b)"b;

i=1 i=1
n n
T 2
=—vi > a;— > |la; + bl
i=1 i=1

where we have used [21, Lemma 3.1] to derive the first

equality. Note that >"/_, a; = 0. It follows that V <0.Asa

result, the robots chase the target while avoiding collisions.
After discretization, the model (16) becomes

—vr)

U(VT+at+b)

= put s (18)

where rk_1 = [x; k=1 y,k "7 is the position in 2-D at time
k—1, uk I = [uf” 1, e l]T is the control input in 2-D at
time k — 1 and 81 is the sampling interval. We will later adapt
the model and design to address more realistic robot models
(e g., nonholonomic differential drive robots). Let rk ! and

~! denote, respectlvely, the target’s position and velocny at

time k—1. Also let £~ r’} ! and {,1;1_—' denote, respectively,

robot i’s estimate of its own position, the target’s position, and
the target’s velocity. Motivated by (17), we design the control

uf."l for (18) as follows:
aV; ! V; !
k Tgk=1_ im iT
me'/\/'ck’_—l i i

JEIf,, 1

-2 et a9
jezi!
where « and y are defined as in (17)
1 /tr(”‘ 1)
0 (20)

- 2 ezt 1/te(py )

is the weight denoting the certainty of neighbor j’s estimate of
the target’s state from the inclusive communicating neighbor
set of robot i, and the potential functions Vj,, and VIT are as in
(17) but defined on || — £, and [[; — 37+ vy | for
collision avoidance. Note that (19) is fully distributed, using
only the information from each robot itself and its one-hop
communicating neighbors.

The motivation behind (19) is to push each robot toward the
weighted average of its own and communicating neighbors’
estimates of the target’s position while avoiding collisions
with the estimated positions of its communicating neighbors
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Fig. 1. Potential function V;; with d;; =6 m, d,, = 10 m, and R; = 15 m.

as well as the estimated positions of the target on itself and its
communicating neighbors. By doing so, the robots are actively
driven to move closer to the target while avoiding collisions.
As a result, the target (respectively, each robot) will more
likely or frequently be in the field of view of the robots
(respectively, some other robots), which will generate more
robot-to-target and robot-to-robot measurements. In addition,
the robots will be able to communicate with other robots
and maintain communication connectivity for the entire team.
Generally, more measurements and communication would
bring better estimation performance, which makes our control-
based approach achieve good self-localization and target-
tracking performance.
Motivated by [21], we choose V;; such that

Vi
or;
—oosgn(f; — F;) IF; — 1, < d
(f',‘—f‘j) Hf'i_f'/H_dn,' o
IF =8, I 1Fi—F1—dy; ° dy S MIF = E5l < oy
= (5=t )sin] 52 (I3 1-ds,) | ..
05 j Ri—do, j z dy, < ||B — T < R;

[ = ||
otherwise
20

where sgn(-) denotes the sign function defined component-
wise. The potential function Vir is defined analogously.
An example of V;; is shown in Fig. 1. Note that unlike [21],
we do not have the actual positions of the robots and the target,
r; and r7, and hence the actual distances between robots and
between robot and target. Therefore, the potential functions
are defined on the estimated relative distance between robots
It; — f,| and that between robot and target
IFi = 3 jezi n~'#7,| instead.

The control input (19) is defined according to a simplified
model (18). The approach can be applied to a system that
can be feedback linearized as an integrator-type system.
Many fully actuated systems and under-actuated systems (the
portion corresponding to the actuated degrees of freedom)
can be feedback linearized as integrator systems. In fact,
some quadrotor kinematics can be feedback linearized as an
integrator model. Next, we use the commonly used unicycle
model as an example to show how we extend the calculated
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control input uf ' = [u*7!, u’;i_l]T in (19) to design the linear

and angular velocity inputs in the unicycle model.
Consider a unicycle model described as follows:
xF = xf o of T srcos (07
yl-k = y{‘_l + vf‘_l(Stsin(GZ‘_l)

0f = 0F ' + w15t (22)

where (x{‘_l, yik_l) is the position, 9{‘_1 is the orientation,
v¥=1 is the linear velocity, and wf‘*l is the angular velocity
associated with robot i at time k — 1. With uf™' =
[u’;i_', u];l._l 17 given by (19), we can calculate the desired linear
velocity as follows:

2
k—1 _ k—1\2 k—1
Vig —\/(”xi ) +(”yi )

and the desired orientation is as follows:

9,-’;_1 = atan2(uk,7l, uk_l).

yi xi

Then we can design the linear and angular velocity control
input as follows:

1 k—1

vh
o = =00 - 657 (23)

where ); is a positive constant.

B. Optimization Based Approach

In this section, we propose an optimization-based approach
to solve the AJLATT problem. Our goal is to find an optimal
control input uffl for each robot i modeled by (1), to optimize
certain functions.

There exist some previous works solving a related problem
from the optimization perspective. However, they either ignore
the robot localization [24], [25], [26], [27], [28] or are
implemented in a centralized manner [29], [30]. In contrast,
here robot localization is explicitly considered and the problem
is solved in a fully distributed manner by using each robot’s
own and its one-hop neighbors’ information. There is no center
node required for computation, global parameter shared among
the entire team or information transmitted via multiple hops.

Our optimization-based AJLATT algorithm can be summa-
rized as follows:

k-1 _ . Ak+ty Ak+1y
;= argmin ozRitr(pi ) +OtT,.tr(pTl. )

ui ey,
+B D> Tt =1
JeNEIUT)
(ot )
= SACP(R5, &5l 2wl )
jeTy

u

M

(24)

where U; is the control space of robot i. ag,, oz, and B;
are three positive constant parameters that are used to adjust
the influence of each term on the objective function. f)f“z
and f)]}j"z are, respectively, the predicted robot and target
covariances at time k + f, representing, respectively, robot

i’s predicted self-localization and target tracking uncertainty.
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Here a grid-search-based method is adopted to find the optimal
solution. We will explore more efficient methods in future
work. As the traces of the robot and target covariances
are good measures of the robot self-localization and target
tracking performance, we incorporate them in the objective
function in (24). By optimizing the traces of the predicted
robot and target covariances, each robot plans its motion to
improve its self-localization and target tracking performance.
Of course, depending on specific applications or corresponding
preferences, other criteria (e.g., observability and information)
other than traces could be used to construct the objective
function. J “‘, j € J\f k=L U Ty}, is the potential function term
at time k + tl, which is 1ncorporated to the objective function
to maintain communication connectivity, avoid collisions, and
keep sight of the target. #; and #, are, respectively, the planning
horizons for the potential function term and covariance terms.
In general, we have #; < t,, since the difference of uncertainty
between different control inputs needs more time to show
up, but the potential function term that helps robots to
quickly avoid collision and frequently keep communication
connectivity needs to be computed in a shorter time period.
SACP is a function that is used to Predict the estimate of the
states xlj‘H‘ kaJ”l and covariances p; tho p’;’tz at time k+#; and
k + 1, respecflvely, and will be shown in detail later. Note
that the optimization-based approach is fully distributed, using
only the information from each robot itself and its one-hop
communicating neighbors.

Let r; = [x;, y;/]7 be the position part of the state %; in
(1). For each robot i, the potential function Jg, is defined as
follows:

00, It —r;|l <d
~10log (B2, d; < |5 — ]
Jr, = Sd;+a
. L
0, d; +a; <|r; —rj|
<d; —aq;
_ — = 2 - - =
oI — 51l — (di —a;))", & —TFjll > d; —a
(25)
where F; = [X;, y;]” is the prior estimate of r;, |[F; — ||,

j € N.; U{T;}, is the estimated robot-to-robot or robot-to-
target distance, d; and d; are, respectively, the minimum
and maximum acceptable distances that are used to avoid
collisions and maintain communication connectivity, and a; is
the length of the nonzero interval. Note that the definition of
Jr,; accommodates both robot-to-robot potential and robot-to-
target potential. An example of the potential function is shown
in Fig. 2.

According to the definition of the potential function Jg,,

there are several properties that we would like to point out.

1) Jg;, = 0, when |r; —1;| € [d;, + a;,d; — a;], which
means that only when other robots or the target moves
too close to the minimum range or almost moves out of
the maximum acceptable range, this potential function
will play a role. Otherwise, only the covariance terms
take effect in the objective function in (24).

2) Jr, — oo, if |r; —T;|| — d; or ||f; — F;|| — oo.
As shown in Fig. 2, the potential function will
immediately give a large penalty (close to infinity) when
the robot comes too close to its neighbors or the target
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Fig. 2. Potential function Jg; with d; =2 m, di=15m, and ¢; =2 m.

Notice that the right-hand side increases more moderately than the left-hand
side, and is still defined when |r; — ;|| > d;.

to avoid collisions. In contrast, it gives a relatively soft
and weak penalty when the robot moves far away from
its neighbors or the target so as to maintain commu-
nication connectivity or not lose sight of the target,
respectively.

The state and covariance prediction (SACP) process is first
used to predict robot i’s estimates of its own and the target’s
states, and robot i’s estimates of each neighbor j’s state at time
k41 so as to calculate the potential function term J Kt The
process is consecutively used to predlct robot i’s covariance
p/ ™ and the target covariance pr k¥ at time k 4 f, which
constitute the uncertainty minimization terms in the objective
function in (24). The SACP process is shown in Table II.

Since u’;*I is the optimization variable for each robot j,
robot i propagates its neighbor j’s state estimate with the
neighbor’s latest available control input uw’ ™~ at time k — 2.
Robot i’s own state is propagated with ui.‘ ~. The target’s state
is propagated with u'}fl, which is assumed to be known for
each robot at time k — 1.

In Step 1.1 in Table II, robot i propagates its inclusive
communicating neighbor j’s, j € Ickl ! estimates of its own
and the target’s states and covariances from time k — 1 to k.
In Step 1.2.1, *J\/ and *I" are two predicted neighbor sets
at time k in the predlctlon process. Since the real movement
does not happen, robot i can only utilize the information
from its communicating neighbors at time k — 1. Thus *N/%,

and *I’C"i are the subsets of the known set Ifl ' where
*N’S‘,i = {i|d,i) € (*Ef Ef h,vl # i,l € V) and
I8, = {ild,i) € ("EENEFTY), I € V). Here *£F and *E%

are, respectively, the predicted sensing and communication
edge set at time k which are determined by the predicted
estimates of the robots’ states i’]‘ together with, respectively,
the robots’ sensing fields of view and communication radii.
In addition, ¥ o i (lOa) is determined by i and the estimate
of the target’s state XT together with the robots sensing fields
of view. Although real future robot-to-robot or robot-to- target
measurements are not available, the noise characteristics of
the sensors can be obtained and the Jacobians associated with
the measurement models can be calculated according to the
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TABLE II
SACP BY ROBOT i ATk — 1

1. One-step Propagation and Predicted Update:
1.1 Propa; ate each inclusive communicating neighbor j’s,
j €L, estimates of its own and the target’s states
and covariances from time k£ — 1 to k:

if_fl( k 17 k 150)7
k sk— k—
Pi = pRP(p'L 1uxi 7Q 1)

-k k—2 k—1
x] _f]( ) _7 70)3 ]eNc,i
: L k-1 ck—1 ~k—1 k-1
P; pRP(pj y X 7Q] )7 eNc,i
-k ak—1 k—1 k—1
XT‘7 - g(XTj yUp 0)7 S5
_k ~k—1 ~k—1 k—1 k—1
ij = PTp (ij 7XTJ 5 QTJ ) € Ic,i
1.2 Calculate one-step predicted robot posterior covariance

p¥ and target posterior covariance f)’i. at time k:

1.2.1 Generate one-step predicted correction terms s’f;i e
le *Nsk,ia S]}C?iTa él;?ij ] € *If,i’ using (83), (93),
(12a).

1.2.2 Calculate p usrng (10a), (11a), and Py, using (13a),

(14a), (15a).

2. Propagation and Optional Predicted Update in ¢, and %>
Planning Horizons:
For t =0,...,t2 — 1, execute the following Steps 2.1-2.4:
2.1 Propagate each inclusive communicating neighbor j’s,
IC , > estimates of its own and the target’s states

and covariances from time k+ ¢ to k+1¢+ 1:

_IZ+Z+11 = i §+kt71uk kl tO) k+t

Py = prp (BT QETY),

,Z+t+1 — f]( k:+t’ jc 2 0) j e/\/’(kj:l
P e (b %5 QY), e N
gt = (Xkﬂ’u; ,0), j eIk 1
I—)k+f+l — pr(pk-H‘ k+f7 I,ch»f ,

Brl = prp (BT RETL QAT e NET

2.2 Option 1: Calculate one-step predicted robot

posterior covariance f)f““ and target posterior

covariance f)'}““ at time £+ ¢+ 1 as in Step 1.2.
Option 2 (for computation savm% purpose) Set

pETHHL — g+ ang f)kthJr 5
2.3 If ¢=t — 1, compute JkH1 using Hr‘kH1 — r"‘?“l Il
€ NZTHU{T).

predicted state estimates. With that information, the one-step
predicted correction terms can be generated in Step 1.2.1. The
one-step predicted posterior covariances can then be calculated
in Step 1.2.2.

In Step 2.1, robot i propagates from time k + ¢ to
k + 1t + 1 similar to Step 1.1. In contrast, as the posterior
estimates X' and Xk+’ , J € ZCZ , are no longer available
due to the lack of reallfuture robot-to-robot or robot-to-target
measurements, the prior estimates are used for propagation.
In Step 2.2, there are two options. Options 1 and 2 correspond
to, respectively, multistep and one-step predicted posterior
covariance calculation. Option 1 calculates robot i’s predicted
posterior covariances for itself and the target at time k4 ¢ 41
while Option 2 omits this procedure to save computation costs.
In Step 2.3, J, K g computed. The potential function term
in (24) would result in a larger penalty when robot i loses
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communication connectivity with its neighbor j, j € ./\/Zf[_',
at time k+¢,. Instead, if the potential function term were given

by B; Zje* N J,’;;"‘ in (24), then a smaller value would

be obtained due to the removal of some robots in *N ];f".
If Option 2 is chosen, because predicted posterior covariances

are not computed, there is no need to calculate 1’)’}““ and

pk+’+1 fort=0,...,60—1 and)_(’J‘.J’H'l fort=1,...
Step 2.1.

In the fully distributed setting, the motion of neighboring
robots is predicted using old control inputs while the control
inputs of these agents will be optimized in the SACP. There
would be differences between the old control inputs and
the optimized ones. In this setting, it is not clear how the
robots can coordinate their control decisions using updated
optimized control inputs because such coordination might
require certain information propagation through multiple hops
or multiple communication iterations per time instant, which
does not exist in the current fully distributed setting. Hence
there is a tradeoff between how well the algorithm can
perform and how distributed the entire system can be. As the
robots have a similar objective of tracking the target, the
target covariance as well as the connectivity maintenance
potential function in each robot’s cost function provide certain
coordination among robots in the sense that the robots would
try to chase the target and stay close to the target and their
neighbors to make sure that the team communication graph
is not disconnected. In future work, we will explore how
to coordinate the robots’ control decisions in a distributed
setting.

There is a tradeoff between the control- and optimization-
based approaches. The control-based approach is computation-
ally simple and time efficient in real-world implementations.
However, a simplified model is adopted. It is worth noticing
that the control policy here is not designed to explicitly
optimize a certain criterion on the localization and target
tracking performance. Instead, the hope is to bring the robots
closer so as to improve the localization and target tracking
performance. In contrast, the optimization-based approach
is more performance-improvement-oriented and applicable to
more general robot models. However, the computation load
of the optimization-based approach is high. In particular,
with the control-based approach, each robot incorporates
information from its communicating neighbors. Each robot’s
computation complexity increases linearly with the number
of its communicating neighbors, denoted by O(IN_;|).
In comparison, with the optimization-based approach, each
robot uses a grid-search-based method to find its control
input. Let k; denote the dimension of each robot’s control
input (for instance, if a robot has two inputs, linear and
angular velocities, then k; = 2), and n; denote the grid
size of the ith dimension. The grid size of the control input
is Hf‘“zl n;. For each combination in the grid search, the
computation load of the SACP process is linear in | ;|.
As a result, the computation load of each robot becomes

O(l-/\[cz| X Hz—l n; )

,th—11n

IV. SIMULATION

In this section, we will use Monte-Carlo simulations to
demonstrate the performance of our algorithms.
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A. Simulation Setup

Consider the scenario where M = 6 robots and a target
move on a surface. Here we adopt the widely used unicycle
model for both robots and the target in the simulation.
The robot pose x* consists of the position (x¥, y¥) and the
orientation 91." in the global frame. The motion models (1) and
(2) can be expressed as follows:

xf = x;‘_l + (v;‘_1 + wf}’l)(Stcos(Gi"_')
o=y (Uf‘_1 + wﬁl__l)(Stsin(Gil‘_l)
0f = 67" + (of "+ wl )t (26)
where i € {1,..., M}U{T}, 8t = 1 s is the sampling interval,
u = [ of 1T represents the linear and angular
velocities as the input for robot i, and w; = [wi~!, wi~'1"
represents process noises for the linear and angular velocities.
For robot i, the input uf.‘fl is calculated by our AJLATT
algorithms. The target’s linear velocity input is assumed to be
constant with vy = 0.25 m/s while the angular velocity input
w7 is uniformly generated from the interval [—(7/6), (77/6)]
rad/s. The target’s input uy = [vr, wr]” is known by
every robot i. The corresponding process noise w;, i €
{1,..., M} U {T}, is assumed to be white Gaussian, with
the standard deviations for wﬁi’l and wf)i’l as, respectively,
ol = (V2/2)0! 7" and of7! = 24207, where o/ is
proportional to the linear velocity as oik_l = 1%1)11.‘_l for each
robot i, i € {1,..., M}, and O’IT€71 = ?a%v’f1 for the target.
Hence Qf.‘_l, iel{l,..., M}U{T} defined after (1) and (2) is
given as follows:

k—1)2
k—1 (‘7 ; ) 0
N = Vi . 27
@[ o] =
Given the model (26), it follows from (6) that
10 —vf"esin(6f )
e '=|01 i~ §tcos(6f71) (28)

00 1

According to (27) and (28), when robot i stops moving
(e, v; = 0), Qf-‘*l and <I>f-‘*1 will become, respectively,
the zero matrix 0,4, and the identity matrix I3. As a result,
it follows from (6) that f)f = f)f.‘_l , which means that the robot
covariance will not increase during propagation.

We assume that each robot has a limited communication
range with a radius of R, = 30 m and a limited field of
view with Ryin = 2 m and Ry = 15 m for the range
and ¢ = 60° for the angle of view. As for the measurement
model, we consider an indoor application scenario in this
work and assume that these robots do not have access to
absolute position measurement. The relative distance-bearing
measurement model is mainly adopted in simulation. If robot i
detects robot j at time instant k, then the relative measurement
can be expressed as follows:

koK)’ K k)
| V) )
' atanZ((yjf — yik), (xj‘ — xl")) — 9{‘ '

where Vg is a zero-mean white Gaussian noise. The standard
deviation of the distance noise is set to be 3% of the actual

k
Zp
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distance, and the standard deviation of the bearing noise
equals 1°. The same measurement model is used for the
robot-to-target measurement zg,7. To show the applicability
of our algorithms in different scenarios, we will also
include simulation results using distance-only and bearing-
only measurement models.

Since the absolute measurement is not available, we assume
that each robot initializes its estimated pose X! with its true

pose x?, and the initial pose covariance f)? is set to
f)? = 107°I5. The initial estimate of the target’s state obtained
by each robot i, )2%, does not necessarily equal the true
initial state of the target xJ.. In our simulation, we set X =
[10, 10, O] while the true initial target state is X(} =[10, 5, 0].
Since we assume that an accurate initial target state is not
available, we initialize the target covariance with relatively
large uncertainty as pj. = 4I3.

We compare the performance of the following five

algorithms.
1) Random Motion (RM): In this case, each robot moves
with a constant linear velocity of v; = 0.5 m/s. Its

angular velocity w; is uniformly chosen from an interval
of [—(/5), (;r/5)] rad/s. These robots behave as in
our previous work [20] except that there is no moving
field boundary for them. By adopting the RM strategy,
robots do not tend to pursue the target or maintain
communication connectivity with other robots, which
eventually results in worse localization and tracking
performance than other AJLATT algorithms as shown
later.

2) Control-Based AJLATT (AJLATT-C): The control-
based AJLATT algorithm uses the control policy in
Section III-A. The parameters as set as ¢« = 0.02,
y =1in (19), d, = 6 m, d,, = 10 m in (21),
and A; = 1 in (23). The estimated target velocity Vr,
in (19) is calculated by ¥7, = vr[cos(d7,) sin@r,)]",
where v is the known target’s velocity, and QAT,. is the
target’s orientation estimated by robot j. This algorithm
drives all of the robots to track the target while avoiding
collisions. As a result, the robots tend to maintain
communication connectivity with others and observe the
target and other robots more often than RM. As shown
later, it has better performance than RM.

3) Optimization-Based AJLATT (AJLATT-O): In this set-
ting, the robots’ linear and angular velocities are
calculated by the optimization-based AJLATT algorithm
in Section III-B. The parameters of each term in the
objective function (24) are set as ag, = 3, oy, = 2,
and B; = 1. As for the parameters on each robot
i’s robot-to-robot and robot-to-target potential functions
(25), we set the length of the nonzero interval as
a = 2 m and d, = 2 m. We also set d; =
30 m in (25) for the robot-to-robot potential function
to make the robots maintain the communication with
their neighbors, and d; = 20 m for the robot-to-target
potential function to help keep sight of the target. For
the SACP process, the planning horizons are #; = 4 and
t = 11 and Option 2 is adopted. Based on
our tests, Option 2 balances good performance and
computation costs while Option 1 generally achieves
better performance for target position estimation and
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comparable performance for other parts but with
significant computation costs.

4) Centralized Version of Control-Based AJLATT (ACEKF-
C): ACEKF-C is the centralized version of AJLATT-C,
which consists of a centralized Kalman filter estimator
and a centralized controller that incorporates information
from all robots instead of only the communicating
neighbors.

5) Centralized Version of Optimization-Based AJLATT
(ACEKF-0): Similarly, ACEKF-O adopts a centralized
Kalman filter for estimation and a centralized motion

planner, which plans the motions for all robots
simultaneously. ACEKF-O is summarized as follows:
OR (A
u*! = argmin —tr(p'}”z) + aTtr(pl}“z)
uk IEU M
K+t
Z Z JRif l
i€l MY jell o, ML)
St ()—(k+n f)k+t2)
= SACPcexr (R, p*7)
h A ¢ T _eThr - ised
where X" =[x ,...,X), ,X; ]|’ is a vector comprise

of the true states of all robots and the target at time £. X*
and X are, respectively, the prior and posterior estimates
of x* with corresponding covariances p‘ and p‘. pr and
pr are, respectively, the blocks in p’ that are associated
with, respectively, all the robots and the target. u‘~! =

[uf 1’ e, uﬁ;lT]T is a vector comprised of all robots’
control inputs. U is the control space associated with u.
o, ar, and B are three positive constant parameters.
SACPcgkr denotes the centralized version of the SACP
process, which implements the propagation and update
of the centralized Kalman filter.

The control space for each robot i is set as U =

{(vi, w))lvi € [0,0.5] m/s, w; € [—(x/5), (;x/5)] rad/s}.
For the optimization-based algorithms, the grid size for v;
(respectively, w;) is set as 11 with an increment of 0.05 m/s
(respectively, (7/25) rad/s).

We run 50 Monte Carlo simulations and use the root mean
square error (RMSE) as the metric for accuracy to test the
performance of these algorithms with the distance-bearing
model. Fig. 3 shows each robot’s average target position and
orientation estimate RMSE for target tracking, and Fig. 4
shows each robot’s own average position and orientation
estimate RMSE for localization. As shown in Figs. 3 and 4,
AJLATT-C and AJLATT-O achieve good performance even
if, as expected, their centralized counterparts ACEKF-C and
ACEKF-O have better performance. However, the centralized
approaches require the existence of a central station or node
that collects all data from every robot, conducts extensive
computation, and then broadcasts the control commands back
to each robot. Such approaches are not practical in reality
due to the bottleneck in communication and the computation
load as well as the single point of failure of the central
station. AJLATT-C and AJLATT-O achieve significantly better
performance than RM. The result confirms our expectation.
The RM approach does not actively drive one robot to
observe the target and other robots or maintain communication
connectivity with its neighbors. As a result, the robot obtains
fewer measurements and has fewer neighbors to exchange
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Fig. 3. Position and orientation estimate RMSE for the target on six

robots (tracking) with distance-bearing model. (a) Position estimate RMSE.
(b) Orientation estimate RMSE.

information, thus obtaining less accurate estimates of its own
and the target’s states compared with the AJLATT algorithms.
Hence the RM approach has the worst performance. We can
also notice that AJLATT-C and AJLATT-O have comparable
performance with AJLATT-O being slightly better largely
while each of these two algorithms has its own benefit. The
optimization-based approach is not limited to specific models
while the control-based one is computationally simple.

We also run 50 Monte Carlo simulations with, respectively,
the distance-only and bearing-only models. Due to space
limitation, we summarize the results of the average RMSE
of six robots and 50 Monte Carlo simulations for all
three measurement models at k& = 150 in Table III.
As can be seen, our proposed AJLATT algorithms still
achieve good performance with distance-only and bearing-
only measurement models. As expected, the performance
with the distance-bearing model is slightly better than the
distance-only or bearing-only ones. For each measurement
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TABLE III

AVERAGE RMSE OF S1X ROBOTS AND 50 MONTE CARLO SIMULATIONS
FOR THREE MEASUREMENT MODELS AT k = 150
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Fig. 4. Position and orientation estimate RMSE for six robots (localization)
with distance-bearing model. (a) Position estimate RMSE comparison.
(b) Orientation estimate RMSE Comparison.

model, the AJLATT algorithms significantly outperform the
RM approach.

One thing worth noticing is the necessity of the potential
function term in the objective function in (24). On the one
hand, as stated in Section III-B, the potential function term
is used to avoid collisions. On the other hand, it also helps
each robot to maintain a certain distance between itself and
its teammates and between itself and the target. If a robot
moves too close or too far away from its communicating
neighbors or the target, the robot will receive a penalty.
Although purely minimizing the target covariance term to
some extent pushes these robots to chase the target, it will
not always force all of the robots to chase the target at the
same time. There are two reasons. First, a robot with a larger
trace of the self-localization covariance may move its field
of view away from observing the target and let its neighbors
observe the target instead. A robot might have a larger trace
of the self-localization covariance than its neighbors due to
its movement. The previous movement of the robot such as

AJLATT-C [AJLATT-O [ACEKF-C ACEKF 0
e il et e
Position 0.3272
Robot
Distance- |Orientation | 0.0513
Bearing |Target
Position 0.3434
Target
Orientation | 0.1510
Robot
Position 1.0051
Robot
Distance- |Orientation | 0.1152
only Target
Position 0.9107
Target
Orientation | 0.1647
Robot
Position 0.4395
Robot
Bearing- |Orientation | 0.0654
only Target
Position 0.6362
Target
Orientation | 0.1583

continuously chasing the target would result in a large and
consecutive nonzero v; and would hence cause large fo_l
and <I>f.‘_1f)f_1(<l>f.‘_1)T according to (27) and (28). From (6),
these two terms will together induce the increase of the robot
covariance during propagation. If the robot keeps sight of the
target, its large trace of the self-localization covariance might
make the trace of the fused target covariance pT calculated
by (15a) (see Step 1.2.2 in Table II) larger than the case that
it does not observe the target, which will eventually cause
the increment of the cost of the target covariance term in
the objective function (24). Therefore, in that case, the robot
with larger self-localization covariance will move its field of
view away from observing the target. Second, if we add the
robot covariance term in addition to the target covariance
term without using the potential function term, robots might
slow down or even stop moving to slow down the increase
of the self-localization uncertainty caused by its movement.
These two factors will gradually make only a few robots keep
sight of the target. That brings benefits in the short term for
the localization performance of the robots that stop moving.
However, in the long term, these robots that stop moving
could lose communication connectivity with the robots that
keep sight of the target. As a result, these robots that stop
moving might not be able to observe the target and eventually
lose their target state update. Besides, for the few robots that
keep sight of the target, due to the reduction of the robot-to-
robot measurements obtained among the entire team, they will
gradually calculate inaccurate estimates of their own states at
first and then the target’s state, which might even eventually
result in totally losing sight of the target. By adding the
potential function term in the objective function (24), some
robots might still move their fields of view away from the
target, and only a few robots will keep sight of the target.
However, since the robots are close enough to each other,
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Fig. 5.  Snapshots of the robots without the potential function term in

the objective function (24). The red solid triangle denotes the true target,
and the hollow triangles with solid lines (overlapped with the true target at
the beginning) in different colors denote the estimated targets on different
robots. Solid triangles and their attached sectors in different colors represent,
respectively, different true robots and their corresponding fields of view. The
lines of a robot’s sector are solid when the target is in the robot’s field of view;
otherwise, they are dashed. The hollow triangles with dash lines in different
colors represent different robots’ self-estimates.
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Fig. 6. Robot position RMSE for the example illustrated by Fig. 5. The

cyan solid line corresponds to the cyan robot (robot 6 here), and the dashed
lines with different colors correspond to other robots in the same color in the
snapshots in Fig. 5.

a robot that has a smaller self-localization covariance but
does not observe the target is able to quickly replace the role
of the robots that are currently keeping sight of the target
but having large self-localization covariances to observe the
target.

The phenomenon mentioned above can be shown in Fig. 5
in snapshots, where we use ag, = 3, ar, = 2, and B; = 0
[i.e., no potential function term in the objective function in
(24)], and the target’s angular velocity wr is set to 0 to
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show this phenomenon more clearly. As we can see, at the
beginning (k = 10), one robot moves its field of view to
observe the target. However, without the penalty introduced by
the potential function for keeping a distance with the target,
the robots tend to not chase and keep sight of the target as
can be seen at k = 75. After a certain time (k = 125), only
the cyan robot keeps sight of the target driven by the goal to
minimize the large cost associated with the target covariance
at that time, while the other robots stop moving. As shown in
Fig. 6, the continuous movement through keeping sight of the
target and the lack of robot-to-robot measurements by the cyan
robot (robot 6) gradually induce a dramatic increase of the self-
localization error compared with other robots that stop moving
and also induce a large target estimation error as shown in
Fig. 5 at k = 295. Besides, there also comes communication
disconnection between robots. As can be seen, the cyan robot
loses direct communication connectivity with the green one
(and hence the rest of the team) at k = 295. In a word,
if there lacks the potential function term, AJLATT-O might
fail to work.

V. CONCLUSION AND DISCUSSIONS

In this article, we have proposed two algorithms to solve
the AJLATT problem in a fully distributed (communication,
estimation, planning) manner to drive a team of robots to
actively track a target and localize itself so as to achieve better
self-localization and target tracking performance.

The first control-based algorithm explicitly incorporates
the estimates of their own states and the target’s state and
collision avoidance in algorithm design. The other algorithm
based on the optimization framework tries to find the optimal
motion so that optimal robot localization and target tracking
performance can be achieved while collision avoidance and
communication maintenance are considered at the same
time. Monte Carlo simulations are performed to illustrate
the effectiveness of our approaches. Factors that influence
the performance of the optimization-based approach are
discussed. The simulation result shows that both approaches
work well, and their performance is comparable. Each of
these two approaches has its benefits. The control-based
approach is computationally simple and time efficient, while
the optimization-based approach can be applied to a wide
range of realistic models. Our work also has limitations. One
limitation is that we have assumed that the target model is
known in the sense that there is some rough idea about the
target’s input (not necessarily accurate) with the uncertain part
modeled as noise. If the target model is unknown, one idea
might be to assume that the target follows a generic model
(e.g., unknown constant linear and angular velocities with
velocities as part of the state to be estimated) for estimation
purposes. Another idea might be the multiple model approach.
While how to identify the target model is not the focus of
this article, the motion planning algorithms proposed in this
article can be applied and adapted to the case where any good
estimation scheme can be adopted to estimate the target’s state
(whether the target model is known or unknown). In addition,
the proposed control algorithm uses estimates to replace the
true values. When dealing with nonlinear systems, it is worth
rigorous analysis in terms of the effectiveness and stability of
the resulting system.
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