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Multirobot Fully Distributed Active Joint

Localization and Target Tracking

Shaoshu Su, Pengxiang Zhu , and Wei Ren , Fellow, IEEE

AbstractÐ In this article, we study the problem of multirobot
active joint localization and target tracking (AJLATT), where
a team of robots mounted with sensors of limited field
of view actively estimate their own and the target’s states
cooperatively. Each robot designs its motion strategy to gain
better estimation performance while avoiding collisions by using
only the information from itself and its one-hop communicating
neighbors. By leveraging the framework of joint localization
and target tracking (JLATT) presented in our previous work,
we propose two fully distributed algorithms that help each
robot design motion strategies to achieve better localization and
target tracking performance. These two algorithms are designed
from, respectively, the control and optimization perspectives.
The control-based algorithm is designed by incorporating the
estimated target’s and robots’ states and their uncertainties as
well as collision avoidance in the control policy. The optimization-
based algorithm minimizes an objective function involving both
the target’s and robots’ estimation uncertainties and a potential
function that helps each robot avoid collision and maintain
communication connectivity when the robot is planning its
motion. Monte Carlo simulations demonstrate our algorithms’
feasibility to solve the AJLATT problem, and performance
comparison between these two algorithms is given.

Index TermsÐ Distributed estimation, motion control, multi-
robot systems, target tracking.

I. INTRODUCTION

AUTONOMOUS multirobot systems equipped with sen-

sors have attracted more and more attention in recent

years due to their wide applications in search and rescue,

region monitoring, area surveillance, and so on. Multirobot

systems have many appealing properties. In this work,

we focus on their usage for estimation. Compared with one

single robot, a multirobot system is able to obtain better

self-localization and target tracking performance by utilizing

abundant robot-to-robot and robot-to-target measurements as

well as information exchanged across the team. That property

plays an essential role in the applications of the multirobot

system, especially in the indoor scenario where it is hard

to receive the GPS signal. Besides, compared with a static

sensor network, a team of autonomous mobile sensors is more
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adaptive since it is much easier and more effective to be

deployed in an unknown environment.

There are many results on estimating the states of robots or

a target or both. Some works focus on multirobot cooperative

localization [1], [2], [3], [4], [5], [6], [7], [8], [9], where a

team of robots can improve their self-localization accuracy

by utilizing the mutual relative measurements and interacting

with their team members. Some other works focus on target

tracking [10], [11], [12], [13], [14], [15], where a static or

moving sensor network seeks to estimate the target’s state.

Here it is usually implicitly assumed that the sensors’ states

are known (no self-localization needed). There also appear

some later works that achieve the cooperative localization

and target tracking simultaneously, both in a centralized

[16], [17], [18] or fully distributed manner [19], [20].1

However, all the above works [1], [2], [3], [4], [5], [6], [7], [8],

[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]

have a limitation that the sensors or robots are either static or

move without a properly designed motion strategy to actively

localize themselves or track the target.

Some algorithms have been proposed to solve the problem

of active target tracking from the control or optimization

perspective. In the controls field, there are numerous results on

distributed tracking or leader-follower tracking (see, e.g., [21]).

However, in these results, both the robots’ and target’s states

are usually assumed to be known, and the emphasis is on

designing distributed controllers. In [22], the target’s state

is assumed to be an inaccurate variable, and a gradient-

based decentralized motion control strategy is developed

to drive a team of robots to estimate and actively track

the target’s state. Nevertheless, an all-to-all communication

network is required in this work. In [23], an information-driven

flocking algorithm is proposed to achieve the distributed target

state estimation. However, the estimator in [23] relies on a

restrictive assumption that the target is jointly observed by

each robot and its neighbors. As for the optimization-based

approaches, [24] presents an approach for a robot team to find

the local optimal action to maximize the knowledge about the

targets by using a greedy search. An algorithm is proposed

in [25] to analytically obtain the next global optimal sensing

locations for the robots. A nonmyopic search-based algorithm

is proposed in [26] to drive one robot to actively track the

1We use the term fully distributed to describe an algorithm that uses only
a robot’s own and one-hop neighbors’ information without the requirement
for global parameters, multihop information transmission, or multiple
communication iterations on certain quantities for iterative consensus-type
calculations per time instant.
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target by minimizing the logarithm of the determinant of the

target covariance obtained by the Kalman filter. An algorithm

is proposed in [27] to maximize the mutual information

between the robots’ measurements and their current belief

of the target position using an experimental time-of-flight

range sensor model for measurement and a Bayesian filter

for estimation. Nevertheless, all the above optimization-based

works are implemented in a centralized manner. In [28], the

approach in [26] is extended in a decentralized way, where

each robot in the team uses the coordinate descent method to

plan its motion sequentially. As a result, multihop information

transmission would be required in this approach. Besides,

in all of the works above, the robots’ states are assumed to

be accurately known, which is an unrealistic assumption in

practice.

There are some works addressing the active joint localiza-

tion and target tracking (AJLATT) problem, where motion

strategies are designed to improve the target tracking and/or

robot self-localization performance. Considering limited sens-

ing capabilities, Hausman et al. [29] developed an algorithm

which coordinates robots’ motions and switches the sensing

topology to minimize the uncertainty of the target state

estimate. Although this work estimates the robots’ states

together with the target’s state, it does not make improving

robot self-localization performance an objective in its

optimization problem. In [30], a gradient-based control policy

is designed to minimize the uncertainty of both the robots’

and the target’s states that are estimated by the Kalman±Bucy

filter. While these two works consider jointly estimating

both robots’ states and target’s state, their approaches are

centralized. Although the centralized approaches have the

advantage of the capability to obtain the optimal estimation

and planning performance, they also cause a heavy burden

in computation and communication. In [31], a distributed

method is proposed by using a Bayesian filter for estimation

and a gradient-based algorithm for control design. However,

the method requires multihop information transmission for

estimation and multihop information transmission or multiple

communication iterations for iterative consensus calculations

per time instant in its control design. As a result, the method

is not fully distributed. To the best of our knowledge, there

is no existing fully distributed algorithm solving the AJLATT

problem.

Considering all the limitations of the previous works,

we aim to propose fully distributed AJLATT algorithms. Our

previous work [20] introduces a framework to solve the pure

joint localization and target tracking (JLATT) problem without

active motion strategy design in a fully distributed manner.

Leveraging that framework, in this article, we move forward by

considering how to design fully distributed motion strategies

for each robot so that it can not only follow the target

but also achieve better self-localization and target-tracking

performance.

The contributions of this article are summarized as follows.

Based on our previous fully distributed JLATT framework,

two motion strategies are proposed from the control and

optimization perspectives to actively improve each robot’s

self-localization and target tracking performance. The control-

based algorithm is designed by incorporating the estimated

target’s and robots’ states and their uncertainties as well as

collision avoidance in the control policy. The optimization-

based algorithm minimizes an objective function involving

both the target’s and robots’ estimation uncertainties and

a potential function that helps each robot avoid collision

and maintain communication connectivity when the robot

is planning its motion. Compared with the existing works

on active target tracking from the control or optimization

perspective, the current article is the first that solves the

AJLATT problem in a fully distributed manner (i.e., requiring

only one-hop information transmission, no global parameter

in the algorithm, and no multiple communication iterations

for iterative consensus-type calculations per time instant),

to the best our knowledge. Extensive Monte-Carlo simulations

are used to validate and compare the proposed control- and

optimization-based algorithms.

Some preliminary results of this article are presented

in our conference paper [32]. The current article expands

the conference version by introducing a control-based

approach and providing significantly additional simulation

results including comparison with the centralized counterparts,

adoption of different sensor models, and demonstration of

the role of the potential function in the optimization-based

approach.

II. PRELIMINARIES

A. Motion and Measurement Models

We consider the scenario where M robots track a target

on a surface. We use the vectors xk
i and xk

T to represent,

respectively, the true state of robot i and the target at time

k. Their movements are driven by a nonlinear motion model

as follows:

xk
i = fi

(
xk−1

i , uk−1
i , wk−1

i

)
(1)

xk
T = g

(
xk−1

T , uk−1
T , wk−1

T

)
(2)

where uk−1
i and uk−1

T are, respectively, the control inputs

for robot i and the target. wk−1
i ∼ N (0, Qk−1

i ) and

wk−1
T ∼ N (0, Qk−1

T ) are, respectively, the zero-mean white

Gaussian process noises for robot i and the target.

We define x̄k
i and x̂k

i as, respectively, robot i’s prior and

posterior estimates of its true state xk
i , x̄k

Ti
, and x̂k

Ti
as,

respectively, each robot i’s prior and posterior estimates of

the target’s state xk
Ti

. Their corresponding approximated prior

and posterior covariances are defined as p̄k
i , p̂k

i , p̄k
Ti

, and p̂k
Ti

,

respectively.

At time k, if robot j or the target is within the sensing region

of robot i , robot i can obtain a robot-to-robot measurement

zk
Ri j

or a robot-to-target measurement zk
Ri T . The measurement

models are defined as follows:

zk
Ri j

= hi j

(
xk

i , xk
j

)
+ vk

Ri j

zk
RiT

= hiT

(
xk

i , xk
T

)
+ vk

Ri T (3)

where vk
Ri j

∼ N (0, Rk
i j ) and vk

Ri T ∼ N (0, Rk
iT) are

the measurement noises assumed to be zero-mean white

Gaussian. The measurement noises are assumed to be mutually

uncorrelated across robots and uncorrelated with the process

noises.
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B. Graphs

In the team of M robots, a directed communication graph

Gk
c = (V, Ek

c ) is defined, where V = {R1, . . . , RM} is the

robot set and Ek
c ⊆ V × V is the edge set representing the

communication links between robots at time k. If robot i

receives information from robot j at time k, then a directed

edge ( j, i) exists in Ek
c . We assume that the self-edge (i, i)

exists in Ek
c , ∀i ∈ V , which means robot i can also use

the information from itself. At time k, the communicating

neighbor set of robot i is defined as N k
c,i = {l|(l, i) ∈ Ek

c , ∀l ̸=
i, l ∈ V}. Then, the inclusive communicating neighbor set

of robot i is Ik
c,i = N k

c,i ∪ {i}. Similarly, we define a

directed sensing graph Gk
s = (V, Ek

s ) to describe robot-to-

robot measurements, where Ek
s ⊆ V×V is the edge set, which

represents the detection links between robots at time k. If robot

i can detect robot j at time k, a directed edge ( j, i) exists in

Ek
s . At time k, we define robot i’s sensing neighbors (all robots

detected by robot i) as N k
s,i = {i |(l, i) ∈ Ek

s , ∀l ̸= i, l ∈ V}.
We assume that for each robot, the communication radius

is larger than the sensing radii of all robots. Then when robot

i detects robot j , robot i can receive the information from

robot j .

C. Information Fusion Strategy

Consistency is a vital property for estimation. An estimate

pair (p̂k , x̂k) is consistent if the true error covariance is

upper bounded by the estimated covariance as E{(xk − x̂k)

(xk − x̂k)T} ≤ p̂k [33]. An inconsistent estimate that underes-

timates the actual errors might eventually diverge. At time

k, given multiple consistent estimation pairs (p̂k
i , x̂k

i ), i =
1, . . . , n, of xk , we seek to compute an improved consistent

estimate (p̂k
c, x̂k

c) by using the covariance intersection (CI)

algorithm [34]

p̂k
c =

(
n∑

i=1

αk
i

(
p̂k

i

)−1

)−1

x̂k
c = p̂k

c

(
n∑

i=1

αk
i

(
p̂k

i

)−1
x̂k

i

)
(4)

where αk
i ∈ [0, 1] and

∑n
i=1 αk

i = 1. The parameters αk
i

are usually chosen to satisfy certain optimal criterion such as

minimizing the trace of p̂k
c . In order to reduce the computation

burden, we adopt a fast and simplified approach in [35] to

calculate αk
i as follows:

αk
i =

1/tr
(
p̂k

i

)

∑n
j=1 1/tr

(
p̂k

j

) (5)

where tr(·) denotes the trace of a matrix.

D. Joint Localization and Target Tracking

In this section, we briefly introduce our previous work

about JLATT [20]. In this work, each robot can estimate

the pose of itself (localization) and the state of a target

(tracking) using only its own information and the information

from its one-hop communicating neighbors while preserving

estimation consistency (up to linearization due to the EKF

framework).

1) Robot Propagation: The estimate of robot i’s state and

its corresponding covariance are propagated at time k − 1 as

follows:

x̄k
i = fi

(
x̂k−1

i , uk−1
i , 0

)

p̄k
i = 8

k−1
i p̂k−1

i

(
8

k−1
i

)T + Q̄k−1
i

= ρRp

(
p̂k−1

i , x̂k−1
i , Qk−1

i

)
(6)

where 8
k−1
i = (∂ fi/∂xi )(x̂

k−1
i , uk−1

i , 0), Gk−1
i =

(∂ fi/∂wi )(x̂
k−1
i , uk−1

i , 0), and Q̄k−1
i = Gk−1

i Qk−1
i (Gk−1

i )T.

2) Target Propagation: Robot i propagates its estimate of

the target’s state and its corresponding covariance at time

k − 1 as follows:

x̄k
Ti

= g
(
x̂k−1

Ti
, uk−1

T , 0
)

p̄k
Ti

= 8
k
Ti

p̂k−1
Ti

(
8

k−1
Ti

)T + Q̄k−1
Ti

= ρT p

(
p̂k−1

Ti
, x̂k−1

Ti
, Qk−1

Ti

)
(7)

where 8
k−1
Ti

= (∂g/∂xT )(x̂k−1
Ti

, uk−1
T , 0), Gk−1

Ti
=

(∂g/∂wT )(x̂k−1
Ti

, uk−1
T , 0), and Q̄k−1

Ti
= Gk−1

Ti
Qk−1

Ti
(Gk−1

Ti
)T.

3) Robot State Update: To update the estimate of robot

i’s state, we first obtain the correction pairs (sk
Ril

, yk
Ril

) and

(sk
Ri T , yk

Ri T ) using robot i’s robot-to-robot measurements zk
Ril

,

l ∈ N k
s,i , and robot-to-target measurement zk

Ri T , respectively.

These correction pairs are calculated as follows:

sk
Ril

=
(
Hk

il

)T(
R̄k

il

)−1
Hk

il (8a)

yk
Ril

=
(
Hk

il

)T(
R̄k

il

)−1(
z̄k

Ril
+ Hk

il x̄
k
i

)
(8b)

where Hk
il = (∂hil/∂xk

i )(x̄
k
i , x̄k

l ), R̄k
il = Rk

il + H̃k
il p̄

k
l (H̃

k
il)

T,

H̃k
il = (∂hil/∂xk

l )(x̄
k
i , x̄k

l ), and z̄k
Ril

= zk
Ril

− hil(x̄
k
i , x̄k

l ), and

sk
Ri T =

(
Hk

iT

)T(
R̄k

iT

)−1
Hk

iT (9a)

yk
Ri T =

(
Hk

iT

)T(
R̄k

iT

)−1(
z̄k

Ri T + Hk
iTx̄k

i

)
(9b)

where Hk
iT = (∂hiT/∂xk

i )(x̄
k
i , x̄k

Ti
), R̄k

iT = Rk
iT + H̃k

iTp̄k
Ti
(H̃k

iT)T,

H̃k
iT = (∂hiT/∂xk

Ti
)(x̄k

i , x̄k
Ti
), and z̄k

Ri T = zk
Ri T − hiT(x̄k

i , x̄k
Ti
).

Then, we apply the CI algorithm (4) on these correction

pairs to compute a consistent (up to linearization) estimate x̆i

and its corresponding covariance p̆i as follows:

p̆k
i =



∑

l∈N k
s,i

ηk
ils

k
Ril

+ ηk
iTsk

Ri T




−1

(10a)

x̆k
i = p̆k

i



∑

l∈N k
s,i

ηk
ily

k
Ril

+ ηk
iTyk

Ri T


 (10b)

where ηk
il ∈ [0, 1], and ηk

iT = 0 if robot i cannot detect the tar-

get and otherwise ηk
iT ∈ [0, 1] subject to

∑
l∈N k

s,i
ηk

il +ηk
iT = 1.

The calculation of these ηil and ηiT follows the fast and

simplified approach (5) with (sk
Ril

)−1 and (sk
Ri T )−1 playing the

role of the covariances.
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After we obtain the estimation pair (p̆k
i , x̆k

i ) using relative

measurements and also the prior estimation pair (p̄k
i , x̄k

i ) from

the robot propagation step, we can use the CI algorithm (4)

to fuse these two estimation pairs to obtain the posterior

estimation pair (p̂k
i , x̂k

i ) as follows:

p̂k
i =

(
ζ k

i1

(
p̆k

i

)−1 + ζ k
i2

(
p̄k

i

)−1
)−1

(11a)

x̂k
i = p̂k

i

(
ζ k

i1

(
p̆k

i

)−1
x̆k

i + ζ k
i2

(
p̄k

i

)−1
x̄k

i

)
(11b)

where ζ k
i1 and ζ k

i2 ∈ [0, 1], subject to ζ k
i1 + ζ k

i2 = 1, are

calculated according to (5).

4) Target State Update: Similarly, for the target state

estimation, each robot i first collects the target correction

pairs (s̃k
R j T , ỹk

R j T ) from available robot-to-target measurements

calculated by its inclusive communicating neighbors j ,

j ∈ Ik
c,i

s̃k
R j T =

(
H̃k

jT

)T(
R̃k

jT

)−1
H̃k

jT (12a)

ỹk
R j T =

(
H̃k

jT

)T(
R̃k

jT

)−1
(

z̄k
R j T + H̃k

jT x̄k
T j

)
(12b)

where R̃k
jT = Rk

jT + Hk
jT p̄k

j (H
k
jT )T.

Then, at time k, by combining all available target

correction pairs, we obtain an intermediate estimation pair as

follows:

p̆k
Ti

=



∑

j∈Ik
c,i

η̃k
j s̃

k
R j T




−1

(13a)

x̆k
Ti

= p̆k
Ti



∑

j∈Ik
c,i

η̃k
j ỹ

k
R j T


 (13b)

where η̃k
j = 0 if robot j cannot directly detect the target, and

otherwise η̃k
j ∈ [0, 1] subject to

∑
j∈Ik

c,i
η̃k

j = 1.

Then we fuse all available prior estimation pairs (p̄k
T j

, x̄k
T j

),

∀ j ∈ Ik
c,i with the CI algorithm (4) as follows:

p̌k
Ti

=



∑

j∈Ik
c,i

π k
j

(
p̄k

T j

)−1




−1

(14a)

x̌k
Ti

= p̌k
Ti



∑

j∈Ik
c,i

π k
j

(
p̄k

T j

)−1

x̄k
T j


 (14b)

where π k
j ∈ [0, 1], subject to

∑
j∈Ik

c,i
π k

j = 1, is calculated

according to (5).

Eventually, after obtaining the pairs (p̌
k

Ti
, x̌

k

Ti
) and (p̆k

Ti
, x̆k

Ti
),

we calculate the posterior estimation pair (p̂k
Ti
, x̂k

Ti
) of the

target as follows:

p̂k
Ti

=
(
ζ k

iT1

(
p̌k

Ti

)−1 + ζ k
iT2

(
p̆k

Ti

)−1
)−1

(15a)

x̂k
Ti

= p̂k
Ti

(
ζ k

iT1

(
p̌k

Ti

)−1
x̌k

Ti
+ ζ k

iT2

(
p̆k

Ti

)−1
x̆k

Ti

)
(15b)

where ζ k
iT1

and ζ k
iT2

∈ [0, 1], subject to ζ k
iT1

+ ζ k
iT2

= 1, are

calculated according to (5).

TABLE I

AJLATT BY ROBOT i

III. ACTIVE JOINT LOCALIZATION

AND TARGET TRACKING

While our previous work [20] achieves fully distributed

JLATT, the robots’ motions are not actively controlled or

planned and they simply move around randomly. As a result,

the full potential to improve the localization and target tracking

performance is not exploited. In this article, we aim to actively

control the motions of the robots to achieve better localization

and target tracking performance than random movements.

We use the term AJLATT to emphasize the fact that we try

to not only estimate the states of the robots and the target but

also design proper control actions to improve the estimation

performance. Our goal is to design the control input uk
i for

each robot i modeled by (1) at each time k in a fully distributed

manner by using only its own information and the information

from its one-hop communicating neighbors. Next, we present

two approaches, one control based and the other optimization

based.

An overview of the proposed AJLATT algorithm is

summarized in Table I. In Step 3, we either implement our

control-based AJLATT algorithm in Step 3 (1) using (19) or

optimization-based AJLATT algorithm in Step 3 (2) using

(24) to solve the AJLATT problem. Detailed explanations

for these two algorithms are given in the following

Sections III-A and III-B.
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A. Control-Based Approach

In order to obtain a more accurate estimate of the target’s

state, one way is to approach the target. The first reason is that

the detection range of a sensor is limited in general. Besides,

the measurement noise usually has a positive relationship

with the measurement distance of the detected object during

a certain range interval. Second, when the robots move

closer to the target, they are closer to other robots, which

will also intuitively help improve self-localization. While the

distributed tracking problem has been studied in the controls

community extensively (see, e.g., [21]), most of the works

assume the poses of the robots and even the target are known

(no estimation needed), which is not realistic. Therefore,

in this section, we propose a fully distributed algorithm

to solve the AJLATT problem from the perspective of

control.

Consider robot i with the model

ṙi (t) = ui (t) (16)

where ri (t) = [xi (t), yi (t)]T is the position in 2-D, and

ui (t) = [uxi (t), u yi (t)]T is the control input. The control input

ui (t) is designed for (16) as follows:

ui (t) = vT (t) − α




∑

j∈Nc,i (t)

(
∂Vi j

∂ri (t)

)T

+
(

∂ViT

∂ri (t)

)T




−γ [ri (t) − rT (t)] (17)

where rT (t) and vT (t) are the target’s position and velocity in

2-D at time t , α, and γ are two positive constants which are

used to adjust, respectively, the influence of the collision avoid-

ance term and active target tracking term, and the differen-

tiable, nonnegative functions ViT and Vi j are, respectively, and

the potential function defined on, respectively, ∥ri (t)− rT (t)∥
and ∥ri (t) − r j (t)∥ for collision avoidance as detailed later.

In the following, we omit the time dependence (t) for notation

simplicity.

The potential function Vi j has the following properties.

1) Vi j achieves its unique minimum when ∥ri −r j∥ is equal

to its desired value doi
.

2) Vi j → ∞ if ∥ri − r j∥ → dsi
, where dsi

(0 < dsi
< doi

)

is the safe distance for collision avoidance.

3) ∂Vi j/∂∥ri − r j∥ = 0, if ∥ri − r j∥ ⩾ Ri , where Ri > doi

denotes the communication radius of robot i .

The potential function ViT is defined analogously.

Consider the Lyapunov function candidate

V = α

2

n∑

i=1

n∑

j=1

Vi j + α

n∑

i=1

ViT + 1

2
γ

n∑

i=1

||ri − rT ||2.

Define ai = −α
∑n

j=1(∂Vi j/∂ri )
T and bi = −α(∂ViT/∂ri )

T −
γ (ri − rT ). Due to property (3) of Vi j , we have∑n

j=1(∂Vi j/∂ri )
T =

∑
j∈Nc,i

(∂Vi j/∂ri )
T . It thus follows from

(16) to (17) that ṙi − vT = ai + bi . Note that (∂Vi j/∂ri ) =
−(∂Vi j/∂r j ) and (∂ViT/∂ri ) = −(∂ViT/∂rT ). The derivative

of V is given by the following equation:

V̇ = α

n∑

i=1

n∑

j=1

∂Vi j

∂ri

ṙi + α

n∑

i=1

∂ViT

∂ri

(
ṙi − vT

)

+γ

n∑

i=1

(ri − rT )T
(
ṙi − vT

)

= α

n∑

i=1

n∑

j=1

∂Vi j

∂ri

(vT + ai + bi )

+
n∑

i=1

(
ṙi − vT

)T

[
α

(
∂ViT

∂ri

)T

+ γ (ri − rT )

]

= −
n∑

i=1

aT
i (vT + ai + bi ) −

n∑

i=1

(ai + bi )
T bi

= −vT
T

n∑

i=1

ai −
n∑

i=1

||ai + bi ||2

where we have used [21, Lemma 3.1] to derive the first

equality. Note that
∑n

i=1 ai = 0. It follows that V̇ ≤ 0. As a

result, the robots chase the target while avoiding collisions.

After discretization, the model (16) becomes

rk
i = rk−1

i + uk−1
i δt (18)

where rk−1
i = [xk−1

i , yk−1
i ]T is the position in 2-D at time

k − 1, uk−1
i = [uk−1

xi , uk−1
yi ]T is the control input in 2-D at

time k −1, and δt is the sampling interval. We will later adapt

the model and design to address more realistic robot models

(e.g., nonholonomic differential drive robots). Let rk−1
T and

vk−1
T denote, respectively, the target’s position and velocity at

time k − 1. Also let r̂k−1
i , r̂k−1

Ti
, and v̂k−1

Ti
denote, respectively,

robot i’s estimate of its own position, the target’s position, and

the target’s velocity. Motivated by (17), we design the control

uk−1
i for (18) as follows:

uk−1
i =

∑

j∈Ik−1
c,i

ηk−1
j v̂k−1

T j
−α



∑

m∈N k−1
c,i

(
∂Vim

∂ r̂k−1
i

)T

+
(

∂ViT

∂ r̂k−1
i

)T




−γ


r̂k−1

i −
∑

j∈Ik−1
c,i

ηk−1
j r̂k−1

T j


 (19)

where α and γ are defined as in (17)

ηk−1
j =

1/tr
(

p̂k−1
T j

)

∑
l∈Ik−1

c,i
1/tr

(
p̂k−1

Tl

) (20)

is the weight denoting the certainty of neighbor j’s estimate of

the target’s state from the inclusive communicating neighbor

set of robot i , and the potential functions Vim and ViT are as in

(17) but defined on ∥r̂i − r̂m∥ and ∥r̂i −
∑

j∈Ik−1
c,i

ηk−1
j r̂T j

∥ for

collision avoidance. Note that (19) is fully distributed, using

only the information from each robot itself and its one-hop

communicating neighbors.

The motivation behind (19) is to push each robot toward the

weighted average of its own and communicating neighbors’

estimates of the target’s position while avoiding collisions

with the estimated positions of its communicating neighbors
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Fig. 1. Potential function Vi j with dsi
= 6 m, doi

= 10 m, and Ri = 15 m.

as well as the estimated positions of the target on itself and its

communicating neighbors. By doing so, the robots are actively

driven to move closer to the target while avoiding collisions.

As a result, the target (respectively, each robot) will more

likely or frequently be in the field of view of the robots

(respectively, some other robots), which will generate more

robot-to-target and robot-to-robot measurements. In addition,

the robots will be able to communicate with other robots

and maintain communication connectivity for the entire team.

Generally, more measurements and communication would

bring better estimation performance, which makes our control-

based approach achieve good self-localization and target-

tracking performance.

Motivated by [21], we choose Vi j such that

∂Vi j

∂ r̂i

=





−∞sgn
(
r̂i − r̂ j

)
∥r̂i − r̂ j∥ < dsi

20
(r̂i −r̂ j)
∥r̂i −r̂ j ∥

∥r̂i −r̂ j ∥−doi

∥r̂i −r̂ j ∥−dsi

, dsi
⩽ ∥r̂i − r̂ j∥ < doi

0.5
(r̂i −r̂ j)sin

[
π

Ri −doi
(∥r̂i −r̂ j ∥−doi )

]

∥r̂i −r̂ j ∥
, doi

⩽ ∥r̂i − r̂ j∥ < Ri

0, otherwise

(21)

where sgn(·) denotes the sign function defined component-

wise. The potential function ViT is defined analogously.

An example of Vi j is shown in Fig. 1. Note that unlike [21],

we do not have the actual positions of the robots and the target,

ri and rT , and hence the actual distances between robots and

between robot and target. Therefore, the potential functions

are defined on the estimated relative distance between robots

∥r̂i − r̂m∥ and that between robot and target

∥r̂i −
∑

j∈Ik−1
c,i

ηk−1
j r̂T j

∥ instead.

The control input (19) is defined according to a simplified

model (18). The approach can be applied to a system that

can be feedback linearized as an integrator-type system.

Many fully actuated systems and under-actuated systems (the

portion corresponding to the actuated degrees of freedom)

can be feedback linearized as integrator systems. In fact,

some quadrotor kinematics can be feedback linearized as an

integrator model. Next, we use the commonly used unicycle

model as an example to show how we extend the calculated

control input uk−1
i = [uk−1

xi , uk−1
yi ]T in (19) to design the linear

and angular velocity inputs in the unicycle model.

Consider a unicycle model described as follows:
xk

i = xk−1
i + vk−1

i δtcos
(
θ k−1

i

)

yk
i = yk−1

i + vk−1
i δtsin

(
θ k−1

i

)

θ k
i = θ k−1

i + ωk−1
i δt (22)

where (xk−1
i , yk−1

i ) is the position, θ k−1
i is the orientation,

vk−1
i is the linear velocity, and ωk−1

i is the angular velocity

associated with robot i at time k − 1. With uk−1
i =

[uk−1
xi , uk−1

yi ]T given by (19), we can calculate the desired linear

velocity as follows:

vi
k−1
d =

√
(
uk−1

xi

)2 +
(

uk−1
yi

)2

and the desired orientation is as follows:
θi

k−1
d = atan2

(
uk−1

yi , uk−1
xi

)
.

Then we can design the linear and angular velocity control

input as follows:
vk−1

i = vi
k−1
d

ωk−1
i = −λi

(
θ k−1

i − θi
k−1
d

)
(23)

where λi is a positive constant.

B. Optimization Based Approach

In this section, we propose an optimization-based approach

to solve the AJLATT problem. Our goal is to find an optimal

control input uk−1
i for each robot i modeled by (1), to optimize

certain functions.

There exist some previous works solving a related problem

from the optimization perspective. However, they either ignore

the robot localization [24], [25], [26], [27], [28] or are

implemented in a centralized manner [29], [30]. In contrast,

here robot localization is explicitly considered and the problem

is solved in a fully distributed manner by using each robot’s

own and its one-hop neighbors’ information. There is no center

node required for computation, global parameter shared among

the entire team or information transmitted via multiple hops.

Our optimization-based AJLATT algorithm can be summa-

rized as follows:
uk−1

i = arg min
uk−1

i ∈Ui

αRi
tr
(

p̂
k+t2
i

)
+ αTi

tr
(

p̂
k+t2
Ti

)

+βi

∑

j∈N k−1
c,i ∪{Ti }

J
k+t1
Ri j

, i = 1, . . . , M

s.t.
(

x̄
k+t1
j , x̄

k+t1
T j

, p̂
k+t2
i , p̂

k+t2
Ti

)

= SACP
(

x̂k−1
j , x̂k−1

T j
, p̂k−1

j , p̂k−1
T j

, uk−2
j , uk−1

T

)

j ∈ I
k−1
c,i (24)

where Ui is the control space of robot i . αRi
, αTi

, and βi

are three positive constant parameters that are used to adjust

the influence of each term on the objective function. p̂
k+t2
i

and p̂
k+t2
Ti

are, respectively, the predicted robot and target

covariances at time k + t2 representing, respectively, robot

i’s predicted self-localization and target tracking uncertainty.
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Here a grid-search-based method is adopted to find the optimal

solution. We will explore more efficient methods in future

work. As the traces of the robot and target covariances

are good measures of the robot self-localization and target

tracking performance, we incorporate them in the objective

function in (24). By optimizing the traces of the predicted

robot and target covariances, each robot plans its motion to

improve its self-localization and target tracking performance.

Of course, depending on specific applications or corresponding

preferences, other criteria (e.g., observability and information)

other than traces could be used to construct the objective

function. J
k+t1
Ri j

, j ∈ N
k−1
c,i ∪ {Ti }, is the potential function term

at time k + t1, which is incorporated to the objective function

to maintain communication connectivity, avoid collisions, and

keep sight of the target. t1 and t2 are, respectively, the planning

horizons for the potential function term and covariance terms.

In general, we have t1 < t2, since the difference of uncertainty

between different control inputs needs more time to show

up, but the potential function term that helps robots to

quickly avoid collision and frequently keep communication

connectivity needs to be computed in a shorter time period.

SACP is a function that is used to predict the estimate of the

states x̄
k+t1
j , x̄

k+t1
T j

and covariances p̂
k+t2
i , p̂

k+t2
Ti

at time k+t1 and

k + t2, respectively, and will be shown in detail later. Note

that the optimization-based approach is fully distributed, using

only the information from each robot itself and its one-hop

communicating neighbors.

Let ri = [xi , yi ]T be the position part of the state x̂i in

(1). For each robot i , the potential function JRi j
is defined as

follows:

JRi j
=





∞, ∥r̄i − r̄ j∥ ⩽ d i

−10log
(

∥r̄i −r̄ j ∥−d i

ai

)
, d i < ∥r̄i − r̄ j∥

⩽ d i + ai

0, d i + ai < ∥r̄i − r̄ j∥
⩽ d̄ i − ai

10
(
∥r̄i − r̄ j∥ −

(
d̄ i − ai

))2
, ∥r̄i − r̄ j∥ > d̄ i − ai

(25)

where r̄i = [x̄ i , ȳi ]T is the prior estimate of ri , ∥r̄i − r̄ j∥,

j ∈ Nc,i ∪ {Ti }, is the estimated robot-to-robot or robot-to-

target distance, d i and d̄ i are, respectively, the minimum

and maximum acceptable distances that are used to avoid

collisions and maintain communication connectivity, and ai is

the length of the nonzero interval. Note that the definition of

JRi j
accommodates both robot-to-robot potential and robot-to-

target potential. An example of the potential function is shown

in Fig. 2.

According to the definition of the potential function JRi j
,

there are several properties that we would like to point out.
1) JRi j

= 0, when ∥r̄i − r̄ j∥ ∈ [d i + ai , d̄ i − ai ], which

means that only when other robots or the target moves

too close to the minimum range or almost moves out of

the maximum acceptable range, this potential function

will play a role. Otherwise, only the covariance terms

take effect in the objective function in (24).

2) JRi j
→ ∞, if ∥r̄i − r̄ j∥ → d i or ∥r̄i − r̄ j∥ → ∞.

As shown in Fig. 2, the potential function will

immediately give a large penalty (close to infinity) when

the robot comes too close to its neighbors or the target

Fig. 2. Potential function JRi j
with d i = 2 m, d̄ i = 15 m, and ai = 2 m.

Notice that the right-hand side increases more moderately than the left-hand
side, and is still defined when ∥r̄i − r̄ j ∥ > d̄ i .

to avoid collisions. In contrast, it gives a relatively soft

and weak penalty when the robot moves far away from

its neighbors or the target so as to maintain commu-

nication connectivity or not lose sight of the target,

respectively.
The state and covariance prediction (SACP) process is first

used to predict robot i’s estimates of its own and the target’s

states, and robot i’s estimates of each neighbor j’s state at time

k + t1 so as to calculate the potential function term J
k+t1
Ri j

. The

process is consecutively used to predict robot i’s covariance

p̄
k+t2
i and the target covariance p̄

k+t2
Ti

at time k + t2 which

constitute the uncertainty minimization terms in the objective

function in (24). The SACP process is shown in Table II.

Since uk−1
j is the optimization variable for each robot j ,

robot i propagates its neighbor j’s state estimate with the

neighbor’s latest available control input uk−2
j at time k − 2.

Robot i’s own state is propagated with uk−1
i . The target’s state

is propagated with uk−1
T , which is assumed to be known for

each robot at time k − 1.

In Step 1.1 in Table II, robot i propagates its inclusive

communicating neighbor j’s, j ∈ I
k−1
c,i , estimates of its own

and the target’s states and covariances from time k − 1 to k.

In Step 1.2.1, ∗N k
s,i and ∗Ik

c,i are two predicted neighbor sets

at time k in the prediction process. Since the real movement

does not happen, robot i can only utilize the information

from its communicating neighbors at time k − 1. Thus ∗N k
s,i

and ∗Ik
c,i are the subsets of the known set I

k−1
c,i , where

∗N k
s,i = {i |(l, i) ∈ (∗Ek

s ∩ Ek−1
c ), ∀l ̸= i, l ∈ V} and

∗Ik
c,i = {i |(l, i) ∈ (∗Ek

c ∩ Ek−1
c ), l ∈ V}. Here ∗Ek

s and ∗Ek
c

are, respectively, the predicted sensing and communication

edge set at time k which are determined by the predicted

estimates of the robots’ states x̄k
j together with, respectively,

the robots’ sensing fields of view and communication radii.

In addition, ηk
iT in (10a) is determined by x̄k

i and the estimate

of the target’s state x̄k
Ti

together with the robots’ sensing fields

of view. Although real future robot-to-robot or robot-to-target

measurements are not available, the noise characteristics of

the sensors can be obtained and the Jacobians associated with

the measurement models can be calculated according to the
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TABLE II

SACP BY ROBOT i AT k − 1

predicted state estimates. With that information, the one-step

predicted correction terms can be generated in Step 1.2.1. The

one-step predicted posterior covariances can then be calculated

in Step 1.2.2.

In Step 2.1, robot i propagates from time k + t to

k + t + 1 similar to Step 1.1. In contrast, as the posterior

estimates x̂k+t
j and x̂k+t

T j
, j ∈ I

k−1
c,i , are no longer available

due to the lack of real future robot-to-robot or robot-to-target

measurements, the prior estimates are used for propagation.

In Step 2.2, there are two options. Options 1 and 2 correspond

to, respectively, multistep and one-step predicted posterior

covariance calculation. Option 1 calculates robot i’s predicted

posterior covariances for itself and the target at time k + t + 1

while Option 2 omits this procedure to save computation costs.

In Step 2.3, J
k+t1
Ri j

is computed. The potential function term

in (24) would result in a larger penalty when robot i loses

communication connectivity with its neighbor j , j ∈ N
k−1
c,i ,

at time k+t1. Instead, if the potential function term were given

by βi

∑
j∈∗N

k+t1
c,i ∪{Ti } J

k+t1
Ri j

in (24), then a smaller value would

be obtained due to the removal of some robots in ∗N k+t1
c,i .

If Option 2 is chosen, because predicted posterior covariances

are not computed, there is no need to calculate p̄k+t+1
j and

p̄k+t+1
T j

for t = 0, . . . , t2 −1 and x̄k+t+1
j for t = t1, . . . , t2 −1 in

Step 2.1.

In the fully distributed setting, the motion of neighboring

robots is predicted using old control inputs while the control

inputs of these agents will be optimized in the SACP. There

would be differences between the old control inputs and

the optimized ones. In this setting, it is not clear how the

robots can coordinate their control decisions using updated

optimized control inputs because such coordination might

require certain information propagation through multiple hops

or multiple communication iterations per time instant, which

does not exist in the current fully distributed setting. Hence

there is a tradeoff between how well the algorithm can

perform and how distributed the entire system can be. As the

robots have a similar objective of tracking the target, the

target covariance as well as the connectivity maintenance

potential function in each robot’s cost function provide certain

coordination among robots in the sense that the robots would

try to chase the target and stay close to the target and their

neighbors to make sure that the team communication graph

is not disconnected. In future work, we will explore how

to coordinate the robots’ control decisions in a distributed

setting.

There is a tradeoff between the control- and optimization-

based approaches. The control-based approach is computation-

ally simple and time efficient in real-world implementations.

However, a simplified model is adopted. It is worth noticing

that the control policy here is not designed to explicitly

optimize a certain criterion on the localization and target

tracking performance. Instead, the hope is to bring the robots

closer so as to improve the localization and target tracking

performance. In contrast, the optimization-based approach

is more performance-improvement-oriented and applicable to

more general robot models. However, the computation load

of the optimization-based approach is high. In particular,

with the control-based approach, each robot incorporates

information from its communicating neighbors. Each robot’s

computation complexity increases linearly with the number

of its communicating neighbors, denoted by O(|Nc,i |).
In comparison, with the optimization-based approach, each

robot uses a grid-search-based method to find its control

input. Let kd denote the dimension of each robot’s control

input (for instance, if a robot has two inputs, linear and

angular velocities, then kd = 2), and ni denote the grid

size of the i th dimension. The grid size of the control input

is
∏kd

i=1 ni . For each combination in the grid search, the

computation load of the SACP process is linear in |Nc,i |.
As a result, the computation load of each robot becomes

O(|Nc,i | ×
∏kd

i=1 ni ).

IV. SIMULATION

In this section, we will use Monte-Carlo simulations to

demonstrate the performance of our algorithms.
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A. Simulation Setup

Consider the scenario where M = 6 robots and a target

move on a surface. Here we adopt the widely used unicycle

model for both robots and the target in the simulation.

The robot pose xk
i consists of the position (xk

i , yk
i ) and the

orientation θ k
i in the global frame. The motion models (1) and

(2) can be expressed as follows:

xk
i = xk−1

i +
(
vk−1

i + wk−1
vi

)
δtcos

(
θ k−1

i

)

yk
i = yk−1

i +
(
vk−1

i + wk−1
vi

)
δtsin

(
θ k−1

i

)

θ k
i = θ k−1

i +
(
ωk−1

i + wk−1
ωi

)
δt (26)

where i ∈ {1, . . . , M}∪{T }, δt = 1 s is the sampling interval,

uk−1
i = [vk−1

i , ωk−1
i ]T represents the linear and angular

velocities as the input for robot i , and wi = [wk−1
vi

, wk−1
ωi

]T

represents process noises for the linear and angular velocities.

For robot i , the input uk−1
i is calculated by our AJLATT

algorithms. The target’s linear velocity input is assumed to be

constant with vT = 0.25 m/s while the angular velocity input

ωT is uniformly generated from the interval [−(π/6), (π/6)]
rad/s. The target’s input uT = [vT , ωT ]T is known by

every robot i . The corresponding process noise wi , i ∈
{1, . . . , M} ∪ {T }, is assumed to be white Gaussian, with

the standard deviations for wk−1
vi

and wk−1
ωi

as, respectively,

σ k−1
vi

= (
√

2/2)σ k−1
i and σ k−1

ωi
= 2

√
2σ k−1

i , where σ k−1
i is

proportional to the linear velocity as σ k−1
i = 1%vk−1

i for each

robot i , i ∈ {1, . . . , M}, and σ k−1
T = 3%vk−1

T for the target.

Hence Qk−1
i , i ∈ {1, . . . , M} ∪ {T } defined after (1) and (2) is

given as follows:

Qk−1
i =

[(
σ k−1

vi

)2
0

0
(
σ k−1

ωi

)2

]
. (27)

Given the model (26), it follows from (6) that

8
k−1
i =




1 0 −vk−1
i δtsin

(
θ k−1

i

)

0 1 vk−1
i δtcos

(
θ k−1

i

)

0 0 1


. (28)

According to (27) and (28), when robot i stops moving

(i.e., vi = 0), Qk−1
i and 8

k−1
i will become, respectively,

the zero matrix 02×2 and the identity matrix I3. As a result,

it follows from (6) that p̄k
i = p̂k−1

i , which means that the robot

covariance will not increase during propagation.

We assume that each robot has a limited communication

range with a radius of Ri = 30 m and a limited field of

view with Rmin = 2 m and Rmax = 15 m for the range

and φ = 60◦ for the angle of view. As for the measurement

model, we consider an indoor application scenario in this

work and assume that these robots do not have access to

absolute position measurement. The relative distance-bearing

measurement model is mainly adopted in simulation. If robot i

detects robot j at time instant k, then the relative measurement

can be expressed as follows:

zk
Ri j

=




√(
xk

j − xk
i

)2

+
(

yk
j − yk

i

)2

atan2
((

yk
j − yk

i

)
,

(
xk

j − xk
i

))
− θ k

i


+ vk

Ri j

where vRi j
is a zero-mean white Gaussian noise. The standard

deviation of the distance noise is set to be 3% of the actual

distance, and the standard deviation of the bearing noise

equals 1◦. The same measurement model is used for the

robot-to-target measurement zRi T . To show the applicability

of our algorithms in different scenarios, we will also

include simulation results using distance-only and bearing-

only measurement models.

Since the absolute measurement is not available, we assume

that each robot initializes its estimated pose x̂0
i with its true

pose x0
i , and the initial pose covariance p̂0

i is set to

p̂0
i = 10−3I3. The initial estimate of the target’s state obtained

by each robot i , x̂0
Ti

, does not necessarily equal the true

initial state of the target x0
T . In our simulation, we set x̂0

T =
[10, 10, 0] while the true initial target state is x0

T = [10, 5, 0].
Since we assume that an accurate initial target state is not

available, we initialize the target covariance with relatively

large uncertainty as p̂0
Ti

= 4I3.

We compare the performance of the following five

algorithms.

1) Random Motion (RM): In this case, each robot moves

with a constant linear velocity of vi = 0.5 m/s. Its

angular velocity ωi is uniformly chosen from an interval

of [−(π/5), (π/5)] rad/s. These robots behave as in

our previous work [20] except that there is no moving

field boundary for them. By adopting the RM strategy,

robots do not tend to pursue the target or maintain

communication connectivity with other robots, which

eventually results in worse localization and tracking

performance than other AJLATT algorithms as shown

later.

2) Control-Based AJLATT (AJLATT-C): The control-

based AJLATT algorithm uses the control policy in

Section III-A. The parameters as set as α = 0.02,

γ = 1 in (19), dsi
= 6 m, doi

= 10 m in (21),

and λi = 1 in (23). The estimated target velocity v̂T j

in (19) is calculated by v̂T j
= vT

[
cos(θ̂T j

) sin(θ̂T j
)
]T

,

where vT is the known target’s velocity, and θ̂T j
is the

target’s orientation estimated by robot j . This algorithm

drives all of the robots to track the target while avoiding

collisions. As a result, the robots tend to maintain

communication connectivity with others and observe the

target and other robots more often than RM. As shown

later, it has better performance than RM.

3) Optimization-Based AJLATT (AJLATT-O): In this set-

ting, the robots’ linear and angular velocities are

calculated by the optimization-based AJLATT algorithm

in Section III-B. The parameters of each term in the

objective function (24) are set as αRi
= 3, αTi

= 2,

and βi = 1. As for the parameters on each robot

i’s robot-to-robot and robot-to-target potential functions

(25), we set the length of the nonzero interval as

ai = 2 m and d i = 2 m. We also set d̄ i =
30 m in (25) for the robot-to-robot potential function

to make the robots maintain the communication with

their neighbors, and d̄ i = 20 m for the robot-to-target

potential function to help keep sight of the target. For

the SACP process, the planning horizons are t1 = 4 and

t2 = 11 and Option 2 is adopted. Based on

our tests, Option 2 balances good performance and

computation costs while Option 1 generally achieves

better performance for target position estimation and
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comparable performance for other parts but with

significant computation costs.

4) Centralized Version of Control-Based AJLATT (ACEKF-

C): ACEKF-C is the centralized version of AJLATT-C,

which consists of a centralized Kalman filter estimator

and a centralized controller that incorporates information

from all robots instead of only the communicating

neighbors.

5) Centralized Version of Optimization-Based AJLATT

(ACEKF-O): Similarly, ACEKF-O adopts a centralized

Kalman filter for estimation and a centralized motion

planner, which plans the motions for all robots

simultaneously. ACEKF-O is summarized as follows:

uk−1 = arg min
uk−1∈U

αR

M
tr
(

p̂
k+t2
R

)
+ αT tr

(
p̂

k+t2
T

)

+ β

M

∑

i∈{1,...,M}

∑

j∈{1,...,M}\{i}
J

k+t1
Ri j

s.t.
(
x̄k+t1 , p̂k+t2

)

= SACPCEKF

(
x̂k−1, p̂k−1

)

where xℓ = [xℓ
1

T
, . . . , xℓ

M

T
, xℓ

T

T ]T is a vector comprised

of the true states of all robots and the target at time ℓ. x̄ℓ

and x̂ℓ are, respectively, the prior and posterior estimates

of xℓ with corresponding covariances p̄ℓ and p̂ℓ. p̂R and

p̂T are, respectively, the blocks in p̂ℓ that are associated

with, respectively, all the robots and the target. uℓ−1 =
[uℓ−1

1

T
, . . . , uℓ−1

M

T ]T is a vector comprised of all robots’

control inputs. U is the control space associated with u.

αR , αT , and β are three positive constant parameters.

SACPCEKF denotes the centralized version of the SACP

process, which implements the propagation and update

of the centralized Kalman filter.
The control space for each robot i is set as U =

{(vi , ωi )|vi ∈ [0, 0.5] m/s, ωi ∈ [−(π/5), (π/5)] rad/s}.
For the optimization-based algorithms, the grid size for vi

(respectively, ωi ) is set as 11 with an increment of 0.05 m/s

(respectively, (π/25) rad/s).

We run 50 Monte Carlo simulations and use the root mean

square error (RMSE) as the metric for accuracy to test the

performance of these algorithms with the distance-bearing

model. Fig. 3 shows each robot’s average target position and

orientation estimate RMSE for target tracking, and Fig. 4

shows each robot’s own average position and orientation

estimate RMSE for localization. As shown in Figs. 3 and 4,

AJLATT-C and AJLATT-O achieve good performance even

if, as expected, their centralized counterparts ACEKF-C and

ACEKF-O have better performance. However, the centralized

approaches require the existence of a central station or node

that collects all data from every robot, conducts extensive

computation, and then broadcasts the control commands back

to each robot. Such approaches are not practical in reality

due to the bottleneck in communication and the computation

load as well as the single point of failure of the central

station. AJLATT-C and AJLATT-O achieve significantly better

performance than RM. The result confirms our expectation.

The RM approach does not actively drive one robot to

observe the target and other robots or maintain communication

connectivity with its neighbors. As a result, the robot obtains

fewer measurements and has fewer neighbors to exchange

Fig. 3. Position and orientation estimate RMSE for the target on six
robots (tracking) with distance-bearing model. (a) Position estimate RMSE.
(b) Orientation estimate RMSE.

information, thus obtaining less accurate estimates of its own

and the target’s states compared with the AJLATT algorithms.

Hence the RM approach has the worst performance. We can

also notice that AJLATT-C and AJLATT-O have comparable

performance with AJLATT-O being slightly better largely

while each of these two algorithms has its own benefit. The

optimization-based approach is not limited to specific models

while the control-based one is computationally simple.

We also run 50 Monte Carlo simulations with, respectively,

the distance-only and bearing-only models. Due to space

limitation, we summarize the results of the average RMSE

of six robots and 50 Monte Carlo simulations for all

three measurement models at k = 150 in Table III.

As can be seen, our proposed AJLATT algorithms still

achieve good performance with distance-only and bearing-

only measurement models. As expected, the performance

with the distance-bearing model is slightly better than the

distance-only or bearing-only ones. For each measurement
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Fig. 4. Position and orientation estimate RMSE for six robots (localization)
with distance-bearing model. (a) Position estimate RMSE comparison.
(b) Orientation estimate RMSE Comparison.

model, the AJLATT algorithms significantly outperform the

RM approach.

One thing worth noticing is the necessity of the potential

function term in the objective function in (24). On the one

hand, as stated in Section III-B, the potential function term

is used to avoid collisions. On the other hand, it also helps

each robot to maintain a certain distance between itself and

its teammates and between itself and the target. If a robot

moves too close or too far away from its communicating

neighbors or the target, the robot will receive a penalty.

Although purely minimizing the target covariance term to

some extent pushes these robots to chase the target, it will

not always force all of the robots to chase the target at the

same time. There are two reasons. First, a robot with a larger

trace of the self-localization covariance may move its field

of view away from observing the target and let its neighbors

observe the target instead. A robot might have a larger trace

of the self-localization covariance than its neighbors due to

its movement. The previous movement of the robot such as

TABLE III

AVERAGE RMSE OF SIX ROBOTS AND 50 MONTE CARLO SIMULATIONS

FOR THREE MEASUREMENT MODELS AT k = 150

continuously chasing the target would result in a large and

consecutive nonzero vi and would hence cause large Qk−1
i

and 8
k−1
i p̂k−1

i (8k−1
i )T according to (27) and (28). From (6),

these two terms will together induce the increase of the robot

covariance during propagation. If the robot keeps sight of the

target, its large trace of the self-localization covariance might

make the trace of the fused target covariance p̂k
Ti

calculated

by (15a) (see Step 1.2.2 in Table II) larger than the case that

it does not observe the target, which will eventually cause

the increment of the cost of the target covariance term in

the objective function (24). Therefore, in that case, the robot

with larger self-localization covariance will move its field of

view away from observing the target. Second, if we add the

robot covariance term in addition to the target covariance

term without using the potential function term, robots might

slow down or even stop moving to slow down the increase

of the self-localization uncertainty caused by its movement.

These two factors will gradually make only a few robots keep

sight of the target. That brings benefits in the short term for

the localization performance of the robots that stop moving.

However, in the long term, these robots that stop moving

could lose communication connectivity with the robots that

keep sight of the target. As a result, these robots that stop

moving might not be able to observe the target and eventually

lose their target state update. Besides, for the few robots that

keep sight of the target, due to the reduction of the robot-to-

robot measurements obtained among the entire team, they will

gradually calculate inaccurate estimates of their own states at

first and then the target’s state, which might even eventually

result in totally losing sight of the target. By adding the

potential function term in the objective function (24), some

robots might still move their fields of view away from the

target, and only a few robots will keep sight of the target.

However, since the robots are close enough to each other,
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Fig. 5. Snapshots of the robots without the potential function term in
the objective function (24). The red solid triangle denotes the true target,
and the hollow triangles with solid lines (overlapped with the true target at
the beginning) in different colors denote the estimated targets on different
robots. Solid triangles and their attached sectors in different colors represent,
respectively, different true robots and their corresponding fields of view. The
lines of a robot’s sector are solid when the target is in the robot’s field of view;
otherwise, they are dashed. The hollow triangles with dash lines in different
colors represent different robots’ self-estimates.

Fig. 6. Robot position RMSE for the example illustrated by Fig. 5. The
cyan solid line corresponds to the cyan robot (robot 6 here), and the dashed
lines with different colors correspond to other robots in the same color in the
snapshots in Fig. 5.

a robot that has a smaller self-localization covariance but

does not observe the target is able to quickly replace the role

of the robots that are currently keeping sight of the target

but having large self-localization covariances to observe the

target.

The phenomenon mentioned above can be shown in Fig. 5

in snapshots, where we use αRi
= 3, αTi

= 2, and βi = 0

[i.e., no potential function term in the objective function in

(24)], and the target’s angular velocity ωT is set to 0 to

show this phenomenon more clearly. As we can see, at the

beginning (k = 10), one robot moves its field of view to

observe the target. However, without the penalty introduced by

the potential function for keeping a distance with the target,

the robots tend to not chase and keep sight of the target as

can be seen at k = 75. After a certain time (k = 125), only

the cyan robot keeps sight of the target driven by the goal to

minimize the large cost associated with the target covariance

at that time, while the other robots stop moving. As shown in

Fig. 6, the continuous movement through keeping sight of the

target and the lack of robot-to-robot measurements by the cyan

robot (robot 6) gradually induce a dramatic increase of the self-

localization error compared with other robots that stop moving

and also induce a large target estimation error as shown in

Fig. 5 at k = 295. Besides, there also comes communication

disconnection between robots. As can be seen, the cyan robot

loses direct communication connectivity with the green one

(and hence the rest of the team) at k = 295. In a word,

if there lacks the potential function term, AJLATT-O might

fail to work.

V. CONCLUSION AND DISCUSSIONS

In this article, we have proposed two algorithms to solve

the AJLATT problem in a fully distributed (communication,

estimation, planning) manner to drive a team of robots to

actively track a target and localize itself so as to achieve better

self-localization and target tracking performance.

The first control-based algorithm explicitly incorporates

the estimates of their own states and the target’s state and

collision avoidance in algorithm design. The other algorithm

based on the optimization framework tries to find the optimal

motion so that optimal robot localization and target tracking

performance can be achieved while collision avoidance and

communication maintenance are considered at the same

time. Monte Carlo simulations are performed to illustrate

the effectiveness of our approaches. Factors that influence

the performance of the optimization-based approach are

discussed. The simulation result shows that both approaches

work well, and their performance is comparable. Each of

these two approaches has its benefits. The control-based

approach is computationally simple and time efficient, while

the optimization-based approach can be applied to a wide

range of realistic models. Our work also has limitations. One

limitation is that we have assumed that the target model is

known in the sense that there is some rough idea about the

target’s input (not necessarily accurate) with the uncertain part

modeled as noise. If the target model is unknown, one idea

might be to assume that the target follows a generic model

(e.g., unknown constant linear and angular velocities with

velocities as part of the state to be estimated) for estimation

purposes. Another idea might be the multiple model approach.

While how to identify the target model is not the focus of

this article, the motion planning algorithms proposed in this

article can be applied and adapted to the case where any good

estimation scheme can be adopted to estimate the target’s state

(whether the target model is known or unknown). In addition,

the proposed control algorithm uses estimates to replace the

true values. When dealing with nonlinear systems, it is worth

rigorous analysis in terms of the effectiveness and stability of

the resulting system.
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