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Orbital evolution of satellite galaxies in self-interacting dark matter models
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Dark matter self-interactions can leave distinctive signatures on the properties of satellite galaxies around
Milky Way-like hosts through their impact on tidal stripping, ram pressure, and gravothermal collapse. We
delineate the regions of self-interacting dark matter parameter space—specified by interaction cross section
and a velocity scale—where each of these effects dominates and show how the relative mass loss depends
on the satellite’s initial mass, density profile, and orbit. We obtain novel, conservative constraints in this
parameter space using Milky Way satellite galaxies with notably high central densities and small pericenter
distances. Our results for self-interacting dark matter models, in combination with constraints from clusters
of galaxies, favor either velocity-dependent cross sections that lead to gravothermal core collapse in the
densest satellites or small cross sections which more closely resemble cold and collisionless dark matter.
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I. INTRODUCTION

Current observational efforts are characterizing proper-
ties of satellite galaxies orbiting the Milky Way (MW) [1,2]
and other hosts [3,4]. This wealth of new data provides an
exciting opportunity to test the evolution of small-scale
structure in self-interacting dark matter (SIDM) [5-18], as
compared to cold dark matter (CDM) [19-24]. SIDM arises
generically in many theories [25] and is well motivated
from an astrophysical standpoint [26-29]. In this study, we
present a first analysis of the impact of velocity-dependent,
anisotropic scattering between dark matter (DM) particles
on the orbits of satellite galaxies.

For CDM, many ingredients affect satellite orbits
including initial positions and velocities, as well as initial
masses and concentrations, which affect mass loss due to
tidal forces and orbital decay due to dynamical friction.
For SIDM, these continue to play a role, while mass
removal and momentum transfer from DM ram pressure
also impact the evolution [30]. The density profile of an
SIDM satellite is also critical to its evolution. The
presence of a constant density, quasistable, isothermal
core can increase the amount of mass that is tidally
removed [7]. This core can also undergo gravothermal
collapse with a timescale that depends on various factors.
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High concentration satellites collapse faster [12,31], with
tidal stripping [11] and high cross sections [10] accel-
erating this process. The collapse can dramatically
increase the central densities of satellites [12,14,31-36],
which may be necessary for SIDM to be consistent with
inferred densities of ultrafaint dwarfs [10,12,37].

We perform a conceptual analysis using semianalytical
orbit integration to map the consequences of SIDM on
satellite orbital evolution. In particular, the parameter space
for which mass loss in SIDM is dominated by either tidal
stripping or ram-pressure evaporation is identified. In the
former case, the signature is an overall mass reduction in
the satellite’s outer region, as compared to CDM. In the
latter case, ram-pressure evaporation also removes mass
from the satellite’s central regions, causing lower central
densities than would be expected for CDM. We also
identify regions where the effects of gravothermal collapse
are important. These findings motivate new observational
handles for testing SIDM.

We begin with an overview of modeling satellite
orbital evolution. We then discuss qualitative signatures
of SIDM on satellite distributions around MW-like
hosts. Building on this understanding, we set novel and
conservative SIDM constraints using measured properties
of MW dwarfs. The interested reader can find the precise
details of our modeling in the Appendices and should note
that effects not accounted for in our modeling do not
change any qualitative results of the study and keep
quantitative results conservative. We have compared the
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results of our modeling to results from the simulations of
Ref. [21] and find qualitative agreement.

II. SATELLITE EVOLUTION

This study considers scenarios where DM particles of
mass m, interact via a light scalar/vector mediator of mass
my with coupling ap [38-40]. In the nonrelativistic limit,
elastic self-scattering is well described by a Yukawa
potential. When apm,/my < 2z, the cross section can

be calculated using the Born approximation,

do 0 sin @
E: 2 . 27 <1)
2[1 + :7s1n2 Q}
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(however see Ref. [41]) where oy = 4napm;/ m;,
w=my/m,, and v is the velocity difference between
interacting particles (o,, or oy, will be used as shorthand
for 6/m,, or 6(/m,, respectively; in all equations we use the
convention ¢ = 1). Satellites are useful probes of Eq. (1)
because interactions between satellite and host probe
velocities of order O(100) km/s, while interactions within
the satellite probe velocities of order O(10) km/s.

The three ingredients needed to properly model the
evolution of in-falling satellites are as follows.

A. Host and satellite density profiles

Thermalization and heat flow resulting from self-inter-
actions alter DM density profiles [42]. Any initially cuspy
halo will exhibit inward heat flow, resulting in a semistable
isothermal configuration within the region where SIDM
interactions are rapid. When baryons are unimportant, as is
typically the case for low-mass satellites, the density profile
develops a core at a radius r, and transitions to a Navarro-
Frenk-White (NFW) profile [43] beyond. We model the
enclosed mass of such a profile as

Mgipn(r) = Mg (r) - tanh <ri> , (2)

where Mypw(r) is the enclosed mass of an NFW profile
(with normalization p, and scale radius r,), the core radius
is defined as r. = min [0.5ry, r,], and ry is the radius below
which interactions occur at least once within the age of
the halo (see Appendix A for details). This form of the
enclosed mass has an analytical solution for the density
profile [found by differentiating Eq. (2)] and also has the
same total enclosed mass at r > r. as that of an NFW
profile with the same p, and r,. For a MW-like host, the
presence of baryons leads to a cuspy profile that resembles
an NFW profile with scale radius r, [44,45]. We model
such profiles, as well as profiles for a CDM model, as NFW
profiles. The results of this study do not include the effects
of the MW’s stellar disk on subhalos [20,23,24,46,47],

which requires a more sophisticated treatment. We can
include the impact of an additional spherical potential (to
partially mimic the stellar disk for the assumed orbits), but
we find that its effects are small—see additional discussion
below and in Appendix C. We expect that the bound
derived in Sec. III C will be more stringent when all the
relevant physics is included.

This semistable configuration with an isothermal core
does not remain intact indefinitely. Eventually, heat flow
changes direction, transferring heat outward. Because the
core has negative specific heat, this results in a runaway
gravothermal collapse process whereby the core heats up
and shrinks simultaneously [32]. An important distinction
should be made between the case when the SIDM mean
free path is either longer (LMFP) or shorter (SMFP) than
the Jeans length of the core. In the LMFP regime, heat
escapes efficiently from the core and the timescale for
gravothermal collapse is fgc = 290/((6,,0)Pcore)s Where
Peore 18 the core density [32] (tidal stripping can signifi-
cantly shorten fgc by enhancing the rate of heat flow
[12,36]). In this phase, the density profile has a shrinking
core radius r.. Outside r., the density decreases approx-
imately as #~>!° and transitions to the NFW profile when
r 2 ry [32] for isolated halos. In the SMFP regime, heat
gets trapped in the core and collapse occurs much more
rapidly. Importantly, gravothermal collapse in the LMFP
regime cannot produce arbitrarily large densities at a given
radius because the evolution of the profile is such that the
core density increases while the core size shrinks. To model
the scenario of a halo that initially thermalizes and cores
below r, and eventually undergoes collapse in the LMFP
regime, we use a phenomenological profile of the form

B Po _ ‘
pac(r) = (r/rge)*(1+ r/rGC)3‘“tanh <min[rc, ch]> ’
3)

where a =2.19 and rgc =2r; (see Appendix A for
details).

B. Mass loss

Satellite mass loss occurs predominantly via tidal strip-
ping and ram-pressure evaporation. The former is a result of
host tidal forces that strip material from the satellite, located
at position r. These forces are efficient above the tidal
radius Z, (measured from the satellite’s center),

)

where mg,(£) and M. (r) are the satellite and host
enclosed masses, respectively, and g(r) accounts for both
the tidal force and centrifugal force acting on the satellite,
as described in Eq. (A6) of Appendix A [48,49]. The
approximate mass-loss rate resulting from tidal stripping is
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Satellite evolution around a 1012MO host. Left: time evolution of satellite mass (bottom) and radial position (top), assuming

Mipy = 10'°M g, for CDM (dashed) and SIDM with initial isothermal cores (solid). The SIDM parameters {c;,,,®} correspond to
Comal = 14 cm?/g, 160 km/s}, orpg = {25 cm?/g,315 km/s}, and ogpg = {125 cm?/g,315 km/s}. We contrast results for an
eccentric orbit with pericenter rye,; =~ 20 kpc with that of r,.; =~ 45 kpc. Relative to CDM, SIDM results in increased mass loss,
especially in the case of more radial orbits. Right: comparison of satellite mass loss in various scenarios. Initial satellite masses are
considered in the range m;; € [10°,10'%3]M corresponding to the width of each band. Satellites are placed on orbits with varying
pericenters and evolved for one pericentric passage. The ratio of final to initial mass is given on the horizontal axis; the four bands
correspond to CDM, 6,1, 015, and ogpg. The inset shows the velocity dependence of the transfer cross section for each SIDM scenario.

msat(> ft)

mTS ~ —A
tdyn<r)

: (5)

where A = 0.55 [50], mg (> [;) = mgy — mg(4,), and
tagn(r) is the dynamical time [51]. The tidal radius is
strongly dependent on the satellite’s density profile.
Comparing a cored SIDM to an NFW profile, one finds
that, when ¢, < r,, the tidal radius shrinks rapidly for
SIDM, resulting in more efficient tidal stripping compared
to CDM.

Ram-pressure evaporation (RPE) is the result of host-
satellite DM interactions. For any scattering event, if a
particle’s final velocity is larger than the escape velocity of
the satellite v., the particle evaporates. The resulting
mass-loss rate is

’/hRPE R —Mgath ¢ O m VsatPhost> (6)
where v, is the satellite’s velocity relative to the host, pyq
is the DM density of the host at position r, and 7, is the
O(1) evaporation fraction [30]. For cases of interest, most
host-satellite scattering events result in evaporation and the
evaporation fraction is just unity, n, ~ 1.

C. Orbits

Assuming that the satellite is not significantly deformed
by tidal forces and treating it as a point, the orbit is obtained
by evaluating the equation of motion,

a, = —V® + apg + agpq, (7)

where @ is the gravitational potential of the host, apg is the
acceleration due to dynamical friction [52] (modeled using
the Chandrasekhar formula), and agpq is the acceleration
due to ram pressure. The latter arises from momentum
transfer to the satellite from host-satellite SIDM scatterings
and is given by

aArpg N —V140 5 VsatPhost» (8)

where 7, is the deceleration fraction [30] [see Eq. (A13) and
discussion around it]. When v, is of order the virial velocity
of the host, 5, decreases rapidly as 17; o (Vese/Vgy)>. Thus,
work done by ram-pressure deceleration is only comparable
to dynamical friction for large o,, and w (see Fig. 5). Full
details are provided in Appendix A.

III. RESULTS

A. Orbit-mass relations

Figure 1 (bottom left) demonstrates the mass evolution
of a 10'°M , satellite for different DM model assumptions.
The satellite is initialized at the virial radius and virial
velocity of a 10'2M, host at z = 1, and two classes of
orbits (with differing initial angular momenta) are consid-
ered with pericenters at ry.; ~ 20 and 45 kpc (the top panel
shows the satellites’ radial positions rg, as functions of
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time). Dashed curves show results for CDM, while solid
curves show results for three different sets of SIDM
parameters, denoted as oy, 015, and ogpg (defined in
the caption). o, gives results that are similar to CDM.
For o1g, tidal stripping effects are more important for SIDM
than for CDM. For ogpg, the ram-pressure evaporation rate
strongly exceeds that of tidal stripping. Generally, satellite
mass loss is more pronounced for SIDM than CDM,
especially for larger interaction cross sections and more
eccentric orbits.

The example of ogpg is particularly noteworthy. After its
first pericentric passage, ~80% of the satellite’s mass is
removed. The primary difference relative to oy, and o is
that mass loss due to ram-pressure evaporation dominates
over tidal stripping, enhancing even further the difference
between CDM and SIDM. While the latter preferentially
removes mass from the outermost regions of the galaxy, the
former has a more noticeable impact on its inner regions.
This suggests that one can use observations of dwarf
galaxies with low pericenters and high central densities
to constrain SIDM.

We estimate the effects of the MW’s stellar disk on
the tidal stripping rate by reproducing Fig. 1 (left) with the
inclusion of a 10" M, point mass at the MW’s center. The
result is shown in Fig. 7. For the three reference cross
sections, the mass-loss difference is of order 10% or less of
Mg, (0). We defer a detailed analysis of these effects to
future work.

Figure 1 (right) demonstrates in more detail how mass
loss over one pericentric passage varies as a function of
the SIDM parameters, the initial satellite mass m;,;,, and
the pericentric radius rp.;. Such results can potentially be
used to infer microscopic properties of DM from obser-
vations such as the distribution of satellites around their
hosts. The four bands correspond to CDM (dashed) and
the three SIDM cross sections of the left panel (solid).
From right to left across each band, the initial masses span
Minie € [10°,10'3]M . The results show that tidal strip-
ping is more effective at creating differences between
SIDM and CDM for larger mass satellites with smaller
pericenters. The reason for this is twofold. First, the more
massive a satellite, the more dynamical friction it expe-
riences, causing its pericenter to decrease. Second, more
massive satellites have larger values of r., which further
enhance tidal stripping. For ogpg, a sizable difference is
already observed for large pericenters and for small
pericenters the difference is dramatic, with SIDM satel-
lites losing large fractions of their mass.

B. SIDM parameter space

In Fig. 2, we build a conceptual map in SIDM parameter
space showing where various mechanisms dominate a
satellite’s evolution. Colored areas demarcate regions of
interest for satellites with my,;, € [10°,10'°]M orbiting
about a 10'2M, host. The concentration of each satellite
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FIG. 2. Schematic diagram showing regions in SIDM param-
eter space where particular effects dominate in affecting a
satellite’s mass-loss evolution within the initial mass range
minie € [10°,10'9]M and for the orbital parameters as in the
Iperi & 20 kpc examples in Fig. 1. White regions indicate param-
eters where not all satellites in the mass range fall into a given
category. In the red region, there is little observable difference in
mass loss between CDM versus SIDM. In the blue region tidal
stripping (TS) is more effective in SIDM than in CDM, causing
faster mass removal from the outskirts of SIDM satellites. In the
yellow region, ram-pressure evaporation dominates over tidal
stripping for SIDM satellites, causing efficient mass removal
from central regions. In the pink and green regions, gravothermal
collapse becomes relevant either in the long or short mean free
path regimes for isolated satellites; to the left of these regions, the
collapse timescale can be reduced due to tidal stripping. Also
shown in gray are curves relevant for a dark sector populated by
thermal freeze-out of yy — ¢¢. Above the dashed curve, the
Born approximation holds for a scenario where ay, is fixed to give
the correct dark matter thermal abundance. The dot-dashed

curves correspond to example values for m, and m.

corresponds to the best-fit concentration-mass relation of
Ref. [53] at z = 1 under the assumption that this relation
approximately holds for SIDM cross sections considered in
this study (see Ref. [54] and discussion in the Appendix B).
The comparison between SIDM and CDM is done by
averaging the mass loss over the last 2.5 of 7 Gyr orbits.

In the red region, the ratio of mass loss between SIDM
and CDM is less than 5% and little difference is expected
in satellite distributions. In the blue region, tidal stripping
removes more mass from an SIDM satellite than from its
CDM counterpart. Here, ram-pressure evaporation is small
and therefore most mass is lost on the outskirts of the
satellite. In the yellow region, ram-pressure evaporation in
SIDM dominates over tidal stripping, and significant mass
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loss is expected from the centers of SIDM satellites.
These results differ from those in Ref. [13], which found
that satellites are preferentially destroyed in SIDM halos
solely because of ram pressure. This could potentially be
explained by the fact that Ref. [13] used DM-only
simulations with cored hosts (that have ~35% less mass
below ~10 kpc compared to their CDM counterpart),
thereby reducing the effects of tidal stripping for satellites
with small enough pericenters.

In the pink region, the gravothermal collapse timescale
for an isolated halo is short, tgc < 10 Gyr. The green
region within the pink denotes parameters for which the
MFP is shorter than the Jeans length of the core and
collapse occurs in the rapid SMFP regime. In both, tidal
stripping and ram-pressure evaporation remain active, but
calculating their effects requires accounting for the initially
collapsed halo. A caveat to this is that, even to the left of the
pink region, where fg¢c for an isolated halo is long, tidal
stripping can significantly decrease its value. Therefore, the
pink region should be thought of as parameters where
LMFP gravothermal collapse can occur for isolated satel-
lites before infall or with large pericenters.

A version of Fig. 2 including the effects of a point mass
of 101" M, (a proxy for the MW’s stellar disk) is available
in Appendix C, Fig. 8. We find that the addition of this
mass changes the results of the figure by a small amount,
mostly increasing the area of the blue region and decreasing
the area of the red region.

C. Constraints from dwarf galaxy measurements

A clear understanding of the orbital effects that dominate
for different ¢, and w is critical for testing SIDM. We
provide a proof-of-concept example of how to perform
such tests by using the central density of the Draco dwarf
galaxy (Fig. 3), as well as those of Ursa Minor, Segue 1,
and Tucana 2 (Fig. 4). These constraints rely on each
dwarf’s central density measurement, which are provided
in Table 1.

There are two constraints that can be obtained using
dwarf galaxies with particularly high central densities. The
first (“isothermal-coring constraint”) arises when self-
interactions reduce the central density of the dwarf galaxy
too much in a region of parameter space where gravother-
mal collapse is not possible. The second (“ram-pressure
constraint”) is a bound that arises from the potential of ram-
pressure evaporation to remove too much mass from the
interior of the dwarf galaxy. Precise details of how these
constraints are conservatively placed are provided in
Appendix B.

The first bound, shown as the leftmost dark blue region
in Fig. 3, arises from the requirement that heating of
the core not reduce Draco’s present-day central density
(at 150 pc) p1so by more than 20 below its measured
value [11]. To obtain a conservative estimate of this bound,
we marginalize over the unknown present-day mass of
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FIG. 3. Conservative constraints based on measurements
of Draco’s central density, which arise from overcoring of
an isothermal SIDM profile (leftmost dark blue region) and
excessive mass removal from ram-pressure evaporation (right-
most dark blue region), shown for the 26 lower limit on the
measurement of p;so for Draco. Also shown are existing
95% confidence-level bounds from galaxy groups (brown) and
clusters (yellow) [55].

Draco by choosing the value that gives the largest central
density at every point in parameter space. We also take the
20 upper limit for Draco’s concentration at z = 1, which
corresponds to the weakest constraint; we have verified that
choosing a larger redshift produces a less conservative
result. Finally, we require that 7gc is too long for grav-
othermal collapse to be active, even when tidal stripping
effects are included. In the limit of constant interaction
cross section, these results are consistent with Ref. [8],
albeit slightly weaker due to our conservative assumptions.
A careful understanding of the role of gravothermal
collapse in this region of parameter space enables us to
extend the bounds to lower velocity scales compared
to Ref. [8].

The second bound, shown as the rightmost dark blue
region in Fig. 3, arises in regimes where ram-pressure
evaporation removes too much mass from the central
regions of Draco during its most recent pericentric passage.
Draco’s orbit is calculated from its measured position and
velocity [60]. To conservatively estimate the bound, an
initially fully gravothermally collapsed halo is taken, with
a core radius that gives the maximal possible density at
150 pc, where Draco’s density is measured. The inner
(outer) dashed curves correspond to the 1o lower (upper)
limit on the MW mass, My = (1.34+0.3) x 10"2M [61].
It should be noted that there are additional uncertainties (of
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FIG. 4. Constraints similar to those of Fig. 3 for three additional systems: the classical dwarf Ursa Minor and the ultrafaint dwarfs
Segue 1 and Tucana 2. For completeness, the Draco bound is shown here as well. For these constraints, the 1o lower limit on
measurements of p ;5 or py /, are used. Note that the Draco bound shown here takes the 1o lower limit on the measured p, 5, whereas that
in Fig. 3 takes the 20 lower limit. Also shown in dashed gray are existing 95% confidence-level bounds from galaxy groups and

clusters [55].

similar order) associated with the orbit of Draco and other
MW satellites [2,60]. Better measurements of the orbital
parameters would thus allow for a more robust constraint.
We only evolve the satellite for one orbital period in order
to avoid complications such as changes in the orbit induced
by the Large Magellanic Cloud (LMC) or by time depend-
ence of the MW’s potential; allowing for two full orbits
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results in stronger bounds that happen to closely track the
outer dashed curve. It is likely that a full analysis will result
in ruling out additional high o, regions, however, our
analysis also reveals that core collapse can insulate against
that possibility. We note that the ram-pressure bound falls
within a parameter space region that is anyway constrained
by galaxy groups and clusters [55].
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The conservative bounds presented in this study identify
regions of SIDM parameter space where a dedicated
analysis of all MW dwarfs should have excellent sensi-
tivity. Indeed, we have derived bounds using Ursa Minor,
Segue 1, and Tucana 2, which are all consistent with each
other and shown in Fig. 4. For these results, we have used
the 1o lower limits on measurements of p,s, for Draco and
Ursa Minor and of p;, (the average central density within
the half-light radius of the galaxy) for Segue 1 and Tucana
2. The choice of 1o, as opposed to the 26 lower limit used
for the Draco bound in the main text, illustrates the strong
sensitivity of the isothermal coring bound to this choice.
This sensitivity is due to the fact that central densities of
an isothermal cored profile change slowly as oy, is varied.
The ram-pressure bounds are much less sensitive to small
variations in the measurement of pys or p; .

Figure 3 also shows bounds from groups and clusters
[55]. There exist comparable bounds from oscillations of
brightest cluster galaxies [62] and a tighter bound from a
strong lensing analysis in cluster galaxies [63] with
possible connections to core collapse [64—-66]. Combined
with the cluster and group bounds, our results favor either a
velocity-dependent SIDM cross section that can trigger
core collapse or small cross sections which more closely
resemble CDM.

IV. CONCLUSIONS

This study provides quantitative and intuitive under-
standing of the SIDM physics that affects internal proper-
ties and distributions of satellites within a MW-like host.
The orbits of satellites with given initial masses, concen-
trations, and eccentricities were compared for different
velocity-dependent, anisotropic cross sections. This semi-
analytical approach is beneficial for identifying the
physical mechanisms that affect satellite orbits in differ-
ent regions of SIDM parameter space and should hold so
long as satellites are not significantly deformed along
their orbits.

We identified several key regimes of interest in SIDM
parameter space where particular mechanisms affect satel-
lite orbits. Additionally, we placed conservative constraints
on SIDM parameter space using measured central densities
of Draco, Ursa Minor, Segue 1, and Tucana 2, which all
provided consistent results. When combined with existing
constraints, our findings strongly argue for SIDM models
where velocity-dependent interactions can trigger gravo-
thermal collapse in at least some satellites. We find that
models with small cross sections are also allowed by our
restricted analysis of the MW satellites. However, these
models are essentially collisionless and we would catego-
rize them as CDM rather than SIDM.

The results of this work underscore how individual MW
satellites can provide remarkable sensitivity to velocity-
dependent DM self-interactions. We also anticipate that the
mass-loss and gravothermal collapse mechanisms studied

here may translate into potentially observable differences in
the population statistics of satellites. With the abundance of
observational data rapidly becoming available for both the
MW and other MW-like systems in the Local Group,
satellite galaxies will provide a critical—and potentially
definitive—exploration of the SIDM parameter space.
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APPENDIX A: DETAILED PROCEDURE FOR
SATELLITE ORBIT MODELING

As discussed in the main text, there are three key
ingredients required to model a satellite’s orbit in both
the CDM and SIDM cases. This appendix explores these
ingredients in detail, focusing on (a) the density profiles of
the satellite and host halos, (b) the formalism for describing
satellite mass loss from tidal stripping and ram-pressure
evaporation, and (c) the numerical method for solving the
equation of motion of the satellite.

We note that the modeling described below is meant to
capture only qualitative behavior of a satellite galaxy
orbiting a massive host. In particular, details such as tidal
tracks [67], effects related to shocking [68], and effects of
the host’s stellar content [20] are not incorporated in our
modeling. Additionally, our modeling does not account for
mass evolution of the host under the assumption that this
effect is small for the case of the Milky Way [69]. While
such effects could change quantitative results, the specific
changes to the constraints of Figs. 3 and 4 serve to shift
curves toward constraining more parameter space (or
moving them by a negligible amount) and therefore our
results remain conservative.

1. Host and satellite density profiles

The density profile for a CDM satellite or host, as well as
for a baryon-dominated SIDM host, is taken to be an NFW
profile [43]. The enclosed mass of this profile has the form

r+r r
M = dxp,ri |1 °) -
NEw (7) PoTs {n( s > rtr,

. @

where r; is the scale radius and p, is a normalization
density. SIDM satellite profiles that are not gravothermally
collapsed are modeled as Eq. (2). The density distributions
corresponding to Egs. (Al) and (2) can be found by
differentiating the formula for the enclosed mass and are
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initially truncated at the virial radius. For the SIDM profile,
the core density is 3/2 x por,/r..

Once the virial mass M, of the halo is specified, its
virial radius is determined by requiring that the average
halo density is 200 times the critical density, p.;(z). The
NFW scale radius then follows from the concentration-
mass relation in Ref. [53] (which also agrees with the
relations found in Refs. [70,71]), with p, obtained by
requiring that the enclosed mass at rpy, gives Moygy.
Although the concentration-mass relation was derived
for CDM, we assume that this relation approximately
holds or that possible variations to it do not have a large
effect for SIDM cross sections considered in this
study. Below ~1 cm?/g, this has been verified in simu-
lations [54]. At cross sections which are much larger (of
order 30 cm”/g and above) but below values for which
gravothermal collapse occurs, core sizes could potentially
be modified by such effects. Unless otherwise specified,
the concentration of the satellite galaxy is evaluated at
redshift z = 1, corresponding to the time of infall in our
examples. Note that, for the host halo specifically, we take
a concentration of ¢,5y = 10 and assume a total mass of
10"2M, at time of satellite infall, unless otherwise
specified. For the case of an NFW profile, this procedure
is all that is required to set the free parameters of the halo
model. For the SIDM profile, this procedure sets the
properties of the NFW profile before self-interactions heat
the central regions of the halo and the core forms. During
this process, some DM will be pushed out from the
innermost region of the halo. We have verified using
idealized N-body SIDM simulations and cosmological
FIRE-SIDM simulations [72] that the original NFW
profile provides a good description beyond r.,.

The value of the radius r| is approximated using the
following equation:

<6mv>pSIDM(rl)tage =1, (AZ)
where 7,,. is the age of the satellite. The velocity-averaged
transfer cross section (o,,v) is given by

(6,,0) = mi/f(vl)f(vz)v%(l —cos 0)d*v,d*v,d0,
P
(A3)

where v=v; —v, is the relative velocity, and € is
the scattering angle. This can be simplified to a single
integral over v. Note that the 1 — cos 8 weighting does not
suppress contributions from scattering events where the
two particles exchange velocities (6 ~ ), which would not
change the halo density profile. To take this into account,
other weights such as sin? @ (viscosity cross section) [73] or
(I —|cos@|) [74,75] have been proposed. Importantly, all
variations should reproduce the same (c,,v) for values of @

much larger than the typical velocity dispersion of the
satellite [up to O(1) factors]. Therefore, any such variations
will have small effects on our results since satellites have
typical dispersions of O(10) km/s, while we have consid-
ered @ 2 30 km/s. The (1 —|cos@|) weighted cross sec-
tion is about a factor of 2 smaller for w larger than the
dispersion of DM, while for small w the differences are
20%-30%. The sin” @ weighted cross section is different
from the 1 — cos(€) by 33% or less, depending on the value
of w. This O(1) systematic, which should be kept in mind
when interpreting our results, should be resolved in the
future with more simulations covering a range of w values.

In the equation above, f(v) is the Maxwell-Boltzmann
velocity distribution for the DM,

2
2n0y

(A4)

and o, is the root-mean-square velocity dispersion.
Assuming an isotropic velocity distribution, then 62 =362,
where the radial dispersion o, follows from the radial Jeans
equation,

) =L [T g ()

B psom(r) !

with v?(r) = GMgp\(r)/r. With r| obtained in the way
detailed above, we find that using r. = 0.5r; in Eq. (2)
provides an accurate fit to the SIDM profile obtained from
isothermal Jeans modeling or from idealized SIDM N-body
simulations. For cross sections of ¢,, = 1-20 cm?/g and
for t,,c = 1-10 Gyr, Eq. (2) with r. = 0.5r; agrees with
simulation results to percent level. For larger cross sections
that yield r; > r,, we find that setting r. = r, provides
better fits.

For certain ranges of parameter space, gravothermal
collapse can affect the density distribution of SIDM halos
and Eq. (2) no longer suffices. Gravothermally collapsed
profiles in the LMFP regime are modeled based on the
results of numerically solving for the self-similar solution
in Ref. [32]. In this regime, the solution for the gravo-
thermally collapsing region and its surroundings takes the
form of a flat core within a shrinking radius r.. Above this
radius, the density decreases as pgc o« r~>1° before tran-
sitioning to pnpw(r) above the radius r 2 rge. This
scenario is modeled by the profile given in Eq. (3). This
profile decreases as > when r > rgc, as ¥~ >1% when r, <
r < rgc and flattens out when r < r,, as would be expected
from a collapsing core in the LMFP regime. We have
verified that this density model is qualitatively similar to
what was found in SIDM simulations with collapsing halos
[31,36]. Note, however, that Ref. [14] finds a steeper single
power-law profile in the region outside the core of =3 for
satellites deep in the core-collapse phase. Such a change to
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the profile would mildly effect the ram-pressure bounds in
Figs. 3 and 4.

2. Mass loss

Satellite mass is lost in one of two ways. For both SIDM
and CDM scenarios, tidal stripping can remove mass from
the outskirts of the satellite. The tidal stripping mass-loss
rate is given by Eq. (5). The tidal radius Z, is calculated
with Eq. (4), with ¢g(r) now written explicitly [48,49],

1/3
, (A6)

ft ~r l msat(ft)/Mhost(r)

—_ dln Mhnsl vlzan (r)
2 dinr + v

rc(r)

where vy, (r) = |F X vy | is the instantaneous tangential

velocity of the satellite and v, (7) = / GMyog(7) /7 is its

circular velocity. The dynamical time is taken to be

; ( ) 3
r)=4|——mmm,
o 16Gppos (1)

where py. 18 the average density of the host within radius
r[51].

For SIDM satellites only, ram-pressure evaporation can
remove mass from all regions of the satellite. Ram-pressure
evaporation is calculated according to Eq. (6), with the
evaporation fraction given by

1 Gcril d()' X2 - 1

(A7)

(A8)

and x = Do/ Vg With vy the average escape velocity of
the satellite. The cross section ¢, in Eq. (6) is evaluated at a
velocity equal to the satellite’s velocity with respect to the
host plus the average escape velocity of the satellite, v =
Vgat + Dese [30]. The latter is a reasonable approximation
because host-satellite scattering events typically occur
close to the center of the satellite. In general, Dy /vy < |
for the cases of interest here, so this approximation is
sufficient even for scatterings that occur in the outer regions
of the satellite.

Knowing both the mass-loss rate from tidal stripping
and ram-pressure evaporation through Egs. (5) and (6), a
prescription can be established to track the total mass and
density profile of the satellite along its orbit. For any small
time step Ar = ¢ —1, the tidal stripping or ram-pressure
evaporation mass loss can be evaluated by

t/
Amrg/rpg = / s rpedl, (A9)
t

where Amqg/rpg are typically negative.

Any mass that is removed via tidal stripping is taken
away from the outermost region of the satellite halo. This is
modeled by defining a truncation radius that evolves over
time. At a given time step, the truncation radius is taken to
decrease from 7y 1O Fiune Such that the mass enclosed
between these radii is equal to Amg, namely,

(A10)

M(va r{runc) - M(Po, rtrunc) = Ast.

In contrast, mass that is removed via ram-pressure evapo-
ration is taken from all regions of the satellite by changing
the normalization of its density profile. This prescription
removes mass from regions of the halo in a fashion that is
linearly proportional to the local density at any given point.
The normalization is taken to change from py to p, such
that the mass difference is equal to Amgpg, namely,

(A11)

M(,Dé), rtrunc) - M(/)O’ rtrunc) = AmRPE-

If the velocity of the satellite is anomalously small, then
Amgpg can be positive, i.e., the satellite accretes mass.
Although this is possible, it is never the case for the
scenarios considered in this study.

3. Orbits

The evolution of the satellite’s orbit is obtained by
solving the equation of motion, Eq. (7). The dynamical
friction is modeled using the Chandrasekhar formula [52],

App = _4”G2msatphost In AFV(Usal) % ’ (A]Z)
sat

where the Coulomb logarithm is defined as InA =
min(s, 1]In (M /mg) and is calibrated to simulations
[47’76]» with s = (37‘ + rs,host)/(r + rs,host) and T's host
the scale radius of the host [51]. Assuming an isotropic
and Maxwellian host halo, then F,(vg) = erf(y)—
2ye™" /7 with y = v4/(v/26,), where o, is the radial
velocity dispersion of the host.

Ram-pressure deceleration, calculated according to
Eq. (8), can affect a satellite’s orbit, especially in regions
of large self-interaction cross sections. For vy, > v, the
deceleration fraction 7, is

1 do 1 (0o \2
= Ap.—df~— | =), Al3
fa mxvo/ p: do 2 (vsat) ( )

where Ap. is the change in momentum along the direction
of motion of the incoming particles. The velocity dispersion
vgisp Of interacting particles causes a further suppression of
na when vg < vgip. However, at pericenter (when the
effect is largest) the satellite’s velocity is larger than the
dispersions of both satellite and host, and the suppression
does not enter the calculation. Figure 5 compares the role of
ram-pressure deceleration to that of dynamical friction. The
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FIG. 5. Contours of the ratio of work done by ram-pressure

deceleration to the work done by dynamical friction over 7 Gyr
orbits for myy,;, = 10'%3M (the result is very weakly dependent
on myy,) and a 10'2M , host. In most of the parameter space, ram-
pressure deceleration plays a subdominant role in the orbital
evolution of satellites.

contours denote constant values of the ratio of work done
by ram pressure to that done by dynamical friction
Wrpa/Wpr over 7 Gyr orbits for a myy = 10'%3M
satellite orbiting a 10'2M, host. For most of the parameter
space considered, orbital decay from ram-pressure decel-
eration is highly subdominant to the effects of dynamical
friction and only for the largest cross sections considered
do the two forces produce comparable work. Although the
result is plotted only for a single satellite mass in Fig. 5, the
ratio Wgrpy/Wpp is only mildly dependent on m;,;. This
occurs because of a cancellation between the explicit mass
dependence of the dynamical friction force and the mass
dependence of the satellite’s escape velocity, which enters
the ram-pressure calculation.

To evaluate the equation of motion Eq. (7), one must
specify the initial conditions of the problem. In our case,
these are (a) the virial mass of the host halo, which sets the
NFW density profile through the concentration relation, and
(b) the initial density profile, position, and velocity of the
satellite. Additionally, one must specify the SIDM param-
eters {og,,, w}. The density profile of the host galaxy is
assumed to follow an NFW profile in all cases. For the
satellite, the initial profile depends on whether one is
considering a CDM, isothermally cored SIDM, or a grav-
othermally collapsing scenario. For the case of CDM, one
need only specify the mass of the halo, the scale radius is
then set through the concentration-mass relation. For the
isothermal cored SIDM scenario, after specifying the mass

and calculating the scale radius, one must also specify Z,g,
which sets r| through Eq. (A2). In this study, we always take
fage = 10 Gyr; this assumption is only relevant when r. has
not yet saturated r,, which only occurs when o, <
20 ¢cm? /g for the range of masses considered in this study.
After having specified these values, the evolution time is
divided into small time steps such that Az <74, and
slightly larger time steps AT = (20-30)Atz. At each At
interval, Amrg and Amgpg are calculated and r,,. and p
are updated accordingly. The orbit is reevaluated for every
AT interval using Eq. (7), taking the masses, density
profiles, positions, and velocities from the end of the
previous interval as the initial conditions. The larger AT
interval is introduced for computational simplicity. We
verify that the intervals are always small enough to have
a negligible effect on the results. The final result of the
calculation is the mass, density profile, position, and
velocity of the satellite at all times. Additionally, one can
sum over Amrg and Amgpg to evaluate the total mass lost to
tidal stripping and ram-pressure evaporation and perform
integrals over the dynamical friction and ram-pressure
deceleration to calculate the work done by these forces.

APPENDIX B: CONSTRAINTS FROM CENTRAL
DENSITIES OF DWARF GALAXIES

This appendix reviews in detail how to obtain
conservative SIDM constraints using the central density
of the Draco dwarf (Fig. 3) and the additional results for
Ursa Minor, Segue 1, and Tucana 2 (Fig. 4). These
constraints rely on present-day measurements of each
dwarf’s central density, which are provided in Table I.
Note that for Draco and Ursa Minor, we use p, 5, defined as
the density at 150 pc. For Segue 1 and Tucana 2, we use the
average central density p;, within r;,, the radius within
which half of the galaxy’s stellar luminosity is enclosed

TABLE 1. The central densities for Draco and Ursa Minor
correspond to the 1o lower limit on the measured p;s,, and for
Segue 1 and Tucana 2 correspond to the 1o lower limit on the
measured pj,. Note that in the main text the Draco bound
corresponds to the 2o lower limit. Also note that for Draco and
Ursa Minor, we use p;s, defined as the density at 150 pc. For
Segue 1 and Tucana 2, we use the average central density p;
within ry,, the radius within which half of the galaxy’s stellar
luminosity is enclosed (7, = 36 pc for Segue 1 [56] and 7/, =
165 pc for Tucana 2 [57]). We use the concentration-mass
relation from Ref. [53]. M, is the infall mass at z = 1.

Dwarf Central density

galaxy (10'Mg kpe™) My (M) ca0(z = 1)
Draco 16.65 [11] 1.8 x10% [58] 8.84+3.36
Ursa Minor 19.80 [11] 2.8x10° [58] 8.56+3.25
Segue 1 92.71 [56] 10° [59] 9.24 +3.52
Tucana 2 21.20 [57] 107 [59] 9.24 +3.52
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FIG. 6. NFW profile scale densities as a function of z and m, for varying distance from the median concentration-mass relation of
Ref. [53]. In all panels, the central density increases, or is approximately constant, with decreasing z for z < 2. Note that ¢, is a

function of both z and myq.

(ri =36 pc for Segue 1 [56] and ri/, = 165 pc for
Tucana 2 [57]).

The goal of this procedure is to estimate the potential of
dwarf observations in constraining SIDM parameter space.
Our approach is to make very conservative choices when it
comes to assumptions that feed into the central density
prediction. As already highlighted in the main text, the
results of this exercise demonstrate the important role
played by Milky Way dwarfs in constraining o, and o.
This motivates pursuing a more rigorous likelihood pro-
cedure in future work. For example, the conservative
constraints presented in this work can be improved by
performing a full Bayesian analysis that accounts for the
unknown parameters with well-motivated priors and appro-
priately stacks the contribution of each dwarf in the
likelihood procedure.

As discussed in the main text, there are two types of
constraints that can be obtained: a ram-pressure constraint
and an isothermal-coring constraint.

1. Ram-pressure constraint

To evaluate the impact of ram-pressure evaporation on
any given dwarf, we infer its density and concentration at
infall and initialize its energy and angular momentum given
present-day observations of the system and the central
density profile of the Milky Way. The orbit is then evolved
forward in time. Specifically:

(1) The infall mass of each satellite M5, is provided in
Table I. For the classical dwarfs, Draco and Ursa
Minor, the infall masses are taken from Ref. [58].
These infall masses are inferred from abundance
matching with mean star formation rates. For the
ultrafaint dwarfs, Segue 1 and Tucana 2, the infall
masses are taken to be 109M@, based on the
approximate upper limit of high resolution cosmo-
logical simulations with low stellar content [59].
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We assume here that infall properties and star
formation physics are not significantly modified
by self-interactions, but this remains to be tested
with simulations.

The initial density distribution for the satellite is
taken to be a fully gravothermally collapsed profile
following Eq. (3). Importantly, gravothermal col-
lapse in the LMFP regime cannot create arbitrarily
large densities at any given radius or arbitrarily large
average densities within any given radius. Specifi-
cally, below some minimal value, any additional
decrease in the core size will not affect p5q or py 5 of
the satellite. The value of r. is chosen such that this
maximal central density is achieved for each satel-
lite. For Draco and Ursa Minor, r. = 50 pc, for
Segue 1, r. =2 pc, and for Tucana 2, r. = 20 pc.
These choices correspond to the largest possible
initial conditions for the central density and are
therefore maximally conservative.

The satellite’s concentration ¢, at time of infall is
taken from the best-fit concentration-mass relation
of Ref. [53]. We conservatively evaluate the con-
centration at z = 1. The star formation histories of
Draco, Ursa Minor, Segue 1, and Tucana 2 suggest
that their infall times may be closer to z ~ 2 [77,78].
We have verified that increasing the infall redshift
decreases the initial central density of an NFW
profile and would thus strengthen the constraints.
Figure 6 shows this explicitly; we plot the NFW
profile scale density for varying values of halo mass,
redshift, and distance from the median concentra-
tion-mass relation of Ref. [53]. We note that, while
concentration-mass relation of Ref. [53] agrees with
Refs. [70,71], it differs from Ref. [79], and this is a
potential caveat to the arguments made above.

The scale radius of the satellite’s halo is determined
from its concentration and M, which sets the virial
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radius r,y, through the critical density p.;. Addi-
tionally, the overall normalization of the density
distribution p, is obtained by requiring that the
enclosed mass at ryg, gives the virial mass.

The satellite’s energy and angular momentum at
z = 0 is estimated using its present-day velocity and
position and the density profile of the Milky Way.
The observations are taken from Ref. [60] for Draco,
Ursa Minor, and Segue 1 and from Ref. [80] for
Tucana 2. The resulting values of pericenters for
each of the satellites are rp.; ~ 44 kpc for Draco,
Tperi ® 46 kpe for Ursa Minor, ryeq =~ 19 kpe for
Segue 1, and ryeq = 38 kpc for Tucana 2, which
are all slightly higher than the median estimates of
Ref. [2] but within the 20 error bands (smaller
pericenters would correspond to slightly stronger
constraints because ram-pressure evaporation would
become more significant).

The satellite’s orbit is obtained by placing it at some
(arbitrary) initial position and evolving forward in
time for one pericentric passage, using the approxi-
mate values for energy and angular momentum
determined in the previous step. This procedure
assumes that the energy and angular momentum
of the satellite at infall match its present-day values
and does not account for losses due to dynamical
friction and ram-pressure deceleration. While these
corrections are likely negligible for the O(10°)M,,
halos considered here, the choice of one pericentric
passage minimizes the potential impact of these
approximations. Additionally, the choice of a single
pericentric passage avoids issues related to gravo-
thermal collapse potentially occurring between
passages. The constraints would significantly

T — ;
1 1 1 [
b ] e 1
. b @ 9
v '&% Ofé 1 ‘3 Q =
108 U 9 n - g 12
F X %) ® e ' N é =
- \‘ @ 2 )(,)P 3 e Q
- . T g | B
VoL T e N T 5 E
= - . SO g q
w oS \ 7 A [ = S
- \‘-\: < N O 3 O o =
E CURRN \\ ‘@ R\ 2 S ..g
- R A ‘\’ s '@
jm— 3 Vs \ = I ®
3 \\ k. - ‘\'\.n],f/Q] R @ '@
k. T T R
I~ N b ¢;\ s = ‘\ : :
S~ N e Ty
107 - R D
L A T = Ilap TS J -l
R \Pio,\g (free N
AN he = ie\out)‘\ \.“ <
\\ \‘~ \\h \“
TSCOM~TSSIOM %,  *s..0 . N8
1 10 10? 10°
2
O-Om[cm /g]
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strengthen the more pericentric passages are
included, since more mass is removed from the
satellite during each of these.

After evolving for a single orbit, the central density
(either py50 or py /») is found and compared to the 20
lower limit from observations for results shown in
Fig. 3 and to the lo lower limit for results shown
in Fig. 4. If the predicted value is larger than the
observational lower limit, then the point in the
{60m, w} parameter space is excluded.

The calculation is performed for two different
Milky Way masses, 1 x 102 and 1.6 x 10'2M ,, which
correspond to the lower and upper 1o limits quoted
in Ref. [61].

2. Isothermal-coring constraint

To evaluate the impact of isothermal coring on any given
dwarf, we determine its density distribution at present day

while

requiring that gravothermal collapse has not yet

occurred. Specifically:

ey

2

043014-12

The density profile of the satellite is modeled by
Eq. (2). The halo is assumed to relax for
taee = 10 Gyr, which sets the value of r; following
Eq. (A2).

The central density of the profile depends on its
current mass mg, and on the value of r,. Because the
current mass of the satellite is not well constrained,
we evaluate the central density (either p;5o or py/;)
for a grid of masses. For a given value of mg,, the
concentration of the satellite is taken from the 2¢
upper limit of the concentration-mass relation from
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Ref. [53] at z = 1. Then, for every point in the
{6om, @} parameter space, we choose the value of
mg, for which the central density is largest, i.e., the
bound is weakest. We find that this value of m, is
always less than the infall masses quoted in Table I
and is around 107388M for the four satellites
considered in this study. These correspond to
conservative choices for the satellite mass and
concentration. The resulting value of the central
density is then compared to the 2¢ lower limit from
observations for results shown in Fig. 3 and to the
lo lower limit for results shown in Fig. 4. If the
predicted value is larger than the observational
lower limit, then the point in the {oy,,, @} param-
eter space is excluded. This sets the leftmost
contour of the isothermal-coring bound. An im-
portant point is that as the cross section increases,
the core size increases only until it reaches its
maximal value at around r. = r,. For larger cross
sections, the central density no longer decreases
but rather remains constant. Therefore, much of the
excluded parameter space is constrained at the
same confidence level.

The rightmost contour of the isothermal-coring
bound is set by the requirement that gravothermal
collapse be inactive. Specifically, we estimate the
gravothermal-collapse timescale fgc using [32]

290
Igc ~ < (B 1)

R 9
Om U>pcore

and require that 7 > 20 Gyr. This choice accounts
for potential shortening of 7gc through the effects
of tidal stripping, based on the results of Ref. [36].
For the velocity average, the dispersion is taken to
be 6, = 1.1 X v, /V/3, Where v,,,, is the maximal
circular velocity of the NFW profile at radius
Fmax > Te- This may be derived from the maximum
dispersion for an NFW halo max(v,y,s) using the
Taylor-Navarro [81] phase-space density Q(r)=
p(r)/yrms(r)3 = 0'3/(vaaxr12nax(r/rs)_n Wlth nzz
[82]. The median radial dispersion to v, ratio
plotted in Ref. [83] provides similar values (but
about 10% higher). In principle, the velocity average
for this calculation should weight correctly for
energy transfer and therefore has different powers
of vin Eq. (A3) [84]. However, for the reasons stated
above, such variations to the calculation only change
the result by O(1) for @ > o,. We have verified that
for w < o,, and with the assumption of weighting the
cross section by (v sin )2, the value of 7gc increases
such that constraints presented in this work are
conservative.

In the timescale defined above, p. is taken to be
the central density of the isothermal cored SIDM

profile, which should be interpreted as the mini-
mum core density in the evolution of the halo. Note
that since v o« v, and poe X po, this timescale
has the same dependence on the initial profile as
that in Ref. [36]. However, the timescale used here
is roughly a factor of 2 larger than that in Ref. [36],
which can be traced back to the choice of the LMFP
conductivity normalization used to get a fit to halo
profiles for moderate cross sections <10 cm?/g.
The formula used here for fgc is more consistent
with the evolution of the core density for large cross
sections [32,35]. We evaluate - for a grid of
masses in the range mg, € [10'My, Moy for
every point in the {o,,, ®} parameter space. The
constraints do not extend to points in parameter
space where fgc > 20 Gyr for any mass within
this range.

The final results for the classical dwarfs Draco and Ursa
Minor, as well as the ultrafaint dwarfs Segue 1 and Tucana
2, are provided in Figs. 3 and 4. The additional systems
complement the result for Draco in a number of ways. First,
Draco’s orbit has been shown to potentially be affected by
the LMC [60]. If this is the case, then a full analysis should
include the effects of Draco’s interactions with the halo of
the LMC and also account for the three-body orbit, both of
which are beyond the scope of this work. However, the
same study shows that Ursa Minor, which has a similar
central density to Draco, is far less affected by the LMC.
Specifically, the pericenter of Ursa Minor’s orbit is
expected to change far less when accounting for the
multibody orbit of the dwarf, LMC, and the Milky Way.
Second, Segue 1 and Tucana 2 are more DM dominated
than either Draco or Ursa Minor, and thus have a different
set of observational systematics. Finally, it is possible that
the large central densities of the objects considered in this
study could be the result of anomalously high concen-
trations, beyond even the 26 upper limit values used for
results where gravothermal collapse does not occur (26 was
chosen specifically because we consider some of the
densest known satellites of the Milky Way). If this is the
case, the constraints would weaken. However, the combi-
nation of all four analyses illustrates the point that a future
study of an ensemble of dwarfs will provide a robust
constraint on the SIDM parameter space.

APPENDIX C: SUPPLEMENTAL FIGURES

This section provides supplemental figures discussed in
the main text. These figures quantify the effects of a
spherical potential mimicking the MW’s stellar disk on
the mass removal rates of satellite galaxies considered in
this study. In particular, we reproduce Figs. 1 (left) and 2,
now including a point mass of 10'' M, (comfortably larger
than the baryonic mass of the MW) at the MW’s center. We
find that, for the orbits considered in this study, the results
change by about 10% or less of m(0). The nonspherical
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nature of the disk and the associated effects of tidal heating
and shocking are missing in this treatment. When these
effects are included, we expect that the central densities of

SIDM halos (that are not in the gravothermal core-collapse
phase) will be further lowered, thereby strengthening the
bounds we have derived.
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