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Dark matter self-interactions can leave distinctive signatures on the properties of satellite galaxies around
Milky Way–like hosts through their impact on tidal stripping, ram pressure, and gravothermal collapse. We
delineate the regions of self-interacting dark matter parameter space—specified by interaction cross section
and a velocity scale—where each of these effects dominates and show how the relative mass loss depends
on the satellite’s initial mass, density profile, and orbit. We obtain novel, conservative constraints in this
parameter space using Milky Way satellite galaxies with notably high central densities and small pericenter
distances. Our results for self-interacting dark matter models, in combination with constraints from clusters
of galaxies, favor either velocity-dependent cross sections that lead to gravothermal core collapse in the
densest satellites or small cross sections which more closely resemble cold and collisionless dark matter.
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I. INTRODUCTION

Current observational efforts are characterizing proper-
ties of satellite galaxies orbiting the Milky Way (MW) [1,2]
and other hosts [3,4]. This wealth of new data provides an
exciting opportunity to test the evolution of small-scale
structure in self-interacting dark matter (SIDM) [5–18], as
compared to cold dark matter (CDM) [19–24]. SIDM arises
generically in many theories [25] and is well motivated
from an astrophysical standpoint [26–29]. In this study, we
present a first analysis of the impact of velocity-dependent,
anisotropic scattering between dark matter (DM) particles
on the orbits of satellite galaxies.
For CDM, many ingredients affect satellite orbits

including initial positions and velocities, as well as initial
masses and concentrations, which affect mass loss due to
tidal forces and orbital decay due to dynamical friction.
For SIDM, these continue to play a role, while mass
removal and momentum transfer from DM ram pressure
also impact the evolution [30]. The density profile of an
SIDM satellite is also critical to its evolution. The
presence of a constant density, quasistable, isothermal
core can increase the amount of mass that is tidally
removed [7]. This core can also undergo gravothermal
collapse with a timescale that depends on various factors.

High concentration satellites collapse faster [12,31], with
tidal stripping [11] and high cross sections [10] accel-
erating this process. The collapse can dramatically
increase the central densities of satellites [12,14,31–36],
which may be necessary for SIDM to be consistent with
inferred densities of ultrafaint dwarfs [10,12,37].
We perform a conceptual analysis using semianalytical

orbit integration to map the consequences of SIDM on
satellite orbital evolution. In particular, the parameter space
for which mass loss in SIDM is dominated by either tidal
stripping or ram-pressure evaporation is identified. In the
former case, the signature is an overall mass reduction in
the satellite’s outer region, as compared to CDM. In the
latter case, ram-pressure evaporation also removes mass
from the satellite’s central regions, causing lower central
densities than would be expected for CDM. We also
identify regions where the effects of gravothermal collapse
are important. These findings motivate new observational
handles for testing SIDM.
We begin with an overview of modeling satellite

orbital evolution. We then discuss qualitative signatures
of SIDM on satellite distributions around MW-like
hosts. Building on this understanding, we set novel and
conservative SIDM constraints using measured properties
of MW dwarfs. The interested reader can find the precise
details of our modeling in the Appendices and should note
that effects not accounted for in our modeling do not
change any qualitative results of the study and keep
quantitative results conservative. We have compared the
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results of our modeling to results from the simulations of
Ref. [21] and find qualitative agreement.

II. SATELLITE EVOLUTION

This study considers scenarios where DM particles of
mass mχ interact via a light scalar/vector mediator of mass
mϕ with coupling αD [38–40]. In the nonrelativistic limit,
elastic self-scattering is well described by a Yukawa
potential. When αDmχ=mϕ ≪ 2π, the cross section can
be calculated using the Born approximation,

dσ
dθ

¼ σ0 sin θ

2
h
1þ v2

ω2 sin2 θ
2

i
2
; ð1Þ

(however see Ref. [41]) where σ0 ≡ 4πα2Dm
2
χ=m4

ϕ,
ω≡mϕ=mχ , and v is the velocity difference between
interacting particles (σm or σ0m will be used as shorthand
for σ=mχ or σ0=mχ, respectively; in all equations we use the
convention c ¼ 1). Satellites are useful probes of Eq. (1)
because interactions between satellite and host probe
velocities of order Oð100Þ km=s, while interactions within
the satellite probe velocities of order Oð10Þ km=s.
The three ingredients needed to properly model the

evolution of in-falling satellites are as follows.

A. Host and satellite density profiles

Thermalization and heat flow resulting from self-inter-
actions alter DM density profiles [42]. Any initially cuspy
halo will exhibit inward heat flow, resulting in a semistable
isothermal configuration within the region where SIDM
interactions are rapid. When baryons are unimportant, as is
typically the case for low-mass satellites, the density profile
develops a core at a radius rc and transitions to a Navarro-
Frenk-White (NFW) profile [43] beyond. We model the
enclosed mass of such a profile as

MSIDMðrÞ ¼ MNFWðrÞ · tanh
�
r
rc

�
; ð2Þ

where MNFWðrÞ is the enclosed mass of an NFW profile
(with normalization ρ0 and scale radius rs), the core radius
is defined as rc ¼ min ½0.5r1; rs�, and r1 is the radius below
which interactions occur at least once within the age of
the halo (see Appendix A for details). This form of the
enclosed mass has an analytical solution for the density
profile [found by differentiating Eq. (2)] and also has the
same total enclosed mass at r ≫ rc as that of an NFW
profile with the same ρ0 and rs. For a MW-like host, the
presence of baryons leads to a cuspy profile that resembles
an NFW profile with scale radius rs [44,45]. We model
such profiles, as well as profiles for a CDMmodel, as NFW
profiles. The results of this study do not include the effects
of the MW’s stellar disk on subhalos [20,23,24,46,47],

which requires a more sophisticated treatment. We can
include the impact of an additional spherical potential (to
partially mimic the stellar disk for the assumed orbits), but
we find that its effects are small—see additional discussion
below and in Appendix C. We expect that the bound
derived in Sec. III C will be more stringent when all the
relevant physics is included.
This semistable configuration with an isothermal core

does not remain intact indefinitely. Eventually, heat flow
changes direction, transferring heat outward. Because the
core has negative specific heat, this results in a runaway
gravothermal collapse process whereby the core heats up
and shrinks simultaneously [32]. An important distinction
should be made between the case when the SIDM mean
free path is either longer (LMFP) or shorter (SMFP) than
the Jeans length of the core. In the LMFP regime, heat
escapes efficiently from the core and the timescale for
gravothermal collapse is tGC ≈ 290=ðhσmviρcoreÞ, where
ρcore is the core density [32] (tidal stripping can signifi-
cantly shorten tGC by enhancing the rate of heat flow
[12,36]). In this phase, the density profile has a shrinking
core radius rc. Outside rc, the density decreases approx-
imately as r−2.19 and transitions to the NFW profile when
r≳ rs [32] for isolated halos. In the SMFP regime, heat
gets trapped in the core and collapse occurs much more
rapidly. Importantly, gravothermal collapse in the LMFP
regime cannot produce arbitrarily large densities at a given
radius because the evolution of the profile is such that the
core density increases while the core size shrinks. To model
the scenario of a halo that initially thermalizes and cores
below rc and eventually undergoes collapse in the LMFP
regime, we use a phenomenological profile of the form

ρGCðrÞ¼
ρ0

ðr=rGCÞαð1þ r=rGCÞ3−α
tanh

�
r

min½rc;rGC�
�

α

;

ð3Þ
where α ¼ 2.19 and rGC ¼ 2rs (see Appendix A for
details).

B. Mass loss

Satellite mass loss occurs predominantly via tidal strip-
ping and ram-pressure evaporation. The former is a result of
host tidal forces that strip material from the satellite, located
at position r. These forces are efficient above the tidal
radius lt (measured from the satellite’s center),

lt ≈ r

�
1

gðrÞ
msatðltÞ
MhostðrÞ

�
1=3

; ð4Þ

where msatðlÞ and MhostðrÞ are the satellite and host
enclosed masses, respectively, and gðrÞ accounts for both
the tidal force and centrifugal force acting on the satellite,
as described in Eq. (A6) of Appendix A [48,49]. The
approximate mass-loss rate resulting from tidal stripping is
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_mTS ≈ −A
msatð> ltÞ
tdynðrÞ

; ð5Þ

where A ¼ 0.55 [50], msatð> ltÞ≡msat −msatðltÞ, and
tdynðrÞ is the dynamical time [51]. The tidal radius is
strongly dependent on the satellite’s density profile.
Comparing a cored SIDM to an NFW profile, one finds
that, when lt ≲ rc, the tidal radius shrinks rapidly for
SIDM, resulting in more efficient tidal stripping compared
to CDM.
Ram-pressure evaporation (RPE) is the result of host-

satellite DM interactions. For any scattering event, if a
particle’s final velocity is larger than the escape velocity of
the satellite vesc, the particle evaporates. The resulting
mass-loss rate is

_mRPE ≈ −msatηeσmvsatρhost; ð6Þ

where vsat is the satellite’s velocity relative to the host, ρhost
is the DM density of the host at position r, and ηe is the
Oð1Þ evaporation fraction [30]. For cases of interest, most
host-satellite scattering events result in evaporation and the
evaporation fraction is just unity, ηe ≈ 1.

C. Orbits

Assuming that the satellite is not significantly deformed
by tidal forces and treating it as a point, the orbit is obtained
by evaluating the equation of motion,

atot ¼ −∇Φþ aDF þ aRPd; ð7Þ

where Φ is the gravitational potential of the host, aDF is the
acceleration due to dynamical friction [52] (modeled using
the Chandrasekhar formula), and aRPd is the acceleration
due to ram pressure. The latter arises from momentum
transfer to the satellite from host-satellite SIDM scatterings
and is given by

aRPd ≈ −vηdσmvsatρhost; ð8Þ

where ηd is the deceleration fraction [30] [see Eq. (A13) and
discussion around it].When vsat is of order the virial velocity
of the host, ηd decreases rapidly as ηd ∝ ðvesc=vsatÞ2. Thus,
work done by ram-pressure deceleration is only comparable
to dynamical friction for large σ0m and ω (see Fig. 5). Full
details are provided in Appendix A.

III. RESULTS

A. Orbit-mass relations

Figure 1 (bottom left) demonstrates the mass evolution
of a 1010M⊙ satellite for different DM model assumptions.
The satellite is initialized at the virial radius and virial
velocity of a 1012M⊙ host at z ¼ 1, and two classes of
orbits (with differing initial angular momenta) are consid-
ered with pericenters at rperi ≈ 20 and 45 kpc (the top panel
shows the satellites’ radial positions rsat as functions of

FIG. 1. Satellite evolution around a 1012M⊙ host. Left: time evolution of satellite mass (bottom) and radial position (top), assuming
minit ¼ 1010M⊙, for CDM (dashed) and SIDM with initial isothermal cores (solid). The SIDM parameters fσ0m;ωg correspond to
σsmall ¼ f4 cm2=g; 160 km=sg, σTS ¼ f25 cm2=g; 315 km=sg, and σRPE ¼ f125 cm2=g; 315 km=sg. We contrast results for an
eccentric orbit with pericenter rperi ≈ 20 kpc with that of rperi ≈ 45 kpc. Relative to CDM, SIDM results in increased mass loss,
especially in the case of more radial orbits. Right: comparison of satellite mass loss in various scenarios. Initial satellite masses are
considered in the range minit ∈ ½109; 1010.5�M⊙ corresponding to the width of each band. Satellites are placed on orbits with varying
pericenters and evolved for one pericentric passage. The ratio of final to initial mass is given on the horizontal axis; the four bands
correspond to CDM, σsmall, σTS, and σRPE. The inset shows the velocity dependence of the transfer cross section for each SIDM scenario.
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time). Dashed curves show results for CDM, while solid
curves show results for three different sets of SIDM
parameters, denoted as σsmall, σTS, and σRPE (defined in
the caption). σsmall gives results that are similar to CDM.
For σTS, tidal stripping effects are more important for SIDM
than for CDM. For σRPE, the ram-pressure evaporation rate
strongly exceeds that of tidal stripping. Generally, satellite
mass loss is more pronounced for SIDM than CDM,
especially for larger interaction cross sections and more
eccentric orbits.
The example of σRPE is particularly noteworthy. After its

first pericentric passage, ∼80% of the satellite’s mass is
removed. The primary difference relative to σsmall and σTS is
that mass loss due to ram-pressure evaporation dominates
over tidal stripping, enhancing even further the difference
between CDM and SIDM. While the latter preferentially
removes mass from the outermost regions of the galaxy, the
former has a more noticeable impact on its inner regions.
This suggests that one can use observations of dwarf
galaxies with low pericenters and high central densities
to constrain SIDM.
We estimate the effects of the MW’s stellar disk on

the tidal stripping rate by reproducing Fig. 1 (left) with the
inclusion of a 1011M⊙ point mass at the MW’s center. The
result is shown in Fig. 7. For the three reference cross
sections, the mass-loss difference is of order 10% or less of
msatð0Þ. We defer a detailed analysis of these effects to
future work.
Figure 1 (right) demonstrates in more detail how mass

loss over one pericentric passage varies as a function of
the SIDM parameters, the initial satellite mass minit, and
the pericentric radius rperi. Such results can potentially be
used to infer microscopic properties of DM from obser-
vations such as the distribution of satellites around their
hosts. The four bands correspond to CDM (dashed) and
the three SIDM cross sections of the left panel (solid).
From right to left across each band, the initial masses span
minit ∈ ½109; 1010.5�M⊙. The results show that tidal strip-
ping is more effective at creating differences between
SIDM and CDM for larger mass satellites with smaller
pericenters. The reason for this is twofold. First, the more
massive a satellite, the more dynamical friction it expe-
riences, causing its pericenter to decrease. Second, more
massive satellites have larger values of rc, which further
enhance tidal stripping. For σRPE, a sizable difference is
already observed for large pericenters and for small
pericenters the difference is dramatic, with SIDM satel-
lites losing large fractions of their mass.

B. SIDM parameter space

In Fig. 2, we build a conceptual map in SIDM parameter
space showing where various mechanisms dominate a
satellite’s evolution. Colored areas demarcate regions of
interest for satellites with minit ∈ ½109; 1010�M⊙ orbiting
about a 1012M⊙ host. The concentration of each satellite

corresponds to the best-fit concentration-mass relation of
Ref. [53] at z ¼ 1 under the assumption that this relation
approximately holds for SIDM cross sections considered in
this study (see Ref. [54] and discussion in the Appendix B).
The comparison between SIDM and CDM is done by
averaging the mass loss over the last 2.5 of 7 Gyr orbits.
In the red region, the ratio of mass loss between SIDM

and CDM is less than 5% and little difference is expected
in satellite distributions. In the blue region, tidal stripping
removes more mass from an SIDM satellite than from its
CDM counterpart. Here, ram-pressure evaporation is small
and therefore most mass is lost on the outskirts of the
satellite. In the yellow region, ram-pressure evaporation in
SIDM dominates over tidal stripping, and significant mass

FIG. 2. Schematic diagram showing regions in SIDM param-
eter space where particular effects dominate in affecting a
satellite’s mass-loss evolution within the initial mass range
minit ∈ ½109; 1010�M⊙ and for the orbital parameters as in the
rperi ≈ 20 kpc examples in Fig. 1. White regions indicate param-
eters where not all satellites in the mass range fall into a given
category. In the red region, there is little observable difference in
mass loss between CDM versus SIDM. In the blue region tidal
stripping (TS) is more effective in SIDM than in CDM, causing
faster mass removal from the outskirts of SIDM satellites. In the
yellow region, ram-pressure evaporation dominates over tidal
stripping for SIDM satellites, causing efficient mass removal
from central regions. In the pink and green regions, gravothermal
collapse becomes relevant either in the long or short mean free
path regimes for isolated satellites; to the left of these regions, the
collapse timescale can be reduced due to tidal stripping. Also
shown in gray are curves relevant for a dark sector populated by
thermal freeze-out of χχ → ϕϕ. Above the dashed curve, the
Born approximation holds for a scenario where αD is fixed to give
the correct dark matter thermal abundance. The dot-dashed
curves correspond to example values for mχ and mϕ.
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loss is expected from the centers of SIDM satellites.
These results differ from those in Ref. [13], which found
that satellites are preferentially destroyed in SIDM halos
solely because of ram pressure. This could potentially be
explained by the fact that Ref. [13] used DM-only
simulations with cored hosts (that have ∼35% less mass
below ∼10 kpc compared to their CDM counterpart),
thereby reducing the effects of tidal stripping for satellites
with small enough pericenters.
In the pink region, the gravothermal collapse timescale

for an isolated halo is short, tGC < 10 Gyr. The green
region within the pink denotes parameters for which the
MFP is shorter than the Jeans length of the core and
collapse occurs in the rapid SMFP regime. In both, tidal
stripping and ram-pressure evaporation remain active, but
calculating their effects requires accounting for the initially
collapsed halo. A caveat to this is that, even to the left of the
pink region, where tGC for an isolated halo is long, tidal
stripping can significantly decrease its value. Therefore, the
pink region should be thought of as parameters where
LMFP gravothermal collapse can occur for isolated satel-
lites before infall or with large pericenters.
A version of Fig. 2 including the effects of a point mass

of 1011M⊙ (a proxy for the MW’s stellar disk) is available
in Appendix C, Fig. 8. We find that the addition of this
mass changes the results of the figure by a small amount,
mostly increasing the area of the blue region and decreasing
the area of the red region.

C. Constraints from dwarf galaxy measurements

A clear understanding of the orbital effects that dominate
for different σ0m and ω is critical for testing SIDM. We
provide a proof-of-concept example of how to perform
such tests by using the central density of the Draco dwarf
galaxy (Fig. 3), as well as those of Ursa Minor, Segue 1,
and Tucana 2 (Fig. 4). These constraints rely on each
dwarf’s central density measurement, which are provided
in Table I.
There are two constraints that can be obtained using

dwarf galaxies with particularly high central densities. The
first (“isothermal-coring constraint”) arises when self-
interactions reduce the central density of the dwarf galaxy
too much in a region of parameter space where gravother-
mal collapse is not possible. The second (“ram-pressure
constraint”) is a bound that arises from the potential of ram-
pressure evaporation to remove too much mass from the
interior of the dwarf galaxy. Precise details of how these
constraints are conservatively placed are provided in
Appendix B.
The first bound, shown as the leftmost dark blue region

in Fig. 3, arises from the requirement that heating of
the core not reduce Draco’s present-day central density
(at 150 pc) ρ150 by more than 2σ below its measured
value [11]. To obtain a conservative estimate of this bound,
we marginalize over the unknown present-day mass of

Draco by choosing the value that gives the largest central
density at every point in parameter space. We also take the
2σ upper limit for Draco’s concentration at z ¼ 1, which
corresponds to the weakest constraint; we have verified that
choosing a larger redshift produces a less conservative
result. Finally, we require that tGC is too long for grav-
othermal collapse to be active, even when tidal stripping
effects are included. In the limit of constant interaction
cross section, these results are consistent with Ref. [8],
albeit slightly weaker due to our conservative assumptions.
A careful understanding of the role of gravothermal
collapse in this region of parameter space enables us to
extend the bounds to lower velocity scales compared
to Ref. [8].
The second bound, shown as the rightmost dark blue

region in Fig. 3, arises in regimes where ram-pressure
evaporation removes too much mass from the central
regions of Draco during its most recent pericentric passage.
Draco’s orbit is calculated from its measured position and
velocity [60]. To conservatively estimate the bound, an
initially fully gravothermally collapsed halo is taken, with
a core radius that gives the maximal possible density at
150 pc, where Draco’s density is measured. The inner
(outer) dashed curves correspond to the 1σ lower (upper)
limit on the MW mass, MMW ¼ð1.3�0.3Þ×1012M⊙ [61].
It should be noted that there are additional uncertainties (of

FIG. 3. Conservative constraints based on measurements
of Draco’s central density, which arise from overcoring of
an isothermal SIDM profile (leftmost dark blue region) and
excessive mass removal from ram-pressure evaporation (right-
most dark blue region), shown for the 2σ lower limit on the
measurement of ρ150 for Draco. Also shown are existing
95% confidence-level bounds from galaxy groups (brown) and
clusters (yellow) [55].

ORBITAL EVOLUTION OF SATELLITE GALAXIES IN SELF- … PHYS. REV. D 107, 043014 (2023)

043014-5



similar order) associated with the orbit of Draco and other
MW satellites [2,60]. Better measurements of the orbital
parameters would thus allow for a more robust constraint.
We only evolve the satellite for one orbital period in order
to avoid complications such as changes in the orbit induced
by the Large Magellanic Cloud (LMC) or by time depend-
ence of the MW’s potential; allowing for two full orbits

results in stronger bounds that happen to closely track the
outer dashed curve. It is likely that a full analysis will result
in ruling out additional high σ0m regions, however, our
analysis also reveals that core collapse can insulate against
that possibility. We note that the ram-pressure bound falls
within a parameter space region that is anyway constrained
by galaxy groups and clusters [55].

FIG. 4. Constraints similar to those of Fig. 3 for three additional systems: the classical dwarf Ursa Minor and the ultrafaint dwarfs
Segue 1 and Tucana 2. For completeness, the Draco bound is shown here as well. For these constraints, the 1σ lower limit on
measurements of ρ150 or ρ̄1=2 are used. Note that the Draco bound shown here takes the 1σ lower limit on the measured ρ150, whereas that
in Fig. 3 takes the 2σ lower limit. Also shown in dashed gray are existing 95% confidence-level bounds from galaxy groups and
clusters [55].
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The conservative bounds presented in this study identify
regions of SIDM parameter space where a dedicated
analysis of all MW dwarfs should have excellent sensi-
tivity. Indeed, we have derived bounds using Ursa Minor,
Segue 1, and Tucana 2, which are all consistent with each
other and shown in Fig. 4. For these results, we have used
the 1σ lower limits on measurements of ρ150 for Draco and
Ursa Minor and of ρ̄1=2 (the average central density within
the half-light radius of the galaxy) for Segue 1 and Tucana
2. The choice of 1σ, as opposed to the 2σ lower limit used
for the Draco bound in the main text, illustrates the strong
sensitivity of the isothermal coring bound to this choice.
This sensitivity is due to the fact that central densities of
an isothermal cored profile change slowly as σ0m is varied.
The ram-pressure bounds are much less sensitive to small
variations in the measurement of ρ150 or ρ̄1=2.
Figure 3 also shows bounds from groups and clusters

[55]. There exist comparable bounds from oscillations of
brightest cluster galaxies [62] and a tighter bound from a
strong lensing analysis in cluster galaxies [63] with
possible connections to core collapse [64–66]. Combined
with the cluster and group bounds, our results favor either a
velocity-dependent SIDM cross section that can trigger
core collapse or small cross sections which more closely
resemble CDM.

IV. CONCLUSIONS

This study provides quantitative and intuitive under-
standing of the SIDM physics that affects internal proper-
ties and distributions of satellites within a MW–like host.
The orbits of satellites with given initial masses, concen-
trations, and eccentricities were compared for different
velocity-dependent, anisotropic cross sections. This semi-
analytical approach is beneficial for identifying the
physical mechanisms that affect satellite orbits in differ-
ent regions of SIDM parameter space and should hold so
long as satellites are not significantly deformed along
their orbits.
We identified several key regimes of interest in SIDM

parameter space where particular mechanisms affect satel-
lite orbits. Additionally, we placed conservative constraints
on SIDM parameter space using measured central densities
of Draco, Ursa Minor, Segue 1, and Tucana 2, which all
provided consistent results. When combined with existing
constraints, our findings strongly argue for SIDM models
where velocity-dependent interactions can trigger gravo-
thermal collapse in at least some satellites. We find that
models with small cross sections are also allowed by our
restricted analysis of the MW satellites. However, these
models are essentially collisionless and we would catego-
rize them as CDM rather than SIDM.
The results of this work underscore how individual MW

satellites can provide remarkable sensitivity to velocity-
dependent DM self-interactions. We also anticipate that the
mass-loss and gravothermal collapse mechanisms studied

here may translate into potentially observable differences in
the population statistics of satellites. With the abundance of
observational data rapidly becoming available for both the
MW and other MW–like systems in the Local Group,
satellite galaxies will provide a critical—and potentially
definitive—exploration of the SIDM parameter space.
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APPENDIX A: DETAILED PROCEDURE FOR
SATELLITE ORBIT MODELING

As discussed in the main text, there are three key
ingredients required to model a satellite’s orbit in both
the CDM and SIDM cases. This appendix explores these
ingredients in detail, focusing on (a) the density profiles of
the satellite and host halos, (b) the formalism for describing
satellite mass loss from tidal stripping and ram-pressure
evaporation, and (c) the numerical method for solving the
equation of motion of the satellite.
We note that the modeling described below is meant to

capture only qualitative behavior of a satellite galaxy
orbiting a massive host. In particular, details such as tidal
tracks [67], effects related to shocking [68], and effects of
the host’s stellar content [20] are not incorporated in our
modeling. Additionally, our modeling does not account for
mass evolution of the host under the assumption that this
effect is small for the case of the Milky Way [69]. While
such effects could change quantitative results, the specific
changes to the constraints of Figs. 3 and 4 serve to shift
curves toward constraining more parameter space (or
moving them by a negligible amount) and therefore our
results remain conservative.

1. Host and satellite density profiles

The density profile for a CDM satellite or host, as well as
for a baryon-dominated SIDM host, is taken to be an NFW
profile [43]. The enclosed mass of this profile has the form

MNFWðrÞ ¼ 4πρ0r3s

�
ln

�
rþ rs
rs

�
−

r
rþ rs

�
; ðA1Þ

where rs is the scale radius and ρ0 is a normalization
density. SIDM satellite profiles that are not gravothermally
collapsed are modeled as Eq. (2). The density distributions
corresponding to Eqs. (A1) and (2) can be found by
differentiating the formula for the enclosed mass and are
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initially truncated at the virial radius. For the SIDM profile,
the core density is 3=2 × ρ0rs=rc.
Once the virial mass M200 of the halo is specified, its

virial radius is determined by requiring that the average
halo density is 200 times the critical density, ρcritðzÞ. The
NFW scale radius then follows from the concentration-
mass relation in Ref. [53] (which also agrees with the
relations found in Refs. [70,71]), with ρ0 obtained by
requiring that the enclosed mass at r200 gives M200.
Although the concentration-mass relation was derived
for CDM, we assume that this relation approximately
holds or that possible variations to it do not have a large
effect for SIDM cross sections considered in this
study. Below ∼1 cm2=g, this has been verified in simu-
lations [54]. At cross sections which are much larger (of
order 30 cm2=g and above) but below values for which
gravothermal collapse occurs, core sizes could potentially
be modified by such effects. Unless otherwise specified,
the concentration of the satellite galaxy is evaluated at
redshift z ¼ 1, corresponding to the time of infall in our
examples. Note that, for the host halo specifically, we take
a concentration of c200 ¼ 10 and assume a total mass of
1012M⊙ at time of satellite infall, unless otherwise
specified. For the case of an NFW profile, this procedure
is all that is required to set the free parameters of the halo
model. For the SIDM profile, this procedure sets the
properties of the NFW profile before self-interactions heat
the central regions of the halo and the core forms. During
this process, some DM will be pushed out from the
innermost region of the halo. We have verified using
idealized N-body SIDM simulations and cosmological
FIRE-SIDM simulations [72] that the original NFW
profile provides a good description beyond rc.
The value of the radius r1 is approximated using the

following equation:

hσmviρSIDMðr1Þtage ¼ 1; ðA2Þ

where tage is the age of the satellite. The velocity-averaged
transfer cross section hσmvi is given by

hσmvi ¼
1

mχ

Z
fðv1Þfðv2Þv

dσ
dθ

ð1 − cos θÞd3v1d3v2dθ;

ðA3Þ

where v≡ v1 − v2 is the relative velocity, and θ is
the scattering angle. This can be simplified to a single
integral over v. Note that the 1 − cos θ weighting does not
suppress contributions from scattering events where the
two particles exchange velocities (θ ≃ π), which would not
change the halo density profile. To take this into account,
other weights such as sin2 θ (viscosity cross section) [73] or
ð1 − j cos θjÞ [74,75] have been proposed. Importantly, all
variations should reproduce the same hσmvi for values of ω

much larger than the typical velocity dispersion of the
satellite [up toOð1Þ factors]. Therefore, any such variations
will have small effects on our results since satellites have
typical dispersions of Oð10Þ km=s, while we have consid-
ered ω≳ 30 km=s. The ð1 − j cos θjÞ weighted cross sec-
tion is about a factor of 2 smaller for w larger than the
dispersion of DM, while for small w the differences are
20%–30%. The sin2 θ weighted cross section is different
from the 1 − cosðθÞ by 33% or less, depending on the value
of w. This Oð1Þ systematic, which should be kept in mind
when interpreting our results, should be resolved in the
future with more simulations covering a range of w values.
In the equation above, fðvÞ is the Maxwell-Boltzmann

velocity distribution for the DM,

fðvÞ ¼
�

3

2πσ2v

�
3=2

e−3v
2=2σ2v ðA4Þ

and σv is the root-mean-square velocity dispersion.
Assuming an isotropic velocity distribution, then σ2v¼3σ2r ,
where the radial dispersion σr follows from the radial Jeans
equation,

σ2rðrÞ ¼
1

ρSIDMðrÞ
Z

∞

r

ρSIDMðr0Þv2ðr0Þ
r0

dr0; ðA5Þ

with v2ðrÞ ¼ GMSIDMðrÞ=r. With r1 obtained in the way
detailed above, we find that using rc ¼ 0.5r1 in Eq. (2)
provides an accurate fit to the SIDM profile obtained from
isothermal Jeans modeling or from idealized SIDMN-body
simulations. For cross sections of σm ¼ 1–20 cm2=g and
for tage ¼ 1–10 Gyr, Eq. (2) with rc ¼ 0.5r1 agrees with
simulation results to percent level. For larger cross sections
that yield r1 > rs, we find that setting rc ¼ rs provides
better fits.
For certain ranges of parameter space, gravothermal

collapse can affect the density distribution of SIDM halos
and Eq. (2) no longer suffices. Gravothermally collapsed
profiles in the LMFP regime are modeled based on the
results of numerically solving for the self-similar solution
in Ref. [32]. In this regime, the solution for the gravo-
thermally collapsing region and its surroundings takes the
form of a flat core within a shrinking radius rc. Above this
radius, the density decreases as ρGC ∝ r−2.19 before tran-
sitioning to ρNFWðrÞ above the radius r≳ rGC. This
scenario is modeled by the profile given in Eq. (3). This
profile decreases as r−3 when r ≫ rGC, as r−2.19 when rc <
r < rGC and flattens out when r < rc, as would be expected
from a collapsing core in the LMFP regime. We have
verified that this density model is qualitatively similar to
what was found in SIDM simulations with collapsing halos
[31,36]. Note, however, that Ref. [14] finds a steeper single
power-law profile in the region outside the core of r−3 for
satellites deep in the core-collapse phase. Such a change to
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the profile would mildly effect the ram-pressure bounds in
Figs. 3 and 4.

2. Mass loss

Satellite mass is lost in one of two ways. For both SIDM
and CDM scenarios, tidal stripping can remove mass from
the outskirts of the satellite. The tidal stripping mass-loss
rate is given by Eq. (5). The tidal radius lt is calculated
with Eq. (4), with gðrÞ now written explicitly [48,49],

lt ≃ r

"
msatðltÞ=MhostðrÞ
2 − d lnMhost

d ln r þ v2tanðrÞ
v2circðrÞ

#
1=3

; ðA6Þ

where vtanðrÞ ¼ jr̂ × vsatj is the instantaneous tangential
velocity of the satellite and vcircðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMhostðrÞ=r2

p
is its

circular velocity. The dynamical time is taken to be

tdynðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3π

16Gρ̄hostðrÞ

s
; ðA7Þ

where ρ̄host is the average density of the host within radius
r [51].
For SIDM satellites only, ram-pressure evaporation can

remove mass from all regions of the satellite. Ram-pressure
evaporation is calculated according to Eq. (6), with the
evaporation fraction given by

ηe ¼
1

σ

Z
θcrit

π−θcrit

dσ
dθ

dθ; where θcrit ¼ arccos

�
x2 − 1

x2 þ 1

�
ðA8Þ

and x ¼ v̄esc=vsat with v̄esc the average escape velocity of
the satellite. The cross section σm in Eq. (6) is evaluated at a
velocity equal to the satellite’s velocity with respect to the
host plus the average escape velocity of the satellite, v ¼
vsat þ v̄esc [30]. The latter is a reasonable approximation
because host-satellite scattering events typically occur
close to the center of the satellite. In general, v̄esc=vsat≪1
for the cases of interest here, so this approximation is
sufficient even for scatterings that occur in the outer regions
of the satellite.
Knowing both the mass-loss rate from tidal stripping

and ram-pressure evaporation through Eqs. (5) and (6), a
prescription can be established to track the total mass and
density profile of the satellite along its orbit. For any small
time step Δt ¼ t0 − t, the tidal stripping or ram-pressure
evaporation mass loss can be evaluated by

ΔmTS=RPE ¼
Z

t0

t
_mTS=RPEdt; ðA9Þ

where ΔmTS=RPE are typically negative.

Any mass that is removed via tidal stripping is taken
away from the outermost region of the satellite halo. This is
modeled by defining a truncation radius that evolves over
time. At a given time step, the truncation radius is taken to
decrease from rtrunc to r0trunc such that the mass enclosed
between these radii is equal to ΔmTS, namely,

Mðρ0; r0truncÞ −Mðρ0; rtruncÞ ¼ ΔmTS: ðA10Þ

In contrast, mass that is removed via ram-pressure evapo-
ration is taken from all regions of the satellite by changing
the normalization of its density profile. This prescription
removes mass from regions of the halo in a fashion that is
linearly proportional to the local density at any given point.
The normalization is taken to change from ρ0 to ρ00 such
that the mass difference is equal to ΔmRPE, namely,

Mðρ00; rtruncÞ −Mðρ0; rtruncÞ ¼ ΔmRPE: ðA11Þ

If the velocity of the satellite is anomalously small, then
ΔmRPE can be positive, i.e., the satellite accretes mass.
Although this is possible, it is never the case for the
scenarios considered in this study.

3. Orbits

The evolution of the satellite’s orbit is obtained by
solving the equation of motion, Eq. (7). The dynamical
friction is modeled using the Chandrasekhar formula [52],

aDF ¼ −4πG2msatρhost lnΛFvðvsatÞ
vsat
v3sat

; ðA12Þ

where the Coulomb logarithm is defined as lnΛ ¼
min½s; 1� ln ðMhost=msatÞ and is calibrated to simulations
[47,76], with s ¼ ð3rþ rs;hostÞ=ðrþ rs;hostÞ and rs;host
the scale radius of the host [51]. Assuming an isotropic
and Maxwellian host halo, then FvðvsatÞ ¼ erfðyÞ −
2ye−y

2

=
ffiffiffi
π

p
with y ¼ vsat=ð

ffiffiffi
2

p
σrÞ, where σr is the radial

velocity dispersion of the host.
Ram-pressure deceleration, calculated according to

Eq. (8), can affect a satellite’s orbit, especially in regions
of large self-interaction cross sections. For vsat ≫ vesc, the
deceleration fraction ηd is

ηd ¼
1

mχvσ

Z
Δpz

dσ
dθ

dθ ≈
1

2

�
vesc
vsat

�
2

; ðA13Þ

where Δpz is the change in momentum along the direction
of motion of the incoming particles. The velocity dispersion
vdisp of interacting particles causes a further suppression of
ηd when vsat ≲ vdisp. However, at pericenter (when the
effect is largest) the satellite’s velocity is larger than the
dispersions of both satellite and host, and the suppression
does not enter the calculation. Figure 5 compares the role of
ram-pressure deceleration to that of dynamical friction. The
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contours denote constant values of the ratio of work done
by ram pressure to that done by dynamical friction
WRPd=WDF over 7 Gyr orbits for a minit ¼ 1010.5M⊙
satellite orbiting a 1012M⊙ host. For most of the parameter
space considered, orbital decay from ram-pressure decel-
eration is highly subdominant to the effects of dynamical
friction and only for the largest cross sections considered
do the two forces produce comparable work. Although the
result is plotted only for a single satellite mass in Fig. 5, the
ratio WRPd=WDF is only mildly dependent on minit. This
occurs because of a cancellation between the explicit mass
dependence of the dynamical friction force and the mass
dependence of the satellite’s escape velocity, which enters
the ram-pressure calculation.
To evaluate the equation of motion Eq. (7), one must

specify the initial conditions of the problem. In our case,
these are (a) the virial mass of the host halo, which sets the
NFWdensity profile through the concentration relation, and
(b) the initial density profile, position, and velocity of the
satellite. Additionally, one must specify the SIDM param-
eters fσ0m;ωg. The density profile of the host galaxy is
assumed to follow an NFW profile in all cases. For the
satellite, the initial profile depends on whether one is
considering a CDM, isothermally cored SIDM, or a grav-
othermally collapsing scenario. For the case of CDM, one
need only specify the mass of the halo, the scale radius is
then set through the concentration-mass relation. For the
isothermal cored SIDM scenario, after specifying the mass

and calculating the scale radius, one must also specify tage,
which sets r1 through Eq. (A2). In this study, we always take
tage ¼ 10 Gyr; this assumption is only relevant when rc has
not yet saturated rs, which only occurs when σ0m ≲
20 cm2=g for the range of masses considered in this study.
After having specified these values, the evolution time is

divided into small time steps such that Δt ≪ tdyn and
slightly larger time steps ΔT ¼ ð20–30ÞΔt. At each Δt
interval, ΔmTS and ΔmRPE are calculated and rtrunc and ρ0
are updated accordingly. The orbit is reevaluated for every
ΔT interval using Eq. (7), taking the masses, density
profiles, positions, and velocities from the end of the
previous interval as the initial conditions. The larger ΔT
interval is introduced for computational simplicity. We
verify that the intervals are always small enough to have
a negligible effect on the results. The final result of the
calculation is the mass, density profile, position, and
velocity of the satellite at all times. Additionally, one can
sum overΔmTS andΔmRPE to evaluate the total mass lost to
tidal stripping and ram-pressure evaporation and perform
integrals over the dynamical friction and ram-pressure
deceleration to calculate the work done by these forces.

APPENDIX B: CONSTRAINTS FROM CENTRAL
DENSITIES OF DWARF GALAXIES

This appendix reviews in detail how to obtain
conservative SIDM constraints using the central density
of the Draco dwarf (Fig. 3) and the additional results for
Ursa Minor, Segue 1, and Tucana 2 (Fig. 4). These
constraints rely on present-day measurements of each
dwarf’s central density, which are provided in Table I.
Note that for Draco and Ursa Minor, we use ρ150, defined as
the density at 150 pc. For Segue 1 and Tucana 2, we use the
average central density ρ̄1=2 within r1=2, the radius within
which half of the galaxy’s stellar luminosity is enclosed

FIG. 5. Contours of the ratio of work done by ram-pressure
deceleration to the work done by dynamical friction over 7 Gyr
orbits for minit ¼ 1010.5M⊙ (the result is very weakly dependent
onminit) and a 1012M⊙ host. In most of the parameter space, ram-
pressure deceleration plays a subdominant role in the orbital
evolution of satellites.

TABLE I. The central densities for Draco and Ursa Minor
correspond to the 1σ lower limit on the measured ρ150, and for
Segue 1 and Tucana 2 correspond to the 1σ lower limit on the
measured ρ̄1=2. Note that in the main text the Draco bound
corresponds to the 2σ lower limit. Also note that for Draco and
Ursa Minor, we use ρ150, defined as the density at 150 pc. For
Segue 1 and Tucana 2, we use the average central density ρ̄1=2
within r1=2, the radius within which half of the galaxy’s stellar
luminosity is enclosed (r1=2 ¼ 36 pc for Segue 1 [56] and r1=2 ¼
165 pc for Tucana 2 [57]). We use the concentration-mass
relation from Ref. [53]. M200 is the infall mass at z ¼ 1.

Dwarf
galaxy

Central density
(107M⊙ kpc−3) M200 ðM⊙Þ c200ðz ¼ 1Þ

Draco 16.65 [11] 1.8 × 109 [58] 8.84� 3.36
Ursa Minor 19.80 [11] 2.8 × 109 [58] 8.56� 3.25
Segue 1 92.71 [56] 109 [59] 9.24� 3.52
Tucana 2 21.20 [57] 109 [59] 9.24� 3.52
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(r1=2 ¼ 36 pc for Segue 1 [56] and r1=2 ¼ 165 pc for
Tucana 2 [57]).
The goal of this procedure is to estimate the potential of

dwarf observations in constraining SIDM parameter space.
Our approach is to make very conservative choices when it
comes to assumptions that feed into the central density
prediction. As already highlighted in the main text, the
results of this exercise demonstrate the important role
played by Milky Way dwarfs in constraining σ0m and ω.
This motivates pursuing a more rigorous likelihood pro-
cedure in future work. For example, the conservative
constraints presented in this work can be improved by
performing a full Bayesian analysis that accounts for the
unknown parameters with well-motivated priors and appro-
priately stacks the contribution of each dwarf in the
likelihood procedure.
As discussed in the main text, there are two types of

constraints that can be obtained: a ram-pressure constraint
and an isothermal-coring constraint.

1. Ram-pressure constraint

To evaluate the impact of ram-pressure evaporation on
any given dwarf, we infer its density and concentration at
infall and initialize its energy and angular momentum given
present-day observations of the system and the central
density profile of the Milky Way. The orbit is then evolved
forward in time. Specifically:
(1) The infall mass of each satellite M200 is provided in

Table I. For the classical dwarfs, Draco and Ursa
Minor, the infall masses are taken from Ref. [58].
These infall masses are inferred from abundance
matching with mean star formation rates. For the
ultrafaint dwarfs, Segue 1 and Tucana 2, the infall
masses are taken to be 109M⊙, based on the
approximate upper limit of high resolution cosmo-
logical simulations with low stellar content [59].

We assume here that infall properties and star
formation physics are not significantly modified
by self-interactions, but this remains to be tested
with simulations.

(2) The initial density distribution for the satellite is
taken to be a fully gravothermally collapsed profile
following Eq. (3). Importantly, gravothermal col-
lapse in the LMFP regime cannot create arbitrarily
large densities at any given radius or arbitrarily large
average densities within any given radius. Specifi-
cally, below some minimal value, any additional
decrease in the core size will not affect ρ150 or ρ̄1=2 of
the satellite. The value of rc is chosen such that this
maximal central density is achieved for each satel-
lite. For Draco and Ursa Minor, rc ¼ 50 pc, for
Segue 1, rc ¼ 2 pc, and for Tucana 2, rc ¼ 20 pc.
These choices correspond to the largest possible
initial conditions for the central density and are
therefore maximally conservative.

(3) The satellite’s concentration c200 at time of infall is
taken from the best-fit concentration-mass relation
of Ref. [53]. We conservatively evaluate the con-
centration at z ¼ 1. The star formation histories of
Draco, Ursa Minor, Segue 1, and Tucana 2 suggest
that their infall times may be closer to z ∼ 2 [77,78].
We have verified that increasing the infall redshift
decreases the initial central density of an NFW
profile and would thus strengthen the constraints.
Figure 6 shows this explicitly; we plot the NFW
profile scale density for varying values of halo mass,
redshift, and distance from the median concentra-
tion-mass relation of Ref. [53]. We note that, while
concentration-mass relation of Ref. [53] agrees with
Refs. [70,71], it differs from Ref. [79], and this is a
potential caveat to the arguments made above.

(4) The scale radius of the satellite’s halo is determined
from its concentration andM200, which sets the virial

FIG. 6. NFW profile scale densities as a function of z and m200 for varying distance from the median concentration-mass relation of
Ref. [53]. In all panels, the central density increases, or is approximately constant, with decreasing z for z≲ 2. Note that c200 is a
function of both z and m200.
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radius r200 through the critical density ρcrit. Addi-
tionally, the overall normalization of the density
distribution ρ0 is obtained by requiring that the
enclosed mass at r200 gives the virial mass.

(5) The satellite’s energy and angular momentum at
z ¼ 0 is estimated using its present-day velocity and
position and the density profile of the Milky Way.
The observations are taken from Ref. [60] for Draco,
Ursa Minor, and Segue 1 and from Ref. [80] for
Tucana 2. The resulting values of pericenters for
each of the satellites are rperi ≈ 44 kpc for Draco,
rperi ≈ 46 kpc for Ursa Minor, rperi ≈ 19 kpc for
Segue 1, and rperi ≈ 38 kpc for Tucana 2, which
are all slightly higher than the median estimates of
Ref. [2] but within the 2σ error bands (smaller
pericenters would correspond to slightly stronger
constraints because ram-pressure evaporation would
become more significant).

(6) The satellite’s orbit is obtained by placing it at some
(arbitrary) initial position and evolving forward in
time for one pericentric passage, using the approxi-
mate values for energy and angular momentum
determined in the previous step. This procedure
assumes that the energy and angular momentum
of the satellite at infall match its present-day values
and does not account for losses due to dynamical
friction and ram-pressure deceleration. While these
corrections are likely negligible for the Oð109ÞM⊙
halos considered here, the choice of one pericentric
passage minimizes the potential impact of these
approximations. Additionally, the choice of a single
pericentric passage avoids issues related to gravo-
thermal collapse potentially occurring between
passages. The constraints would significantly

strengthen the more pericentric passages are
included, since more mass is removed from the
satellite during each of these.

(7) After evolving for a single orbit, the central density
(either ρ150 or ρ̄1=2) is found and compared to the 2σ
lower limit from observations for results shown in
Fig. 3 and to the 1σ lower limit for results shown
in Fig. 4. If the predicted value is larger than the
observational lower limit, then the point in the
fσ0m;ωg parameter space is excluded.

(8) The calculation is performed for two different
MilkyWaymasses, 1×1012 and 1.6×1012M⊙, which
correspond to the lower and upper 1σ limits quoted
in Ref. [61].

2. Isothermal-coring constraint

To evaluate the impact of isothermal coring on any given
dwarf, we determine its density distribution at present day
while requiring that gravothermal collapse has not yet
occurred. Specifically:
(1) The density profile of the satellite is modeled by

Eq. (2). The halo is assumed to relax for
tage ¼ 10 Gyr, which sets the value of r1 following
Eq. (A2).

(2) The central density of the profile depends on its
current massmsat and on the value of rs. Because the
current mass of the satellite is not well constrained,
we evaluate the central density (either ρ150 or ρ̄1=2)
for a grid of masses. For a given value of msat, the
concentration of the satellite is taken from the 2σ
upper limit of the concentration-mass relation from

FIG. 7. Same as Fig. 1 (left) but with the addition of a point
mass of 1011M⊙ at the MW’s center.

FIG. 8. Same as Fig. 2 but with the addition of a point mass of
1011M⊙ at the MW’s center.
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Ref. [53] at z ¼ 1. Then, for every point in the
fσ0m;ωg parameter space, we choose the value of
msat for which the central density is largest, i.e., the
bound is weakest. We find that this value of msat is
always less than the infall masses quoted in Table I
and is around 107.8–8.8M⊙ for the four satellites
considered in this study. These correspond to
conservative choices for the satellite mass and
concentration. The resulting value of the central
density is then compared to the 2σ lower limit from
observations for results shown in Fig. 3 and to the
1σ lower limit for results shown in Fig. 4. If the
predicted value is larger than the observational
lower limit, then the point in the fσ0m;ωg param-
eter space is excluded. This sets the leftmost
contour of the isothermal-coring bound. An im-
portant point is that as the cross section increases,
the core size increases only until it reaches its
maximal value at around rc ≈ rs. For larger cross
sections, the central density no longer decreases
but rather remains constant. Therefore, much of the
excluded parameter space is constrained at the
same confidence level.

(3) The rightmost contour of the isothermal-coring
bound is set by the requirement that gravothermal
collapse be inactive. Specifically, we estimate the
gravothermal-collapse timescale tGC using [32]

tGC ≈
290

hσmviρcore
; ðB1Þ

and require that tGC > 20 Gyr. This choice accounts
for potential shortening of tGC through the effects
of tidal stripping, based on the results of Ref. [36].
For the velocity average, the dispersion is taken to
be σr ¼ 1.1 × vmax=

ffiffiffi
3

p
, where vmax is the maximal

circular velocity of the NFW profile at radius
rmax > rc. This may be derived from the maximum
dispersion for an NFW halo maxðvrmsÞ using the
Taylor-Navarro [81] phase-space density QðrÞ ¼
ρðrÞ=vrmsðrÞ3 ¼ 0.3=ðGvmaxr2maxðr=rsÞ−η with η≃2
[82]. The median radial dispersion to vmax ratio
plotted in Ref. [83] provides similar values (but
about 10% higher). In principle, the velocity average
for this calculation should weight correctly for
energy transfer and therefore has different powers
of v in Eq. (A3) [84]. However, for the reasons stated
above, such variations to the calculation only change
the result by Oð1Þ for ω ≫ σr. We have verified that
forω≲ σr, and with the assumption of weighting the
cross section by ðv sin θÞ2, the value of tGC increases
such that constraints presented in this work are
conservative.
In the timescale defined above, ρcore is taken to be

the central density of the isothermal cored SIDM

profile, which should be interpreted as the mini-
mum core density in the evolution of the halo. Note
that since v ∝ vmax and ρcore ∝ ρ0, this timescale
has the same dependence on the initial profile as
that in Ref. [36]. However, the timescale used here
is roughly a factor of 2 larger than that in Ref. [36],
which can be traced back to the choice of the LMFP
conductivity normalization used to get a fit to halo
profiles for moderate cross sections ≲10 cm2=g.
The formula used here for tGC is more consistent
with the evolution of the core density for large cross
sections [32,35]. We evaluate tGC for a grid of
masses in the range msat ∈ ½107M⊙;M200� for
every point in the fσ0m;ωg parameter space. The
constraints do not extend to points in parameter
space where tGC > 20 Gyr for any mass within
this range.

The final results for the classical dwarfs Draco and Ursa
Minor, as well as the ultrafaint dwarfs Segue 1 and Tucana
2, are provided in Figs. 3 and 4. The additional systems
complement the result for Draco in a number of ways. First,
Draco’s orbit has been shown to potentially be affected by
the LMC [60]. If this is the case, then a full analysis should
include the effects of Draco’s interactions with the halo of
the LMC and also account for the three-body orbit, both of
which are beyond the scope of this work. However, the
same study shows that Ursa Minor, which has a similar
central density to Draco, is far less affected by the LMC.
Specifically, the pericenter of Ursa Minor’s orbit is
expected to change far less when accounting for the
multibody orbit of the dwarf, LMC, and the Milky Way.
Second, Segue 1 and Tucana 2 are more DM dominated
than either Draco or Ursa Minor, and thus have a different
set of observational systematics. Finally, it is possible that
the large central densities of the objects considered in this
study could be the result of anomalously high concen-
trations, beyond even the 2σ upper limit values used for
results where gravothermal collapse does not occur (2σ was
chosen specifically because we consider some of the
densest known satellites of the Milky Way). If this is the
case, the constraints would weaken. However, the combi-
nation of all four analyses illustrates the point that a future
study of an ensemble of dwarfs will provide a robust
constraint on the SIDM parameter space.

APPENDIX C: SUPPLEMENTAL FIGURES

This section provides supplemental figures discussed in
the main text. These figures quantify the effects of a
spherical potential mimicking the MW’s stellar disk on
the mass removal rates of satellite galaxies considered in
this study. In particular, we reproduce Figs. 1 (left) and 2,
now including a point mass of 1011M⊙ (comfortably larger
than the baryonic mass of the MW) at the MW’s center. We
find that, for the orbits considered in this study, the results
change by about 10% or less of msatð0Þ. The nonspherical
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nature of the disk and the associated effects of tidal heating
and shocking are missing in this treatment. When these
effects are included, we expect that the central densities of

SIDM halos (that are not in the gravothermal core-collapse
phase) will be further lowered, thereby strengthening the
bounds we have derived.
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