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ABSTRACT

We combine the isothermal Jeans model and the model of adiabatic halo contraction into a semi-analytic procedure for computing
the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies.
The model agrees well with cosmological SIDM simulations over the entire core-forming stage up to the onset of gravothermal
core-collapse. Using this model, we show that the halo response to baryons is more diverse in SIDM than in CDM and depends
sensitively on galaxy size, a desirable feature in the context of the structural diversity of bright dwarfs. The fast speed of the
method facilitates analyses that would be challenging for numerical simulations — notably, we quantify the SIDM halo response
as functions of the baryonic properties, on a fine mesh grid spanned by the baryon-to-total-mass ratio, My/M,;;, and galaxy
compactness, ri/Ryir; we show with high statistical precision that for typical Milky-Way-like systems, the SIDM profiles are
similar to their CDM counterparts; and we delineate the regime of core-collapse in the My/M.i: — ri2/Ryir Space, for a given
cross section and concentration. Finally, we compare the isothermal Jeans model with the more sophisticated gravothermal fluid
model, and show that the former yields faster core formation and agrees better with cosmological simulations. We attribute
the difference to whether the target CDM halo is used as a boundary condition or as the initial condition for the gravothermal
evolution, and thus comment on possible improvements of the fluid model. We have made our model publicly available at
https://github.com/JiangFangzhou/SIDM.
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counterparts (e.g. Elbert et al. 2018; Sameie et al. 2021). This implies

1 INTRODUCTION that the response of SIDM haloes to the inhabitant galaxies is diverse

Self-interacting dark matter (SIDM) provides appealing revisions on
small scales to the standard A 4 Cold Dark Matter (CDM) paradigm
of cosmic structure formation. Elastic self-interactions of dark-matter
particles transfer heat towards the central regions of dark-matter
haloes, creating constant density isothermal cores (e.g. Kochanek &
White 2000; Colin et al. 2002; Vogelsberger, Zavala & Loeb 2012;
Peter et al. 2013; Rocha et al. 2013). This is a convenient way of
explaining the dark-matter cores in some dwarf galaxies (e.g. Blok
et al. 2008; Oh et al. 2015), without breaking the large-scale success
of the standard cosmology.

Galaxy formation complicates this picture. Hydro-cosmological
SIDM simulations, as well as idealized SIDM-only simulations with
analytical disc potentials, have shown that the dark-matter density
profiles can sometimes be equally cuspy or cuspier than their CDM
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and highly sensitive to certain baryonic details. The sensitivity of the
SIDM halo response to baryonic details could be advantageous for
explaining the small scale puzzles (e.g. Creasey et al. 2017; Kamada
et al. 2017; Ren et al. 2019; Kaplinghat, Ren & Yu 2020; Zentner
et al. 2022). In fact, there is now compelling observational evidence
that the structures of bright dwarf galaxies are diverse, not only in
terms of the central dark-matter density slope (e.g. Relatores et al.
2019; Shietal. 2021) but also straightforwardly in terms of the galaxy
size, which ranges from ~0.5 kpc for compact ellipticals (e.g. Chilin-
garian & Zolotukhin 2015) all the way to ~5kpc for ultra-diffuse
galaxies (e.g. Koda et al. 2015). These two aspects of structural
diversity may actually be highly correlated, at least in ACDM. For
example, simulated ultra-diffuse galaxies tend to be hosted by cored
dark-matter haloes (e.g. Jiang et al. 2019), where supernovae-driven
gas outflows puff up simultaneously the galaxies and the host haloes.

It is therefore interesting to revisit the correlation between
galaxy size and host halo structure in the context of SIDM. Can
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we quantify the halo response to baryons in simple terms? Is it
stronger or weaker than that in CDM? Which baryonic process is
the most important for establishing the galaxy-SIDM-halo relation?
To answer these questions, hydro-cosmological SIDM simulations
have been developed; however, they must find a balance between
sample size and numerical resolution: zoom-in hydro-cosmological
SIDM simulations have so far been limited to a small sample of
Milky-Way-like systems and dwarfs (e.g. Cruz et al. 2021; Sameie
et al. 2021; Shen et al. 2021), whereas large-box SIDM simulations
(e.g. Robertson et al. 2019) which contain large statistical samples
still lack the resolution for reliably resolving the innermost few
kpc. In this work, we adopt a semi-analytic approach based on the
isothermal Jeans model first introduced in Kaplinghat et al. (2014);
Kaplinghat, Tulin & Yu (2016). This model solves the Jeans-Poisson
equation for the profile of the SIDM isothermal core, given the
dark-matter density and velocity dispersion at the centre as well as
the baryonic distribution. A recent adaptation of this method has
been shown to be remarkably accurate compared to large-box SIDM
simulations (Robertson et al. 2021). We improve this model by
adding a prescription for adiabatic halo contraction (Gnedin et al.
2004), thus making it more self-consistent in describing the baryonic
effect.

This integrated model takes a target CDM halo and baryonic
potential as inputs. It computes the contracted CDM halo given the
baryonic potential, and stitches an isothermal SIDM core to the
CDM-like outskirt by minimizing their differences at the transition
radius within which collisions are frequent. As such, this model can
quickly compute density profiles for SIDM haloes with inhabitant
galaxies, and, as we show below, produce results that are remarkably
similar to those from zoom-in hydro-cosmological simulations.
The speed of this semi-analytic approach enables investigations
of SIDM halo response with high statistical precision and with
long baselines of input parameters such as baryonic size and
mass.

This paper is organized as follows. In Section 2, we recap the
model ingredients and combine them into a workflow, summarized
in Section 2.4. In Section 3, we compare the model predictions
to the results from zoom-in cosmological SIDM simulations, in-
cluding both dark-matter-only set-ups and hydro-simulations. After
demonstrating the accuracy of the model, we use it to study the
halo response in Section 4, where we quantitatively relate the inner
structure of the SIDM haloes to the compactness and mass fraction
of the inhabitant galaxies, and show the importance of considering
adiabatic halo contraction. Finally, in Section 5, we compare this
model to the other one-dimensional method for SIDM haloes that is
extensively studied in the literature — the gravothermal fluid model
(Section 5.1), and we also study the facilitation of gravothermal
core-collapse by the inhabitant galaxy, providing regions of core-
collapse in the space spanned by galaxy mass fraction and galaxy
compactness, as a function of the cross section and target halo
concentration. For general readers who want to skip the technical
details and get to the results sooner, Section 2.4 can be a good starting
point.

Throughout, we define the virial radius of a distinct halo as the
radius within which the average density is A = 200 times the
critical density for closure. We also assume spherical symmetry
for both the dark-matter haloes and galaxies. We adopt a flat
cosmology with the present-day matter density 2,, = 0.3, baryonic
density €, = 0.0465, dark energy density 2, = 0.7, a power
spectrum normalization g = 0.8, a power-law spectral index of
ny = 1, and a Hubble parameter of 7 = 0.7, unless otherwise
mentioned.
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2 ANALYTIC METHOD FOR COMPUTING THE
DENSITY PROFILE OF SIDM HALOES

Scattering between dark-matter particles is prevalent in the centre of
a halo where the dark-matter density is high, but is infrequent on the
outskirts where the scattering time-scale is longer than the lifetime
of the halo. The full profile of an SIDM halo therefore consists of
a thermalized core and a CDM-like outer region. The transition is
around a characteristic radius r|, within which an average dark-matter
particle has experienced more than one scattering over the lifetime
tage Of the halo (Kaplinghat et al. 2016):

i,odm(rl)v(rl)mn = i, (1)
N fe
where the left-hand side is the scattering rate per particle, with pgm
the DM density, (4/+/7)v the average relative velocity between DM
particles for a Maxwellian distribution (where v is the 1D velocity
dispersion), and o, the self-interaction cross-section per particle
mass. Note that, the cross section also carries a radius dependence if
it is velocity dependent, which comes in via the velocity dispersion
profile,i.e. o,, = o,,[v(r)]. Here, we assume constant cross section in
the velocity-dispersion regime of interest. This assumption holds
when the halo develops its isothermal core within ry.

The impact of DM self-interactions on the halo density profile
can be regarded as a modification to the inner part (r < r;) of a
CDM counterpart, and can be computed using the spherical Jeans
equation with the assumption that the halo is isothermal within r;
and in approximate equilibrium.

2.1 Profile of the isothermal core

The density profile of the isothermal dark-matter core can be solved
by combining the spherical Jeans equation and the Poisson equation:

d(pdmvz) 2ﬁ 2 do

- 1. - = —Pdm > 2
dr + r v Pa dr @

1 d do

—— (== ) =47Gp = 47G(pam + pv), 3)

r2dr dr

where & is the total gravitational potential, p is the total density,
and py, is the baryon density. With the assumption of an isotropic
(B = 0) and constant 1D velocity dispersion (v(r) = vy), the Jeans
equation has a simple generic solution:

AD(r)
%

)Odm(r)

Pdm0

Pam(r) = pamo €Xp {— ] or Ad(r) = —v; 1n[ } &)
where pgmo 1S the central dark-matter density, and A®(r) = d(r)
— ®(0) is the potential difference between radius r and the centre.
Combining equation (3) and (4), we get

1 d ,d1In pgm(r) 4G
—— — ) =— m . 5
Zar <r ar w2 [oam(r) + pb(r)] S

Following Kaplinghat et al. (2014), we assume a Hernquist profile
for the baryon distribution,

My /2713

r r 37
s(+5)

where M,, is the baryon mass, and r( the scale radius. Then, equation
(5) can be rewritten as the dimensionless form

dh 2dh+b+ ae’
y d=y?

po(r) = (6)

+ 2= =0, @)
dy = ydy
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where h(y) = <I>(y)/v§, y = (rlrg)/(1 + rlrg), a = 47'[Gr§pdmo/v§,
and b =2GM, /rové. The boundary conditions for solving this
equation are 4(0) = 0 and 4 (0) = —b/2. The isothermal core profile
can therefore be obtained by integrating equation (7), given the
baryon properties (M, rp), the central DM density (pgmo), and the
constant velocity dispersion within the core (v(). Rewriting equation
(5) into the dimensionless form of equation (7) facilitates the nu-
merical solution. One can assume other profile shapes for the baryon
density in equation (5) and derive dimensionless equations similar
to equation (7). Here, we opt for the Hernquist profile because it is
generally applicable to a wide range of galaxies including dwarfs and
massive ellipticals, and more importantly, because when modelling
the halo contraction (Section 2.2), we have taken advantage of a fast
analytical formalism (Gnedin et al. 2004) that has been optimized
for Hernquist profiles.

There are four parameters in total that fully determine the
isothermal dark-matter profile: two for baryons (M,, ry) and two
for dark matter (ogmo, Vo). For modellers, the baryonic parameters
(My, ro) are usually known — for constructing simple toy halo
models based on observations, (M,, ry) are available from surface
photometry; for building more complex semi-analytic or semi-
empirical frameworks, they can be set from empirical abundance-
matching relations. However, the DM parameters (p4mo, Vo) are not
readily known. They need to be determined iteratively given the virial
mass M,;; and concentration ¢ of the target CDM halo, as we will
describe in Section 2.3.

We emphasize that, the isothermal Jeans model assumes that
the system is in approximate equilibrium. Strictly speaking, an
SIDM halo is never in Jeans equilibrium, but constantly evolving
by transporting energy from the dynamically hotter region to colder
places. For a target system that is initially described by a CDM
profile, the dynamically hottest place is where the v(r) profile peaks,
so with self-interactions, the heat flows to the centre. As the system
evolves, the core temperature gradually becomes the highest and then
conducts energy outwards. The full time evolution can be described
using the gravothermal fluid equations (see Section 5.1).

2.2 Halo contraction

The dark-matter distribution contracts in response to the condensa-
tion of baryons in the halo centre. Blumenthal et al. (1986) described
this process assuming circular orbits and an adiabatic invariant of
M(r)r, where M(r) is the total mass enclosed within radius r. Gnedin
et al. (2004) showed that the original adiabatic-contraction treatment
overestimates the magnitude of contraction compared to the results of
cosmological hydro-simulations, and attributed the mismatch to the
oversimplified assumption of circular orbits. To account for orbital
eccentricity and orbital phase distributions, they proposed a modified
invariant, M (7)r, where 7 is the orbit-averaged radius for particles at
instantaneous radius r, approximated by

X = Ax", ®)

where x = r/Ry;;, and the parameters A &~ 0.85 and w ~ 0.8 are
calibrated with simulations. There is some halo-to-halo variation
in these parameters (Gnedin et al. 2011), which we ignore in this
work.'With M(F)r invariant and assuming that the baryons are
initially distributed with the same radial profile as the dark matter,

'We ignore the halo-to-halo variation because there seems to be no systematic
trend of w or A with halo mass or concentration. w is weakly dependent on
the details of cooling, but usually within 0.6—1.0.

MNRAS 521, 4630-4644 (2023)

one can show that the final radius r; of dark-matter particles initially
located at r > r¢ obeys the equation:

r My (7¢)
—=1-fi+ —, )
It M;(7)
where fi, = Myp/M,; is the galactic mass fraction within Ry, My(7)

is the final baryon mass within r, and M;(r) is the initial total mass
profile.

Assuming that the initial distribution of DM and baryons both
follow an NFW profile (Navarro, Frenk & White 1997),

3
where ps = 3 )Apcnh (10
with A the average overdensity with respect to the critical density of
the Universe p.it(z), ¢ the concentration parameter, and f(c) = In (1
+ ¢) — ¢/(1 + ¢), and that the final baryonic distribution obeys a
Hernquist profile, then a solution of equation (9) can be obtained.
The details of this step can be found in the appendix of Gnedin et al.
(2004). Solving equation (9) for r; for an initial radius r, we get the
enclosed mass profile Mym, ¢(rr) = (1 — f,)Mi(r) of the contracted
halo.

The contracted DM mass profile is non-parametric. To facilitate
subsequent modelling, such as solving for the characteristic radius ry,
we need simple parametric expressions for the density profile oy, (r)
and the velocity—dispersion profile v(r). We therefore fit the profile
of a contracted halo with the Dekel-Zhao (DZ) profile (Freundlich
et al. 2020), which has analytic expressions for pg,(r) and v(r), and
is flexible enough in the centre to account for the contraction, at the
expense of adding just one more degree of freedom than NFW. The
enclosed mass of a DZ profile is given by

0s

pir) = cx (1 + cx)z’

glex, o)
glc,a)’

where g(&, o) = [EY/(1 + £Y%)]3~; and ¢ and « are the free
parameters describing the concentration and innermost density slope
of the halo. The density profile and the velocity dispersion profile
are given by

Mdm(r) = (1 - fb)Mvir (11)

PDZ

pdm(r) = 4)‘.0[(] T x1/2)2(3'5_a) 5

12)

4(1—a)+i

(—1)8! 1—y
vi(r) =2V}, 2(.5-a) Z =i 4l —a)+i’ 13

g(c a) x

where ppz = [°(3 — a)l/[3g(c, ®)] X Apeits Vyir 1s the circular
velocity at the virial radius, and x = x"2/(1 + x"?). We fit the
mass profile Mym, ¢(r¢) of a contracted halo using equation (11) and
then solve equation (1) for the transition radius r; using the density
and velocity dispersion of the best-fitting DZ profile. For typical
baryon distributions (0.01 < £, < 0.2 and 0.005 < ro/Ryir < 0.1),
the best-fitting DZ profile agrees with the non-parametric solution of
M ¢(r¢) to per-cent level.

From now on, we drop the ‘dm’ in the subscription of the symbol
for central DM density pgmo and simply denote it by py.

2.3 Stitching the isothermal core to the CDM outskirt

To obtain the full profile of an SIDM halo with baryons, we determine
the parameters (pg, vo) of the isothermal core iteratively, such that
the core joins the contracted CDM halo at radius | smoothly in terms
of the local density and the enclosed mass. Specifically, we search
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Figure 1. Illustration of the semi-analytical workflow (Section 2.4) — example of finding the SIDM profile for a cross-section of o, = 1cm? g~

! and a target

CDM halo formed e = 5 Gyr ago with a present-day virial mass of My;, = 10" M, and a concentration of ¢ = 15. The inhabitant galaxy has a total cold baryon
mass of My, = 10° Mg, and half-mass radius of 12 = 1.9kpc (r1/2/Ryir = 0.02). The thin grey dashed lines show the density profile (left) and circular—velocity
profile (middle) of the original dark-matter-only target CDM halo; and the thick dashed lines are the profiles for the adiabatically contracted CDM halo. The
thicker solid black lines are the profiles of the best-matching SIDM isothermal core, which corresponds to the low-density solution of (pg, vo) as marked by the
bigger black ‘ 4 ’ sign in the right-hand panel. The thinner solid black lines are the profiles that correspond to the discarded high-density solution, as marked
by the smaller * + ’ sign in the right-hand panel. The right-hand panel shows the colour map of the ‘stitching error’ 8, defined in equation (14), in the space
of central density po versus central velocity dispersion vg. Clearly there are two § minima, but only the low-density solution agrees with simulation results
(see Fig. 2). As shown in Appendix A, the two solutions get closer as the system evolves (i.e. as f,ge Or cross-section increases). When they join, gravothermal
core-collapse starts to speed up (see Section 5.2). The vertical and horizontal dashed lines indicate the region pedm(r1) < 0o < Pedm(rres = 10 pc) and 0.5v(r;)
< vo < 2v(ry), which brackets the low-density solution uniquely for a wide range of halo age and cross section.

the space of pp—v( to minimize the following objective quantity:

52 _ [ Pislr) = pcdm(ro]z [Mm,(r.) — Mean(rD)]?
)Ocdm(rl) Mcdm(rl)

where piso(r) and peam(7) are the density profiles, and M;s(r) and
Mam(r) are the enclosed DM mass profiles, of the isothermal core
and the contracted CDM halo, respectively. There are two minima
of 82 in the po—vo space, with similar v, values but very different
po- The existence of the two solutions was already noted by Elbert
et al. (2018). Here, we illustrate them clearly in the right-hand panel
of Fig. 1.2

Elbert et al. (2015) only accepted the lower-density solution as it
agrees with their simulation results better. We emphasize that both
solutions are physical in the sense that they both meet the requirement
of constant temperature below ry. It is just that realistic haloes form
with properties closer to the lower-density solution, which is why the
lower-density solution agrees better with cosmological simulation
results. We find by trial and error that a practical searching range
for the lower density solution iS Peam(71) < Po < Peam(10pc) and
0.5v(r)) < vo < 2v(ry), which, in most cases, brackets a unique
minimum of 2.

As will be shown below, this simple formalism can capture the
onset of gravothermal core-collapse. As the halo age f,,. increases
or as the cross section o, becomes larger, the two minima of
8% get closer — they first both decrease in pg; then the lower
density solution turns around, manifesting the onset of gravothermal
core-collapse; and finally the two solutions merge as core-collapse
speeds up, beyond which point, the isothermal model is no longer

, (14)

2For Figs 1 and A1, we evaluate the objective of stitching error on a regular
grid of log peam and log vg — this is relatively slow and only for the purpose
of illustrating the two minima. For the rest of the work and in the public code
that we share, the minimization was performed using the PYTHON module
SPICY.OPTIMIZE.MINIMIZE and its default BFGS algorithm.

applicable. This is illustrated in Appendix A, and the high-density
solution is therefore also useful, as we will address further in
Section 5.2.

2.4 Workflow

We summarize the workflow for getting the density profile of an
SIDM halo with baryons as follows:

(1) Given a CDM halo described by an NFW profile (i.e. with
known virial mass M., concentration c, and age f,g), and given an
inhabitant galaxy described by a Hernquist profile (parametrized by
the mass My, and scale size r(), compute the adiabatically contracted
halo profile (Section 2.2).

(2) Given the self-interaction cross-section, o ,,, solve equation (1)
for the radius of frequent scattering, r|, using the density profile and
velocity-dispersion profile of the contracted CDM halo.

(3) Integrate the spherical Jeans—Poisson equation, equation (5),
to obtain an isothermal core profile (Section 2.1) — do this iteratively
to find the central DM density p, and the central velocity dispersion
v by minimizing the relative stitching error defined in equation (14)
(Section 2.3).

To illustrate, Fig. 1 shows an example of the density and circular
velocity profiles of an SIDM halo obtained with this workflow. In this
example, we adopt a self-interaction cross-section of 0, = 1 cm? g*1
and a target CDM halo of My;; = 10" Mg, ¢ = 15, and #,4e = 10 Gyr
with a Hernquist baryon distribution of mass My, = 10° Mg, and half-
mass radius 1y, = 1.9kpc (i.e. a Hernquist o = r12/(1 + V2) &~
0.8 kpc). These choices are largely arbitrary for illustration purposes,
but are of the same of order as the Large Magellanic Cloud (LMC).
In Appendix A, we demonstrate how the two solutions evolve as
the halo age increases, and discuss in Section 5.2 that the high-
density solution can help us to phenomenologically predict the onset
of gravothermal core-collapse. While this procedure is devised for
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Figure 2. Comparison of the dark-matter density profiles from the model and
from the cosmological N-body simulations of the Pippin haloes as in Elbert
etal. (2015) at z = 0. The grey circles represent the reference-CDM simulation
result; and the green, blue, and red circles represent the SIDM simulation
results of cross-sections of o, = 0.1, 1, and 10 cm? g’l , respectively (labelled
as SIDMO1, SIDM1, and SIDM10). The CDM halo is well described by an
NFW profile of My, = 1078 Mg, and ¢ = 15.8, as indicated by the grey solid
line — this is used as the starting point of the isothermal Jeans model. The
model predictions are shown by the solid lines of corresponding colours. The
vertical dotted lines show the r; radii. The model predictions agree very well
with the simulation results across 2 dex in cross-section. The thin dashed lines
in pale colours represent a universal approximation, which is the coreNFW
profile with a scale radius r that is 0.45 times the respective rj.

haloes with baryons, it is fully compatible with dark-matter-only
cases, for which one simply sets M, zero.

3 COMPARISON WITH COSMOLOGICAL SIDM
SIMULATIONS

In this section, we show that the aforementioned workflow gives
halo profiles closely matching those from cosmological SIDM
simulations. We also provide a simple analytical fitting formula for
the dark-matter-only cases.

3.1 Comparison with dark-matter only simulations

To compare the model to cosmological dark-matter-only simulations,
we use the zoom-in simulations of Elbert et al. (2015) and focus on
the ‘Pippin’ haloes therein. The simulations adopt the Wilkinson
Microwave Anisotropy Probe-7 cosmology (Komatsu et al. 2011),
with & = 0.71, Q,, = 0.266, Q5 = 0.734, ny = 0.963, and 03 =
0.801. For the high-resolution runs that we compare to, the particle
mass is 1.5 x 10° M, and the Plummer equivalent force softening
length is 28 pc. The Pippin halo was run in both CDM and SIDM
with a wide range of velocity-independent cross-sections of o,, =
0.1-50 cm? g~!, all starting from the same initial conditions. The
SIDM implementation follows that of Rocha et al. (2013). The CDM
Pippin halo is accurately described by an NFW profile with a virial
mass of M,;, = 10°%° M, and a concentration of ¢ = 15.8, as shown
by the grey line in Fig. 2. We use this NFW profile as the input of the
target CDM profile for our model, and compute the SIDM profiles
for o,, = 0.1, 1, and 10cm? g", which are then compared to the
corresponding simulation results. Since we are dealing with dark-
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matter only cases, My, is set to be infinitesimally small. We find that
the model predictions agree well with the simulation results across
the cross-section range.

While this semi-analytic procedure is already reasonably fast
(0.1 sec per system using our publicly available PYTHON imple-
mentation), it still requires numerical minimization for determining
po and . To accommodate semi-analytic frameworks designed for
large ensembles of haloes and subhaloes (e.g. Benson 2012; Jiang
et al. 2021), an even faster formula would be useful. We find that
a CORENFW profile (Read, Agertz & Collins 2016) with the scale
radius being a fixed fraction of r; provides decent approximations.
The CORENFW profile has an enclosed mass profile given by

M(r) = Mypw(r) tanh (;) , (15)
C
where Mypw(7) is the enclosed mass of the target NFW profile,
and r. is a characteristic core size. We find by trial and error that
CORENFW profiles with r, = 0.45r; fit accurately the SIDM haloes
derived from the same target CDM halo across 2 dex in cross-section,
as shown by the thin dashed lines in Fig. 2. We have verified that
this universal approximation holds as long as the system is not in
the core-collapse regime, and thus applies to most SIDM haloes with
¢ S 20, tyee S 14Gyr, and 0, S 10 cm?/g. It breaks down when the
baryonic component is not negligible, or when the halo starts to
core-collapse, for which a more complicated profile shape is needed.

3.2 Comparison with hydro simulations

We also compare the model predictions to cosmological hydro
simulations, to test its performance when the system is baryon
dominated in the centre. We use three Milky-Way-mass systems
in the FIRE-2 SIDM suite (Sameie et al. 2021): m12i, m12f, and
m12m, which have virial masses of Mygom = 10'"%, 10'>!5 and
10"298 M, respectively, at z = 0. These galaxies are simulated with
cross-sections of o,, = 1 and 10cm? g, and they all have CDM-
only reference runs with matched initial conditions which we can
use for the model inputs. Among the three systems, m12i and m12f
have Milky-Way-like sizes of rj, ~ 4kpc and a stellar mass of
My ~ 10'%7 My, while m12m has a slightly higher stellar mass of
My, ~ 10'%° Mg and a much more extended stellar distribution of
ri» ~ 8 kpc. Table 1 of Sameie et al. (2021) provides more detailed
information of these simulations.

Again, following the workflow in Section 2.4, we fit NFW profiles
to the CDM-only simulations at z = 0 and treat the best-fitting profiles
as the target haloes, as shown by the grey lines in Fig. 3. Then we fit
Hernquist profiles to their stellar distributions, as represented by the
coloured dotted lines in Fig. 3, and use them to model the adiabatic
contraction of these haloes. Both the NFW fits and the Herquist fits
are accurate within ~5 percent in the radius range of interest. We
assume these systems formed 7,5 = 7 Gyr ago, which is the average
formation time of haloes of Milky-Way mass scale. The predicted
SIDM profiles, as shown by the coloured solid lines in Fig. 3, match
the simulation results fairly accurately. For the SIDM1 runs, the
central densities are matched at percent levels. For the SIDM10
runs, while the model slightly overpredicts the central densities, it
still correctly captures the shape of the simulated density profiles:
there is a relatively flat central core at » < 1kpc, a steep decrease at
r ~ 5kpc, and a flatter part again at r ~ r; ~ 40kpc.

The good agreement between the model and the simulations
provides insights into the galaxy—halo connection in the context of
SIDM. In CDM, there are two equally important competing baryonic
effects on halo structure — on the one hand, the galactic potential
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Table 1. Comparison of the two 1D models of self-interacting DM haloes
— the isothermal Jeans model versus the gravothermal fluid model. See
Section 5.1 for details.

Isothermal Gravothermal
similarities
Operation target CDM halo CDM halo
Applicable before core-collapse yes yes
differences
Speed fast slow
Applicable after core-collapse no yes
Captures baryonic effect yes“? no”
Support v-dependent o, no¢ yes

“It captures the gravitational effect of the baryonic potential, not the baryonic
feedback.

bIn principle, one can add a static baryonic term in the second equation of
equation (16), such that the gravothermal fluid model can also capture the
halo response to the baryonic component.

“However, velocity dependence effectively makes the cross-section larger in
the past, so if given the growth history of the target CDM halo, we can redefine
r1 with equation (17) and perform the isothermal Jeans modeling for each
time.

makes the halo contract and become more cuspy; on the other hand,
supernovae-driven outflows heat the potential well and flatten the
central density. The net effect of the competing mechanisms depend
sensitively on details of the subgrid physics for star formation and
supernovae (e.g. Bose et al. 2019). The SIDM simulations here
also include both of the competing mechanisms, but the model only
considers halo contraction and ignores stellar feedback. Hence, the
fact that good agreement is still achieved between the model and
the FIRE2-SIDM simulations implies that the core-formation effect
from supernovae is subdominant and overwhelmed by the effect
of the SIDM halo in the presence of the baryonic potential (see
also Sameie et al. 2021 for discussion). It is therefore reasonable
to speculate that SIDM simulations are not sensitive to the sub-grid
baryonic physics for certain ranges of SIDM parameters. This should
be better tested with hydro + SIDM simulations with varied strength
of feedback.

4 SIDM HALO RESPONSE

In this section, we use the model for quantitative analysis of the
SIDM halo response. We express the halo structures as functions of
the baryonic mass fraction (M,/M,;;) and the baryonic compactness
(r12/Ryir), and also take this opportunity to show the importance of
considering adiabatic halo contraction.

4.1 Enhanced structural diversity in SIDM

Zoom-in hydro-simulations have hinted that SIDM haloes are more
responsive to the presence of a baryonic distribution (rather than
baryonic feedback) than their CDM counterparts. Here, we use the
isothermal Jeans model to show this more explicitly.

First, we vary the size of the baryonic component while keeping
the total mass and baryon mass fixed at My, = 10'' My and
M, = 10° M, — these values are typical of bright dwarf galaxies
such as the LMC or sub-L* galaxies which exhibit the most dramatic
structural diversity. We also keep the halo age and the target-halo’s
concentration fixed at typical values of 7., = 10 Gyr and ¢ = 10. We
run the model for two cross sections, o, = 1 and 0.1 cm?g~'. We
perform control-experiments to get the CDM references, i.e. starting
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from the same target halo and the same galaxy as used for the
SIDM calculations, and simply compute the adiabatically contracted
CDM halo profiles. Fig. 4 shows the comparison. The sensitivity
of the halo response in the SIDM models is indeed much higher
than that of the reference CDM cases. Notably, the inner SIDM
density slope (evaluated at, e.g. r ~ 0.5kpc & 0.5 per centR,;;) can
be flat, equally cuspy, or cuspier than that of the reference CDM
profile, depending on whether the galaxy is diffuse (r;,, = 2kpc),
normal (1 kpc), or compact (r1,, 2= 0.5 kpc). The range of the central
densities, e.g. evaluated at » = 0.1 kpc, of the CDM results is only
0.5 dex, while that of the SIDM models spans more than an order of
magnitude.

This remarkable diversity in halo response is not driven by the
difference in the characteristic radius r;. In fact, for o, > 1cm?g~!,
the r; values are similar across the different galaxy sizes, as shown
by the vertical dotted lines in Fig. 4. Only for cross sections as
small as o, ~ 0.1 cm? gfl, r; becomes comparable to the galaxy
size and differs significantly depending on the latter. Even here, r,
occurs where the halo density profiles converge, so the dramatic
difference in the inner halo cannot be attributed to that of r; or of
the local density p(ry). The structural diversity must then arise from
the difference in the enclosed mass profile, or Vi..(r), as shown in
the right-hand panels of Fig. 4. A small change in the baryonic size
results in amplified differences in the gradient and the Laplacian of
the potential, d®/dr = Vi.(r)*/r and d>®/ds?, which are leading
terms in the Jeans—Poisson equation (equation 7) underlying the
whole model.

The structural diversity of bright dwarf galaxies (M, ~ 103° M)
has drawn a lot of attention recently. Notably, these galaxies span two
orders of magnitude in size and exhibit a wide range of morphologies,
including compact dwarfs with 7y, as small as ~0.1kpc and ultra-
diffuse galaxies with r, up to 10 kpc. The structural diversity is also
manifested in the logarithmic density slope s = dln p/dIn r near the
centre (r < 1kpc), as inferred from baryonic kinematics. For exam-
ple, as Relatores et al. (2019) summarized, s ranges between 0 and 1.5
for galaxies with M, ~ 10° M. It is challenging for hydro + CDM
models to fully explain such a dramatic extent of structural diversity,
especially given that both the galaxy size and the inner halo structure
exhibit wide ranges. Recently, Zentner et al. (2022) demonstrated
that SIDM and feedback-affected CDM models are equally better
than a CDM model in explaining the halo structural diversity as seen
in the SPARC survey (Lelli, McGaugh & Schombert 2016), however,
the prevalence of compact bright dwarfs with r;, < 1kpc remains
a challenge for hydro-CDM simulations featuring strong feedback
(e.g. Jiang et al. 2019). Here, galaxy size is an input of the model,
so we do not provide an explanation for the size diversity, but we
have clearly shown that SIDM models have the virtue of making the
two aspects strongly coupled, such that if there is an explanation for
the size diversity, it explains automatically the range of DM density
slopes.

Second, we extend the above exercise by scanning a wide range
in the space spanned by the baryonic mass fraction and galaxy
compactness, and thus more systematically describe the SIDM halo
response. Still adopting o,, = 1cm?g~' and a target CDM halo
of te = 10Gyr, My, = 10" Mg, and ¢ = 10, we vary My/My;
from 10~* to 0.1, and ryp/Ry; from 0.004 to 0.1. We express the
halo structure in terms of the inner density slope s = —dln p/dlnr
evaluated at r = 1kpc, and the central density po in units of the
NFW scale density ps. The results are shown in Fig. 5. The main
panels of Fig. 5 show the contour maps of s and po/ps in the 2D
baryon-property space. The top panels and side panels show the
1D slices of the 2D map with either of the baryonic quantities
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Figure 3. Comparison of the dark-matter density profiles from the model and from the FIRE2-SIDM hydro-cosmological simulations — showing three examples
of Milky-Way-mass systems at z = 0: m12f, m12i, and m12m, as in Sameie et al. (2021). The open circles represent the density profiles in the reference CDM
dark-matter-only (DMO) runs. The solid grey lines show the best-fitting NFW profiles, which are used as inputs in the isothermal Jeans model. The dotted lines
represent the best-fitting Hernquist profiles of the stellar density distributions (stars) in the hydro-simulations. The red and blue colours differentiate the SIDM
results for o, = 10 (SIDM10) and 1 cm? g~! (SIDM1), respectively. The stellar profiles are used as inputs to the model for computing halo contraction. The
dashed lines of corresponding colours represent the profiles of the contracted CDM haloes. The filled circles and solid lines of the matching colour represent the
profiles from the SIDM simulations and the corresponding models. Overall, the model preditions are in decent agreement with the simulations — for the SIDM 1
run, the central densities at » ~ 1kpc agree at per cent level; for SIDM 10, the shapes of the simulated profiles are correctly reproduced.

fixed (at My/M,i; = 0.01 or rp/Ryi; = 0.02). Clearly, the SIDM
halo becomes more dense and cuspy as the galaxy becomes more
massive and compact. Although we have used a massive dwarf
halo for illustration, the result applies to other mass scales as well
since we have expressed the baryonic properties in units of the virial
quantities.

Hydro-cosmological zoom-in simulations have shown that, for
Milky-Way-like systems, SIDM halo profiles are rather similar to
their CDM counterparts down to quite small radii. This can be seen
for example in m12f and m12i in Fig. 3, and it has motivated some
semi-analytic studies to assume NFW profiles for their Milky-Way
sized SIDM host halo when studying the satellite galaxies (e.g.
Slone et al. 2022). Here, we can easily check the validity of this
assumption in Fig. 5. Abundance-matching studies have shown that a
Milky-Way-mass system typically has a stellar-to-total-mass ratio of
~1 per cent (e.g. Moster, Naab & White 2013), and a half mass radius
that is ~2 per cent of the host-halo virial radius (e.g. Somerville et al.
2018). For these representative values, as can be seen in Fig. 5, the
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SIDM profile indeed has an inner logarithmic density slope very
close to the NFW value of s ~ 1.

4.2 Necessity of considering adiabatic contraction

Robertson et al. (2021) also studied the isothermal Jeans model in
detail and made comparisons with cosmological simulations. There,
the authors adopted an inside-out fitting scheme. That is, different
from what we do here, they start from an isothermal core profile
defined by pg and vy in the centre, evaluate | using the core profile,
and find the NFW profile on the outskirt that smoothly joins the
core at ry. In this regard, our workflow as described in Section 2.4
is called the outside-in approach (e.g. Sagunski et al. 2021). As
Robertson et al. (2021) noted, in the inside-out approach, the outer
halo is completely determined by the NFW profile and there is no
freedom to incorporate contraction. That said, it is still able to capture
the effect of baryonic potential on the SIDM profile partially, via the
baryonic terms in the Jeans—Poisson equation, equation (5). It is just
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Figure 4. Illustration of the high sensitivity of SIDM halo response to baryonic potentials. The left-hand and right-hand panels show the density profiles and
circular velocity profiles, respectively, of SIDM haloes (solid lines) and CDM counterparts (dashed lines). For all the cases, we keep fixed the virial mass
of My = 10'" M, the target concentration of ¢ = 10, and the galaxy mass of M;, = 10° M, only varying the galaxy size. The colours differentiate the
half-mass radii of r12 = 0.005, 0.01, and 0.02Ry;, as indicated, or equivalently, r1» & 0.47, 0.95, and 1.9 kpc — these are representative of compact, normal, and
ultra-diffuse dwarf galaxies. The upper and lower panels show the results for cross sections of 0, = 1 cm? g~ ! and 0.1 cm? g~!, respectively. The vertical dotted
lines mark the positions of r; for the corresponding colour. Clearly, SIDM haloes are more sensitive to baryonic compactness than their CDM counterparts.
The strong difference in the inner halo is not driven by the difference in r{, which is actually negligible for o, = 1cm? g~! or larger; instead, it arises from the

difference in Viirc(r), or more precisely in the derivatives of the gravitational potential d®/dr = Veire(r)2/r and d%>®/dr2, as hinted from the right-hand panels.

not entirely self-consistent, as the baryonic potential will affect the
entire halo, making the outer part also deviate from NFW.

Here, with the outside-in approach, we can quantify the difference
made by including adiabatic halo contraction. We emulate the
inside-out model by skipping the halo contraction step of our
workflow and only consider the baryonic potential in the Jeans—
Poisson equation. The difference is shown in the top and side
panels of Fig. 5 — the thick black lines show the halo response
from the fiducial model, and the thin grey lines show the result
skipping halo contraction (with everything else the same). As can
be seen, accounting for adiabatic contraction does not introduce
a big difference for galaxies of My/M,;: < 0.001 or for diffuse

~

systems of ry,»/Ryir 2, 0.04; however, for massive and compact
systems, the central density in our fiducial model can be up to
four times higher (see e.g. the result at M,/M,;; = 0.04), and the
central density slope can also be different by up to 30 per cent.
In short, for massive and compact systems, an explicit adiabatic-
contraction treatment must be included for accurate results; for
diffuse and dark-matter dominated systems, considering the baryon
potential in the Jeans—Poisson equation provides results that are close

enough.

5 DISCUSSION

In this section, we first compare the isothermal Jeans model to the
more sophisticated gravothermal fluid model, which also predicts
SIDM halo profiles and is studied extensively in the literature.
Then, we study the facilitation of gravothermal core-collapse by
the inhabitant galactic potential, and use the isothermal Jeans model
to predict the regime of core-collapse in the space of galaxy mass
fraction versus galaxy compactness.

5.1 Comparison with gravothermal fluid evolution

The isothermal Jeans model assumes a system to be in approximate
equilibrium, whereas with dark-matter self-interactions, the system
is never in strict equilibrium. The full hydrodynamical evolution can
be described by the gravothermal fluid model, which is extensively
studied in a series of seminal works (Lynden-Bell & Eggleton 1980;
Balberg & Shapiro 2002; Koda & Shapiro 2011; Pollack, Spergel &
Steinhardt 2015; Essig et al. 2019; Nishikawa, Boddy & Kaplinghat
2020). This method treats SIDM as a gravothermal fluid, and solves
a set of coupled partial differential equations for the evolution of
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Figure 5. The inner logarithmic density slope (left) and central density (right) of SIDM haloes as functions of the baryonic mass fraction My/My;. and the

galaxy size in units of the virial radius r1,2/Ry;;. Here, we choose 0, = 1 cm? g

and adopt a target halo formed #,5e = 10 Gyr ago with present-day virial mass

M, = 10" My, and concentration ¢ = 10. The slope s = —dIn p/dIn r is evaluated at » = 1 kpc, and the central density is expressed in units of the NFW scale
density ps. The main panels are the contour maps of s and log (po/ps), with the contour-level values indicated. The thick black lines in the top and side panels
show one-dimensional slices of the main panels, with one of the baryonic properties fixed at the values indicated by the dotted lines in the main panel. The
thin grey lines in the top and side panels show the results without considering adiabatic halo contraction — these are equivalent to the ‘inside-out’ models of
Robertson et al. (2021). Focusing on our fiducial model with adiabatic contraction, the density slope increases from ~0.3 to 2 as My/M,;; increases from 1074
to 0.04 or as ry/2/Ryir decreases from 0.1 to 0.005, for the specific slices. For My/Myir ~ 0.01 and ry/2/Ryir ~ 0.02, representative of Milky-Way-mass galaxies
according to abundance matching, the SIDM density profile is actually rather similar to the CDM case with an inner slope of ~1. Accounting for adiabatic
contraction makes the central density up to four times higher (e.g. at My,/M,i; = 0.04) and the central density slope ~30 per cent steeper. In the lower right
corner of the space, an isothermal solution can no longer be achieved, manifesting the speed-up of gravothermal core-collapse (GC).

the spherically symmetric profiles of mass M(r, 1), density p(r, 1),
velocity dispersion v(r, ), and the luminosity of the radiated heat
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These equations describe mass conservation, hydrostatic equilib-
rium, the first law of thermodynamics, and heat conduction, re-
spectively, where a = 4//7, b = 25,/7 /32, and C is a calibration
parameter of order unity. Following Koda & Shapiro (2011) and
Nishikawa et al. (2020), we have expressed the equations with the
dimensionless quantities: 7 = r/rs, p = p/ps, M = MM, with the
mass scale My = 47rr3ps, G = 0 /0o With the cross-section scale
omo = 1rsps, D =v/vy with the velocity scale vy = /GM,/rs,
L = L/Lg with the luminosity scale Ly = GMg/rsto, and 7 =t /1
with the time-scale 7y = 1/ao,,vop,. This assumes that the initial
profile p(r, t = 0) is NFW, with scale radius r and scale density ps.
With the dimensionless quantities, we have the convenience that the
density-profile evolution is self-similar as long as we are in the long-
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mean-free-path’ regime, and thus the result is almost independent of
the cross-section or the initial NFW concentration when expressed
in p(7, ). This is illustrated in Balberg & Shapiro (2002) and in
Appendix C of Nishikawa et al. (2020).

There are a few differences between the isothermal Jeans model
and the fluid model. First and foremost, conceptually, the fluid
model gives the full (time-dependent) solution to the Boltzmann
Equations with an assumed conductivity; while the isothermal model
approximates the instantaneous profile as being in equilibrium, and
therefore does not have time evolution per se other than a dependence
on halo age. Second, the isothermal model is only applicable to the
isothermal-coring stage and the onset of gravothermal core-collapse;
while the fluid model can follow the evolution well into core-
collapse. Third, solving the fluid equations requires discretizing the
spherical halo and is relatively computationally expensive; whereas
the isothermal model only requires performing the minimization at
r1, and within each iteration, the numerical integration of the Jeans—
Poisson equation is quite fast. The speed advantage makes it easier
for incorporating into large semi-analytic frameworks. Fourth, the
fluid model only considers the dark-matter component, at least as
presented in the literature so far; while the isothermal model easily
accounts for baryonic effects by including baryonic terms in the
Jeans—Poisson equation and by considering adiabatic contraction.
For this reason, when we compare the two models, we focus on

3That is, when the mean free path of scattering, > = 1/pv, is larger than the
gravitational scale length, H = \/v2 /47 Gp.
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Figure 6. Comparison of the gravothermal fluid model (black solid line) and
the isothermal Jeans model (brown solid line) in terms of the (dimensionless)
central density gp = po/ps as a function of time 7 = 1 /1. See Section 5.1 for
the definitions and the details of the calculations. Note that, the details of the
target CDM halo or the cross-section have little impact on the dimensionless
Po(7) track. Simulation results are overplotted for comparison — the grey
circles represent the Pippin cosmological simulations of different cross-
sections o, = 0.5, 1, 5, 10, and 50 cm? g’1 at z = 0; the red and green
dash—dotted lines represent the idealized isolated simulations starting from
NFW profiles with ¢ =45 and 90, and with o, = 10cm? g~!. The isothermal
model agrees better with the cosmological results, while the fluid model
agrees with the idealized simulations — their difference likely originates from
whether the target CDM halo is used as an initial condition or as a boundary
condition (see Section 5.1 for discussion). The orange solid line represents the
usually discarded high-density solution of the isothermal model. The point
when the high-density and low-density solutions merge coincides with when
gravothermal core-collapse speeds up and the core temperature is well above
the velocity dispersion of the CDM-like outskirt (see Section 5.2).

the dark-matter-only set-ups.* Finally, the fluid model can easily
adapt to velocity-dependent cross sections — one can simply plug a
v-dependent cross section ¢ ,(v) in the fourth equation of equation
(16); while the isothermal model evaluates the r; radius using the
instantaneous cross-section, and thus ignores any v-dependence. For
typical particle-physics models, the v-dependence effectively makes
the cross section larger in the past and thus makes the isothermal
coring faster (Nadler et al. 2020). That said, if we know the growth
history of the target CDM halo including the velocity dispersion
profile as a function of redshift v(r, z), then we can solve for an
71(tage) that includes the time dependence

1= / o, DG, Dom v, DAL, (17)
0

where 7(z) is the lookback time. We can therefore perform the
isothermal Jeans modelling for each time and construct a density-
profile evolution p(r, z) that approximates the case of a v-dependent
cross-section.

We summarize these similarities and differences of the two
methods in Table 1. Overall, the isothermal Jeans model is simplistic
yet much faster. In Fig. 6, we compare the two models in the space
of the dimensionless central density gy versus the dimensionless
time 7. For the fluid model, gy(7) is simply obtained by solving

Tt is in principle possible to include a static baryon component in the second
equation of equation (16) and thus make the fluid model capture baryon
effects as well, but this is beyond the scope of this work.
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equation (16). We have followed the numerical method as detailed
in Nishikawa et al. (2020), starting from the NFW profile of the
z = 0 CDM Pippin halo (i.e. solid grey line in Fig. 2), adopting a
cross section of 0, = 5cm? g7, and using C = 0.75 as calibrated to
idealized simulations (Koda & Shapiro 2011). Despite the specific
choices, we emphasize that the cross-section, the details of the NFW
profile, or the exact value of C as long as it is between 0.5 and 1,
has weak impact on the result in this dimensionless space in the
core-forming regime. For the isothermal model, in order to construct
the ‘time evolution’, we repeat the exercise for a series of halo age
tige and plot gy versus = tage/to. The same target CDM halo and
cross-section are used for both methods. Again, these details are
largely irrelevant for this dimensionless parameter space due to the
self-similar nature of the density evolution in the core-formation
regime, and we have verified with the isothermal Jeans model that it
predicts a universal track in the gy~ space for different o ,,. For the
isothermal model, in addition to the default, low-density solution, we
also record the high-density solution, and display both solutions in
Fig. 6. We reiterate that only the low-density solution is supposed to
be comparable to the simulation results or the fluid model predictions.

As can be seen, both models show a similar qualitative behaviour
— an isothermal core grows as the density keeps decreasing; then the
central density reaches a minimum and turns around, manifesting
the onset of gravothermal core-collapse. However, there is a clear
difference: with the isothermal model, the core develops faster, and
reaches a minimum central density that is ~2 times lower than that
predicted by the fluid model, at a slightly later time. This difference
cannot be attributed to the calibration parameter C. In fact, smaller
(larger) C makes the turn-around of gy occur later (earlier), but it has
little impact on the steepness of the isothermal-coring stage.

What causes the difference? Which model is more accurate? To
get some clues, we compare the model predictions to simulation
results of different kinds. First, we compare to the cosmological
Pippin N-body simulations of Elbert et al. (2015). Following Essig
et al. (2019), an ‘evolutionary’ track Jo(f) can be constructed
using the simulation results all at the same time of z = 0. This
is because the dimensionless time 7 = 1(z)/fy x o,, I where the
cosmic time at z = 0 is ¢+ = 13.7 Gyr for the Pippin cosmology, so
different cross-sections correspond to different dimensionless times.
Specifically, the Pippin halo was run with cross-sections o, = 0.5,
1, 5, 10, and 50 cm? ¢~!, and the central densities at z = 0 are py =
7.5, 5.0, 3.0, 2.6, and 4.3x 107 Mg kpc’3, respectively. The CDM
counterpart has p, = 1.7 x 107 Mg kpc™ and r, = 2.7 kpc. Hence,
the dimensionless central densities are gy = 4.4, 2.9, 1.8, 1.5, and
2.5, which are reached at the dimensionless times of f = 4.6, 9.2, 46,
92, and 460, respectively. Interestingly, the isothermal Jeans model,
albeit simplistic, agrees with the cosmological Pippin simulations
very well. Notably, the steeper isothermal coring at 7 < 100 is the
same, and the last simulation data point at 7 = 460, which exhibits
core-collapse, is almost on top of the model prediction. This time
happens to be when the low-density solution and the high-density
solution merge, beyond which the isothermal Jeans model is no
longer applicable. Mathematically, for a continuously evolving
quantity (such as the central density gy) that has two solutions, any
transition between the solutions must be continuous and therefore any
continuous parameter (such as time 7) must enable a smooth transition
between the solutions. In this sense, the transition is when the density
increases and that is the onset of core collapse. Physically, beyond
this time, a negative velocity-dispersion gradient starts to develop so
the isothermal assumption breaks (see Section 5.2 and Appendix A
for more discussion). In practice, the merging point is manifested by
where the ‘stitching error’ 2 can no longer be minimized to zero.
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Second, we compare the model predictions to idealized SIDM N-
body simulations of isolated haloes. To this end, we simulate with
the AREPO code (Springel 2010; Weinberger, Springel & Pakmor
2020) two Milky-Way sized haloes, which are initialized with NFW
profiles at z = 0 with ¢ = 45 and 90, respectively, and are evolved
with a self-interacting cross section of 10cm? g~!. The details of
the simulations are provided in Appendix B. Again, gy(7) is not
sensitive to the details of the target halo or the cross-section, and the
high concentrations are chosen simply to facilitate the gravothermal
evolution and shorten the computation time. Clearly, the fluid model
agrees well with the idealized simulations, whereas the isothermal
model agrees better with cosmological results.

We hypothesize that the difference originates from how the target
CDM halo is used in the modelling. Specifically, in the fluid model,
the present-day target CDM halo is used to initialize the system. That
is, there are two implicit assumptions here: first, for the entire history
of the target halo up until # = 0, dark matter remains collisionless, and
only at ¢ > 0, DM becomes self-interacting; second, the halo stops
mass accretion and evolves in isolation at 7 > 0. As such, the profile
we obtain at time ¢ (r > 0) is virtually that of an isolated system
at a future cosmic time of + + the age of the Universe today, with
the effect of self-interactions during the entire assembly of the target
halo not taken into account. It is therefore not surprising that the fluid
model disagrees with the cosmological results but agrees better with
the idealized simulations which essentially make the same implicit
assumptions.

In contrast, in the isothermal model, the target CDM halo at z =0
is not treated as an initial condition, but instead used for the boundary
condition at ry. In the context of trying to understand why distinct
CDM haloes all have the universal NFW shape, it has been well
established that there is a correspondence between the density-profile
shape and the shape of the mass assembly history (e.g. Ludlow et al.
2013). In this regard, using the target NFW profile to set the boundary
condition means that we have implicitly used some information of
the cosmological mass assembly history of the halo. It is therefore
reasonable to expect agreement with the cosmological simulations.

It is still remarkable that the simplistic stitching at | results in this
high level of agreement and we caution against overinterpretating it
physically. But we have verified that altering the detailed definition
of r; does not change the qualitative agreement. For example,
multiplying a constant factor in equation (1) will not change the
overall shape of the () track. This implies that, when the isothermal
assumption is valid, there is no hysteresis of the core. After all, the
isothermal state is a thermodynamic equilibrium, so does not depend
on how the state was reached.

We also caution that the comparison in Fig. 6 should not be
interpreted as a criticism of the fluid model, but instead a clarification
of what it does as implemented in the literature (Lynden-Bell &
Eggleton 1980; Balberg & Shapiro 2002; Koda & Shapiro 2011;
Pollack et al. 2015; Essig et al. 2019; Nishikawa et al. 2020). To adapt
it for better cosmological usage, one may want to explore revisions
of the sort of the following. In particular, in order to model the SIDM
counterpart of a CDM halo at z = 0, it is reasonable to adopt the
CDM profile at z = zgm, as the initial condition, where zgoy, 1S a
characteristic formation redshift of the halo. Accordingly, the mass,
density, and velocity dispersion in equation (16) shall be updated
according to cosmological average trends to account for the growth
history of the halo. For example, for each time-step, one can add
a mass increment to each radius bin self-similarly according to the
instantaneous density profile, where the sum of the mass depositions
across all the bins is equal to the average mass growth in that time-
step. There are well established empirical mass assembly histories
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Figure 7. Evolution of the velocity dispersion profile from the fluid model.
The dashed black line represents the initial CDM profile. The coloured solid
lines represent the SIDM profiles at different times, as indicated. Notably,
the orange line represents the result when pp reaches the value when the
low-density and the high-density solutions merge in the isothermal Jeans
model, o, merge- Since the central density gp initially decreases and later
turns around, it will reach certain values twice — e.g. both the blue and red
lines here correspond to pp = 10, but the former is during core-formation
while the latter is during core collapse. The dotted vertical lines indicate the
corresponding r| radii. The triangles indicate the isothermal Jeans solutions
of the central velocity dispersions (only for the first three cases, because the
isothermal model is no longer applicable to the later stages of evolution).
Obviously, beyond fo, merge @ negative velocity—dispersion gradient develops
at r ~ ry, core-collapse speeds up, and therefore the isothermal model stops
working as the assumption of constant velocity dispersion at < 7y is no
longer valid.

and mass-concentration-redshift relations from CDM simulations
(e.g. McBride, Fakhouri & Ma 2009; Dutton & Maccio 2014). We
explore improvements of this sort in a future study (Yang et al. in
preparation).

5.2 Gravothermal core-collapse and facilitation by the
inhabitant galaxy

As Fig. 6 shows, gravothermal core-collapse occurs, i.e. the central
density starts to increase, at 7 2 100. Soon after the onset of core-
collapse, one can see with the fluid model that the central velocity
dispersion increases to a level that is higher than the CDM v(r}), and
thus a steep negative velocity-dispersion gradient occurs at r < ry, as
shown in Fig. 7. Then, the flat isothermal core becomes significantly
smaller than 7| and thus gravothermal core-collapse speeds up. Recall
that the key assumption for the isothermal Jeans model is that the core
has constant v = v( throughout the region r < r;. This assumption
holds at the onset of core-collapse, which is why the isothermal
model is still able to capture the upturn in the central density. But
the isothermal method fails as core-collapse continues, because ry,
as defined in equation (1), increases with time, and therefore the
assumption of v = v, within r; breaks when v, increases to be
significantly higher than the peak of the CDM v(r) profile.

Recall that in the isothermal model, we accept the lower-density
solution because realistic haloes form with properties closer to
it. However, we emphasize that both the low-density and high-
density solutions are physical, as they satisfy the Jeans—Poisson
equation with constant velocity dispersion within r;. A smooth
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Figure 8. Critical baryonic properties for gravothermal core-collapse — the
same as the boundary of the core-collapse region in Fig. 5, but for different
halo concentrations and SIDM cross-sections, as indicated. The way to read
this is: if the inhabitant galaxy has higher mass or more compact size than this
threshold, the host SIDM halo formed ~10 Gyr ago will start core-collapse.
Practically, systems sitting on the threshold have the two isothermal solutions
merged into one. Beyond this threshold to the lower right corner, a smooth
joint with 82 < 0.01 between the SIDM core and the CDM-like outskirt is no
longer achievable, or equivalently speaking, it is no longer possible to have
constant velocity dispersion within ry. See Section 5.2 for details.

transition between them is achieved shortly after the central density
starts to increase, manifesting core-collapse. Therefore, we can
practically use the moment when the two solutions merge as an
indicator of gravothermal core-collapse.

The inhabitant galaxy facilitates core-collapse by making the halo
contract in the first place. Naturally, this effect is particularly strong
when the galaxy is massive and compact. To illustrate this, we
highlight the region of core-collapse in the r/Ryi; — My/M,;; space
in Fig. 5. The operational definition of this region is that: for galaxies
on the border of this region, the SIDM haloes that formed 10 Gyr
ago have started core-collapse, such that no isothermal solution exists
that joins smoothly the CDM outskirt (with §> < 0.01).

The region for core-collapse depends on the target CDM con-
centration and the self-interacting cross-section, and becomes larger
for higher ¢ and o,,. This is illustrated in Fig. 8. For instance, at
My/M;; = 0.02 fixed, haloes with 7,5/ R < 0.01 will collapse
if 0,, = 1cm? g !, The exact size limit is slightly lower for lower
concentration. The galaxy-size limit becomes ry//Ryi; < 0.02 for
o, = 10cm? g7, Given that numerous galaxies populate the region
r1p/Ryir ~ 0.01-0.02 observationally, this parameter space may
potentially provide useful constraints on SIDM models. To this end,
however, we think that it still requires more detailed understanding
of how the inhabitant galaxies react to core-collapse. Regardless, the
baryon-facilitated core-collapse itself might be a viable way to create
compact bright dwarfs, which are common in the real Universe but
are difficult to produce in cosmological hydro-simulations.

For dwarf galaxies with My/M;; < 0.01, there is basically no
constraint on how compact the galaxy can get before core-collapse
kicks in, as long as ¢ and o, are not extremely high.

In short, with the current implementation of the isothermal Jeans
model, although we cannot self-consistently describe core-collapse,
we can phenomenologically delineate the onset of core-collapse
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as a function of the baryonic properties, given the target halo
concentration and the cross-section. We caution that, whereas we
have expressed the baryonic properties in units of the virial quantities,
the SIDM halo response, as illustrated in Figs 5 and 8, is not universal
across different virial masses but only applicable to the halo mass
adopted, 10'" M. This is because the scattering rate increases with
the velocity scale of the halo, and thus more massive halos (for a
given concentration and formation time) would have stronger halo
response and earlier core-collapse than lower mass counter parts.

6 CONCLUSION

In this paper, we combine the isothermal Jeans model and the
prescription for adiabatic halo contraction into a fast semi-analytic
procedure for calculating the density profile of SIDM haloes. This
method takes the inputs of (1) a target CDM halo described by an
NFW profile, and (2) an observable baryon distribution described by
a Hernquist profile. It computes the contraction, fits the contracted
CDM halo with a Dekel-Zhao profile, and stitches an isothermal core
to the CDM outskirt at the characteristic radius 7; by minimizing the
fractional difference in density and enclosed mass. We have shown
that this model works remarkably well compared to cosmological
SIDM simulations both in dark-matter-only set-ups (Pippin) and
with hydrodynamics and star formation (FIRE2-SIDM). We provide
a simple CORENFW approximation formula for the dark-matter-only
cases, where the characteristic core size of r. = 0.45r; universally
applies to a wide range of cross-sections and target CDM halo
concentrations.

We use this model to study the response of SIDM haloes to their
inhabitant galaxies. We show that the halo response to the baryonic
potential is more intensified and more diverse in SIDM than in CDM.
Notably, depending on the compactness of the baryonic distribution,
the central dark-matter density slope can be cored, equally cuspy,
or cuspier than the CDM counterpart — a desirable feature in the
context of the structural diversity of bright dwarf galaxies. We
note that, while the model does not capture feedback-driven halo
expansion and only considers adiabatic contraction, it agrees well
with the FIRE2-SIDM simulations which incorporate both effects.
We therefore argue that the dominant baryonic effect in the context
of SIDM is adiabatic contraction, and that the details of baryonic
feedback may be unimportant in SIDM models.

The fast speed of the numerical implementation of the model
enables the following analyses that would be otherwise challenging
for numerical simulations. We quantify the SIDM halo response on a
fine mesh grid spanned by the baryon-to-total mass ratio M,/M; and
the ratio between the half mass radius and the virial-radius r,»/R;, in
terms of the central logarithmic density slope, s = dIn p/dInr| g,
as well as the core density in units of the scale density of the reference
CDM halo, po/ps. With this, we are able to confirm with unprece-
dented precision that for typical Milky-Way-like hosts, the SIDM
profiles are similar to their CDM counterparts — an assumption often
used in semi-analytic or idealized studies of SIDM satellite galaxies.

We also delineate the regime of gravothermal core-collapse in the
space of galaxy mass versus galaxy size, My/Myi; — ri2/Ryie. This
can be done for any choice of the cross-section and the target CDM
halo concentration. For any given baryon-to-total ratio, there is a
limit on how compact the galaxy can get in terms of ry,,/R;;, beyond
which core-collapse will be triggered within the Hubble time. This
threshold is lower (i.e. galaxies can be more compact) if the target
CDM halo concentration is smaller or if the cross-section is smaller.
With ¢ = 10 and o,, = 1cm? g~!, galaxy sizes cannot be smaller
than ~0.01Ry;, for typical baryon-to-total ratios of ~0.02. Given that
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numerous galaxies have rj, ~ 0.01R,;;, we think that this baryon-
facilitated gravothermal core-collapse may provide useful constraints
on SIDM models, if we can better understand how galaxies react to
core-collapse.

Finally, we compare the isothermal Jeans model with the more
sophisticated gravothermal fluid model which is extensively studied
in the literature. We show that the isothermal model agrees better with
cosmological simulations: they both show a steep per central-density
decrease in the isothermal coring regime and a later gravothermal
core-collapse compared to the fluid model. On the contrary, the
fluid model agrees well with idealized simulations of isolated haloes
initialized with NFW profiles. We argue that the difference originates
from whether the target CDM profile is used for the boundary
condition (as in the case of the isothermal model) or as the initial
condition (as in the case of the fluid model).

We have made our programs publicly available, including the
programs for computing the profiles of SIDM haloes with baryons,
as well as the programs that calculate the threshold for gravothermal
core-collapse in the My/Mi; — r1/Ryi; space. They can be down-
loaded at https://github.com/JiangFangzhou/SIDM. While we stick
to Hernquist galaxies in the paper for self-consistency (as equation
5 is based on Hernquist galaxies), the adiabatic contraction model of
Gnedin et al. (2004) actually also accommodates exponential disks
and is implemented in the code.
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APPENDIX A: TWO SOLUTIONS OF THE
ISOTHERMAL JEANS STITCHING

In Section 2 and Fig. 1, we illustrated the workflow of the isothermal
Jeans model and showed that there are two islands of minima of the
‘stitching error’ at ry, in the space of central dark-matter density pg
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Figure A1. The same as Fig. 1, but for a series of different halo ages: #ge = 2, 10, 50, and 100 Gyr. Note that: (1) the central density po decreases first at
tage S 50 Gyr and then increases between #,oc = 50 Gyr and 100 Gyr; (2) the low-density and high-density solutions get closer as the system evolves and finally
merge — this is when the isothermal assumption starts to break, with vg reaching the highest value allowed by the isothermal assumption, and this is when
gravothermal core-collapse kicks in.
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and the core velocity dispersion vy. There, we showed an example
of a system of tyee = 5 Gyr, My;y = 10" Mg, c = 15, M, = 10° Mo,
and ry, = 1.9kpc, for a cross section of o, =1 cm? ¢~!. Here, as
shown in Fig. A1, we extend the exercise to a series of different halo
ages, tyge = 2, 10, 50, and 100 Gyr, with everything else the same.
This effectively shows the evolution of the system.

As the system evolves, the two minima of §? first both decrease in
00 (fage =2 and 10 Gyr); then, the lower-density solution turns around
(tage = 50 Gyr) and finally the two solutions merge (#;5c = 100 Gyr),
marking the onset of gravothermal core-collapse.

This trend actually holds as long as the system ‘evolves’ in terms
of the dimensionless time 7 = lage/to = Sﬁampf/zrstage, so it can
be achieved also by increasing o, or c¢. For example, the central
density track of the Pippin simulations as we showed in Fig. 6 is
obtained by increasing o, with everything else fixed.

APPENDIX B: IDEALIZED SIMULATIONS

For Section 5.1, in addition to comparing with the published
cosmological Pippin simulations, we also compared the models to
idealized simulations of isolated SIDM haloes using the AREPO code
(Springel 2010; Weinberger et al. 2020). AREPO comes with a default
module of dark matter self-interactions with the form of two-body
scattering (Vogelsberger et al. 2012). This code is intensively used in
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the recent study of Zeng et al. (2022) on SIDM subhaloes. The initial
conditions are generated with NFW profiles of M;; = 102 M, with
a concentration parameter of ¢ = 45 or 90, using the code SPHERIC.
High concentration values are adopted to facilitate the gravothermal
evolution. The particle mass is 10’ M. The gravitational softening
length € of each halo is decided following the criteria of Van den
Bosch & Ogiya (2018) such that:

0.32(N,,/1000)~08
€ = ey PO BD)

where r is the scale radius of the initial NFW halo, c is the initial
concentration, fic) = In(1 + ¢) — —c/(1 + ¢), and N,, is the number
of simulation particles. The haloes are evolved with self-interaction
cross section 0, = 10 cm? g~! until a core is well developed in the
centre. We emphasize that for the dimensionless gy—7 space (Fig. 6)
in which we compare the results, the mass, and the concentration
of the halo or the cross-section has little impact on the results. The
central density py is defined as the average density of the innermost
100 particles.
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