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A B S T R A C T 

We combine the isothermal Jeans model and the model of adiabatic halo contraction into a semi-analytic procedure for computing 

the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. 
The model agrees well with cosmological SIDM simulations o v er the entire core-forming stage up to the onset of gra v othermal 
core-collapse. Using this model, we show that the halo response to baryons is more diverse in SIDM than in CDM and depends 
sensitively on galaxy size, a desirable feature in the context of the structural diversity of bright dw arfs. The f ast speed of the 
method facilitates analyses that would be challenging for numerical simulations – notably, we quantify the SIDM halo response 
as functions of the baryonic properties, on a fine mesh grid spanned by the baryon-to-total-mass ratio, M b / M vir , and galaxy 

compactness, r 1/2 / R vir ; we show with high statistical precision that for typical Milky-Way-like systems, the SIDM profiles are 
similar to their CDM counterparts; and we delineate the regime of core-collapse in the M b / M vir − r 1/2 / R vir space, for a given 

cross section and concentration. Finally, we compare the isothermal Jeans model with the more sophisticated gra v othermal fluid 

model, and show that the former yields faster core formation and agrees better with cosmological simulations. We attribute 
the difference to whether the target CDM halo is used as a boundary condition or as the initial condition for the gra v othermal 
evolution, and thus comment on possible impro v ements of the fluid model. We have made our model publicly available at 
https://github.com/JiangFangzhou/SIDM . 
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 INTRODUCTION  

elf-interacting dark matter (SIDM) provides appealing revisions on
mall scales to the standard � + Cold Dark Matter (CDM) paradigm
f cosmic structure formation. Elastic self-interactions of dark-matter
articles transfer heat towards the central regions of dark-matter
aloes, creating constant density isothermal cores (e.g. Kochanek &
hite 2000 ; Colin et al. 2002 ; Vogelsberger, Zavala & Loeb 2012 ;

eter et al. 2013 ; Rocha et al. 2013 ). This is a convenient way of
xplaining the dark-matter cores in some dwarf galaxies (e.g. Blok
t al. 2008 ; Oh et al. 2015 ), without breaking the large-scale success
f the standard cosmology. 
Galaxy formation complicates this picture. Hydro-cosmological

IDM simulations, as well as idealized SIDM-only simulations with
nalytical disc potentials, have shown that the dark-matter density
rofiles can sometimes be equally cuspy or cuspier than their CDM
 E-mail: fangzhou.jiang@gmail.com 
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ounterparts (e.g. Elbert et al. 2018 ; Sameie et al. 2021 ). This implies
hat the response of SIDM haloes to the inhabitant galaxies is diverse
nd highly sensitive to certain baryonic details. The sensitivity of the
IDM halo response to baryonic details could be advantageous for
xplaining the small scale puzzles (e.g. Creasey et al. 2017 ; Kamada
t al. 2017 ; Ren et al. 2019 ; Kaplinghat, Ren & Yu 2020 ; Zentner
t al. 2022 ). In fact, there is now compelling observ ational e vidence
hat the structures of bright dwarf galaxies are diverse, not only in
erms of the central dark-matter density slope (e.g. Relatores et al.
019 ; Shi et al. 2021 ) but also straightforwardly in terms of the galaxy
ize, which ranges from ∼0 . 5 kpc for compact ellipticals (e.g. Chilin-
arian & Zolotukhin 2015 ) all the way to ∼5 kpc for ultra-diffuse
alaxies (e.g. Koda et al. 2015 ). These two aspects of structural
iversity may actually be highly correlated, at least in � CDM. For
xample, simulated ultra-diffuse galaxies tend to be hosted by cored
ark-matter haloes (e.g. Jiang et al. 2019 ), where supernov ae-dri ven
as outflo ws puf f up simultaneously the galaxies and the host haloes.

It is therefore interesting to revisit the correlation between
alaxy size and host halo structure in the context of SIDM. Can
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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e quantify the halo response to baryons in simple terms? Is it
tronger or weaker than that in CDM? Which baryonic process is
he most important for establishing the galaxy-SIDM-halo relation? 
o answer these questions, hydro-cosmological SIDM simulations 
ave been de veloped; ho we ver, they must find a balance between
ample size and numerical resolution: zoom-in hydro-cosmological 
IDM simulations have so far been limited to a small sample of
ilky-Way-like systems and dwarfs (e.g. Cruz et al. 2021 ; Sameie 

t al. 2021 ; Shen et al. 2021 ), whereas large-box SIDM simulations
e.g. Robertson et al. 2019 ) which contain large statistical samples 
till lack the resolution for reliably resolving the innermost few 

pc. In this work, we adopt a semi-analytic approach based on the
sothermal Jeans model first introduced in Kaplinghat et al. ( 2014 );
aplinghat, Tulin & Yu ( 2016 ). This model solves the Jeans-Poisson

quation for the profile of the SIDM isothermal core, given the 
ark-matter density and velocity dispersion at the centre as well as
he baryonic distribution. A recent adaptation of this method has 
een shown to be remarkably accurate compared to large-box SIDM 

imulations (Robertson et al. 2021 ). We impro v e this model by
dding a prescription for adiabatic halo contraction (Gnedin et al. 
004 ), thus making it more self-consistent in describing the baryonic 
ffect. 

This integrated model takes a target CDM halo and baryonic 
otential as inputs. It computes the contracted CDM halo given the 
aryonic potential, and stitches an isothermal SIDM core to the 
DM-like outskirt by minimizing their differences at the transition 

adius within which collisions are frequent. As such, this model can 
uickly compute density profiles for SIDM haloes with inhabitant 
alaxies, and, as we show below, produce results that are remarkably 
imilar to those from zoom-in hydro-cosmological simulations. 
he speed of this semi-analytic approach enables investigations 
f SIDM halo response with high statistical precision and with 
ong baselines of input parameters such as baryonic size and 

ass. 
This paper is organized as follows. In Section 2 , we recap the
odel ingredients and combine them into a workflow, summarized 

n Section 2.4 . In Section 3 , we compare the model predictions
o the results from zoom-in cosmological SIDM simulations, in- 
luding both dark-matter-only set-ups and hydro-simulations. After 
emonstrating the accuracy of the model, we use it to study the
alo response in Section 4 , where we quantitatively relate the inner
tructure of the SIDM haloes to the compactness and mass fraction 
f the inhabitant galaxies, and show the importance of considering 
diabatic halo contraction. Finally, in Section 5 , we compare this
odel to the other one-dimensional method for SIDM haloes that is
 xtensiv ely studied in the literature – the gra v othermal fluid model
Section 5.1 ), and we also study the facilitation of gra v othermal
ore-collapse by the inhabitant galaxy, providing regions of core- 
ollapse in the space spanned by galaxy mass fraction and galaxy 
ompactness, as a function of the cross section and target halo 
oncentration. For general readers who want to skip the technical 
etails and get to the results sooner, Section 2.4 can be a good starting
oint. 
Throughout, we define the virial radius of a distinct halo as the

adius within which the average density is � = 200 times the
ritical density for closure. We also assume spherical symmetry 
or both the dark-matter haloes and galaxies. We adopt a flat 
osmology with the present-day matter density �m = 0.3, baryonic 
ensity �b = 0.0465, dark energy density �� = 0 . 7, a power
pectrum normalization σ 8 = 0.8, a power-law spectral index of 
 s = 1, and a Hubble parameter of h = 0.7, unless otherwise
entioned. 
 ANALYTIC  METHOD  FOR  COMPUTING  THE  

ENSITY  PROFILE  OF  SIDM  HALOES  

cattering between dark-matter particles is pre v alent in the centre of
 halo where the dark-matter density is high, but is infrequent on the
utskirts where the scattering time-scale is longer than the lifetime 
f the halo. The full profile of an SIDM halo therefore consists of
 thermalized core and a CDM-like outer region. The transition is
round a characteristic radius r 1 , within which an average dark-matter
article has experienced more than one scattering o v er the lifetime
 age of the halo (Kaplinghat et al. 2016 ): 

4 √ 

π
ρdm ( r 1 ) v( r 1 ) σm = 

1 

t age 
, (1) 

here the left-hand side is the scattering rate per particle, with ρdm 

he DM density, (4 / 
√ 

π ) v the av erage relativ e v elocity between DM
articles for a Maxwellian distribution (where v is the 1D velocity
ispersion), and σm the self-interaction cross-section per particle 
ass. Note that, the cross section also carries a radius dependence if

t is velocity dependent, which comes in via the velocity dispersion
rofile, i.e. σm = σm [ v( r )]. Here, we assume constant cross section in
he velocity-dispersion regime of interest. This assumption holds 
hen the halo develops its isothermal core within r 1 . 
The impact of DM self-interactions on the halo density profile 

an be regarded as a modification to the inner part ( r < r 1 ) of a
DM counterpart, and can be computed using the spherical Jeans 
quation with the assumption that the halo is isothermal within r 1 
nd in approximate equilibrium. 

.1 Profile of the isothermal core 

he density profile of the isothermal dark-matter core can be solved
y combining the spherical Jeans equation and the Poisson equation: 

d( ρdm v 
2 ) 

d r 
+ 

2 β

r 
v 2 = −ρdm 

d 
 

d r 
, (2) 

1 

r 2 

d 

d r 

(
r 2 

d 
 

d r 

)
= 4 πGρ = 4 πG ( ρdm + ρb ) , (3) 

here 
 is the total gravitational potential, ρ is the total density,
nd ρb is the baryon density. With the assumption of an isotropic
 β = 0) and constant 1D velocity dispersion ( v( r ) = v 0 ), the Jeans
quation has a simple generic solution: 

dm ( r) = ρdm0 exp 

[
−�
 ( r) 

v 2 0 

]
or �
 ( r) = −v 2 0 ln 

[
ρdm ( r) 

ρdm0 

]
, (4) 

here ρdm0 is the central dark-matter density, and �
 ( r ) = 
 ( r )

 (0) is the potential difference between radius r and the centre.

ombining equation ( 3 ) and ( 4 ), we get 

1 

r 2 

d 

d r 

(
r 2 

d ln ρdm ( r) 

d r 

)
= −4 πG 

v 2 0 

[ ρdm ( r) + ρb ( r)] . (5) 

ollowing Kaplinghat et al. ( 2014 ), we assume a Hernquist profile
or the baryon distribution, 

b ( r) = 

M b / 2 πr 3 0 

r 
r 0 

(
1 + 

r 
r 0 

)3 , (6) 

here M b is the baryon mass, and r 0 the scale radius. Then, equation
 5 ) can be rewritten as the dimensionless form 

d 2 h 

d y 2 
+ 

2 

y 

d h 

d y 
+ 

b 

y 
+ 

ae h 

(1 − y) 4 
= 0 , (7) 
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here h ( y) ≡ 
 ( y) /v 2 0 , y = ( r / r 0 )/(1 + r / r 0 ), a ≡ 4 πGr 2 0 ρdm0 /v 
2 
0 ,

nd b ≡ 2 GM b /r 0 v 
2 
0 . The boundary conditions for solving this

quation are h (0) = 0 and h 
′ 
(0) = −b /2. The isothermal core profile

an therefore be obtained by integrating equation ( 7 ), given the
aryon properties ( M b , r 0 ), the central DM density ( ρdm0 ), and the
onstant velocity dispersion within the core ( v 0 ). Rewriting equation
 5 ) into the dimensionless form of equation ( 7 ) facilitates the nu-
erical solution. One can assume other profile shapes for the baryon

ensity in equation ( 5 ) and derive dimensionless equations similar
o equation ( 7 ). Here, we opt for the Hernquist profile because it is
enerally applicable to a wide range of galaxies including dwarfs and
assive ellipticals, and more importantly, because when modelling

he halo contraction (Section 2.2 ), we have taken advantage of a fast
nalytical formalism (Gnedin et al. 2004 ) that has been optimized
or Hernquist profiles. 

There are four parameters in total that fully determine the
sothermal dark-matter profile: two for baryons ( M b , r 0 ) and two
or dark matter ( ρdm0 , v 0 ). For modellers, the baryonic parameters
 M b , r 0 ) are usually known – for constructing simple toy halo
odels based on observations, ( M b , r 0 ) are available from surface

hotometry; for building more complex semi-analytic or semi-
mpirical frameworks, they can be set from empirical abundance-
atching relations. Ho we ver, the DM parameters ( ρdm0 , v 0 ) are not

eadily known. They need to be determined iteratively given the virial
ass M vir and concentration c of the target CDM halo, as we will

escribe in Section 2.3 . 
We emphasize that, the isothermal Jeans model assumes that

he system is in approximate equilibrium. Strictly speaking, an
IDM halo is never in Jeans equilibrium, but constantly evolving
y transporting energy from the dynamically hotter region to colder
laces. For a target system that is initially described by a CDM
rofile, the dynamically hottest place is where the v( r ) profile peaks,
o with self-interactions, the heat flows to the centre. As the system
volves, the core temperature gradually becomes the highest and then
onducts energy outwards. The full time evolution can be described
sing the gra v othermal fluid equations (see Section 5.1 ). 

.2 Halo contraction 

he dark-matter distribution contracts in response to the condensa-
ion of baryons in the halo centre. Blumenthal et al. ( 1986 ) described
his process assuming circular orbits and an adiabatic invariant of
 ( r ) r , where M ( r ) is the total mass enclosed within radius r . Gnedin

t al. ( 2004 ) showed that the original adiabatic-contraction treatment
 v erestimates the magnitude of contraction compared to the results of
osmological hydro-simulations, and attributed the mismatch to the
 v ersimplified assumption of circular orbits. To account for orbital
ccentricity and orbital phase distributions, they proposed a modified
nvariant, M ( ̄r ) r , where ̄r is the orbit-averaged radius for particles at
nstantaneous radius r , approximated by 

¯ = Ax w , (8) 

here x = r / R vir , and the parameters A ≈ 0.85 and w ≈ 0.8 are
alibrated with simulations. There is some halo-to-halo variation
n these parameters (Gnedin et al. 2011 ), which we ignore in this
ork. 1 W ith M( ̄r ) r in variant and assuming that the baryons are

nitially distributed with the same radial profile as the dark matter,
NRAS 521, 4630–4644 (2023) 

 We ignore the halo-to-halo variation because there seems to be no systematic 
rend of w or A with halo mass or concentration. w is weakly dependent on 
he details of cooling, but usually within 0.6–1.0. 

T  

t  

t  

o  
ne can show that the final radius r f of dark-matter particles initially
ocated at r > r f obeys the equation: 

r 

r f 
= 1 − f b + 

M b ( ̄r f ) 

M i ( ̄r ) 
, (9) 

here f b = M b / M vir is the galactic mass fraction within R vir , M b ( r )
s the final baryon mass within r , and M i ( r ) is the initial total mass
rofile. 
Assuming that the initial distribution of DM and baryons both

ollow an NFW profile (Navarro, Frenk & White 1997 ), 

( r) = 

ρs 

cx ( 1 + cx ) 2 
, where ρs = 

c 3 

3 f ( c) 
�ρcrit , (10) 

ith � the average overdensity with respect to the critical density of
he Universe ρcrit ( z), c the concentration parameter, and f ( c ) = ln (1
 c ) − c /(1 + c ), and that the final baryonic distribution obeys a
ernquist profile, then a solution of equation ( 9 ) can be obtained.
he details of this step can be found in the appendix of Gnedin et al.
 2004 ). Solving equation ( 9 ) for r f for an initial radius r , we get the
nclosed mass profile M dm, f ( r f ) = (1 − f b ) M i ( r ) of the contracted
alo. 
The contracted DM mass profile is non-parametric. To facilitate

ubsequent modelling, such as solving for the characteristic radius r 1 ,
e need simple parametric expressions for the density profile ρdm ( r )

nd the velocity–dispersion profile v( r ). We therefore fit the profile
f a contracted halo with the Dekel-Zhao (DZ) profile (Freundlich
t al. 2020 ), which has analytic expressions for ρdm ( r ) and v( r ), and
s flexible enough in the centre to account for the contraction, at the
xpense of adding just one more degree of freedom than NFW. The
nclosed mass of a DZ profile is given by 

M dm ( r) = (1 − f b ) M vir 
g ( cx, α) 

g ( c, α) 
, (11) 

here g ( ξ , α) = [ ξ 1/2 /(1 + ξ 1/2 )] 2(3 − α) ; and c and α are the free
arameters describing the concentration and innermost density slope
f the halo. The density profile and the velocity dispersion profile
re given by 

ρdm ( r) = 

ρDZ 

x α(1 + x 1 / 2 ) 2(3 . 5 −α) 
, (12) 

 
2 ( r) = 2 V 

2 
vir 

c 

g ( c, α) 

x 3 . 5 

χ2(3 . 5 −α) 

8 ∑ 

i= 0 

( −1) i 8! 

i!(8 − i)! 

1 − χ4(1 −α) + i 

4(1 − α) + i 
, (13) 

here ρDZ = [ c 3 (3 − α)]/[3 g ( c , α)] × �ρcrit , V vir is the circular
elocity at the virial radius, and χ = x 1/2 /(1 + x 1/2 ). We fit the
ass profile M dm, f ( r f ) of a contracted halo using equation ( 11 ) and

hen solve equation ( 1 ) for the transition radius r 1 using the density
nd velocity dispersion of the best-fitting DZ profile. For typical
aryon distributions (0 . 01 � f b � 0 . 2 and 0 . 005 � r 0 /R vir � 0 . 1),
he best-fitting DZ profile agrees with the non-parametric solution of
 dm, f ( r f ) to per-cent level. 
From now on, we drop the ‘dm’ in the subscription of the symbol

or central DM density ρdm0 and simply denote it by ρ0 . 

.3 Stitching the isothermal core to the CDM outskirt 

o obtain the full profile of an SIDM halo with baryons, we determine
he parameters ( ρ0 , v 0 ) of the isothermal core iteratively, such that
he core joins the contracted CDM halo at radius r 1 smoothly in terms
f the local density and the enclosed mass. Specifically, we search
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Figure 1. Illustration of the semi-analytical workflow (Section 2.4 ) – example of finding the SIDM profile for a cross-section of σm = 1 cm 
2 g −1 and a target 

CDM halo formed t age = 5 Gyr ago with a present-day virial mass of M vir = 10 11 M � and a concentration of c = 15. The inhabitant galaxy has a total cold baryon 
mass of M b = 10 9 M �, and half-mass radius of r 1 / 2 = 1 . 9 kpc ( r 1/2 / R vir = 0.02). The thin grey dashed lines show the density profile ( left ) and circular–velocity 
profile ( middle ) of the original dark-matter-only target CDM halo; and the thick dashed lines are the profiles for the adiabatically contracted CDM halo. The 
thicker solid black lines are the profiles of the best-matching SIDM isothermal core, which corresponds to the low-density solution of ( ρ0 , v 0 ) as marked by the 
bigger black ‘ + ’ sign in the right-hand panel. The thinner solid black lines are the profiles that correspond to the discarded high-density solution, as marked 
by the smaller ‘ + ’ sign in the right-hand panel. The right-hand panel shows the colour map of the ‘stitching error’ δ, defined in equation ( 14 ), in the space 
of central density ρ0 versus central velocity dispersion v 0 . Clearly there are two δ minima, but only the low-density solution agrees with simulation results 
(see Fig. 2 ). As shown in Appendix A , the two solutions get closer as the system evolves (i.e. as t age or cross-section increases). When they join, gra v othermal 
core-collapse starts to speed up (see Section 5.2 ). The vertical and horizontal dashed lines indicate the region ρcdm ( r 1 ) < ρ0 < ρcdm ( r res = 10 pc ) and 0.5 v( r 1 ) 
< v 0 < 2 v( r 1 ), which brackets the low-density solution uniquely for a wide range of halo age and cross section. 
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he space of ρ0 –v 0 to minimize the following objective quantity: 

2 = 

[
ρiso ( r 1 ) − ρcdm ( r 1 ) 

ρcdm ( r 1 ) 

]2 

+ 

[
M iso ( r 1 ) − M cdm ( r 1 ) 

M cdm ( r 1 ) 

]2 

, (14) 

here ρ iso ( r ) and ρcdm ( r ) are the density profiles, and M iso ( r ) and
 cdm ( r ) are the enclosed DM mass profiles, of the isothermal core

nd the contracted CDM halo, respectively. There are two minima 
f δ2 in the ρ0 –v 0 space, with similar v 0 values but very different
0 . The existence of the two solutions was already noted by Elbert
t al. ( 2018 ). Here, we illustrate them clearly in the right-hand panel
f Fig. 1 . 2 

Elbert et al. ( 2015 ) only accepted the lower-density solution as it
grees with their simulation results better. We emphasize that both 
olutions are physical in the sense that they both meet the requirement 
f constant temperature below r 1 . It is just that realistic haloes form
ith properties closer to the lower-density solution, which is why the 

ower-density solution agrees better with cosmological simulation 
esults. We find by trial and error that a practical searching range
or the lower density solution is ρcdm ( r 1 ) < ρ0 < ρcdm (10 pc ) and
.5 v ( r 1 ) < v 0 < 2 v ( r 1 ), which, in most cases, brackets a unique
inimum of δ2 . 
As will be shown below, this simple formalism can capture the 

nset of gra v othermal core-collapse. As the halo age t age increases
r as the cross section σm becomes larger, the two minima of
2 get closer – they first both decrease in ρ0 ; then the lower 
ensity solution turns around, manifesting the onset of gra v othermal 
ore-collapse; and finally the two solutions merge as core-collapse 
peeds up, beyond which point, the isothermal model is no longer 
 For Figs 1 and A1 , we e v aluate the objective of stitching error on a regular 
rid of log ρcdm and log v 0 – this is relatively slow and only for the purpose 
f illustrating the two minima. For the rest of the work and in the public code 
hat we share, the minimization was performed using the PYTHON module 
PICY.OPTIMIZE.MINIMIZE and its default BFGS algorithm. 

m
0  

b  

I  

t  

d
o  
pplicable. This is illustrated in Appendix A , and the high-density
olution is therefore also useful, as we will address further in 
ection 5.2 . 

.4 Workflow 

e summarize the workflow for getting the density profile of an
IDM halo with baryons as follows: 

(1) Given a CDM halo described by an NFW profile (i.e. with
nown virial mass M vir , concentration c , and age t age ), and given an
nhabitant galaxy described by a Hernquist profile (parametrized by 
he mass M b and scale size r 0 ), compute the adiabatically contracted
alo profile (Section 2.2 ). 
(2) Given the self-interaction cross-section, σm , solve equation ( 1 ) 

or the radius of frequent scattering, r 1 , using the density profile and
elocity-dispersion profile of the contracted CDM halo. 

(3) Integrate the spherical Jeans–Poisson equation, equation ( 5 ), 
o obtain an isothermal core profile (Section 2.1 ) – do this iteratively
o find the central DM density ρ0 and the central velocity dispersion
 0 by minimizing the relative stitching error defined in equation ( 14 )
Section 2.3 ). 

o illustrate, Fig. 1 shows an example of the density and circular
elocity profiles of an SIDM halo obtained with this workflow. In this
xample, we adopt a self-interaction cross-section of σm = 1 cm 

2 g −1 

nd a target CDM halo of M vir = 10 11 M �, c = 15, and t age = 10 Gyr
ith a Hernquist baryon distribution of mass M b = 10 9 M � and half-
ass radius r 1 / 2 = 1 . 9 kpc (i.e. a Hernquist r 0 = r 1 / 2 / (1 + 

√ 

2 ) ≈
 . 8 kpc ). These choices are largely arbitrary for illustration purposes,
ut are of the same of order as the Large Magellanic Cloud (LMC).
n Appendix A , we demonstrate how the two solutions evolve as
he halo age increases, and discuss in Section 5.2 that the high-
ensity solution can help us to phenomenologically predict the onset 
f gra v othermal core-collapse. While this procedure is devised for
MNRAS 521, 4630–4644 (2023) 
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Figure 2. Comparison of the dark-matter density profiles from the model and 
from the cosmological N -body simulations of the Pippin haloes as in Elbert 
et al. ( 2015 ) at z = 0. The grey circles represent the reference-CDM simulation 
result; and the green, blue, and red circles represent the SIDM simulation 
results of cross-sections of σm = 0.1, 1, and 10 cm 

2 g −1 , respectively (labelled 
as SIDM01, SIDM1, and SIDM10). The CDM halo is well described by an 
NFW profile of M vir = 10 9 . 89 M � and c = 15.8, as indicated by the grey solid 
line – this is used as the starting point of the isothermal Jeans model. The 
model predictions are shown by the solid lines of corresponding colours. The 
vertical dotted lines show the r 1 radii. The model predictions agree very well 
with the simulation results across 2 dex in cross-section. The thin dashed lines 
in pale colours represent a universal approximation, which is the coreNFW 

profile with a scale radius r c that is 0.45 times the respective r 1 . 
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aloes with baryons, it is fully compatible with dark-matter-only
ases, for which one simply sets M b zero. 

 COMPARISON  WITH  COSMOLOGICAL  SIDM  

IMULATIONS  

n this section, we show that the aforementioned workflow gives
alo profiles closely matching those from cosmological SIDM
imulations. We also provide a simple analytical fitting formula for
he dark-matter-only cases. 

.1 Comparison with dark-matter only simulations 

o compare the model to cosmological dark-matter-only simulations,
e use the zoom-in simulations of Elbert et al. ( 2015 ) and focus on

he ‘Pippin’ haloes therein. The simulations adopt the Wilkinson
icr owave Anisotr opy Pr obe-7 cosmology (Komatsu et al. 2011 ),
ith h = 0.71, �m = 0.266, �� = 0.734, n s = 0.963, and σ 8 =
.801. For the high-resolution runs that we compare to, the particle
ass is 1 . 5 × 10 3 M �, and the Plummer equi v alent force softening

ength is 28 pc. The Pippin halo was run in both CDM and SIDM
ith a wide range of velocity-independent cross-sections of σm =
.1–50 cm 

2 g −1 , all starting from the same initial conditions. The
IDM implementation follows that of Rocha et al. ( 2013 ). The CDM
ippin halo is accurately described by an NFW profile with a virial
ass of M vir = 10 9 . 89 M � and a concentration of c = 15.8, as shown

y the grey line in Fig. 2 . We use this NFW profile as the input of the
arget CDM profile for our model, and compute the SIDM profiles
or σm = 0.1, 1, and 10 cm 

2 g −1 , which are then compared to the
orresponding simulation results. Since we are dealing with dark-
NRAS 521, 4630–4644 (2023) 
atter only cases, M b is set to be infinitesimally small. We find that
he model predictions agree well with the simulation results across
he cross-section range. 

While this semi-analytic procedure is already reasonably fast
 � 0 . 1 sec per system using our publicly available PYTHON imple-
entation), it still requires numerical minimization for determining

0 and σ 0 . To accommodate semi-analytic frameworks designed for
arge ensembles of haloes and subhaloes (e.g. Benson 2012 ; Jiang
t al. 2021 ), an even faster formula would be useful. We find that
 CORE NFW profile (Read, Agertz & Collins 2016 ) with the scale
adius being a fixed fraction of r 1 provides decent approximations.
he CORE NFW profile has an enclosed mass profile given by 

 ( r ) = M NFW ( r) tanh 

(
r 

r c 

)
, (15) 

here M NFW ( r ) is the enclosed mass of the target NFW profile,
nd r c is a characteristic core size. We find by trial and error that
ORE NFW profiles with r c = 0.45 r 1 fit accurately the SIDM haloes
erived from the same target CDM halo across 2 dex in cross-section,
s shown by the thin dashed lines in Fig. 2 . We hav e v erified that
his universal approximation holds as long as the system is not in
he core-collapse regime, and thus applies to most SIDM haloes with
 � 20, t age � 14 Gyr, and σm � 10 cm 

2 / g. It breaks down when the
aryonic component is not negligible, or when the halo starts to
ore-collapse, for which a more complicated profile shape is needed.

.2 Comparison with hydro simulations 

e also compare the model predictions to cosmological hydro
imulations, to test its performance when the system is baryon
ominated in the centre. We use three Milky-Way-mass systems
n the FIRE-2 SIDM suite (Sameie et al. 2021 ): m12i, m12f, and
12m, which have virial masses of M 200m = 10 11 . 95 , 10 12.15 , and

0 12 . 08 M �, respectively, at z = 0. These galaxies are simulated with
ross-sections of σm = 1 and 10 cm 

2 g, and they all have CDM-
nly reference runs with matched initial conditions which we can
se for the model inputs. Among the three systems, m12i and m12f
av e Milk y-Way-like sizes of r 1 / 2 ≈ 4 kpc and a stellar mass of
 b ∼ 10 10 . 7 M �, while m12m has a slightly higher stellar mass of
 b ∼ 10 10 . 9 M � and a much more extended stellar distribution of

 1 / 2 ≈ 8 kpc . Table 1 of Sameie et al. ( 2021 ) provides more detailed
nformation of these simulations. 

Again, following the workflow in Section 2.4 , we fit NFW profiles
o the CDM-only simulations at z = 0 and treat the best-fitting profiles
s the target haloes, as shown by the grey lines in Fig. 3 . Then we fit
ernquist profiles to their stellar distributions, as represented by the

oloured dotted lines in Fig. 3 , and use them to model the adiabatic
ontraction of these haloes. Both the NFW fits and the Herquist fits
re accurate within ∼5 per cent in the radius range of interest. We
ssume these systems formed t age = 7 Gyr ago, which is the average
ormation time of haloes of Milky-Way mass scale. The predicted
IDM profiles, as shown by the coloured solid lines in Fig. 3 , match

he simulation results fairly accurately. For the SIDM1 runs, the
entral densities are matched at per cent lev els. F or the SIDM10
uns, while the model slightly o v erpredicts the central densities, it
till correctly captures the shape of the simulated density profiles:
here is a relatively flat central core at r � 1 kpc , a steep decrease at
 ∼ 5 kpc , and a flatter part again at r ∼ r 1 ∼ 40 kpc . 

The good agreement between the model and the simulations
rovides insights into the galaxy–halo connection in the context of
IDM. In CDM, there are two equally important competing baryonic
ffects on halo structure – on the one hand, the galactic potential
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Table 1. Comparison of the two 1D models of self-interacting DM haloes 
– the isothermal Jeans model versus the gra v othermal fluid model. See 
Section 5.1 for details. 

Isothermal Gra v othermal 

similarities 
Operation target CDM halo CDM halo 
Applicable before core-collapse yes yes 

differences 
Speed fast slow 

Applicable after core-collapse no yes 
Captures baryonic effect yes a no b 

Support v-dependent σm no c yes 

a It captures the gravitational effect of the baryonic potential, not the baryonic 
feedback. 
b In principle, one can add a static baryonic term in the second equation of 
equation ( 16 ), such that the gra v othermal fluid model can also capture the 
halo response to the baryonic component. 
c Ho we v er, v elocity dependence ef fecti vely makes the cross-section larger in 
the past, so if given the growth history of the target CDM halo, we can redefine 
r 1 with equation ( 17 ) and perform the isothermal Jeans modeling for each 
time. 
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akes the halo contract and become more cuspy; on the other hand,
upernov ae-dri ven outflo ws heat the potential well and flatten the
entral density. The net effect of the competing mechanisms depend 
ensitively on details of the subgrid physics for star formation and 
upernovae (e.g. Bose et al. 2019 ). The SIDM simulations here 
lso include both of the competing mechanisms, but the model only 
onsiders halo contraction and ignores stellar feedback. Hence, the 
act that good agreement is still achieved between the model and 
he FIRE2-SIDM simulations implies that the core-formation effect 
rom supernovae is subdominant and overwhelmed by the effect 
f the SIDM halo in the presence of the baryonic potential (see
lso Sameie et al. 2021 for discussion). It is therefore reasonable 
o speculate that SIDM simulations are not sensitive to the sub-grid
aryonic physics for certain ranges of SIDM parameters. This should 
e better tested with hydro + SIDM simulations with varied strength 
f feedback. 

 SIDM  HALO  RESPONSE  

n this section, we use the model for quantitative analysis of the
IDM halo response. We express the halo structures as functions of

he baryonic mass fraction ( M b / M vir ) and the baryonic compactness
 r 1/2 / R vir ), and also take this opportunity to show the importance of
onsidering adiabatic halo contraction. 

.1 Enhanced structural di v ersity in SIDM 

oom-in hydro-simulations have hinted that SIDM haloes are more 
esponsive to the presence of a baryonic distribution (rather than 
aryonic feedback) than their CDM counterparts. Here, we use the 
sothermal Jeans model to show this more explicitly. 

First, we vary the size of the baryonic component while keeping 
he total mass and baryon mass fixed at M vir = 10 11 M � and
 b = 10 9 M � – these values are typical of bright dwarf galaxies

uch as the LMC or sub- L � galaxies which exhibit the most dramatic
tructural diversity. We also keep the halo age and the target-halo’s 
oncentration fixed at typical values of t age = 10 Gyr and c = 10. We
un the model for two cross sections, σm = 1 and 0 . 1 cm 

2 g −1 . We
erform control-experiments to get the CDM references, i.e. starting 
rom the same target halo and the same galaxy as used for the
IDM calculations, and simply compute the adiabatically contracted 
DM halo profiles. Fig. 4 shows the comparison. The sensitivity 
f the halo response in the SIDM models is indeed much higher
han that of the reference CDM cases. Notably, the inner SIDM
ensity slope (e v aluated at, e.g. r ∼ 0 . 5 kpc ≈ 0 . 5 per cent R vir ) can
e flat, equally cuspy, or cuspier than that of the reference CDM
rofile, depending on whether the galaxy is diffuse ( r 1 / 2 = 2 kpc ),
ormal (1 kpc ), or compact ( r 1 / 2 � 0 . 5 kpc ). The range of the central
ensities, e.g. e v aluated at r = 0 . 1 kpc , of the CDM results is only
.5 dex, while that of the SIDM models spans more than an order of 
agnitude. 
This remarkable diversity in halo response is not driven by the

ifference in the characteristic radius r 1 . In fact, for σm � 1 cm 
2 g −1 ,

he r 1 values are similar across the different galaxy sizes, as shown
y the vertical dotted lines in Fig. 4 . Only for cross sections as
mall as σm ∼ 0 . 1 cm 

2 g −1 , r 1 becomes comparable to the galaxy
ize and differs significantly depending on the latter. Even here, r 1 
ccurs where the halo density profiles converge, so the dramatic 
ifference in the inner halo cannot be attributed to that of r 1 or of
he local density ρ( r 1 ). The structural diversity must then arise from
he difference in the enclosed mass profile, or V circ ( r ), as shown in
he right-hand panels of Fig. 4 . A small change in the baryonic size
esults in amplified differences in the gradient and the Laplacian of
he potential, d 
 /d r = V circ ( r ) 2 / r and d 2 
 /d r 2 , which are leading
erms in the Jeans–Poisson equation (equation 7 ) underlying the 
hole model. 
The structural diversity of bright dwarf galaxies ( M b ≈ 10 8 −9 M �)

as drawn a lot of attention recently . Notably , these galaxies span two
rders of magnitude in size and exhibit a wide range of morphologies, 
ncluding compact dwarfs with r 1/2 as small as ∼0 . 1 kpc and ultra-
iffuse galaxies with r 1/2 up to 10 kpc . The structural diversity is also
anifested in the logarithmic density slope s ≡ dln ρ/dln r near the

entre ( r � 1 kpc ), as inferred from baryonic kinematics. For exam-
le, as Relatores et al. ( 2019 ) summarized, s ranges between 0 and 1.5
or galaxies with M b ∼ 10 9 M �. It is challenging for hydro + CDM
odels to fully explain such a dramatic extent of structural diversity,

specially given that both the galaxy size and the inner halo structure
xhibit wide ranges. Recently, Zentner et al. ( 2022 ) demonstrated
hat SIDM and feedback-affected CDM models are equally better 
han a CDM model in explaining the halo structural diversity as seen
n the SPARC surv e y (Lelli, McGaugh & Schombert 2016 ), ho we ver,
he pre v alence of compact bright dwarfs with r 1 / 2 � 1 kpc remains
 challenge for hydro-CDM simulations featuring strong feedback 
e.g. Jiang et al. 2019 ). Here, galaxy size is an input of the model,
o we do not provide an explanation for the size diversity, but we
ave clearly shown that SIDM models have the virtue of making the
wo aspects strongly coupled, such that if there is an explanation for
he size diversity, it explains automatically the range of DM density
lopes. 

Second, we extend the above exercise by scanning a wide range
n the space spanned by the baryonic mass fraction and galaxy
ompactness, and thus more systematically describe the SIDM halo 
esponse. Still adopting σm = 1 cm 

2 g −1 and a target CDM halo 
f t age = 10 Gyr , M vir = 10 11 M �, and c = 10, we vary M b / M vir 

rom 10 −4 to 0.1, and r 1/2 / R vir from 0.004 to 0.1. We express the
alo structure in terms of the inner density slope s ≡ −dln ρ/dln r
 v aluated at r = 1 kpc , and the central density ρ0 in units of the
FW scale density ρs . The results are shown in Fig. 5 . The main
anels of Fig. 5 show the contour maps of s and ρ0 / ρs in the 2D
aryon-property space. The top panels and side panels show the 
D slices of the 2D map with either of the baryonic quantities
MNRAS 521, 4630–4644 (2023) 
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Figure 3. Comparison of the dark-matter density profiles from the model and from the FIRE2-SIDM hydro-cosmological simulations – showing three examples 
of Milky-Way-mass systems at z = 0: m12f, m12i, and m12m, as in Sameie et al. ( 2021 ). The open circles represent the density profiles in the reference CDM 

dark-matter-only (DMO) runs. The solid grey lines show the best-fitting NFW profiles, which are used as inputs in the isothermal Jeans model. The dotted lines 
represent the best-fitting Hernquist profiles of the stellar density distributions (stars) in the hydro-simulations. The red and blue colours differentiate the SIDM 

results for σm = 10 (SIDM10) and 1 cm 
2 g −1 (SIDM1), respectively. The stellar profiles are used as inputs to the model for computing halo contraction. The 

dashed lines of corresponding colours represent the profiles of the contracted CDM haloes. The filled circles and solid lines of the matching colour represent the 
profiles from the SIDM simulations and the corresponding models. Overall, the model preditions are in decent agreement with the simulations – for the SIDM1 
run, the central densities at r ∼ 1 kpc agree at per cent level; for SIDM10, the shapes of the simulated profiles are correctly reproduced. 
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xed (at M b / M vir = 0.01 or r 1/2 / R vir = 0.02). Clearly, the SIDM
alo becomes more dense and cuspy as the galaxy becomes more
assive and compact. Although we have used a massive dwarf

alo for illustration, the result applies to other mass scales as well
ince we have expressed the baryonic properties in units of the virial
uantities. 
Hydro-cosmological zoom-in simulations have shown that, for
ilky-Way-like systems, SIDM halo profiles are rather similar to

heir CDM counterparts down to quite small radii. This can be seen
or example in m12f and m12i in Fig. 3 , and it has moti v ated some
emi-analytic studies to assume NFW profiles for their Milky-Way
ized SIDM host halo when studying the satellite galaxies (e.g.
lone et al. 2022 ). Here, we can easily check the validity of this
ssumption in Fig. 5 . Abundance-matching studies have shown that a
ilky-Way-mass system typically has a stellar-to-total-mass ratio of
1 per cent (e.g. Moster, Naab & White 2013 ), and a half mass radius

hat is ∼2 per cent of the host-halo virial radius (e.g. Somerville et al.
018 ). F or these representativ e values, as can be seen in Fig. 5 , the
NRAS 521, 4630–4644 (2023) 

b  
IDM profile indeed has an inner logarithmic density slope very
lose to the NFW value of s ∼ 1. 

.2 Necessity of considering adiabatic contraction 

obertson et al. ( 2021 ) also studied the isothermal Jeans model in
etail and made comparisons with cosmological simulations. There,
he authors adopted an inside-out fitting scheme. That is, different
rom what we do here, they start from an isothermal core profile
efined by ρ0 and v 0 in the centre, e v aluate r 1 using the core profile,
nd find the NFW profile on the outskirt that smoothly joins the
ore at r 1 . In this regard, our workflow as described in Section 2.4
s called the outside-in approach (e.g. Sagunski et al. 2021 ). As
obertson et al. ( 2021 ) noted, in the inside-out approach, the outer
alo is completely determined by the NFW profile and there is no
reedom to incorporate contraction. That said, it is still able to capture
he effect of baryonic potential on the SIDM profile partially, via the
aryonic terms in the Jeans–Poisson equation, equation ( 5 ). It is just
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Figure 4. Illustration of the high sensitivity of SIDM halo response to baryonic potentials. The left-hand and right-hand panels show the density profiles and 
circular velocity profiles, respectively, of SIDM haloes (solid lines) and CDM counterparts (dashed lines). For all the cases, we keep fixed the virial mass 
of M vir = 10 11 M �, the target concentration of c = 10, and the galaxy mass of M b = 10 9 M �, only varying the galaxy size. The colours differentiate the 
half-mass radii of r 1/2 = 0.005, 0.01, and 0.02 R vir , as indicated, or equi v alently, r 1/2 ≈ 0.47, 0.95, and 1.9 kpc – these are representative of compact, normal, and 
ultra-diffuse dwarf galaxies. The upper and lower panels show the results for cross sections of σm = 1 cm 

2 g −1 and 0 . 1 cm 
2 g −1 , respectiv ely. The v ertical dotted 

lines mark the positions of r 1 for the corresponding colour. Clearly, SIDM haloes are more sensitive to baryonic compactness than their CDM counterparts. 
The strong difference in the inner halo is not driven by the difference in r 1 , which is actually negligible for σm = 1 cm 

2 g −1 or larger; instead, it arises from the 
difference in V circ ( r ), or more precisely in the derivatives of the gravitational potential d 
 /d r = V circ ( r ) 2 / r and d 2 
 /d r 2 , as hinted from the right-hand panels. 
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ot entirely self-consistent, as the baryonic potential will affect the 
ntire halo, making the outer part also deviate from NFW. 

Here, with the outside-in approach, we can quantify the difference 
ade by including adiabatic halo contraction. We emulate the 

nside-out model by skipping the halo contraction step of our 
orkflow and only consider the baryonic potential in the Jeans–
oisson equation. The difference is shown in the top and side 
anels of Fig. 5 – the thick black lines show the halo response
rom the fiducial model, and the thin grey lines show the result
kipping halo contraction (with everything else the same). As can 
e seen, accounting for adiabatic contraction does not introduce 
 big difference for galaxies of M b /M vir � 0 . 001 or for diffuse
ystems of r 1 / 2 /R vir � 0 . 04; ho we ver, for massi ve and compact
ystems, the central density in our fiducial model can be up to
our times higher (see e.g. the result at M b / M vir = 0.04), and the
entral density slope can also be different by up to 30 per cent.
n short, for massive and compact systems, an explicit adiabatic- 
ontraction treatment must be included for accurate results; for 
iffuse and dark-matter dominated systems, considering the baryon 
otential in the Jeans–Poisson equation provides results that are close 
nough. 
 DISCUSSION  

n this section, we first compare the isothermal Jeans model to the
ore sophisticated gra v othermal fluid model, which also predicts 
IDM halo profiles and is studied e xtensiv ely in the literature.
hen, we study the facilitation of gra v othermal core-collapse by

he inhabitant galactic potential, and use the isothermal Jeans model 
o predict the regime of core-collapse in the space of galaxy mass
raction versus galaxy compactness. 

.1 Comparison with gravothermal fluid evolution 

he isothermal Jeans model assumes a system to be in approximate
quilibrium, whereas with dark-matter self-interactions, the system 

s never in strict equilibrium. The full hydrodynamical evolution can 
e described by the gra v othermal fluid model, which is e xtensiv ely
tudied in a series of seminal works (Lynden-Bell & Eggleton 1980 ;
alberg & Shapiro 2002 ; Koda & Shapiro 2011 ; Pollack, Spergel &
teinhardt 2015 ; Essig et al. 2019 ; Nishikawa, Boddy & Kaplinghat
020 ). This method treats SIDM as a gra v othermal fluid, and solves
 set of coupled partial differential equations for the evolution of
MNRAS 521, 4630–4644 (2023) 
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Figure 5. The inner logarithmic density slope (left) and central density (right) of SIDM haloes as functions of the baryonic mass fraction M b / M vir and the 
galaxy size in units of the virial radius r 1/2 / R vir . Here, we choose σm = 1 cm 

2 g −1 and adopt a target halo formed t age = 10 Gyr ago with present-day virial mass 
M vir = 10 11 M � and concentration c = 10. The slope s ≡ −dln ρ/dln r is e v aluated at r = 1 kpc , and the central density is expressed in units of the NFW scale 
density ρs . The main panels are the contour maps of s and log ( ρ0 / ρs ), with the contour-le vel v alues indicated. The thick black lines in the top and side panels 
show one-dimensional slices of the main panels, with one of the baryonic properties fixed at the values indicated by the dotted lines in the main panel. The 
thin grey lines in the top and side panels show the results without considering adiabatic halo contraction – these are equivalent to the ‘inside-out’ models of 
Robertson et al. ( 2021 ). Focusing on our fiducial model with adiabatic contraction, the density slope increases from ∼0.3 to 2 as M b / M vir increases from 10 −4 

to 0.04 or as r 1/2 / R vir decreases from 0.1 to 0.005, for the specific slices. For M b / M vir ∼ 0.01 and r 1/2 / R vir ∼ 0.02, representative of Milky-Way-mass galaxies 
according to abundance matching, the SIDM density profile is actually rather similar to the CDM case with an inner slope of ∼1. Accounting for adiabatic 
contraction makes the central density up to four times higher (e.g. at M b / M vir = 0.04) and the central density slope ∼30 per cent steeper. In the lower right 
corner of the space, an isothermal solution can no longer be achieved, manifesting the speed-up of gra v othermal core-collapse (GC). 
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3 That is, when the mean free path of scattering, λ = 1/ ρv, is larger than the 
gravitational scale length, H = 
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v 2 / 4 πGρ. 
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he spherically symmetric profiles of mass M ( r , t ), density ρ( r , t ),
elocity dispersion v( r , t ), and the luminosity of the radiated heat
 ( r , t ) –

∂ ˜ M 

∂ ̃ r 
= ˜ r 2 ˜ ρ, 

∂ ( ̃  ρ ˜ v 2 ) 

∂ ̃ r 
= −

˜ M ̃  ρ

˜ r 2 
, 

∂ ̃  L 

∂ ̃ r 
= −˜ r 2 ˜ ρ ˜ v 2 

(
∂ 

∂ ̃ t 

)
˜ M 

ln 

(
˜ v 3 

˜ ρ

)
, 

˜ L = −3 

2 
˜ r 2 ˜ v 

(
a 

b 
˜ σ 2 
m 

+ 

1 

C ̃  ρ ˜ v 2 

)−1 
∂ ̃  v 2 

∂ ̃ r 
. (16) 

hese equations describe mass conservation, hydrostatic equilib-
ium, the first law of thermodynamics, and heat conduction, re-
pectively, where a = 4 / 

√ 

π , b = 25 
√ 

π/ 32, and C is a calibration
arameter of order unity. Following Koda & Shapiro ( 2011 ) and
ishikawa et al. ( 2020 ), we have expressed the equations with the
imensionless quantities: ˜ r ≡ r/r s , ˜ ρ ≡ ρ/ρs , ˜ M ≡ M/M 0 with the
ass scale M 0 = 4 πr 3 s ρs , ˜ σm ≡ σm /σm 0 with the cross-section scale
m 0 = 1/ r s ρs , ˜ v ≡ v/v 0 with the velocity scale v 0 = 

√ 

GM 0 /r s ,
˜ 
 ≡ L/L 0 with the luminosity scale L 0 ≡ GM 

2 
0 /r s t 0 , and ˜ t ≡ t/t 0 

ith the time-scale t 0 = 1/ a σm v 0 ρs . This assumes that the initial
rofile ρ( r , t = 0) is NFW, with scale radius r s and scale density ρs .
ith the dimensionless quantities, we have the convenience that the

ensity-profile evolution is self-similar as long as we are in the long-
NRAS 521, 4630–4644 (2023) 
ean-free-path 3 regime, and thus the result is almost independent of
he cross-section or the initial NFW concentration when expressed
n ˜ ρ( ̃ r , ̃  t ). This is illustrated in Balberg & Shapiro ( 2002 ) and in
ppendix C of Nishikawa et al. ( 2020 ). 
There are a few differences between the isothermal Jeans model

nd the fluid model. First and foremost, conceptually, the fluid
odel gives the full (time-dependent) solution to the Boltzmann
quations with an assumed conductivity; while the isothermal model
pproximates the instantaneous profile as being in equilibrium, and
herefore does not have time evolution per se other than a dependence
n halo age. Second, the isothermal model is only applicable to the
sothermal-coring stage and the onset of gra v othermal core-collapse;
hile the fluid model can follow the evolution well into core-

ollapse. Third, solving the fluid equations requires discretizing the
pherical halo and is relatively computationally e xpensiv e; whereas
he isothermal model only requires performing the minimization at
 1 , and within each iteration, the numerical integration of the Jeans–
oisson equation is quite fast. The speed advantage makes it easier
or incorporating into large semi-analytic frameworks. Fourth, the
uid model only considers the dark-matter component, at least as
resented in the literature so far; while the isothermal model easily
ccounts for baryonic effects by including baryonic terms in the
eans–Poisson equation and by considering adiabatic contraction.
or this reason, when we compare the two models, we focus on

art/stad705_f5.eps


SIDM haloes 4639 

Figure 6. Comparison of the gra v othermal fluid model (black solid line) and 
the isothermal Jeans model (brown solid line) in terms of the (dimensionless) 
central density ˜ ρ0 ≡ ρ0 /ρs as a function of time ̃  t ≡ t/t 0 . See Section 5.1 for 
the definitions and the details of the calculations. Note that, the details of the 
target CDM halo or the cross-section have little impact on the dimensionless 
˜ ρ0 ( ̃ t ) track. Simulation results are o v erplotted for comparison – the grey 
circles represent the Pippin cosmological simulations of different cross- 
sections σm = 0.5, 1, 5, 10, and 50 cm 

2 g −1 at z = 0; the red and green 
dash–dotted lines represent the idealized isolated simulations starting from 

NFW profiles with c = 45 and 90, and with σm = 10 cm 
2 g −1 . The isothermal 

model agrees better with the cosmological results, while the fluid model 
agrees with the idealized simulations – their difference likely originates from 

whether the target CDM halo is used as an initial condition or as a boundary 
condition (see Section 5.1 for discussion). The orange solid line represents the 
usually discarded high-density solution of the isothermal model. The point 
when the high-density and low-density solutions merge coincides with when 
gra v othermal core-collapse speeds up and the core temperature is well abo v e 
the velocity dispersion of the CDM-like outskirt (see Section 5.2 ). 

t
a
v

(  

i
t
t  

c  

h
p  

r

1

w  

i
p  

c

m  

y  

o
t  

4

e
e

e  

i  

z  

c  

i
c  

p  

h  

c  

t  

t  

c
l  

s
r  

p  

i
a
F  

b
 

–  

c
t  

d
r  

p  

c  

(  

l

g
r
P  

e  

u  

i  

c  

d
S
1  

7  

c  

t  

2  

9  

a
v  

s  

c  

h
s
l
q  

t
c  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/3/4630/7074577 by U
niversity of C

alifornia, Irvine user on 21 Septem
ber 2023
he dark-matter-only set-ups. 4 Finally, the fluid model can easily 
dapt to velocity-dependent cross sections – one can simply plug a 
-dependent cross section σm ( v) in the fourth equation of equation 
 16 ); while the isothermal model e v aluates the r 1 radius using the
nstantaneous cross-section, and thus ignores any v-dependence. For 
ypical particle-physics models, the v-dependence ef fecti vely makes 
he cross section larger in the past and thus makes the isothermal
oring faster (Nadler et al. 2020 ). That said, if we know the growth
istory of the target CDM halo including the velocity dispersion 
rofile as a function of redshift v( r , z), then we can solve for an
 1 ( t age ) that includes the time dependence 

 = 

∫ t age 

0 
ρ( r 1 , t) v( r 1 , t) σm [ v( r 1 , t )]d t , (17) 

here t ( z) is the lookback time. We can therefore perform the
sothermal Jeans modelling for each time and construct a density- 
rofile evolution ρ( r , z) that approximates the case of a v-dependent
ross-section. 

We summarize these similarities and differences of the two 
ethods in Table 1 . Overall, the isothermal Jeans model is simplistic

et much faster. In Fig. 6 , we compare the two models in the space
f the dimensionless central density ˜ ρ0 versus the dimensionless 
ime ˜ t . For the fluid model, ˜ ρ0 ( ̃ t ) is simply obtained by solving
 It is in principle possible to include a static baryon component in the second 
quation of equation ( 16 ) and thus make the fluid model capture baryon 
ffects as well, but this is beyond the scope of this work. 

i  

t  

t
f  

w

quation ( 16 ). We have followed the numerical method as detailed
n Nishikawa et al. ( 2020 ), starting from the NFW profile of the
 = 0 CDM Pippin halo (i.e. solid grey line in Fig. 2 ), adopting a
ross section of σm = 5 cm 

2 g −1 , and using C = 0.75 as calibrated to
dealized simulations (Koda & Shapiro 2011 ). Despite the specific 
hoices, we emphasize that the cross-section, the details of the NFW
rofile, or the exact value of C as long as it is between 0.5 and 1,
as weak impact on the result in this dimensionless space in the
ore-forming re gime. F or the isothermal model, in order to construct
he ‘time evolution’, we repeat the e x ercise for a series of halo age
 age and plot ˜ ρ0 versus ˜ t ≡ t age /t 0 . The same target CDM halo and
ross-section are used for both methods. Again, these details are 
argely irrele v ant for this dimensionless parameter space due to the
elf-similar nature of the density evolution in the core-formation 
egime, and we have verified with the isothermal Jeans model that it
redicts a universal track in the ˜ ρ0 –˜ t space for different σm . For the
sothermal model, in addition to the default, low-density solution, we 
lso record the high-density solution, and display both solutions in 
ig. 6 . We reiterate that only the low-density solution is supposed to
e comparable to the simulation results or the fluid model predictions. 
As can be seen, both models show a similar qualitative behaviour

an isothermal core grows as the density keeps decreasing; then the
entral density reaches a minimum and turns around, manifesting 
he onset of gra v othermal core-collapse. Ho we ver, there is a clear
ifference: with the isothermal model, the core develops faster, and 
eaches a minimum central density that is ∼2 times lower than that
redicted by the fluid model, at a slightly later time. This difference
annot be attributed to the calibration parameter C . In fact, smaller
larger) C makes the turn-around of ˜ ρ0 occur later (earlier), but it has
ittle impact on the steepness of the isothermal-coring stage. 

What causes the difference? Which model is more accurate? To 
et some clues, we compare the model predictions to simulation 
esults of different kinds. First, we compare to the cosmological 
ippin N -body simulations of Elbert et al. ( 2015 ). Following Essig
t al. ( 2019 ), an ‘evolutionary’ track ˜ ρ0 ( ̃ t ) can be constructed
sing the simulation results all at the same time of z = 0. This
s because the dimensionless time ˜ t ≡ t( z) /t 0 ∝ σ−1 

m 
, where the

osmic time at z = 0 is t = 13 . 7 Gyr for the Pippin cosmology, so
ifferent cross-sections correspond to different dimensionless times. 
pecifically, the Pippin halo was run with cross-sections σm = 0.5, 
, 5, 10, and 50 cm 

2 g −1 , and the central densities at z = 0 are ρ0 =
.5, 5.0, 3.0, 2.6, and 4.3 ×10 7 M � kpc −3 , respectively. The CDM
ounterpart has ρs = 1 . 7 × 10 7 M � kpc −3 and r s = 2 . 7 kpc . Hence,
he dimensionless central densities are ˜ ρ0 = 4 . 4, 2.9, 1.8, 1.5, and
.5, which are reached at the dimensionless times of ̃  t = 4 . 6, 9.2, 46,
2, and 460, respectively . Interestingly , the isothermal Jeans model,
lbeit simplistic, agrees with the cosmological Pippin simulations 
ery well. Notably, the steeper isothermal coring at ˜ t � 100 is the
ame, and the last simulation data point at ˜ t = 460, which exhibits
ore-collapse, is almost on top of the model prediction. This time
appens to be when the low-density solution and the high-density 
olution merge, beyond which the isothermal Jeans model is no 
onger applicable. Mathematically, for a continuously evolving 
uantity (such as the central density ˜ ρ0 ) that has two solutions, any
ransition between the solutions must be continuous and therefore any 
ontinuous parameter (such as time ̃  t ) must enable a smooth transition
etween the solutions. In this sense, the transition is when the density
ncreases and that is the onset of core collapse. Physically, beyond
his time, a ne gativ e v elocity-dispersion gradient starts to dev elop so
he isothermal assumption breaks (see Section 5.2 and Appendix A 

or more discussion). In practice, the merging point is manifested by
here the ‘stitching error’ δ2 can no longer be minimized to zero. 
MNRAS 521, 4630–4644 (2023) 
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Figure 7. Evolution of the velocity dispersion profile from the fluid model. 
The dashed black line represents the initial CDM profile. The coloured solid 
lines represent the SIDM profiles at different times, as indicated. Notably, 
the orange line represents the result when ˜ ρ0 reaches the value when the 
low-density and the high-density solutions merge in the isothermal Jeans 
model, ˜ ρ0 , merge . Since the central density ˜ ρ0 initially decreases and later 
turns around, it will reach certain values twice – e.g. both the blue and red 
lines here correspond to ˜ ρ0 = 10, but the former is during core-formation 
while the latter is during core collapse. The dotted vertical lines indicate the 
corresponding r 1 radii. The triangles indicate the isothermal Jeans solutions 
of the central velocity dispersions (only for the first three cases, because the 
isothermal model is no longer applicable to the later stages of evolution). 
Ob viously, be yond ˜ ρ0 , merge , a ne gativ e v elocity–dispersion gradient dev elops 
at r ∼ r 1 , core-collapse speeds up, and therefore the isothermal model stops 
working as the assumption of constant velocity dispersion at r < r 1 is no 
longer valid. 

a  

(  

e  

p

5
i

A  

d  

c  

d  

t  

s  

s  

t  

h  

h  

m  

t  

a  

a  

s
 

s  

i  

d  

e  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/3/4630/7074577 by U
niversity of C

alifornia, Irvine user on 21 Septem
ber 2023
Second, we compare the model predictions to idealized SIDM N -
ody simulations of isolated haloes. To this end, we simulate with
he AREPO code (Springel 2010 ; Weinberger, Springel & Pakmor
020 ) two Milky-Way sized haloes, which are initialized with NFW
rofiles at z = 0 with c = 45 and 90, respectively, and are evolved
ith a self-interacting cross section of 10 cm 

2 g −1 . The details of
he simulations are provided in Appendix B . Again, ˜ ρ0 ( ̃ t ) is not
ensitive to the details of the target halo or the cross-section, and the
igh concentrations are chosen simply to facilitate the gra v othermal
volution and shorten the computation time. Clearly, the fluid model
grees well with the idealized simulations, whereas the isothermal
odel agrees better with cosmological results. 
We hypothesize that the difference originates from how the target

DM halo is used in the modelling. Specifically, in the fluid model,
he present-day target CDM halo is used to initialize the system. That
s, there are two implicit assumptions here: first, for the entire history
f the target halo up until t = 0, dark matter remains collisionless, and
nly at t > 0, DM becomes self-interacting; second, the halo stops
ass accretion and evolves in isolation at t > 0. As such, the profile
e obtain at time t ( t > 0) is virtually that of an isolated system

t a future cosmic time of t + the age of the Universe today, with
he effect of self-interactions during the entire assembly of the target
alo not taken into account. It is therefore not surprising that the fluid
odel disagrees with the cosmological results but agrees better with

he idealized simulations which essentially make the same implicit
ssumptions. 

In contrast, in the isothermal model, the target CDM halo at z = 0
s not treated as an initial condition , but instead used for the boundary
ondition at r 1 . In the context of trying to understand why distinct
DM haloes all have the universal NFW shape, it has been well
stablished that there is a correspondence between the density-profile
hape and the shape of the mass assembly history (e.g. Ludlow et al.
013 ). In this regard, using the target NFW profile to set the boundary
ondition means that we have implicitly used some information of
he cosmological mass assembly history of the halo. It is therefore
easonable to expect agreement with the cosmological simulations. 

It is still remarkable that the simplistic stitching at r 1 results in this
igh level of agreement and we caution against o v erinterpretating it
hysically. But we have verified that altering the detailed definition
f r 1 does not change the qualitative agreement. For example,
ultiplying a constant factor in equation ( 1 ) will not change the
 v erall shape of the ˜ ρ0 ( ̃ t ) track. This implies that, when the isothermal
ssumption is valid, there is no hysteresis of the core. After all, the
sothermal state is a thermodynamic equilibrium, so does not depend
n how the state was reached. 
We also caution that the comparison in Fig. 6 should not be

nterpreted as a criticism of the fluid model, but instead a clarification
f what it does as implemented in the literature (Lynden-Bell &
ggleton 1980 ; Balberg & Shapiro 2002 ; Koda & Shapiro 2011 ;
ollack et al. 2015 ; Essig et al. 2019 ; Nishikawa et al. 2020 ). To adapt

t for better cosmological usage, one may want to explore revisions
f the sort of the following. In particular, in order to model the SIDM
ounterpart of a CDM halo at z = 0, it is reasonable to adopt the
DM profile at z = z form as the initial condition, where z form is a
haracteristic formation redshift of the halo. Accordingly, the mass,
ensity, and velocity dispersion in equation ( 16 ) shall be updated
ccording to cosmological average trends to account for the growth
istory of the halo. For example, for each time-step, one can add
 mass increment to each radius bin self-similarly according to the
nstantaneous density profile, where the sum of the mass depositions
cross all the bins is equal to the average mass growth in that time-
tep. There are well established empirical mass assembly histories
NRAS 521, 4630–4644 (2023) 
nd mass-concentration-redshift relations from CDM simulations
e.g. McBride, Fakhouri & Ma 2009 ; Dutton & Macci ̀o 2014 ). We
 xplore impro v ements of this sort in a future study (Yang et al. in
reparation). 

.2 Gravothermal core-collapse and facilitation by the 
nhabitant galaxy 

s Fig. 6 shows, gra v othermal core-collapse occurs, i.e. the central
ensity starts to increase, at ˜ t � 100. Soon after the onset of core-
ollapse, one can see with the fluid model that the central velocity
ispersion increases to a level that is higher than the CDM v( r 1 ), and
hus a steep ne gativ e v elocity-dispersion gradient occurs at r � r 1 , as
hown in Fig. 7 . Then, the flat isothermal core becomes significantly
maller than r 1 and thus gra v othermal core-collapse speeds up. Recall
hat the key assumption for the isothermal Jeans model is that the core
as constant v = v 0 throughout the region r < r 1 . This assumption
olds at the onset of core-collapse, which is why the isothermal
odel is still able to capture the upturn in the central density. But

he isothermal method fails as core-collapse continues, because r 1 ,
s defined in equation ( 1 ), increases with time, and therefore the
ssumption of v = v 0 within r 1 breaks when v 0 increases to be
ignificantly higher than the peak of the CDM v( r ) profile. 

Recall that in the isothermal model, we accept the lower-density
olution because realistic haloes form with properties closer to
t. Ho we ver, we emphasize that both the low-density and high-
ensity solutions are physical, as they satisfy the Jeans–Poisson
quation with constant velocity dispersion within r 1 . A smooth
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Figure 8. Critical baryonic properties for gra v othermal core-collapse – the 
same as the boundary of the core-collapse region in Fig. 5 , but for different 
halo concentrations and SIDM cross-sections, as indicated. The way to read 
this is: if the inhabitant galaxy has higher mass or more compact size than this 
threshold, the host SIDM halo formed ∼10 Gyr ago will start core-collapse. 
Practically, systems sitting on the threshold have the two isothermal solutions 
merged into one. Beyond this threshold to the lower right corner, a smooth 
joint with δ2 < 0.01 between the SIDM core and the CDM-like outskirt is no 
longer achie v able, or equi v alently speaking, it is no longer possible to have 
constant velocity dispersion within r 1 . See Section 5.2 for details. 
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ransition between them is achieved shortly after the central density 
tarts to increase, manifesting core-collapse. Therefore, we can 
ractically use the moment when the two solutions merge as an 
ndicator of gra v othermal core-collapse. 

The inhabitant galaxy facilitates core-collapse by making the halo 
ontract in the first place. Naturally, this effect is particularly strong
hen the galaxy is massive and compact. To illustrate this, we 
ighlight the region of core-collapse in the r 1/2 / R vir − M b / M vir space
n Fig. 5 . The operational definition of this region is that: for galaxies
n the border of this region, the SIDM haloes that formed 10 Gyr
go have started core-collapse, such that no isothermal solution exists 
hat joins smoothly the CDM outskirt (with δ2 < 0.01). 

The region for core-collapse depends on the target CDM con- 
entration and the self-interacting cross-section, and becomes larger 
or higher c and σm . This is illustrated in Fig. 8 . For instance, at
 b / M vir = 0.02 fixed, haloes with r 1 / 2 /R vir � 0 . 01 will collapse

f σm = 1 cm 
2 g −1 . The exact size limit is slightly lower for lower

oncentration. The galaxy-size limit becomes r 1 / 2 /R vir � 0 . 02 for
m = 10 cm 

2 g −1 . Given that numerous galaxies populate the region 
 1/2 / R vir ∼ 0.01–0.02 observationally, this parameter space may 
otentially provide useful constraints on SIDM models. To this end, 
o we ver, we think that it still requires more detailed understanding
f how the inhabitant galaxies react to core-collapse. Regardless, the 
aryon-facilitated core-collapse itself might be a viable way to create 
ompact bright dwarfs, which are common in the real Universe but 
re difficult to produce in cosmological hydro-simulations. 

For dwarf galaxies with M b / M vir 
 0.01, there is basically no
onstraint on how compact the galaxy can get before core-collapse 
icks in, as long as c and σm are not extremely high. 
In short, with the current implementation of the isothermal Jeans 
odel, although we cannot self-consistently describe core-collapse, 
e can phenomenologically delineate the onset of core-collapse 
s a function of the baryonic properties, given the target halo
oncentration and the cross-section. We caution that, whereas we 
av e e xpressed the baryonic properties in units of the virial quantities,
he SIDM halo response, as illustrated in Figs 5 and 8 , is not universal
cross different virial masses but only applicable to the halo mass
dopted, 10 11 M �. This is because the scattering rate increases with
he velocity scale of the halo, and thus more massive halos (for a
iven concentration and formation time) would have stronger halo 
esponse and earlier core-collapse than lower mass counter parts. 

 CONCLUSION  

n this paper, we combine the isothermal Jeans model and the
rescription for adiabatic halo contraction into a fast semi-analytic 
rocedure for calculating the density profile of SIDM haloes. This 
ethod takes the inputs of (1) a target CDM halo described by an
FW profile, and (2) an observable baryon distribution described by 
 Hernquist profile. It computes the contraction, fits the contracted 
DM halo with a Dekel–Zhao profile, and stitches an isothermal core

o the CDM outskirt at the characteristic radius r 1 by minimizing the
ractional difference in density and enclosed mass. We have shown 
hat this model works remarkably well compared to cosmological 
IDM simulations both in dark-matter-only set-ups (Pippin) and 
ith hydrodynamics and star formation (FIRE2-SIDM). We provide 
 simple CORE NFW approximation formula for the dark-matter-only 
ases, where the characteristic core size of r c = 0.45 r 1 universally
pplies to a wide range of cross-sections and target CDM halo
oncentrations. 

We use this model to study the response of SIDM haloes to their
nhabitant galaxies. We show that the halo response to the baryonic
otential is more intensified and more diverse in SIDM than in CDM.
otably, depending on the compactness of the baryonic distribution, 

he central dark-matter density slope can be cored, equally cuspy, 
r cuspier than the CDM counterpart – a desirable feature in the
ontext of the structural diversity of bright dwarf galaxies. We 
ote that, while the model does not capture feedback-driven halo 
xpansion and only considers adiabatic contraction, it agrees well 
ith the FIRE2-SIDM simulations which incorporate both effects. 
e therefore argue that the dominant baryonic effect in the context

f SIDM is adiabatic contraction, and that the details of baryonic
eedback may be unimportant in SIDM models. 

The fast speed of the numerical implementation of the model 
nables the following analyses that would be otherwise challenging 
or numerical simulations. We quantify the SIDM halo response on a
ne mesh grid spanned by the baryon-to-total mass ratio M b / M vir and

he ratio between the half mass radius and the virial-radius r 1/2 / R vir , in
erms of the central logarithmic density slope, s ≡ d ln ρ/ d ln r| 1 kpc ,
s well as the core density in units of the scale density of the reference
DM halo, ρ0 / ρs . With this, we are able to confirm with unprece-
ented precision that for typical Milky-Way-like hosts, the SIDM 

rofiles are similar to their CDM counterparts – an assumption often 
sed in semi-analytic or idealized studies of SIDM satellite galaxies. 
We also delineate the regime of gra v othermal core-collapse in the

pace of galaxy mass versus galaxy size, M b / M vir − r 1/2 / R vir . This
an be done for any choice of the cross-section and the target CDM
alo concentration. F or an y giv en baryon-to-total ratio, there is a
imit on how compact the galaxy can get in terms of r 1/2 / R vir , beyond
hich core-collapse will be triggered within the Hubble time. This 

hreshold is lower (i.e. galaxies can be more compact) if the target
DM halo concentration is smaller or if the cross-section is smaller.
ith c = 10 and σm = 1 cm 

2 g −1 , galaxy sizes cannot be smaller
han ∼0.01 R vir for typical baryon-to-total ratios of ∼0.02. Given that
MNRAS 521, 4630–4644 (2023) 
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umerous galaxies have r 1/2 ∼ 0.01 R vir , we think that this baryon-
acilitated gra v othermal core-collapse may provide useful constraints
n SIDM models, if we can better understand how galaxies react to
ore-collapse. 

Finally, we compare the isothermal Jeans model with the more
ophisticated gra v othermal fluid model which is e xtensiv ely studied
n the literature. We show that the isothermal model agrees better with
osmological simulations: they both show a steep per central-density
ecrease in the isothermal coring regime and a later gra v othermal
ore-collapse compared to the fluid model. On the contrary, the
uid model agrees well with idealized simulations of isolated haloes

nitialized with NFW profiles. We argue that the difference originates
rom whether the target CDM profile is used for the boundary
ondition (as in the case of the isothermal model) or as the initial
ondition (as in the case of the fluid model). 

We have made our programs publicly available, including the
rograms for computing the profiles of SIDM haloes with baryons,
s well as the programs that calculate the threshold for gra v othermal
ore-collapse in the M b / M vir − r 1/2 / R vir space. They can be down-
oaded at https://github.com/JiangFangzhou/SIDM . While we stick
o Hernquist galaxies in the paper for self-consistency (as equation
 is based on Hernquist galaxies), the adiabatic contraction model of
nedin et al. ( 2004 ) actually also accommodates exponential disks

nd is implemented in the code. 
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Figure A1. The same as Fig. 1 , but for a series of different halo ages: t age = 2, 10, 50, and 100 Gyr . Note that: (1) the central density ρ0 decreases first at 
t age � 50 Gyr and then increases between t age = 50 Gyr and 100 Gyr ; (2) the low-density and high-density solutions get closer as the system evolves and finally 
merge – this is when the isothermal assumption starts to break, with v 0 reaching the highest value allowed by the isothermal assumption, and this is when 
gra v othermal core-collapse kicks in. 
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nd the core velocity dispersion v 0 . There, we showed an example
f a system of t age = 5 Gyr , M vir = 10 11 M �, c = 15, M b = 10 9 M �,
nd r 1 / 2 = 1 . 9 kpc , for a cross section of σm = 1 cm 

2 g −1 . Here, as
hown in Fig. A1 , we extend the exercise to a series of different halo
ges, t age = 2, 10, 50, and 100 Gyr, with everything else the same.
his ef fecti vely sho ws the e volution of the system. 
As the system evolves, the two minima of δ2 first both decrease in

0 ( t age = 2 and 10 Gyr); then, the lower-density solution turns around
 t age = 50 Gyr ) and finally the two solutions merge ( t age = 100 Gyr ),
arking the onset of gra v othermal core-collapse. 
This trend actually holds as long as the system ‘evolves’ in terms

f the dimensionless time ˜ t ≡ t age /t 0 = 8 
√ 

G σm ρ
3 / 2 
s r s t age , so it can

e achieved also by increasing σm or c . For example, the central
ensity track of the Pippin simulations as we showed in Fig. 6 is
btained by increasing σm with everything else fixed. 

PPENDIX  B:  IDEALIZED  SIMULATIONS  

or Section 5.1 , in addition to comparing with the published
osmological Pippin simulations, we also compared the models to
dealized simulations of isolated SIDM haloes using the AREPO code
Springel 2010 ; Weinberger et al. 2020 ). AREPO comes with a default
odule of dark matter self-interactions with the form of two-body

cattering (Vogelsberger et al. 2012 ). This code is intensively used in
NRAS 521, 4630–4644 (2023) 
he recent study of Zeng et al. ( 2022 ) on SIDM subhaloes. The initial
onditions are generated with NFW profiles of M vir = 10 12 M � with
 concentration parameter of c = 45 or 90, using the code SPHERIC .
igh concentration values are adopted to facilitate the gra v othermal

volution. The particle mass is 10 7 M �. The gravitational softening
ength ε of each halo is decided following the criteria of Van den
osch & Ogiya ( 2018 ) such that: 

= r s f ( c ) 

√ 

0 . 32( N p / 1000) −0 . 8 

1 . 12 c 1 . 26 
, (B1) 

here r s is the scale radius of the initial NFW halo, c is the initial
oncentration, f ( c ) = ln (1 + c ) − −c /(1 + c ), and N p is the number
f simulation particles. The haloes are evolved with self-interaction
ross section σm = 10 cm 

2 g −1 until a core is well developed in the
entre. We emphasize that for the dimensionless ˜ ρ0 –˜ t space (Fig. 6 )
n which we compare the results, the mass, and the concentration
f the halo or the cross-section has little impact on the results. The
entral density ρ0 is defined as the average density of the innermost
00 particles. 
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