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Abstract

Background: Genome-wide association studies (GWASes) aim to identify single
nucleotide polymorphisms (SNPs) associated with a given phenotype. A common
approach for the analysis of GWAS is single marker analysis (SMA) based on
linear mixed models (LMMs). However, LMM-based SMA usually yields a large
number of false discoveries and cannot be directly applied to non-Gaussian
phenotypes such as count data.

Results: We present a novel Bayesian method to find SNPs associated with
non-Gaussian phenotypes. To that end, we use generalized linear mixed models
(GLMMs) and, thus, call our method Bayesian GLMMs for GWAS (BG2). To
deal with the high dimensionality of GWAS analysis, we propose novel nonlocal
priors specifically tailored for GLMMs. In addition, we develop related fast
approximate Bayesian computations. BG2 uses a two-step procedure: first, BG2
screens for candidate SNPs; second, BG2 performs model selection that considers
all screened candidate SNPs as possible regressors. A simulation study shows
favorable performance of BG2 when compared to GLMM-based SMA. We
illustrate the usefulness and flexibility of BG2 with three case studies on cocaine
dependence (binary data), alcohol consumption (count data), and number of
root-like structures in a model plant (count data).
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1 Introduction
Genome-wide association studies (GWAS) have uncovered many single nucleotide

polymorphisms (SNP) associated to important phenotypes such as plant produc-

tivity [1], plant response to salt stress [2], and human diseases [3]. To take into

account the correlation among GWAS observations, the most widely used meth-

ods for the analysis of GWAS continuous Gaussian data are single marker analysis

(SMA) methods based on linear mixed models (LMMs) [4–6]. Recently, SMA based

on logistic regression with random effects has been proposed for the analysis of

GWAS binary data [7]. However, to the best of our knowledge, there are no pub-

lished methods for the analysis of other types of correlated GWAS non-Gaussian

data such as count data. One of our contributions is to propose the use of gener-

alized linear mixed models for the analysis of GWAS non-Gaussian data. To that

end, we use generalized linear mixed models (GLMMs) and, thus, call our method

Bayesian GLMMs for GWAS (BG2).
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We call our method Bayesian GLMMs for GWAS (BG2). BG2 has two steps:

a screening step and a model selection step. The screening step, similarly to SMA

methods, fits p GLMMs where each model has just one SNP, and uses Bayesian FDR

control [8, 9] to provide a set of candidate SNPs. After that, the model selection

step performs a model search through the space of GLMMs that may include any

number of screened candidate SNPs as possible regressors. BG2 implements both

steps using a pseudo-likelihood approach. We note that a similar pseudo-likelihood

approach can be used to implement SMA methods for non-Gaussian GWAS data,

and a particular case of such an approach has been proposed for GWAS binary data

[7]. However, simulation studies presented in Section 4 show that, when compared

to such SMA methods for non-Gaussian data, BG2 leads to much lower FDR.

The GLMMs for GWAS data considered by BG2 may have two types of random

effects: kinship randoms effects and overdispersion random effects. The kinship ran-

dom effects account for correlation among GWAS observations due to population

stratification and hidden relatedness. Similarly to existing literature for Gaussian

GWAS data, we assume that the vector of kinship random effects follows a multivari-

ate Gaussian distribution with a mean vector of zeros and a covariance matrix that

is the product of a one-dimensional unknown variance parameter and a known pos-

itive semi-definite kinship matrix [10, 11]. The overdispersion random effects allow

for extra variability not accounted for by the model for observations; for example,

when assuming a conditional Poisson model for the observations, the overdispersion

random effects account for extra-Poisson variability.

Both screening and model selection steps in BG2 are based on nonlocal priors. To

the best of our knowledge, this is the first time that nonlocal priors are proposed for

regression coefficients in GLMMs. Previous literature in Bayesian model selection

for GLMMs has assigned for regression coefficients local priors [12]. While local pri-

ors have positive density at null parameter values, nonlocal priors have density equal

to zero at null parameter values. Nonlocal priors were first proposed by [13, 14] for

Gaussian linear models. Nonlocal priors have been successfully developed for many

different problems such as model selection in Gaussian directed acyclic graphical

models [15], classification with Bayesian probit models [16], variable selection in

logistic models [17], Bayesian wavelet analysis [18], and variable selection in gen-

eralized linear models [19]. In particular, [20, 21] have proposed methods based on

nonlocal priors for variable selection in linear mixed models applied to GWAS data.

However, because LMMs applied to binary or count data may lead to meaningless

negative predictions and statistically inefficient estimation, LMMs should not be

applied to non-Gaussian data such as count and binary data, which are the types

of data considered by BG2. Nonlocal priors lead to faster accumulation of evidence

in favor of a true null hypothesis [13], and have been shown to be advantageous

for high-dimensional problems [14, 16, 22]. Therefore, BG2 uses nonlocal priors for

SNP search in GWAS analysis.

Due to the large number of GLMMs that need to be fitted, BG2 relies on two

approximations to speed up computations: a pseudo-likelihood approximation; and

a Population Parameters Previously Determined (P3D) approximation that may

be seen as an empirical Bayes approach. For GLMMs, the integrated likelihood

function obtained by integrating out the random effects is not available in closed
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form. Repeated numerical integration of the random effects for each GLMM fit-

ted for a GWAS analysis is computationally too expensive. Thus, BG2 uses a

pseudo-likelihood approach [23] to facilitate integrating out the random effects.

Such pseudo-likelihood approach leads to a Gaussian approximation for adjusted

observations that allows analytically integrating out the random effects. In addition,

to avoid the computation of matrix inverses for each SNP and, thus, to further speed

up computations, we propose a P3D approximation for GLMMs. A P3D approxi-

mation was first proposed by [24] for Gaussian linear mixed models (LMMs) and a

variation of this approximation is used in the celebrated and widely used method

EMMAX for the analysis of GWAS Gaussian data [6]. With our P3D approach,

BG2 needs to compute a spectral decomposition only once for each screening step

and only once for each model selection step.

In our P3D approach, for each BG2 step (screening and model selection) we fit a

baseline GLMM to obtain adjusted observations and estimates of the variance pa-

rameters. We then keep the adjusted observations and the variance parameters fixed

at the values computed with the baseline GLMM when fitting all other models in

that BG2 step. In our P3D approach, the baseline model is different for the screen-

ing step and for the model selection step. For the screening step, the baseline model

is a GLMM without any SNPs. For the model selection step, the baseline model is

a GLMM with all candidate SNPs obtained from the screening step. This choice of

baseline GLMM for the model selection step is based on [25], who have suggested for

GLMMs the use of adjusted observations based on the full model – the model with

all the regressors – when computing BICs for all possible models. Therefore, BG2

with our P3D approximation does not need to compute a spectral decomposition

for each SNP. As a result, when compared to a usual pseudo-likelihood approach

to GLMMs, our P3D approximation greatly reduces the computational time and

allows the analysis of non-Gaussian GWAS data within a reasonable time frame.

To be technical, in this work we use a hierarchical model and an empirical Bayes

approach to estimate the hyperparameters of the prior distribution of the regres-

sion coefficients of GLMMs. We then combine this prior distribution with the data

through Bayes Theorem to compute the posterior probability of the competing

GLMMs. The Bayesian model selection procedure that we propose in this work

is similar to that of [26], except that in our current work we are dealing with

the problem of Bayesian ultra-high dimensional variable selection (p two orders of

magnitude larger than n) in GLMMs applied to GWAS analysis. To the best of

our knowledge, currently there are no published methods for Bayesian ultra-high

dimensional variable selection in GLMMs.

The remainder of this paper is organized as follows. Section 2 describes the

GLMMs that we consider for non-Gaussian GWAS data. Section 3 describes our

BG2 method for the identification of causal SNPs. Section 4 presents the results of

two simulation studies for binary data and for count data. Section 5 illustrates our

method with applications to three case studies: human cocaine dependence, alco-

hol consumption, and the number of root-like structures in the plant A. Thaliana.

Section 6 concludes with a discussion and future directions.
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2 GLMMs for GWAS

Consider observations y1, . . . , yn that, given random effects, are conditionally inde-

pendent and have a distribution from the exponential family of distributions. This

flexible family of distributions includes the Bernoulli, binomial, Poisson, and gamma

distributions. Thus, this family may be used to model observed GWAS phenotypes

such as an indicator of disease presence/absence, number of lateral roots in plants,

or survival time. Then, the density function of yi is

f(yi|ηi) = exp[T (yi)ηi −B(ηi) + C(yi)], (1)

for i = 1, . . . , n, where T (yi) is the sufficient statistics for yi, B(.) and C(.) are

known functions. Further, each observation yi has mean µi = B′(ηi) and variance

vi = B′′(ηi). Let Xs be a matrix of SNPs and βββs be the corresponding vector of

regression coefficients. In addition, let Xc be a matrix that contains a column of

ones for the intercept and other columns for control covariates (e.g., age, sex, and

environmental factors) and βββc be the corresponding vector of regression coefficients.

Thus, βββs and βββc are fixed effects. Further, let ααα1 be a vector of random effects

that accounts for kinship correlation. Specifically, ααα1 has a multivariate normal

distribution with mean vector 000 and covariance matrix κ1Σ, where κ1 is an unknown

scalar and Σ is a kinship matrix. Furthermore, let ααα2 be a vector of overdispersion

random effects following N(000, κ2I). Let yyy = (y1, . . . , yn) be the vector of observed

phenotypes. Then, the conditional expectation E(yyy|ααα1,ααα2) is linked to the linear

predictor Xsβββs +Xcβββc +ααα1 +ααα2 by the link function g:

g(E(yyy|ααα1,ααα2)) = Xsβββs +Xcβββc +ααα1 +ααα2. (2)

The class of GLMMs given by Equations (1) and (2) can be expanded to deal

with other cases. For example, to account for the experimental design used for

data collection, we may add another random effect ααα3 following a multivariate

normal distribution with mean vector 000 and covariance matrix κ3Σ3, where κ3

is a unknown parameter and Σ3 is a symmetric positive semi-definite matrix that

describes the dependence structure among the observations due to the experimental

design. Because of the P3D approach, BG2 can include additional random effects

and still use the spectral decomposition approach to speed up computations.

3 BG2: Bayesian SNP selection in GLMMs for GWAS

Our method BG2 consists of two steps: screening and model selection. The BG2

screening step uses a novel Bayesian single marker analysis for non-Gaussian data

and applies Bayesian false discovery rate control to yield a set of candidate SNPs.

After that, the BG2 model selection step performs a search through the model space

of all GLMMs that may include any number of SNPs from the set of candidate SNPs.

In both steps, BG2 uses a pseudo-likelihood approach to fit models. In what follows,

Section 3.1 presents the pseudo-likelihood approach, Section 3.2 introduces the BG2

screening step, and Section 3.3 presents the BG2 model selection step.
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3.1 Pseudo-likelihood model fitting

In both the screening and the model selection steps, BG2 uses a pseudo-likelihood

approach. In this subsection, we provide a summary description of the pseudo-

likelihood approach. In addition, in Section S1 of the Supplementary Material we

provide a detailed presentation of the pseudo-likelihood approach. This is an itera-

tive approach that writes the model for the observations as yyy = µµµ+ ϵϵϵ, where ϵϵϵ is a

vector of errors and V = V ar(ϵϵϵ) = V ar(yyy)= diag(v1, . . . , vn) is a diagonal matrix.

Note that for distributions in the exponential family, the variance vi depends on the

linear predictor ηi and, thus, gets updated in each iteration of the pseudo-likelihood

algorithm. More details can be found in Section S1 of the Supplementary Material.

In addition, the pseudo-likelihood approach expands µµµ = E(yyy|βββs,βββc,ααα1,ααα2) in a

first-order Taylor expansion around current estimates of βββs, βββc, ααα1, ααα2, κ1, and κ2.

The resulting equation is rearranged such that the left-hand side depends only on

known quantities (observations, current estimates of parameters, regression matri-

ces). Then, this equation is pre-multiplied by V −1. Let V̂ be the current estimate

for V . The left-hand side of the resulting equation, known as the vector of adjusted

observations, is yyy⋆ = ˆ︁V −1(yyy − ˆ︁µµµ) + Xs
ˆ︁βββs + Xc

ˆ︁βββc + ˆ︁ααα1 + ˆ︁ααα2. Equating yyy⋆ to the

right-hand side of the resulting equation yields

yyy⋆ = Xsβββs +Xcβββc +ααα1 +ααα2 + ˆ︁V −1ϵϵϵ. (3)

Then, the pseudo-likelihood approach approximates the GLMM by an LMM given

by Equation (3) with vectors of random effects ααα1 ∼ N(000, κ1Σ) and ααα2 ∼ N(000, κ2I).

Based on this LMM, new estimates are computed for βββs, βββc, ααα1, ααα2, κ1, κ2, and V .

The pseudo-likelihood algorithm then iterates until convergence of these estimates.

More details about the pseudo-likelihood method are given in Section S1 of the

Supplementary Material.

3.2 BG2 screening step

The BG2 screening step uses a P3D approach based on a baseline model that

assumes a linear predictor given in Equation (2) specialized to contain no SNPs,

that is, g(E(yyy|βββc,ααα1,ααα2)) = Xcβββc +ααα1 +ααα2.

Our P3D approach keeps βββc, κ1, κ2, and V fixed at their pseudo-likelihood es-

timates when performing the Bayesian SMA in the BG2 screening step. Let us

denote these estimates by ˆ︁βββc, ˆ︁κ1, ˆ︁κ2, and ˆ︁V . In addition, our P3D approach keeps

the vector of adjusted observations fixed equal to yyy⋆ obtained at the last iteration of

the pseudo-likelihood algorithm for the baseline model. Let H = ˆ︁κ1Σ+ ˆ︁κ2I + ˆ︁V −1

be the estimated covariance matrix of the adjusted observations yyy⋆. Consider the

spectral decomposition of the matrix H given by H = PDPT . The matrix H is

kept fixed for all SNPs in the screening step. Thus, the spectral decomposition of

H, which has a computational cost of O(n3), has to be computed only once at the

beginning of the screening step.

Let xxxs be the vector of covariate values for SNP s. Then, the BG2 screening step

assumes for each SNP s, s = 1, . . . , p, that the adjusted observations yyy⋆ can be

modeled by the LMM

yyy⋆ = Xc
ˆ︁βββc + xxxsβs +ααα1 +ααα2 + ˆ︁V −1ϵϵϵ. (4)
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Then, the adjusted observations yyy⋆ have an approximate multivariate Gaussian

distribution N(Xc
ˆ︁βββc + xxxsβs, H). Let ˜︁yyy = PT (yyy⋆ − Xc

ˆ︁βββc) and ˜︁xxxs = PTxxxs. Then,

an estimator of βs is ˆ︁βs = (˜︁xxxT
s D

−1˜︁xxxs)
−1˜︁xxxT

s D
−1˜︁y. In addition, the estimator ˆ︁βs has

approximate distribution N(βs, σ
2
s), where σ2

s = var(ˆ︁βs) = (˜︁xxxT
s D

−1˜︁xxxs)
−1.

We assign for βs a prior that is a mixture of a Dirac delta function and a nonlocal

prior, that is,

p(βs|τ, π0) = π0δ0(βs) + (1− π0)
β2
s

nτσ2
s

N(βs|0, nτσ2
s),

where π0 is the probability of the null hypothesis that βs is equal to zero and τ > 0

is a scale parameter. Larger values of τ cause the prior to be more spread out and

lead BG2 to focus on identifying SNPs with relatively large regression coefficients.

Then, the predictive density of ˆ︁βs is

p(ˆ︁βs|τ, π0) =

∫︂
p(ˆ︁βs|βs)p(βs|τ, π0) dβs

= π0N( ˆ︁βs|0, σ2
s) + (1− π0)(2πσ

2
s)

− 1
2 (nτ + 1)−

3
2

exp

{︄
−

ˆ︂β2
s

2σ2
s(nτ + 1)

}︄[︄
1 +

nτˆ︂β2
s

(nτ + 1)σ2
s

]︄
. (5)

Based on this predictive density and assuming that ˆ︁β1, . . . , ˆ︁βp are approximately

conditionally independent given π0 and τ , we obtain the approximate likelihood

function of τ and π0

L(ˆ︁β1, . . . , ˆ︁βp|τ, π0) =

p∏︂
s=1

p(ˆ︁βs|τ, π0). (6)

Let π(τ) and π(π0) be the prior densities of τ and π0, respectively. Then, by Bayes

Theorem an approximate posterior density for (τ, π0) is

π(τ, π0|ˆ︁β1, . . . , ˆ︁βp) ∝ π(τ)π(π0)

p∏︂
s=1

p(ˆ︁βs|τ, π0). (7)

BG2 estimates τ and π0 by maximizing (7) to obtain posterior modes ˆ︁τ and ˆ︁π0.

We assign a noninformative uniform prior on (0, 1) for π0 and consider two prior

specifications for τ . The first prior specification is a uniform prior for τ on (0,∞).

The second prior specification for τ is an inverse gamma distribution with shape

parameter 0.55/0.022 + 1 and rate parameter 0.55, that is τ ∼ IG(0.55/0.022 +

1, 0.55). This prior specification implies a prior mean for τ equal to 0.022, which

was the value for a fixed τ recommended by [20] for GWAS studies. In addition, we

note that values of τ that are too small lead to numerical instability. Therefore, our

prior specification implies that a priori P (τ > 0.01) = 0.999, stochastically keeping

τ away from 0.

Alternatively, we may fix τ at pre-specified values [14, 20]. Specifically, in the

context of GWAS analysis, [20] suggested fixing τ = 0.022 because GWAS effect

sizes are generally very small. When τ = 0.022, the nonlocal product moment prior
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(pMOM) prior assigns a probability of 0.01 to the event that a standardized effect

size falls in the interval (-0.05, 0.05). Thus, in the simulation studies presented in

Section 4, we also consider fixing τ at 0.022.

After estimating τ and π0, BG2 takes an Empirical Bayes approach and keep them

at their estimates ˆ︁τ and ˆ︁π0 while using Bayes Theorem to compute the posterior

probability that the regression coefficient of SNP s (s = 1, . . . , p) in the screening

step is different than zero, that is

P (βs ̸= 0|ˆ︁βs, ˆ︁τ , ˆ︁π0) = 1− ˆ︁π0N( ˆ︁βs|0, σ2
s)

p(ˆ︁βs|ˆ︁τ , ˆ︁π0)
, (8)

where p(ˆ︁βs|ˆ︁τ , ˆ︁π0) is the predictive density given in Equation (5) with τ = ˆ︁τ and

π0 = ˆ︁π0.

Finally, based on the posterior probabilities computed with Equation (8), the BG2

screening step uses Bayesian FDR control [8, 9, 27–29] to obtain a list of candidate

SNPs while keeping the nominal FDR at 5%. Let us denote the number of SNPs

contained in this list of candidate SNPs obtained in the screening step by k.

3.3 BG2 model selection step

The BG2 model selection step considers GLMMs with any number of SNPs from

the list of k candidate SNPs obtained from the BG2 screening step. Thus, the

model selection step considers S = 2k possible models. Let Mm be the m-th model,

m = 1, . . . , S. LetXm be the matrix of SNPs in modelMm, βββm be the corresponding

vector of regression coefficients, and pm be the number of SNPs in model Mm. Let

XS be the model with all k candidate SNPs.

We assume that the k candidate SNPs may or may not be in a model according

to a sequence of exchangeable Bernoulli trials. Specifically, the prior probability of

model Mm is P (Mm) = ˆ︁πk−pm

0 (1−ˆ︁π0)
pm where ˆ︁π0 is the estimate of the probability

of null hypothesis obtained in the screening step. We do this to ensure that the

Bayesian control of false discoveries in the BG2 model selection step is as strict as

the control of false discoveries in the BG2 screening step.

The BG2 model selection step uses a P3D approach where the baseline model is

the full model MS with linear predictor g(E(yyy|ααα1,ααα2)) = Xcβββc +XSβββS +ααα1 +ααα2.

The pseudo-likelihood approach then yields estimates ˆ︁βββc, ˆ︁κ1 and ˆ︁κ2, ˆ︁V , and adjusted

observations yyy⋆. We then consider all models Mm,m = 1, . . . , S, where we keep βββc,

κ1, κ2, and V fixed at these estimates. Let H = ˆ︁κ1Σ+ ˆ︁κ2I + ˆ︁V −1 and consider the

spectral decomposition of the matrix H given by H = PDPT . The matrix H is kept

fixed for all non-baseline models in the model selection step. Thus, even though the

spectral decomposition has a computational cost of O(n3), this decomposition has

to be computed only once at the beginning of the model selection step. In addition,

following the recommendation of [25], we keep the adjusted observations for all the

S considered models fixed at the adjusted observations yyy⋆ obtained while fitting the

full model.

Therefore, under model Mm and with the P3D approach, the adjusted observa-

tions yyy⋆ follow the approximate distribution N
(︂
Xc

ˆ︁βββc +Xmβββm, H
)︂
. In addition,

let ˜︁yyy = PT (yyy⋆ − Xc
ˆ︁βββc) and ˜︁Xm = PTXm. Then, we can rewrite the LMM as
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˜︁yyy|βββm
a∼ N( ˜︁Xmβββm, D), where

a∼ denotes “approximately distributed as.” Because

D is a diagonal matrix, computations for this latter model are very fast.

We propose a novel nonlocal prior for GLMMs. Specifically, we propose a prior

density that is the product of a multivariate Gaussian density and the product

of the square of each element of the vector of regression coefficients βm. In this

multivariate Gaussian density, the covariance matrix is τn(XT
mH−1Xm)−1. Using

the spectral decomposition of the matrix H, the prior we propose for βββm is

π(βββm|Mm) = dm(2π)−pm/2(ˆ︁τn)−3pm/2| ˜︁XT
mD−1 ˜︁Xm| 32

exp

[︃
− 1

2ˆ︁τnβββT
m

˜︁XT
mD−1 ˜︁Xmβββm

]︃ pm∏︂
i=1

β2
mi, (9)

where dm is a normalizing constant.

Let Cm = ˜︁XT
mD−1 ˜︁Xm(1+(ˆ︁τn)−1), ˜︁βββm = C−1

m
˜︁XT
mD−1˜︁yyy, and Rm = ˜︁yyyTD−1(D−˜︁XmC−1

m
˜︁XT
m)D−1˜︁yyy = ˜︁yyyTD−1˜︁yyy − ˜︁yyyTD−1 ˜︁Xm

˜︁βββm. Then, the marginal density of the

adjusted observations ˜︁yyy conditional on model Mm is

m(˜︁yyy|Mm) =

∫︂
N(˜︁yyy| ˜︁Xmβββm, D)π(βββm|Mm) dβββm

= (2π)−
n
2 |D|− 1

2 (1 + ˆ︁τn)−pm/2

exp

(︃
−Rm

2

)︃
E2

(︁∏︁pm

i=1 β
2
mi

)︁
E1 (

∏︁pm

i=1 β
2
mi)

, (10)

where E1

(︁∏︁pm

i=1 β
2
mi

)︁
is the expected value with respect to N(000, (1 + ˆ︁τn)C−1

m ) and

E2

(︁∏︁pm

i=1 β
2
mi

)︁
is the expected value with respect to N(˜︁βββm, C−1

m ). To approximate

E1

(︁∏︁pm

i=1 β
2
mi

)︁
and E2

(︁∏︁pm

i=1 β
2
mi

)︁
, we simulate 2000 samples from N(˜︁βββm, C−1

m ), de-

noted as βββ
(j)
2m, j = 1, . . . , 2000. We compute

∑︁2000
j=1 (

∏︁pm

i=1 β
2(j)
2mi)/2000 as an approxi-

mation to E2

(︁∏︁pm

i=1 β
2
mi

)︁
. Let βββ

(j)
1m = (1+ˆ︁τn) 1

2 (βββ
(j)
2m−˜︁βββm), j = 1, . . . , 2000. Finally,

we compute
∑︁2000

j=1 (
∏︁pm

i=1 β
2(j)
1mi)/2000 as an approximation to E1

(︁∏︁pm

i=1 β
2
mi

)︁
.

Then, the posterior probability of model Mm is

P (Mm|˜︁yyy) ∝ P (Mm)m(˜︁yyy|Mm). (11)

Note that the posterior distribution of the vector of regression coefficients is multi-

modal. BG2 deals with this multimodality without any difficulties. In the screening

step, when βs is a scalar, we compute the posterior probability of βs ̸= 0 using

Equations (5) and (8). In the model selection step, when βββm is a vector of coef-

ficients, we compute the posterior probability of model Mm using Equations (10)

and (11).

If the number of candidate covariates k is small (k < 16), we compute the posterior

probabilities for all 2k candidate models and select the highest posterior probability

model as the best model. If the number of candidate covariates is large, we use a

genetic algorithm from the R package GA [30] to search for the highest posterior

probability model.
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4 Simulation Studies
We have performed simulation studies to compare our nonlocal-prior-based BG2

method versus SMA for binary data and count data. Specifically, we consider single

marker analysis with Bonferroni correction with nominal FDR set to 0.05. To assess

the performance of our methods, in these simulation studies we use genotype SNP

data from humans and from A. Thaliana. These are the same genotype data used

in the case studies we present in Section 5. We use four criteria to compare the

competing methods: true positives (TP), false positives (FP), false discovery rate

(FDR) and F1 score. Within each simulation study, for each method we compute

the average TP, FP, FDR and F1 over 100 simulated datasets. We use a buffer to

define what is a true positive and a false positive. Following [21], if one or more

detected SNPs are adjacent (within 5000 base pairs) to a same causal SNP, that is

counted as a true positive. In addition, each detected SNP not adjacent to a causal

SNP is counted as a false positive.

4.1 Binary data

We simulate binary GWAS data using genotype information from the Study

of Addiction: Genetics and Environment (SAGE) which is part of the Na-

tional Human Genome Research Institute’s Gene Environment Association Study

Initiative [Database for Genotypes and Phenotypes (dbGaP) study accession

phs000092.v1.p1]. Specifically, we use genotype information from 2,772 European

Americans in a total of 800,000 SNPs with minor allele frequency (MAF) larger

than 0.01.

From these 800,000 SNPs, we selected 20 evenly spaced SNPs to be the causal

SNPs. We set the regression coefficients for 5 of these causal SNPs to 0.2, and for

5 other causal SNPs to -0.2. In addition, the regression coefficients for the other

10 causal SNPs have the same value β, but that value varies in six settings: 0.2,

0.3, 0.4, 0.5, 0.7 and 1. Further, we set the intercept at β0 = −0.5. Furthermore,

the variance component κ of the kinship random effects ααα is set to 0.15. Thus, the

binary phenotype data are simulated from a Bernoulli GLMM with logistic link

function and linear predictor β0+
∑︁10

i=1 βxij +
∑︁15

i=11 0.2xij +
∑︁20

i=16(−0.2)xij +αi,

with ααα ∼ N(000, κΣ) where Σ is the kinship matrix.

Figure 1 shows for binary data the performance of our BG2 method with three

different ways to choose the parameter τ , as well as the performance of the SMA

method. These performances in terms of TP, FP, FDR, and F1 averaged over 100

datasets for each setting are plotted as functions of the varying regression coefficient

β. In addition, Figure 1 shows the computational time. Figure S2 in the Supple-

mentary Material show boxplots of TP, FP, FDR, and F1. Our BG2 methods take

twice as long as SMA, which is to be expected since SMA has only a screening step

whereas BG2 has a screening step and a model selection step. Among the three

ways considered to choose τ for BG2, estimating τ based on a uniform prior pro-

vides higher F1 scores for smaller values of β, and provides comparable F1 scores

for larger values of β. In addition, when compared to SMA, BG2 with uniform prior

provides larger average number of true positives TP than when β is small, and a

smaller TP when β is large. However, BG2 with uniform prior leads to a much

smaller average number of false positives than SMA. As a result, when compared
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to SMA, for all considered values of the regression coefficient β, BG2 with uniform

prior has much larger F1.

Finally, we have tested the robustness of BG2 to the case of binary GWAS data

with no causal SNPs. Specifically, we have simulated 100 datasets with binary

GWAS data from a Bernoulli GLMM with logit link function and linear predic-

tor β0 + αi. While BG2 with any of the ways to choose τ does not yield any false

positive for 100 simulated datasets, SMA has an average of 0.06 false positives.

Therefore, BG2 performs better than SMA for binary GWAS data and is robust to

the case when there are no causal SNPs.

4.2 Count data

We simulate count GWAS data using genotype information from The Arabidop-

sis Information Resource (TAIR9) (https://www.arabidopsis.org/). This simulation

study is based on a case study on root-like structures in A. Thaliana that we present

in Section 5.3.

Specifically, we use 188,980 SNPs with MAF>0.01 from 152 ecotypes of A.

Thaliana. This simulation study assumes 10 causal SNPs evenly located among

all available SNPs. Of these 10 causal SNPs, 5 causal SNPs have fixed coefficients

equal to 0.2, and the other 5 causal SNPs have the same coefficient β which varies in

eight settings: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 1. In addition, we set the intercept

β0 equal to 1. Further, we assume that there are two random effects: a kinship ran-

dom effect ααα1 with variance component κ1 equal to 1; and an overdispersion random

effect ααα2 with variance component κ2 equal to 0.3, which is close to the estimate ob-

tained in the case study presented in Section 5.3. Let ri be the number of replicates

of ecotype i. Because in the case study most ecotypes have 12 replicates, in this sim-

ulation study we assume that all ecotypes have 12 replicates. In addition, the phe-

notype yi for ecotype i is the total number of root-like structures of the ri replicates.

These phenotype count data are sampled from a Poisson GLMM with logarithm

link function and linear predictor log(ri)+β0+
∑︁5

i=1 βxij+
∑︁10

i=6 0.2xij+α1i+α2i.

Figure 2 shows for count data the performance of our BG2 method as well as

the performance of the SMA method. These performances are averaged over 100

simulated datasets for each setting and plotted as functions of the varying regression

coefficient β. In addition, Figure 2 shows the computational time. Figure S3 in the

Supplementary Material show boxplots of TP, FP, FDR, and F1. Our BG2 methods

take about eight times longer than SMA, but they still provide results in a feasible

amount of time. Among the three ways considered to choose τ for BG2, estimating

τ based on an inverse gamma prior provides larger average number of true positives

and about the same FDR level. As a result, when compared to the other ways to

choose τ , estimating τ based on an inverse gamma prior has higher F1 scores for

most considered values of β. In addition, when compared to SMA, BG2 with an

inverse gamma prior provides larger average number of true positives TP for most

considered values of β. Further, BG2 with inverse gamma prior has about the same

FDR level as SMA for β ≤ 0.5 and a much smaller FDR level for β > 0.5. As a

result, while BG2 with an inverse gamma prior has comparable F1 to SMA for small

values of β, the F1 of BG2 with an inverse gamma prior becomes much larger than

the F1 of SMA as β increases.
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In addition, we have tested the robustness of BG2 to the case of count GWAS

data with no causal SNPs. Specifically, we have simulated 100 datasets with count

GWAS data from a Poisson GLMMwith logarithm link function and linear predictor

β0 + α1i + α2i. The average number of false positives for all considered methods

is 0. Thus, both SMA and BG2 methods perform well in the case of count GWAS

data with no causal SNPs.

4.3 Choice of prior for τ

Choice of priors is an important part of the implementation of Bayesian methods.

To obtain more information about the impact of prior choice on the results of BG2

implementations, we have expanded our simulation studies presented in Sections

4.1 and 4.2. Specifically, we have performed two additional simulation studies: one

that uses count data simulated with human genome and another one that uses bi-

nary data simulated with A. Thaliana genome. Unfortunately, the simulated binary

datasets simulated with A. Thaliana genome did not contain enough information

for SNPs to be detected by SMA or BG2. Figure S1 in the Supplementary Mate-

rial presents the results for count data based on human genome data. Similarly to

the results from Sections 4.1 and 4.2, any of the implementations of BG2 perform

much better than SMA in terms of FDR and F1. In addition, for count data based

on human genome data, the three implementations of BG2 provide similar results.

Therefore, from the results of the simulation studies, there is no prior choice that

dominates the other prior choices.

Another important consideration is that the performance of the priors will vary

for different GWAS datasets. And, of course, BG2 is to be used by scientists who

are not Bayesian statisticians – thus, ideally there should be a default prior that

would be safe to use with any GWAS dataset. One such class of priors is the class of

non-informative priors [31–34] that impart little or no information in the analysis.

The uniform prior is not concentrated around any particular value of τ and, in this

sense, in non-informative. In addition, in the simulation studies considered here,

BG2 with the uniform prior for τ performed similarly or better than BG2 with

other prior choices for τ . Therefore, in the implementation of BG2 we recommend

the uniform prior as a default choice for τ .

5 Case studies
To illustrate the usefulness and flexibility of the nonlocal-prior-based BG2 method,

this section presents three case studies on cocaine dependence, alcohol consumption,

and number of root-like structures in A. Thaliana.

5.1 Maximum number of alcoholic drinks

The Collaborative Study on the Genetics of Alcoholism (COGA) [35] was a large-

scale family study that had as primary objective to identify genes related to alcohol

dependence. Here, we consider as the response variable the maximum number of

alcoholic drinks consumed in 24 hours. We analyze data on 2759 European Amer-

icans considering 846,076 SNPs with MAF>0.01 and with less than 5% missing.

To perform this analysis, we use the Poisson GLMM for count data considered in

Section 4.2. In our analysis, the 846,076 SNPs are possible regressors. Our Poisson
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GLMM accounts for genetic structure among 2759 subjects by including a vector

of kinship random effects, and allows for extra-Poisson variability with a vector of

overdispersion random effects.

While SMA detected 10 SNPs, BG2 detected only one SNP. More specifically,

the screening step of BG2 identified 10 candidate SNPs which were then given to

the BG2 model selection step. The BG2 model selection step then identified one

SNP. Likelihood ratio tests indicate that the identified SNPs do not violate the

hypothesis of Hardy-Weinberg equilibrium. While we cannot be sure about which

of these SNPs are false positives, the simulation studies in Section 4 show that SMA

tends to have a much higher FDR than BG2. Thus, in this case study the nonlocal-

prior-based BG2 method provides a list of SNPs for further investigation that is

much more focused. The SNP detected by BG2 is located in the protein-coding

gene PTGER4 on chromosome 5. The protein encoded by PTGER4 is a receptor

for prostaglandin E2 (PGE2). An increase in PGE2 is part of the inflammatory

response to alcohol consumption, and the use of the PGE2-inhibitor tolfenamic

acid significantly reduces the severity of several hangover symptoms [36].

5.2 Cocaine dependence

In this case study, we analyze the association between cocaine dependence and sin-

gle nucleotide polymorphisms (SNPs). We analyze data from the Family Study of

Cocaine Dependence (FSCD) [37], which was part of the Study of Addiction: Genet-

ics and Environment. Specifically, we analyze data on 2,767 European Americans

considering 846,076 SNPs with MAF>0.01 and with less than 5% missing. The re-

sponse variable is whether or not the subject is addicted to cocaine. To perform this

analysis, we use the model for binary data considered in Section 4.1. Because males

and females seem to have different behaviors with respect to cocaine use, we include

sex as a control covariate. All 846,076 SNPs are possible regressors. In addition, to

account for the genetic structure among the 2767 subjects, our Bernoulli GLMM

has a vector of kinship random effects.

BG2 detects one SNP, which is located in the protein-coding gene ABCC8 on

chromosome 11. In this case study, the screening step of BG2 identified 1 candidate

SNP which was then selected in the model selection step. For this dataset, SMA

only detects the same SNP. A likelihood ratio test indicates that the identified SNP

does not violate the hypothesis of Hardy-Weinberg equilibrium. The protein en-

coded by this gene is a member of the superfamily of ATP-binding cassette (ABC)

proteins which transport various molecules across extra-cellular and intra-cellular

membranes. In addition, a quantitative transcriptomics analysis (RNA-Seq) has

shown that this gene is overexpressed in the brain [38]. Further, cocaine increases

expression of ABCC1 (another gene that encodes an ABC protein) in mice [39]. Fi-

nally, ABCC1-siRNA (a silencer of ABCC1) blocks cocaine-induced place preference

in mice [39].

5.3 Root-like structures in A. Thaliana

To illustrate the application of our method to count data, we analyze data from a

study of plant regeneration from root explants of the selfing species A. Thaliana [40].

Specifically, we consider as response variable the number of root-like structures. We
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note that [40] applied a square root transformation to analyze this count phenotype

variable. In contrast, we use the Poisson GLMM with overdispersion considered in

Section 4.2 to analyze the original count data. Our model contains a vector of kinship

random effects to account for the correlation among individuals and a vector of

overdispersion random effects. We focus on the number of root-like structures after

21 days in which seedlings are under warm white light at 21oC following a 14/10

h light/dark regime. There are 188,980 SNPs for 152 ecotypes, with 12 biological

replicates per ecotype, from TAIR9 with MAF>0.01.

BG2 detects 3 SNPs. More specifically, the screening step of BG2 screened 5 can-

didate SNPs and then the BG2 model selection step identified 3 of these SNPs. For

this dataset, SMA detects the same 3 SNPs. These 3 SNPs are expressed in the root

and are located in protein-coding genes AT1G20090, AT1G20100 and AT1G20720.

Specifically, AT1G20100 encodes a DNA ligase-like protein involved in the regu-

lation of metabolic processes. In addition, gene AT1G20720 encodes a RAD3-like

DNA binding helicase protein that acts in the repair of double-strand breaks in

DNA, and in nucleotide-excision repair. Finally, AT1G20090 encodes a ROP2 pro-

tein which is known to effect root hair initiation and tip growth [41].

6 Discussion
We have proposed BG2, a two-stage Bayesian SNP detection method for non-

Gaussian GWAS data. BG2 uses a GLMM framework that includes kinship random

effects and overdispersion random effects. BG2 has two steps: a screening step and

a model selection step. The screening step performs a Bayesian SMA that selects a

set of candidate SNPs. The model selection step then considers all possible GLMMs

based on this set of candidate SNPs. To speed up computations, we develop a pseudo

likelihood approach combined with P3D. Further, we develop a novel class of non-

local priors for the regression coefficients specially tailored for GLMMs. Simulation

studies show that, for both binary and count GWAS data, BG2 is much better than

SMA in terms of FDR and F1.

The simulation studies show that, when compared to SMA, BG2 has a much lower

FDR. Of course, there are some combinations of parameters for which SMA and

BG2 provide similar results, and that is what seems to have happened in Sections

5.2 and 5.3. However, in some applications BG2 provides a much smaller number

of false discoveries than SMA, and that is what seems to have happened in the case

study presented in Section 5.1. Therefore, when compared to SMA, BG2 is more

robust and precise.

A relevant question is how sensitive to the choice of prior is the performance of

BG2. We considered here implementations of BG2 with three different choices of

priors. The simulation studies presented in this paper and in the Supplementary

Material have shown that BG2 implementations with each of these three different

choices of priors have similar performance. As a matter of fact, BG2 with the dif-

ferent choices of priors considered here provide the same results for the three case

studies. Therefore, the performance of BG2 seems to be relatively robust to the

choice of priors.

While we have chosen to implement BG2 with a pseudo-likelihood approach and

a genetic algorithm to explore the model space for the analysis of non-Gaussian
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GWAS data, we acknowledge that other approaches may be possible. For example,

instead of the pseudo-likelihood approach, researchers may consider variational in-

ference approaches [42, 43]. In addition, instead of combining the pseudo-likelihood

approach and a genetic algorithm, researchers may consider implementing a paral-

lel tempering approach [44] to perform estimation and model selection at the same

time. However, we think that such parallel tempering approach may not be compu-

tationally feasible for Bayesian ultra-high dimensional variable selection in GLMMs

applied to non-Gaussian GWAS.

There are several possible avenues for future research. One promising research

direction is to adapt BG2 for application to biobank scale data. Another possible

research direction is to implement BG2 with an iterative procedure that would allow

smaller effect sizes to be detected. Finally, another possible research avenue is to

develop BG2 for GWAS analysis when the phenotype is survival time.

7 Conclusion
We propose BG2, a novel two-stage Bayesian approach for non-Gaussian GWAS

data. Compared to SMA, BG2 provides a much lower FDR, is more precise and

robust. BG2 is implemented in the R package BG2 that is available on BioConductor

at https://bioconductor.org/packages/release/bioc/html/BG2.html.
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Figures

Figure 1: SNP search performance of BG2 and SMA methods for simulated

binary data.
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Figure 2: SNP search performance of BG2 and SMA methods for simulated count

data.
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