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Abstract

Background: Genome-wide association studies (GWASes) aim to identify single
nucleotide polymorphisms (SNPs) associated with a given phenotype. A common
approach for the analysis of GWAS is single marker analysis (SMA) based on
linear mixed models (LMMs). However, LMM-based SMA usually yields a large
number of false discoveries and cannot be directly applied to non-Gaussian
phenotypes such as count data.

Results: We present a novel Bayesian method to find SNPs associated with
non-Gaussian phenotypes. To that end, we use generalized linear mixed models
(GLMMs) and, thus, call our method Bayesian GLMMs for GWAS (BG2). To
deal with the high dimensionality of GWAS analysis, we propose novel nonlocal
priors specifically tailored for GLMMs. In addition, we develop related fast
approximate Bayesian computations. BG2 uses a two-step procedure: first, BG2
screens for candidate SNPs; second, BG2 performs model selection that considers
all screened candidate SNPs as possible regressors. A simulation study shows
favorable performance of BG2 when compared to GLMM-based SMA. We
illustrate the usefulness and flexibility of BG2 with three case studies on cocaine
dependence (binary data), alcohol consumption (count data), and number of
root-like structures in a model plant (count data).
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1 Introduction

Genome-wide association studies (GWAS) have uncovered many single nucleotide
polymorphisms (SNP) associated to important phenotypes such as plant produc-
tivity [1], plant response to salt stress [2], and human diseases [3]. To take into
account the correlation among GWAS observations, the most widely used meth-
ods for the analysis of GWAS continuous Gaussian data are single marker analysis
(SMA) methods based on linear mixed models (LMMSs) [4-6]. Recently, SMA based
on logistic regression with random effects has been proposed for the analysis of
GWAS binary data [7]. However, to the best of our knowledge, there are no pub-
lished methods for the analysis of other types of correlated GWAS non-Gaussian
data such as count data. One of our contributions is to propose the use of gener-
alized linear mixed models for the analysis of GWAS non-Gaussian data. To that
end, we use generalized linear mixed models (GLMMSs) and, thus, call our method
Bayesian GLMMs for GWAS (BG2).
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We call our method Bayesian GLMMs for GWAS (BG2). BG2 has two steps:
a screening step and a model selection step. The screening step, similarly to SMA
methods, fits p GLMMs where each model has just one SNP, and uses Bayesian FDR
control [8, 9] to provide a set of candidate SNPs. After that, the model selection
step performs a model search through the space of GLMMs that may include any
number of screened candidate SNPs as possible regressors. BG2 implements both
steps using a pseudo-likelihood approach. We note that a similar pseudo-likelihood
approach can be used to implement SMA methods for non-Gaussian GWAS data,
and a particular case of such an approach has been proposed for GWAS binary data
[7]. However, simulation studies presented in Section 4 show that, when compared
to such SMA methods for non-Gaussian data, BG2 leads to much lower FDR.

The GLMMs for GWAS data considered by BG2 may have two types of random
effects: kinship randoms effects and overdispersion random effects. The kinship ran-
dom effects account for correlation among GWAS observations due to population
stratification and hidden relatedness. Similarly to existing literature for Gaussian
GWAS data, we assume that the vector of kinship random effects follows a multivari-
ate Gaussian distribution with a mean vector of zeros and a covariance matrix that
is the product of a one-dimensional unknown variance parameter and a known pos-
itive semi-definite kinship matrix [10, 11]. The overdispersion random effects allow
for extra variability not accounted for by the model for observations; for example,
when assuming a conditional Poisson model for the observations, the overdispersion
random effects account for extra-Poisson variability.

Both screening and model selection steps in BG2 are based on nonlocal priors. To
the best of our knowledge, this is the first time that nonlocal priors are proposed for
regression coefficients in GLMMs. Previous literature in Bayesian model selection
for GLMMs has assigned for regression coefficients local priors [12]. While local pri-
ors have positive density at null parameter values, nonlocal priors have density equal
to zero at null parameter values. Nonlocal priors were first proposed by [13, 14] for
Gaussian linear models. Nonlocal priors have been successfully developed for many
different problems such as model selection in Gaussian directed acyclic graphical
models [15], classification with Bayesian probit models [16], variable selection in
logistic models [17], Bayesian wavelet analysis [18], and variable selection in gen-
eralized linear models [19]. In particular, [20, 21] have proposed methods based on
nonlocal priors for variable selection in linear mixed models applied to GWAS data.
However, because LMMs applied to binary or count data may lead to meaningless
negative predictions and statistically inefficient estimation, LMMs should not be
applied to non-Gaussian data such as count and binary data, which are the types
of data considered by BG2. Nonlocal priors lead to faster accumulation of evidence
in favor of a true null hypothesis [13], and have been shown to be advantageous
for high-dimensional problems [14, 16, 22]. Therefore, BG2 uses nonlocal priors for
SNP search in GWAS analysis.

Due to the large number of GLMMs that need to be fitted, BG2 relies on two
approximations to speed up computations: a pseudo-likelihood approximation; and
a Population Parameters Previously Determined (P3D) approximation that may
be seen as an empirical Bayes approach. For GLMMs, the integrated likelihood
function obtained by integrating out the random effects is not available in closed
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form. Repeated numerical integration of the random effects for each GLMM fit-
ted for a GWAS analysis is computationally too expensive. Thus, BG2 uses a
pseudo-likelihood approach [23] to facilitate integrating out the random effects.
Such pseudo-likelihood approach leads to a Gaussian approximation for adjusted
observations that allows analytically integrating out the random effects. In addition,
to avoid the computation of matrix inverses for each SNP and, thus, to further speed
up computations, we propose a P3D approximation for GLMMs. A P3D approxi-
mation was first proposed by [24] for Gaussian linear mixed models (LMMs) and a
variation of this approximation is used in the celebrated and widely used method
EMMAX for the analysis of GWAS Gaussian data [6]. With our P3D approach,
BG2 needs to compute a spectral decomposition only once for each screening step
and only once for each model selection step.

In our P3D approach, for each BG2 step (screening and model selection) we fit a
baseline GLMM to obtain adjusted observations and estimates of the variance pa-
rameters. We then keep the adjusted observations and the variance parameters fixed
at the values computed with the baseline GLMM when fitting all other models in
that BG2 step. In our P3D approach, the baseline model is different for the screen-
ing step and for the model selection step. For the screening step, the baseline model
is a GLMM without any SNPs. For the model selection step, the baseline model is
a GLMM with all candidate SNPs obtained from the screening step. This choice of
baseline GLMM for the model selection step is based on [25], who have suggested for
GLMMs the use of adjusted observations based on the full model — the model with
all the regressors — when computing BICs for all possible models. Therefore, BG2
with our P3D approximation does not need to compute a spectral decomposition
for each SNP. As a result, when compared to a usual pseudo-likelihood approach
to GLMMSs, our P3D approximation greatly reduces the computational time and
allows the analysis of non-Gaussian GWAS data within a reasonable time frame.

To be technical, in this work we use a hierarchical model and an empirical Bayes
approach to estimate the hyperparameters of the prior distribution of the regres-
sion coefficients of GLMMs. We then combine this prior distribution with the data
through Bayes Theorem to compute the posterior probability of the competing
GLMMs. The Bayesian model selection procedure that we propose in this work
is similar to that of [26], except that in our current work we are dealing with
the problem of Bayesian ultra-high dimensional variable selection (p two orders of
magnitude larger than n) in GLMMs applied to GWAS analysis. To the best of
our knowledge, currently there are no published methods for Bayesian ultra-high
dimensional variable selection in GLMMs.

The remainder of this paper is organized as follows. Section 2 describes the
GLMMs that we consider for non-Gaussian GWAS data. Section 3 describes our
BG2 method for the identification of causal SNPs. Section 4 presents the results of
two simulation studies for binary data and for count data. Section 5 illustrates our
method with applications to three case studies: human cocaine dependence, alco-
hol consumption, and the number of root-like structures in the plant A. Thaliana.

Section 6 concludes with a discussion and future directions.
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2 GLMMs for GWAS

Consider observations y1, ..., y, that, given random effects, are conditionally inde-
pendent and have a distribution from the exponential family of distributions. This
flexible family of distributions includes the Bernoulli, binomial, Poisson, and gamma
distributions. Thus, this family may be used to model observed GWAS phenotypes
such as an indicator of disease presence/absence, number of lateral roots in plants,

or survival time. Then, the density function of y; is

f(yilni) = exp[T'(yi)n: — B(ni) + C(ys)], (1)

for i = 1,...,n, where T(y;) is the sufficient statistics for y;, B(.) and C(.) are
known functions. Further, each observation y; has mean u; = B’(n;) and variance
v; = B”(n;). Let X, be a matrix of SNPs and B, be the corresponding vector of
regression coefficients. In addition, let X, be a matrix that contains a column of
ones for the intercept and other columns for control covariates (e.g., age, sex, and
environmental factors) and 8. be the corresponding vector of regression coefficients.
Thus, Bs and B, are fixed effects. Further, let a; be a vector of random effects
that accounts for kinship correlation. Specifically, ey has a multivariate normal
distribution with mean vector 0 and covariance matrix 13, where k1 is an unknown
scalar and ¥ is a kinship matrix. Furthermore, let as be a vector of overdispersion
random effects following N (0, koI). Let y = (y1,-..,Yn) be the vector of observed
phenotypes. Then, the conditional expectation E(y|a,as) is linked to the linear
predictor X85 + X B¢ + a1 + as by the link function g:

g<E(y|a1ﬂa2)) =X Bs + X B+ ai +as. (2)

The class of GLMMs given by Equations (1) and (2) can be expanded to deal
with other cases. For example, to account for the experimental design used for
data collection, we may add another random effect a3 following a multivariate
normal distribution with mean vector 0 and covariance matrix k33, where k3
is a unknown parameter and X3 is a symmetric positive semi-definite matrix that
describes the dependence structure among the observations due to the experimental
design. Because of the P3D approach, BG2 can include additional random effects

and still use the spectral decomposition approach to speed up computations.

3 BG2: Bayesian SNP selection in GLMMs for GWAS

Our method BG2 consists of two steps: screening and model selection. The BG2
screening step uses a novel Bayesian single marker analysis for non-Gaussian data
and applies Bayesian false discovery rate control to yield a set of candidate SNPs.
After that, the BG2 model selection step performs a search through the model space
of all GLMMs that may include any number of SNPs from the set of candidate SNPs.
In both steps, BG2 uses a pseudo-likelihood approach to fit models. In what follows,
Section 3.1 presents the pseudo-likelihood approach, Section 3.2 introduces the BG2

screening step, and Section 3.3 presents the BG2 model selection step.
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3.1 Pseudo-likelihood model fitting

In both the screening and the model selection steps, BG2 uses a pseudo-likelihood
approach. In this subsection, we provide a summary description of the pseudo-
likelihood approach. In addition, in Section S1 of the Supplementary Material we
provide a detailed presentation of the pseudo-likelihood approach. This is an itera-
tive approach that writes the model for the observations as y = p + €, where € is a
vector of errors and V = Var(e) = Var(y)= diag(vi, ..., v,) is a diagonal matrix.
Note that for distributions in the exponential family, the variance v; depends on the
linear predictor n; and, thus, gets updated in each iteration of the pseudo-likelihood
algorithm. More details can be found in Section S1 of the Supplementary Material.
In addition, the pseudo-likelihood approach expands p = E(y|B8s, Bc,a1,a2) in a
first-order Taylor expansion around current estimates of B, B¢, a1, as, k1, and ka.
The resulting equation is rearranged such that the left-hand side depends only on
known quantities (observations, current estimates of parameters, regression matri-
ces). Then, this equation is pre-multiplied by V1. Let V be the current estimate
for V. The left-hand side of the resulting equation, known as the vector of adjusted
observations, is y* = V‘l(y —-p)+ XS,BS + XCEC + a; + a;. Equating y* to the
right-hand side of the resulting equation yields

y* = XS.BS + Xcﬂc +a; +as + ‘7_16 (3>

Then, the pseudo-likelihood approach approximates the GLMM by an LMM given
by Equation (3) with vectors of random effects @y ~ N (0, x1X) and ag ~ N (0, ko1).
Based on this LMM, new estimates are computed for B, Be, a1, as, K1, k2, and V.
The pseudo-likelihood algorithm then iterates until convergence of these estimates.
More details about the pseudo-likelihood method are given in Section S1 of the
Supplementary Material.

3.2 BG2 screening step

The BG2 screening step uses a P3D approach based on a baseline model that
assumes a linear predictor given in Equation (2) specialized to contain no SNPs,
that is, g(E(y|Be, a1, 02)) = XcBe + a1 + as.

Our P3D approach keeps B¢, k1, k2, and V fixed at their pseudo-likelihood es-
timates when performing the Bayesian SMA in the BG2 screening step. Let us
denote these estimates by Bc, K1, Ko, and V. In addition, our P3D approach keeps
the vector of adjusted observations fixed equal to y* obtained at the last iteration of
the pseudo-likelihood algorithm for the baseline model. Let H = k1% + kol + V-1
be the estimated covariance matrix of the adjusted observations y*. Consider the
spectral decomposition of the matrix H given by H = PDPT. The matrix H is
kept fixed for all SNPs in the screening step. Thus, the spectral decomposition of
H, which has a computational cost of O(n?), has to be computed only once at the
beginning of the screening step.

Let x4 be the vector of covariate values for SNP s. Then, the BG2 screening step
assumes for each SNP s, s = 1,...,p, that the adjusted observations y* can be
modeled by the LMM

Yy = Xch +x:0s +a1 +as+ Vle. (4)
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Then, the adjusted observations y* have an approximate multivariate Gaussian
distribution N(X.B, + .8, H). Let § = PT(y* — X.8,) and &, = PTx,. Then,
an estimator of B, is B, = @! D~'%,)"'&’ D~§. In addition, the estimator B, has
approximate distribution N (8, 02), where 02 = var(B;) = (& D~'&,)~".

We assign for 3, a prior that is a mixture of a Dirac delta function and a nonlocal

prior, that is,

p(BslT,m0) = 7To5o(l3s)+(1*770)n7

where 7 is the probability of the null hypothesis that £ is equal to zero and 7 > 0
is a scale parameter. Larger values of 7 cause the prior to be more spread out and
lead BG2 to focus on identifying SNPs with relatively large regression coeflicients.
Then, the predictive density of ES is

p(Bulrm) = /m@mmwmm@ws

= moN(B:]0,02) + (1 — m)(2m02) 2 (nT 4+ 1) 2
32 nrpB2
- 1
P { 202(nt + 1) + (nT +1)02

Based on this predictive density and assuming that Bl, ceey Ep are approximately

()

conditionally independent given 7wy and 7, we obtain the approximate likelihood
function of 7 and mg

P

L(Br,....Bplm.mo) = [ p(Bslr,m0). (6)

s=1

Let (1) and 7(m) be the prior densities of 7 and 7, respectively. Then, by Bayes
Theorem an approximate posterior density for (7, m) is

P

n(r,molBr, ..., By) o w(r)m(mo) [] p(Bslr, mo). (7)

s=1

BG2 estimates 7 and m by maximizing (7) to obtain posterior modes 7 and 7.

We assign a noninformative uniform prior on (0, 1) for my and consider two prior
specifications for 7. The first prior specification is a uniform prior for 7 on (0, c0).
The second prior specification for 7 is an inverse gamma distribution with shape
parameter 0.55/0.022 + 1 and rate parameter 0.55, that is 7 ~ IG(0.55/0.022 +
1,0.55). This prior specification implies a prior mean for 7 equal to 0.022, which
was the value for a fixed 7 recommended by [20] for GWAS studies. In addition, we
note that values of 7 that are too small lead to numerical instability. Therefore, our
prior specification implies that a priori P(t > 0.01) = 0.999, stochastically keeping
T away from 0.

Alternatively, we may fix 7 at pre-specified values [14, 20]. Specifically, in the
context of GWAS analysis, [20] suggested fixing 7 = 0.022 because GWAS effect
sizes are generally very small. When 7 = 0.022, the nonlocal product moment prior
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(pMOM) prior assigns a probability of 0.01 to the event that a standardized effect
size falls in the interval (-0.05, 0.05). Thus, in the simulation studies presented in
Section 4, we also consider fixing 7 at 0.022.

After estimating 7 and 7, BG2 takes an Empirical Bayes approach and keep them
at their estimates 7 and 7y while using Bayes Theorem to compute the posterior
probability that the regression coefficient of SNP s (s = 1,...,p) in the screening
step is different than zero, that is

P8 # 037 70) = 1 oNUslhon) (®)
p(ﬂs‘T,ﬂo)

where p(§S|7A', 7o) is the predictive density given in Equation (5) with 7 = 7 and
T = %O.

Finally, based on the posterior probabilities computed with Equation (8), the BG2
screening step uses Bayesian FDR control [8, 9, 27-29] to obtain a list of candidate
SNPs while keeping the nominal FDR at 5%. Let us denote the number of SNPs
contained in this list of candidate SNPs obtained in the screening step by k.

3.3 BG2 model selection step

The BG2 model selection step considers GLMMs with any number of SNPs from
the list of k candidate SNPs obtained from the BG2 screening step. Thus, the
model selection step considers S = 2¥ possible models. Let M,, be the m-th model,
m=1,...,5. Let X,,, be the matrix of SNPs in model M,,, B,, be the corresponding
vector of regression coefficients, and p,, be the number of SNPs in model M,,. Let
X be the model with all & candidate SNPs.

We assume that the k£ candidate SNPs may or may not be in a model according
to a sequence of exchangeable Bernoulli trials. Specifically, the prior probability of
model M,, is P(M,,) = %gfpm (1—79)P™ where 7 is the estimate of the probability
of null hypothesis obtained in the screening step. We do this to ensure that the
Bayesian control of false discoveries in the BG2 model selection step is as strict as
the control of false discoveries in the BG2 screening step.

The BG2 model selection step uses a P3D approach where the baseline model is
the full model Mg with linear predictor g(E(ylai,a2)) = X B: + XsBs + a1 + as.
The pseudo-likelihood approach then yields estimates EC, k1 and Ko, ‘77 and adjusted
observations y*. We then consider all models M,,,,m = 1,...,S, where we keep B,
K1, Ko, and V fixed at these estimates. Let H = K12 + Kol + V-1 and consider the
spectral decomposition of the matrix H given by H = PDPT. The matrix H is kept
fixed for all non-baseline models in the model selection step. Thus, even though the
spectral decomposition has a computational cost of O(n?), this decomposition has
to be computed only once at the beginning of the model selection step. In addition,
following the recommendation of [25], we keep the adjusted observations for all the
S considered models fixed at the adjusted observations y* obtained while fitting the
full model.

Therefore, under model M,,, and with the P3D approach, the adjusted observa-
tions y* follow the approximate distribution N (XCBc + XnBm, H ) . In addition,

let y = PT(y* — XCBC) and X,, = PTX,,. Then, we can rewrite the LMM as
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Y|Bm ~ N(X m,Bm, D), where < denotes “approximately distributed as.” Because
D is a diagonal matrix, computations for this latter model are very fast.

We propose a novel nonlocal prior for GLMMs. Specifically, we propose a prior
density that is the product of a multivariate Gaussian density and the product
of the square of each element of the vector of regression coefficients ,,. In this
multivariate Gaussian density, the covariance matrix is 7n(XL H1X,,)~!. Using

the spectral decomposition of the matrix H, the prior we propose for 8, is

T(Bm|Mp) = dm(2r) Pm/2(Fn) /2| XTI D71X,, |2
Pm

exXp _7,BTXT 1Xmﬂm:| Hﬁmz? (9)

where d,, is a normalizing constant.
Let Cp, = XID1X,, (1+(?n)—1),5 =C'XTD g and R,, = § D (D —
X C,. 1XT)D ly =9 Tp- ly -y Tp- 1Xm,B Then, the marginal density of the

adjusted observations ¥y conditional on model M, is

m@ M) = / N@XBons D)7 (Bon| M) dBo

(2m) % |D|"% (1 + 7n) P/

=P (‘2> B (1 2 (10)

where Ey ([T0m 8Z,) is the expected value with respect to N (0, (1+ 7n)C,,) and
FEs ( pml 2 ) is the expected value with respect to N(B,,,C,,!). To approximate

mi

Ey (TT%, 82,;) and E, ( P B2,;), we simulate 2000 samples from N(Em, Cb), de-
noted as ) | j=1,. 2000 We compute ZQOOO(H’D " B29)) /2000 as an approxi-

2mi

mation to Ey ([T5™ ) Let ﬂ(J) (14+7n)2 ( éj")l—ﬁm), j=1,...,2000. Finally,

2000, 2(5)
we compute Y= ([T7™) By

Then, the posterior probability of model M,, is

)/2000 as an approximation to Ey (TT0™ 82,).

P(Mply) o P(Mpy)m(y|Mp). (11)

Note that the posterior distribution of the vector of regression coefficients is multi-
modal. BG2 deals with this multimodality without any difficulties. In the screening
step, when S is a scalar, we compute the posterior probability of S5 # 0 using
Equations (5) and (8). In the model selection step, when B, is a vector of coef-
ficients, we compute the posterior probability of model M, using Equations (10)
and (11).

If the number of candidate covariates k is small (k < 16), we compute the posterior
probabilities for all 2¥ candidate models and select the highest posterior probability
model as the best model. If the number of candidate covariates is large, we use a
genetic algorithm from the R package GA [30] to search for the highest posterior
probability model.
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4 Simulation Studies

We have performed simulation studies to compare our nonlocal-prior-based BG2
method versus SMA for binary data and count data. Specifically, we consider single
marker analysis with Bonferroni correction with nominal FDR set to 0.05. To assess
the performance of our methods, in these simulation studies we use genotype SNP
data from humans and from A. Thaliana. These are the same genotype data used
in the case studies we present in Section 5. We use four criteria to compare the
competing methods: true positives (TP), false positives (FP), false discovery rate
(FDR) and F1 score. Within each simulation study, for each method we compute
the average TP, FP, FDR and F1 over 100 simulated datasets. We use a buffer to
define what is a true positive and a false positive. Following [21], if one or more
detected SNPs are adjacent (within 5000 base pairs) to a same causal SNP, that is
counted as a true positive. In addition, each detected SNP not adjacent to a causal
SNP is counted as a false positive.

4.1 Binary data

We simulate binary GWAS data using genotype information from the Study
of Addiction: Genetics and Environment (SAGE) which is part of the Na-
tional Human Genome Research Institute’s Gene Environment Association Study
Initiative [Database for Genotypes and Phenotypes (dbGaP) study accession
phs000092.v1.pl]. Specifically, we use genotype information from 2,772 European
Americans in a total of 800,000 SNPs with minor allele frequency (MAF) larger
than 0.01.

From these 800,000 SNPs, we selected 20 evenly spaced SNPs to be the causal
SNPs. We set the regression coefficients for 5 of these causal SNPs to 0.2, and for
5 other causal SNPs to -0.2. In addition, the regression coeflicients for the other
10 causal SNPs have the same value 3, but that value varies in six settings: 0.2,
0.3, 0.4, 0.5, 0.7 and 1. Further, we set the intercept at Sy = —0.5. Furthermore,
the variance component « of the kinship random effects a is set to 0.15. Thus, the
binary phenotype data are simulated from a Bernoulli GLMM with logistic link
function and linear predictor Sy + Zgl Bxij+ Zin 0.2z;5 + 25216(70.2)9% + oy,
with @ ~ N(0, kX) where ¥ is the kinship matrix.

Figure 1 shows for binary data the performance of our BG2 method with three
different ways to choose the parameter 7, as well as the performance of the SMA
method. These performances in terms of TP, FP, FDR, and F1 averaged over 100
datasets for each setting are plotted as functions of the varying regression coefficient
B. In addition, Figure 1 shows the computational time. Figure S2 in the Supple-
mentary Material show boxplots of TP, FP, FDR, and F1. Our BG2 methods take
twice as long as SMA, which is to be expected since SMA has only a screening step
whereas BG2 has a screening step and a model selection step. Among the three
ways considered to choose 7 for BG2, estimating 7 based on a uniform prior pro-
vides higher F1 scores for smaller values of 5, and provides comparable F1 scores
for larger values of 3. In addition, when compared to SMA, BG2 with uniform prior
provides larger average number of true positives TP than when g is small, and a
smaller TP when [ is large. However, BG2 with uniform prior leads to a much
smaller average number of false positives than SMA. As a result, when compared
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to SMA, for all considered values of the regression coefficient 8, BG2 with uniform
prior has much larger F1.

Finally, we have tested the robustness of BG2 to the case of binary GWAS data
with no causal SNPs. Specifically, we have simulated 100 datasets with binary
GWAS data from a Bernoulli GLMM with logit link function and linear predic-
tor Bp + a;. While BG2 with any of the ways to choose 7 does not yield any false
positive for 100 simulated datasets, SMA has an average of 0.06 false positives.
Therefore, BG2 performs better than SMA for binary GWAS data and is robust to
the case when there are no causal SNPs.

4.2 Count data
We simulate count GWAS data using genotype information from The Arabidop-
sis Information Resource (TAIR9) (https://www.arabidopsis.org/). This simulation
study is based on a case study on root-like structures in A. Thaliana that we present
in Section 5.3.

Specifically, we use 188,980 SNPs with MAF>0.01 from 152 ecotypes of A.
Thaliana. This simulation study assumes 10 causal SNPs evenly located among
all available SNPs. Of these 10 causal SNPs, 5 causal SNPs have fixed coefficients
equal to 0.2, and the other 5 causal SNPs have the same coefficient S which varies in
eight settings: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 1. In addition, we set the intercept
Bo equal to 1. Further, we assume that there are two random effects: a kinship ran-
dom effect a; with variance component k1 equal to 1; and an overdispersion random
effect ay with variance component ko equal to 0.3, which is close to the estimate ob-
tained in the case study presented in Section 5.3. Let r; be the number of replicates
of ecotype i. Because in the case study most ecotypes have 12 replicates, in this sim-
ulation study we assume that all ecotypes have 12 replicates. In addition, the phe-
notype y; for ecotype i is the total number of root-like structures of the r; replicates.
These phenotype count data are sampled from a Poisson GLMM with logarithm
link function and linear predictor log(r;) + Bo + Z?Zl B+ Z}QG 0.2z, + a1 + ;.

Figure 2 shows for count data the performance of our BG2 method as well as
the performance of the SMA method. These performances are averaged over 100
simulated datasets for each setting and plotted as functions of the varying regression
coefficient . In addition, Figure 2 shows the computational time. Figure S3 in the
Supplementary Material show boxplots of TP, FP, FDR, and F1. Our BG2 methods
take about eight times longer than SMA, but they still provide results in a feasible
amount of time. Among the three ways considered to choose 7 for BG2, estimating
7 based on an inverse gamma prior provides larger average number of true positives
and about the same FDR level. As a result, when compared to the other ways to
choose 7, estimating 7 based on an inverse gamma prior has higher F1 scores for
most considered values of 8. In addition, when compared to SMA, BG2 with an
inverse gamma prior provides larger average number of true positives TP for most
considered values of 8. Further, BG2 with inverse gamma prior has about the same
FDR level as SMA for # < 0.5 and a much smaller FDR level for 5 > 0.5. As a
result, while BG2 with an inverse gamma prior has comparable F1 to SMA for small
values of 3, the F1 of BG2 with an inverse gamma prior becomes much larger than
the F1 of SMA as (3 increases.
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In addition, we have tested the robustness of BG2 to the case of count GWAS
data with no causal SNPs. Specifically, we have simulated 100 datasets with count
GWAS data from a Poisson GLMM with logarithm link function and linear predictor
Bo + a1; + ag;. The average number of false positives for all considered methods
is 0. Thus, both SMA and BG2 methods perform well in the case of count GWAS
data with no causal SNPs.

4.3 Choice of prior for 7

Choice of priors is an important part of the implementation of Bayesian methods.
To obtain more information about the impact of prior choice on the results of BG2
implementations, we have expanded our simulation studies presented in Sections
4.1 and 4.2. Specifically, we have performed two additional simulation studies: one
that uses count data simulated with human genome and another one that uses bi-
nary data simulated with A. Thaliana genome. Unfortunately, the simulated binary
datasets simulated with A. Thaliana genome did not contain enough information
for SNPs to be detected by SMA or BG2. Figure S1 in the Supplementary Mate-
rial presents the results for count data based on human genome data. Similarly to
the results from Sections 4.1 and 4.2, any of the implementations of BG2 perform
much better than SMA in terms of FDR and F1. In addition, for count data based
on human genome data, the three implementations of BG2 provide similar results.
Therefore, from the results of the simulation studies, there is no prior choice that
dominates the other prior choices.

Another important consideration is that the performance of the priors will vary
for different GWAS datasets. And, of course, BG2 is to be used by scientists who
are not Bayesian statisticians — thus, ideally there should be a default prior that
would be safe to use with any GWAS dataset. One such class of priors is the class of
non-informative priors [31-34] that impart little or no information in the analysis.
The uniform prior is not concentrated around any particular value of 7 and, in this
sense, in non-informative. In addition, in the simulation studies considered here,
BG2 with the uniform prior for 7 performed similarly or better than BG2 with
other prior choices for 7. Therefore, in the implementation of BG2 we recommend
the uniform prior as a default choice for 7.

5 Case studies

To illustrate the usefulness and flexibility of the nonlocal-prior-based BG2 method,
this section presents three case studies on cocaine dependence, alcohol consumption,
and number of root-like structures in A. Thaliana.

5.1 Maximum number of alcoholic drinks

The Collaborative Study on the Genetics of Alcoholism (COGA) [35] was a large-
scale family study that had as primary objective to identify genes related to alcohol
dependence. Here, we consider as the response variable the maximum number of
alcoholic drinks consumed in 24 hours. We analyze data on 2759 European Amer-
icans considering 846,076 SNPs with MAF>0.01 and with less than 5% missing.
To perform this analysis, we use the Poisson GLMM for count data considered in
Section 4.2. In our analysis, the 846,076 SNPs are possible regressors. Our Poisson
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GLMM accounts for genetic structure among 2759 subjects by including a vector
of kinship random effects, and allows for extra-Poisson variability with a vector of
overdispersion random effects.

While SMA detected 10 SNPs, BG2 detected only one SNP. More specifically,
the screening step of BG2 identified 10 candidate SNPs which were then given to
the BG2 model selection step. The BG2 model selection step then identified one
SNP. Likelihood ratio tests indicate that the identified SNPs do not violate the
hypothesis of Hardy-Weinberg equilibrium. While we cannot be sure about which
of these SNPs are false positives, the simulation studies in Section 4 show that SMA
tends to have a much higher FDR than BG2. Thus, in this case study the nonlocal-
prior-based BG2 method provides a list of SNPs for further investigation that is
much more focused. The SNP detected by BG2 is located in the protein-coding
gene PTGER4 on chromosome 5. The protein encoded by PTGERA4 is a receptor
for prostaglandin E2 (PGE2). An increase in PGE2 is part of the inflammatory
response to alcohol consumption, and the use of the PGE2-inhibitor tolfenamic

acid significantly reduces the severity of several hangover symptoms [36].

5.2 Cocaine dependence

In this case study, we analyze the association between cocaine dependence and sin-
gle nucleotide polymorphisms (SNPs). We analyze data from the Family Study of
Cocaine Dependence (FSCD) [37], which was part of the Study of Addiction: Genet-
ics and Environment. Specifically, we analyze data on 2,767 European Americans
considering 846,076 SNPs with MAF>0.01 and with less than 5% missing. The re-
sponse variable is whether or not the subject is addicted to cocaine. To perform this
analysis, we use the model for binary data considered in Section 4.1. Because males
and females seem to have different behaviors with respect to cocaine use, we include
sex as a control covariate. All 846,076 SNPs are possible regressors. In addition, to
account for the genetic structure among the 2767 subjects, our Bernoulli GLMM
has a vector of kinship random effects.

BG2 detects one SNP, which is located in the protein-coding gene ABCCS8 on
chromosome 11. In this case study, the screening step of BG2 identified 1 candidate
SNP which was then selected in the model selection step. For this dataset, SMA
only detects the same SNP. A likelihood ratio test indicates that the identified SNP
does not violate the hypothesis of Hardy-Weinberg equilibrium. The protein en-
coded by this gene is a member of the superfamily of ATP-binding cassette (ABC)
proteins which transport various molecules across extra-cellular and intra-cellular
membranes. In addition, a quantitative transcriptomics analysis (RNA-Seq) has
shown that this gene is overexpressed in the brain [38]. Further, cocaine increases
expression of ABCC1 (another gene that encodes an ABC protein) in mice [39]. Fi-
nally, ABCC1-siRNA (a silencer of ABCC1) blocks cocaine-induced place preference

in mice [39].

5.3 Root-like structures in A. Thaliana

To illustrate the application of our method to count data, we analyze data from a
study of plant regeneration from root explants of the selfing species A. Thaliana [40].
Specifically, we consider as response variable the number of root-like structures. We
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note that [40] applied a square root transformation to analyze this count phenotype
variable. In contrast, we use the Poisson GLMM with overdispersion considered in
Section 4.2 to analyze the original count data. Our model contains a vector of kinship
random effects to account for the correlation among individuals and a vector of
overdispersion random effects. We focus on the number of root-like structures after
21 days in which seedlings are under warm white light at 21°C following a 14/10
h light/dark regime. There are 188,980 SNPs for 152 ecotypes, with 12 biological
replicates per ecotype, from TAIR9 with MAF>0.01.

BG2 detects 3 SNPs. More specifically, the screening step of BG2 screened 5 can-
didate SNPs and then the BG2 model selection step identified 3 of these SNPs. For
this dataset, SMA detects the same 3 SNPs. These 3 SNPs are expressed in the root
and are located in protein-coding genes AT1G20090, AT1G20100 and AT1G20720.
Specifically, AT1G20100 encodes a DNA ligase-like protein involved in the regu-
lation of metabolic processes. In addition, gene AT1G20720 encodes a RAD3-like
DNA binding helicase protein that acts in the repair of double-strand breaks in
DNA, and in nucleotide-excision repair. Finally, AT1G20090 encodes a ROP2 pro-
tein which is known to effect root hair initiation and tip growth [41].

6 Discussion

We have proposed BG2, a two-stage Bayesian SNP detection method for non-
Gaussian GWAS data. BG2 uses a GLMM framework that includes kinship random
effects and overdispersion random effects. BG2 has two steps: a screening step and
a model selection step. The screening step performs a Bayesian SMA that selects a
set of candidate SNPs. The model selection step then considers all possible GLMMs
based on this set of candidate SNPs. To speed up computations, we develop a pseudo
likelihood approach combined with P3D. Further, we develop a novel class of non-
local priors for the regression coefficients specially tailored for GLMMs. Simulation
studies show that, for both binary and count GWAS data, BG2 is much better than
SMA in terms of FDR and F1.

The simulation studies show that, when compared to SMA, BG2 has a much lower
FDR. Of course, there are some combinations of parameters for which SMA and
BG2 provide similar results, and that is what seems to have happened in Sections
5.2 and 5.3. However, in some applications BG2 provides a much smaller number
of false discoveries than SMA, and that is what seems to have happened in the case
study presented in Section 5.1. Therefore, when compared to SMA, BG2 is more
robust and precise.

A relevant question is how sensitive to the choice of prior is the performance of
BG2. We considered here implementations of BG2 with three different choices of
priors. The simulation studies presented in this paper and in the Supplementary
Material have shown that BG2 implementations with each of these three different
choices of priors have similar performance. As a matter of fact, BG2 with the dif-
ferent choices of priors considered here provide the same results for the three case
studies. Therefore, the performance of BG2 seems to be relatively robust to the
choice of priors.

While we have chosen to implement BG2 with a pseudo-likelihood approach and
a genetic algorithm to explore the model space for the analysis of non-Gaussian
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GWAS data, we acknowledge that other approaches may be possible. For example,
instead of the pseudo-likelihood approach, researchers may consider variational in-
ference approaches [42, 43]. In addition, instead of combining the pseudo-likelihood
approach and a genetic algorithm, researchers may consider implementing a paral-
lel tempering approach [44] to perform estimation and model selection at the same
time. However, we think that such parallel tempering approach may not be compu-
tationally feasible for Bayesian ultra-high dimensional variable selection in GLMMs
applied to non-Gaussian GWAS.

There are several possible avenues for future research. One promising research
direction is to adapt BG2 for application to biobank scale data. Another possible
research direction is to implement BG2 with an iterative procedure that would allow
smaller effect sizes to be detected. Finally, another possible research avenue is to

develop BG2 for GWAS analysis when the phenotype is survival time.

7 Conclusion

We propose BG2, a novel two-stage Bayesian approach for non-Gaussian GWAS
data. Compared to SMA, BG2 provides a much lower FDR, is more precise and
robust. BG2 is implemented in the R package BG2 that is available on BioConductor
at https://bioconductor.org/packages/release/bioc/html/BG2.html.
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Figures

Figure 1: SNP search performance of BG2 and SMA methods for simulated
binary data.
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Figure 2: SNP search performance of BG2 and SMA methods for simulated count
data.
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