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Abstract: In a traditional distributed storage system, a source can be restored perfectly when a
certain subset of servers is contacted. The coding is independent of the contents of the source. This
paper considers instead a lossy source coding version of this problem where the more servers that
are contacted, the higher the quality of the restored source. An example could be video stored on
distributed storage. In information theory, this is called the multiple description problem, where the
distortion depends on the number of descriptions received. The problem considered in this paper is
how to restore the system operation when one of the servers fail and a new server replaces it, that is,
repair. The requirement is that the distortions in the restored system should be no more than in the
original system. The question is how many extra bits are needed for repair. We find an achievable
rate and show that this is optimal in certain cases. One conclusion is that it is necessary to design
the multiple description codes with repair in mind; just using an existing multiple description code
results in unnecessary high repair rates.

Keywords: distributed storage; multiple description coding; rate-distortion; lossy source coding; repair

1. Introduction

In distributed storage systems, data is divided into multiple segments that are then
stored on separate servers. In a typical setup [1], data is divided into k segments that are
stored on 1 servers using an (7, k) maximum distance separable (MDS) code. If a user is
able to contact any set of k servers, the data can be reconstructed. Notice that in this setup,
if the user is able to contact less than k servers, it can retrieve no information, while on the
other hand, there is no advantage in being able to contact more than k servers. One could
instead want the quality of the reconstructed data to depend on how many servers a user
is able to contact. An example could be video: it is common that the quality of streamed
video depends on the network connection. In the context of distributed storage, the quality
would now be dependent on the number of servers possible to connect, which could be
constrained by network connection, physical location, delay, or cost. In information theory,
this is known as multiple description coding [2,3]. Originally, multiple description coding
was aimed at packet transmission networks, where some packets may be lost, but it can be
directly applied to the distributed storage problem. We will accordingly call the systems
we consider multiple description distributed storage.

A central issue in distributed storage is how to repair the system when one or more of
the servers fail or become unavailable and are replaced by new servers [1]. In traditional
distributed storage, this is also solved by the MDS code: if one server fails, the repair can
be done by contacting k surviving servers, reconstruct the source, and then generating a
new coded segment. The problem we consider in this paper is how repair can be done
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for multiple description distributed storage. The paper [1] and many following papers
also consider how much network traffic is required for repair. However, in this paper we
will only consider the amount of additional data needed to be stored for repair to be possible. The
amount of network traffic is a topic for future research.

In general, the quality of reconstruction could be dependent not only on the number of
servers connected, but which servers. However, to simplify the problem, we only consider
the symmetric scenario where the quality only depends on the number of servers. This
is the symmetric multiple description problem considered in [4]. A multiple description
coding system with repair is specified as follows: when a subset ] C {1,...,n} of servers is
contacted, a source X should be restored with a distortion at most D;. If one (or multiple) of
the servers fails, we should be able to set up a replacement server with enough information
so that the whole region Dy, ] C {1,...,n} is restored. We consider two scenarios:

1. Thereis a special (highly reliable) repair server that does not participate in the usual
operation of the system, but only comes into action if another server fails. The repair
server can contact all other (non-failed) servers and use their information combined
with its own information to restore the failed server (collaborative repair).

2. The repair information is stored in a distributed fashion among the n servers (dis-
tributed repair).

For simplicity, in this paper we only consider failure of a single server.

A straightforward solution is to separate the source coding problem (multiple de-
scription) and the repair problem. Any existing code for multiple description can then
be used, and repair can be done using minimum distance separable (MDS) erasure codes
as in traditional distributed storage [1]. We will use this as a baseline. For case 1 above,
the repair server can simply store the xor (sum modulo 2) of the bits on the operational
servers. When one server fails, the xor together with the bits from the surviving servers can
restore the failed server. Thus, if each operational server stores IR bits, the repair server also
needs to store IR bits. For distributed repair, the xor can replaced with an (1, n — 1) erasure
code. Therefore in addition to the IR bits for operation, each server needs to store nl%l bits
for repair. It should be clear that these rates are also optimal with separation: even if the
system knows in advance which server will fail, it cannot store less information. We can
consider this as a separate source channel coding solution, with multiple description being
source coding and the repair being channel coding. It is known that in many information
theory problems, joint source—channel coding is superior to separation. This is then the
question we consider here: can we find a better joint source—channel coding solution that
can beat the above rates? We will see that for some cases of desired distortion, separation
is in fact optimal, while in other cases, joint source-channel coding provides much better
rates.

The problem of repair of multiple description has been considered in some previous
papers. In [5], the authors consider a problem like 1. above, but they do not give a single
letter description of rate-distortion regions. In [6], the authors consider practical codes for
repairing. In the current paper we aim to provide single letter expression for achievable
rate-distortion regions, and in some cases the actual rate-distortion region. This paper is an
extended version of our conference paper [7] with proof of the general achievable rate and
specialization to the two level case, where we can prove optimality in certain cases.

2. Problem Description

In the following, we use the term repair node for the special repair server and operational
nodes to denote the other servers. We let I = {1,...,k} and X; = [Xj,..., Xi], with the
definition Iy = @ and X}, = [] (e.g., H(Y|X},) = H(Y)). For variables with multiple indices,
XI](,I]‘ denotes a matrix of variables, i.e, the collection {X11, X1, ..., le, Xot,eeereers Xty
Xko, -+, Xxj}, and X, denotes a row.

We consider a symmetric multiple description problem as in [4]. We have an i.i.d.
(independent identically distributed) source X that takes values in a finite alphabet X’
and needs to be restored in the finite alphabet X’; this can be generalized to a continuous
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alphabet Gaussian source through usual quantization arguments [3]. Let | C I,,. We are
given a collection of distortion measures d‘ K X x X —» Rt, and define

_1
I

l
Z d~ Xl, xz

The required maximum distortion Dj is then a function of |J| and the distortion measures
d| J| Only.

dmx x =

2.1. Distributed Repair

We will first define the distributed repair problem. For a source sequence x' of length [,
each node stores [R; bits. There are n encoding functions f; : X I {1,.. ., 2R }, on-1_1
decoding functions g; : {1,. ..,ZIRf}m X jcL,1< |J| < n—1,and n repair functions
hi:{1,...,2Rn=1 — 11, 2/R} We define the error probability of repair as

Pl = max P((fy, (y(x) # £i()).

=1,..

Here, f1, 1y (x!) is the length n — 1 list obtained by removing the i-th component from

(F1((x), fa(xh), ..., fu(x")). We now say that an a tuple (R, Dy, ..., D,_1) is achievable if
there exists a sequence of (2R, 1) codes with

Vm < n:lim max E[dm(xl,g](f](xl)))} < Dy

[—oo I:|J|=m

lim P =0 1)
[ =00

We call this exact repair. The repaired node is required to be an exact copy of the failed node,
except that we allow a certain, vanishing, and error rate. Notice that the randomness in the
system is purely due to the source x'. Thus, for a given sequence x/, either all failures can
be repaired exactly, and if they can be repaired once, they can be repaired infinitely many
times; or, some failures can never be repaired. The probability of the source sequences that
are not repairable should be vanishingly small.

An alternative problem formulation, which we call functional repair, is to allow approx-
imate repair, where the only requirement is that after repair the distortion constraint is
satisfied. In that case, one would have to carefully consider repeated repair. In this paper,
we will only consider exact repair for coding schemes. It should be noted that in the cases
where we have tight converses (the two node case [7], Theorem 3 in some scenarios), the
converses are actually for functional repair; thus, functional repair might not decrease rates.

2.2. Collaborate Repair

For collaborate repair with a dedicated repair node, each node stores IR bits and
the repair node IR, bits. There are now 7 encoding functions f; : X! — {1,...,2/R}
and additionally a repair encoder f, : X' — {1,...,2'R}, 2" — 1 decoding functions
gy {1,...,21Rf}|]| X JcI,1< |J| < n,and n repair functions h; : {1,...,2/Ryn=1
{1,...,2R} — {1,...,2'R}. We define the error probability of repair as

B = max P(hilfi, () f(x) # £i(a!))

=1,..

We now say that an a tuple (R, R, Dy, ..., D,) is achievable if there exists a sequence of
(2R 2IRr 1) codes with

Vm <mn: llim ]r|r]1‘ax E[dm(xl,g](f](xl)))} <Dy,
—00 [:|J|=m

lim P =0 @)

—o0
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3. Achievable Rate

The rate-distortion region for multiple description coding is only known in a few
cases; among those are the two node Gaussian case first studied in [2], and the two level
case studied in [8,9]. There are, therefore, many different achievable schemes for multiple
description coding, e.g., [4,10-12], and we have to design repairs for each specific method.
In this paper, we will consider the Puri Pradhan Ramchandran (PPR) scheme [4,13], as this
is specifically aimed at the symmetric case and is well-suited for repair. It is optimal in
certain cases [8,9], but not always [11].

The coding method in [4] is based on source-channel erasure codes (SCEC) from [13].
An (n,k)-SCEC is similar to an (n, k)-MDS erasure code: if any k of n packets are received,
the transmitted message can be recovered with a certain distortion. However, with an
(n,k)-SCEC if m > k packets are received, the message can be recovered with decreasing
distortion with m. Using a concatenation of (n,1), (1,2),..., (n,n) SCEC, [4] obtained the
following result

Proposition 1 (PPR [4]). For any symmetric probability distribution p(yy . 1.,Yn|x) the lower
convex closure of (R, Dy, ..., Dy) is achievable, where E[d (X, g](YIW)] <Dy, |J| < nand

|
—

n
1
R> 1<Z1 %H(Yklk|YIk,1,Ik)
1 1
+ EI(Yn;X|Y1n,11n) - EH(Yln,lzn,YMX)

A probability distribution p(yy, , 1,,Yn—1|x) is symmetricif forall1 <r; <n,i € I,
the joint distribution of Y,,_1 and all (r; + 2 + - - - 4+ r,—1) random variables where any r;
are chosen from the ith layer, conditioned on X are the same.

We first notice that for collaborative repair, reconstruction from 7 nodes does not make
sense: since we can repair the last node from # — 1 nodes, there can be no gain for a user
to access all n nodes. The performance is therefore specified by (D1, D, ...,D,,_1). Asa
baseline, we thus consider the standard PPR scheme where we use at most n — 1 nodes
for the reconstruction. Now, in layer n — 1, we just need a single common message (in
standard PPR that happens at layer ). This message can be encoded using an (1,1 — 1)
MDS erasure code. We then get the following rate, which we state without proof as it is a
simple modification of PPR:

Proposition 2. For any symmetric probability distribution p(y;, , 1,,Yn—1|x) the lower convex
closure of (R, D1, ..., Dy—1) is achievable, where E[d; (X, g;(Yy, )] < Dy, ]| < n—1, the
following rate is achievable with n nodes and using at most (n — 1) nodes for reconstruction

n—2 1
R>Y. EH(Yka|YIk,1,Ik)
k=1

1

1
+ ml(ynfl;xwlnlem) - ;H(YI 1X)

n—2In

Notice that one should not think of this as an ‘improved’ PPR scheme; rather it is
the PPR scheme adapted to the special case here, where at most # — 1 nodes are used for
reconstruction.

For our repair coding scheme, we amend the PPR scheme, specifically from Propo-
sition 2. We still use an (n, k)-SCEC at layers k < n — 2, but add a common message (Uy)
at each layer k < n — 2. At layer 1, this is a true common message that is duplicated to
all nodes. At layers k > 1 this is a message stored with an (1, k)-MDS code. Common
messages were shown to be necessary to achieve optimality for the two-node case in [7].
We also use binning for repair of correlated quantizations. A system schematic for a specific
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case can be seen in Figure 1 below. The addition of common messages strictly decreases the
rate for repair in some cases, see Section 5.

Yt
Operational
nodes
Yn
Repair node
Bin index (n+1,n)
MDS

Figure 1. Two layer repair. See text for explanation.

The following is the main result of the paper, an achievable repair rate; this rate can
be compared to the rate in Proposition 2. As above, we call a probability distribution
P(Y1, 51, UL, 5 Yn—1]|X) symmetricif foralll <7, <n—1,i € I, pand allk € I,_; the
joint distribution of Y,,_1, Uy and all (r; + 2 + - - - + r,_2) random variables where any r;
are chosen from the ith layer, conditioned on X are the same.

Theorem 1 (Distributed repair). For any symmetric probability distribution p(yy, , 1., a1, ,,
Yn—1|x) the lower convex closure of (R + Ry, Dy, ..., Dy 1) is achievable, where E|d|; (X, g; (YIUl],
Uy, )] < Dy, || < n — 1 and the information needed to encode operational information is

n—2
1 1
R > kzl EH(Yklk|UIk’YIk—1Ik) - ;H(Ykln X, Up, Yi_y1,)

1
+ ml(yn—ll XlYIn—ZInfl’ UIH*Z)
n—2 1
i kzl E(H(uk|YIk—1Ik/ Ulk—l) - H(uk‘x’ YIk—lIn’Ukal))

with additional information needed to encode repair information
1 n—2
Ry > -—— Y {H(Ykn U, Yer, Y, 1,)
k=1
1 +
—;H(Ykln | X, Ye-11,, Ulk)}

with [x]T = max{0, x}

Proof. There is a formal proof in Appendix A—the purpose here is to outline how the
coding is done and how the rate expressions are obtained, without a deep knowledge of [4].

Consider at first layer 1. We generate a codebook C,; by picking 2R elements
uniformly randomly with replacement from the typical set according to the distribution
pu, (u1). We also generate n independent random codebooks Cq, drawn from the typical set
according to py,, (y11) with 2!R1 codewords. We need to be able to find a codeword in C,1
that is jointly typical with x' with high probability, which, from standard rate distortion, is

the case if

Ry =Ry > H(Up) — HUp|X) = I(X; Uy)
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This codeword is stored in all the nodes. We now need to be able to find n codewords
from Cyj, that are jointly typical with x' and the chosen codeword u! € C,1. There are about
21H (1) (marginally) typical sequences, and about 2/ (Y11 Y1u|U1,X) that are jointly typical
with a given x/ and u} (see, e.g., [14] (Section 15.2)); the probability that a given codeword
combination in Cyj, is jointly typical, therefore it is about 2/(H (Y11 Y1u|Us,X)=nH(11))  The

probability that no codeword is jointly typical then is about

/
zanl

(1 — ZZ(H(Ynm-/Yln|U1/X)*"H(Y11))) < exp(_ZI(HRQ*("H(YM)*H(Yllwaln\ULX))))

The inequality is standard in rate distortion, see [3,14]. Thus, if
nRy > nH(Y11) — H(Y1y, ..., Yiu Uy, X) (3)

there is a high probability that at least one of the 2Ry

ical.

codeword combinations is jointly typ-

The codewords in Cj; are randomly binned into 2/R1 bins. At the time of decoding,
the common codeword ull € C,1 is available as well as the bin number i for the codeword
yf»j € Cyj. The decoder looks for a codeword in bin i that is typical with ul. There is
always one, the actual codeword, but if there is more than one, the decoding results in
error. The probability that a random codeword in Cy; is jointly typical with ul is about
2!(H(Yn|t1)=H(Y11)) a5 above, while there are about 2/(R1—R1) codewords in each bin. By the
union bound, the probability that there is at least one random codeword in the bin jointly
typical is approximately upper bounded by 2/(Ri~Ri)2~1(H(Y1)=H(Yu[th)) | Thus, if

Ry — Ry < H(Y11) — H(Yi1|Uh) 4)

there is only one such codeword with high probability. Combining (3) and (4) we get
1
Ry > H(Yn|Uy) — ;H(Yi1,~--,Yin|U1,X)

At layer k < n — 1 we similarly generate a random codebook C,; with 2R typical

elements according to the marginal distribution pyy, (1) and n independent random code-
books Cy;, according to the distribution py,, (yx1) with 2/Rk codewords. We need to be able

to find a codeword in C, that is jointly typical with x! and all the codewords chosen in the
previous layers. This is possible if

R} > H(Uy) — H(U X, Yy, 1, Uy, )

with the same argument as for (3). We also need to be able to find an n-tuple of codewords
from Cy;, that are jointly typical with all prior codewords and x!, which is possible with
high probability if (again as in (3))

nRy > nH(Ye) — H(Ygp, | X, Ye-11,, Ug,)

For C,, we generate n independent binning partitions each with 2/Rut elements. The bin
number in the i-th partition is stored in the i-th node. When the decoder has access to k
nodes, say nodes 1, ..., k it needs to be able to be able to find a unique codeword in the k

bins jointly typical with codewords from previous layers. The probability that a random

selected codeword is jointly typical is about ! HU¥n 1V )=H{UD) 5q above. There are
SIR 5~ IkR

about uk in each combined bin. Therefore, if

KRy > Ry + H(Ukl Yy, 1, Ug, ) — H(Uy)
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or

1
Ruk > %(H(uleIk,llkl Ulk,l) - H(Uklx, Ylk,llnlUIk,l)) (5)

with high probability there is only one jointly typical codeword in the combined bin.
It also needs to find a single codeword in the k bins for Cy;, s that are jointly typical
with (Uy,, Yy, ,1,). The probability that a random codeword is jointly typical is about

2! i (U Xy 1) =KH(Y)) yhile the number of codewords in the k joint bins is about
2!kRip~ kR With high probability there is only one such if

k(Ry — Ry) < kH(Yyq) — H(Ygy, [Uyp,, Yo, ,1,)

or

1 1
Ri > EH(Yka |U1k' Ylk—llk) - ;H(Ykln X, Up, Yy 1, )

(as in [13] this can be repeated for any collection of k nodes).

At layer n — 1 only a single codebook is generated, and this is binned into n indepen-
dent partitions. Upon receipt, in analogy with (5), this can be found uniquely with high
probability if

1
Ry—1> mH<Yn71‘YIM_QI,,,VUI”_Z)

- ﬁH(Yn—l X, Y1, ,1,,Un,_,)

For repair, the joint 2Rk codewords in Cik1 X -+ - X Cyy atlayer k < n — 1 are binned
into 2'R% bins. The single bin number of the n chosen codewords is encoded with an
(n,n — 1) MDS erasure code.

Now, suppose node n is lost, and needs to be recovered. The repair node works
from the bottom up. So, suppose the previous k — 1 layers have been recovered, that
is, lekil I, ulIk,l are known without error. First uf( is recovered, which can be done since
n—1 > k nodes are used. It can also decode the codewords in Cyj, ,. It restores the
bin number of the repair codeword from the erasure code. There are approximately
2/(nRi=R) codewords in the bin, but since it knows the codewords in Ck1,_,, there are only

about 2/ (Ri—Rrk) valid ones. It searches in the bin for valid codewords jointly typical with
yt. ¥, . ,ul . With high probability, there is only one such if
kI, 17 Y Lk qLn” Tl

Ry — Ry < H(Yky) — H(Yin| Uy, Yiq, Yo, 41,)

(The right hand side could be negative. This means that the lost codeword can be recovered
from the surviving ones without extra repair information. Then we just put R, = 0.) Then

Rrk > H(Ykn |UIkr Yk[,,,lYkaﬂn)

1
- ;H(Ykln |X, Yx_11,,Up,) (6)

There is at least one codeword in the bin, namely the correct one. Thus, if there is no error
(more than one codeword), the repair is exact, as required from the exact repairability
condition in Section 2. [

The above result can easily be adapted to the case of a repair node that collaborates
with the operational nodes. There are only two differences:

*  The repair node can restore operation of the full n node distortion region. Therefore,
the terminal single common codeword is not at layer n — 1, but at layer n. At the same
time, the repair node now has to store repair information for this last codeword.
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. For distributed repair, distributions are chosen to minimize R + R,. For collaborative
repair, distributions are chosen to minimize R, and R, is then as given for those
distributions.

With this in mind, we get

Theorem 2 (Collaborative repair). For any symmetric probability distribution p(yi, , 1., 41, .,
Yn|x) the lower convex closure of (R, Dy, . .., Dy) is achievable, where E[dm (X, g](Ylmj, UIU\ )] <
Dyj, || < nand

n—1
1 1
= k=1 g H Y [Uno Yo _yg) = S HYa, 1 X, U, Y ,)

1
+ EI(Yn; XYy, ,1,,Ur, ;)

n—1 1

+ kzl E(H(uk|YIk—1Ik’U1k—1) - H(uk‘X’ Ykallﬂ’UIk*l))

The additional information the repair node has to store is

n—1
Ry > Y [H(Yin|Ur, Yir, Y1, 1)
k=1

1 +
—;H(Ykln | X, Yk_11,,Up,)

1 1
+;H(YH|YI Uln—1> — ;H(YH|YI,,,1IWUI X)

n—1Ins n—17/

The proof is nearly identical to the proof of Theorem 1, so it will be omitted.

4. The Two Level Case

In [9], the authors considered the situation when there were only two cases of node
access: Either we have access to all n nodes, or we have access to a given number k < n
nodes; there are two levels of distortion: (Dy, D). Importantly, they were able to derive
the exact capacity region for this case for Gaussian sources, one of the few cases when this
known except for the original EC case [2]. This makes it an interesting case to consider
for repair: at least we can upper bound the number of bits needed for repair by the
achievable rate in Section 3. The paper [9] considered the vector Gaussian case, but we
restrict ourselves to the scalar Gaussian case.

To fit into the framework of [9], we need to consider the case when there is a repair
node, Theorem 2. In that case, the scheme is as shown on Figure 1. The U represents a
common codeword that is stored jointly on the operational nodes with an (1, k) MDS. If
one server fails, this can be restored without additional information from the repair as
k<n—1.Y,..., Y represent individual codewords using SCEC (source-channel erasure
code) codes from [4,13]; here, the repair is accomplished using correlation and a bin index,
similar to the two node case. Finally, Y, represents resolution information, which can be
repaired due to the (n + 1,1n) MDS code.

The explicit rate constraints from Theorem 2 are

1

R> EH(Yka\Uk)
1 1

+ EH(Yn|YkI,,/ uk) - EH(YH",YMX, Uk)

+ 2 (H(Uy) — H(U X))
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with

1 +
Ry > |H(Yin Uk, Y1, ;) — EH(YkLJX/ Uy)

1 1
+ EH(YMYkI,,r Uy) — EH(YMYM”, Uy, X)

We consider an iid Gaussian source with x; ~ N(0,1) with a quadratic distortion
function: d, g (xi, %) = (x; — #£;)2. For this situation, we can calculate the achievable repair
rate explicitly. We recall that the problem setup is that R is fixed to the optimum rate
from [9]. We then obtain:

Theorem 3. In the Gaussian two level case, we have the following bounds on the repair rate:

1. For k(D,:1 — 1)~ —n(D;' — 1)1 < 0a common message is used and achieves

1 Dk(n—k)
< =
Rr < 210g<Dk(n—k—1)+Dn

For k = n — 1 the upper bound is tight.
2. For0<k(Dy'—1)"'—n(D;t —1)~! < n — k no common message is used and

k(Dy—Dy 1/n
e <l (D = Dl =) (75 Tt )
"=28| k(=D + Dy +n—1)+ (Dg—1)(n—D)n

For k = n — 1 the upper bound is tight.
3. Fork(D;'—1)"' —n(D;' —1)7! > n — k no common message is used and the exact
repair rate is

for all k and n.

We will discuss some implications of this result. The converse is provided by the
bound (A8) (n —1)R+ R, > % log (D%,), which is simply the requirement that the repair
node together with the surviving nodes should be able to restore the source with distortion
Dy,. This is clearly also a converse for functional repair, which could indicate that relaxing
to functional repair cannot decrease rates. For k = n — 1, the theorem provides the exact
repair rate; without using common messages, we could not have achieved the bound. We
can compare with separate repair and multiple description coding, as mentioned in the

introduction. For case 3, the theorem separation is optimal, but for the other cases R, < R.
For example, for n = 10,k = 5, Dy = 0.5, D,, = 0.48, we get R = 0.06, R, = 0.02 for case 1.

5. Example Gaussian Case

Figure 2 shows typical numerical results. All curves are for two levels of constraints,
(D1, Dy), but variable number of nodes. First, from the bottom, we have the curve for
the optimum region for the two node problem according to EC [2,3]. Notice that this is
achieved without any refinement information, using only correlation between the base layer
random variables; refinement information is only required for D; > % and D, < 2D; — 1.
Second, we have the curves for the three node problem, but where we use at most two
nodes for reconstruction, either using [4] (Section V) directly (ignoring the D3 constraint),
or using Theorem 1 without repair. It can be noticed that using Proposition 2 gives a slight
improvement; this is not due to the common message, but due to the fact that PPR uses
n — 1 codewords in the last layer, while the modified PPR uses only one. For the 4 node case,
we use (4,1)-SCEC and (4,2)-SCEC successively, as well as (4,1)-MDS common message
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and (4,2)-MDS common message. Therefore, we have 2 variables U; and U, for common
messages, and Yi; and Y); for SCEC, where i = 1, 2, 3, 4. As a result, it is noted that the
overall rate of the 4 node system improves over that of the 3 node system, whereas the overall
rate of the 2 node system improves over that of the 3 node system where common message
and SCEC were used only once. We see that a common message gives a clear improvement.

D,=0.2
T T
2 nodes EC
=3 nodes PRP
3 nodes modfied PRP 3
== 3 nodes with repair, no common message
=== 3 nodes with repair, common message
===4 nodes with repair, common message B
4 nodes modified PRP
== 4 nodes with repair, no common message

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Figure 2. Plots of R or R + R, for two levels of constraints (D, D;) and variable number of nodes.

6. Conclusions

The paper has derived achievable rates for repair of multiple description distributed
storage, which in some cases is optimal. Our solution shows that joint repair and multiple
description coding beats separate coding in many cases. It also shows that it is sub-optimal
for repair to just take a standard multiple description code and add repair information.
Rather, the multiple description code has to be designed with repair in mind. In this paper,
we do this by adding common messages.

This paper is only a first step in solving repair of multiple description distributed
storage. For one thing, we have assumed that the repair bandwidth is unlimited. When the
required repair bandwidth is also of concern as in [1], an entirely new set of constraints
comes into play. We will consider this in a later paper.
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Abbreviations

The following abbreviations are used in this manuscript:

MDS  Maximum distance separable (code)

EC El-Gamal Cover (coding scheme)

ZB Zhang-Berger (coding scheme)

PPR Puri Pradhan Ramchandran (coding scheme)
SCEC  Source-channel erasure code

Appendix A. Proof of Theorem 1

Contrary to the proof outline, which is intended to stand by itself, the formal proof is
a modification of the proof of Theorem 2 in [4], and reading it requires a good familiarity
with [4]. We will not repeat the proof in [4], but only the new elements. The proof in
this paper adds common messages, which require a separate codebook generation, and
an analysis of additional error events. It also adds repair codebooks, and an analysis of
repair error.

We let T(X) denote the strongly e typical set for X.

The coding scheme for repair uses MDS codes in several places. These can be put in
the binning framework of PPR [13]. However, it is easier to think of them as pure channel
codes. We can state this as follows:

Remark A1. A message M € {1,...,2!R} is stored on n nodes, of which at least arbitrary k is
accessed for decoding. With IR > %l R bits on each node, decoding is possible with error P(E) — 0
asl — oo.

Appendix A.1. Codebook Generation

The codebooks Cj, ,;, are generated and binned exactly as in [4]. The difference
from [4] is that there is no n-th layer, and that at layer n — 1 there is only one codebook
C,—1. The codebook C,,_1 of size 2Rt is generated like C; in [4], but then stored on the
nodes with an (1, n — 1) MDS code.

We also generate n — 2 common codebooks C,;, , by drawing 2Rk codewords
(u,(cl) 1),..., u,((l) (ZZR;k )) independently with replacement over the set T! (L) according
to a uniform distribution. The indices for C,t, k = 2,...,,n — 2 are next binned. Let
Cuk = 2! (Ri=Ruct7ue) for some 7 > 0 and make 2/Ruk bins. For each bin, select &, numbers
from the set {1,..., 2Rk }, uniformly and with replacement. They are finally coded with an
(n, k) MDS erasure code.

We finally generate (n — 1) repair codebooks through binning. First, if

0 > H(Ykn|Us,, Ygr, , Y1, 1,)

1
- EH(YkIn |X, Yx_11,,Up,) (A1)

it turns out, as will be seen later, that the lost codeword can be recovered from the remaining
ones with high probability. In that case, we set R, = 0 and store no extra repair information.
For consistency, we think of there being one bin at layer k containing all codewords.
Otherwise, we let {,x = 2/ (R =Rt 1) for some Y > 0 and make 2/R# bins. For each
bin, select ¢, vectors from the set {1, ..., 2Ry }", uniformly and with replacement. The bin

indices are further coded with an (1, n — 1) MDS erasure code.

Appendix A.2. Encoding

Given a source codeword x(!) € X!, we find codewords so that

(X(l)' “g),z (Vln—z)’ yg.)len’ * (an—zlm )r Y}(’llzl (Qn—l))
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are jointly typical. The binning of Q;, ,;,, and Q,_1 are done exactly as in [4] to obtain bin
indices Bj, ,1,, By—1. The bin index B,,_; is further coded with the (n,n — 1) MDS code.
For V}, we find the smallest bin index B, that contains V} (if V} is in no bin, B, = 0), and
this is further coded with the (n, k) MDS code.

For repair, for those k € I,,_; where repair information is needed, we find the smallest
bin index W so that Qy;, is in the corresponding bin; if no bin contains Wy, we put Wy = 0.

These are then coded with the (n,n — 1) MDS code.

Appendix A.3. Decoding
We assume node 1,2, ..., are available. The bin indices B, 1, are decoded from the

MDS code, where j = min{j, n — 2}. The decoding now is similar to [4], except that there
is also a common codeword. Consider decoding at layer k € {2,...,j'}. First, we find an
index Vi in bin B, so that

! ! (1 ]
(ygk)*ll/' u](< ) (Vi) ulk)—1> €Te (Ylkfllj’ UIk)
Next, for any size k subset S C Ij, the decoder looks in bins By for codewords y]((ls) so that

(ORSO) (1) !
(ykS’yIk,llj’ulk ) € Te (YkaIYIk,lljl UIk)

If j =n—1, B,_ is first recovered from the MDS code. Then, the above procedure is
repeated (there is no U,,_1).
The reconstructions of () are standard as in [4].

Appendix A.4. Repair

Without loss of generality and to simplify notation, we can assume that node 7 fails.
The repair is done layer by layer. At layer 1, we copy V; from any node to the replacement
node n. Next, from the (n — 1) surviving nodes we decode the repair bin index W; from the
MDS code; if there is no extra repair information, we put Wy = 1. We know Qq;, | from the
surviving nodes. In bin W, we look for an index Q1,, so that the corresponding codeword

(yW. % (Quy,), ugl) (V1)) € TL(Yq1,, Uy); if there is more than one, there is a repair error. We
then store the recovered Q1, in the replacement node 7.

The following layers proceed in almost the same way. However, now to recover the
common message Vj we arbitrarily choose k of the surviving nodes and decode Vj just as
with usual operation. The decoded Vj is then encoded with the exact same MDS code and
we store the corresponding codeword on the replacement node n. We next find an index
Qg in bin Wy so that (yﬂ)ln. * (Qu1,), uﬁ,? (V1)) € Te(Yy1,, Uy,) -

On the last layer, we simply decode Q,,_; from the surviving nodes as usual, and
then we re-encode with the same MDS code, and store the recovered bin index on the new
node 7.

We notice that this repair is exact: the information on the restored node is exactly the
same as on the failed node, except if a repair error happens.

Appendix A.5. Analysis of Decoding Error

We have some slightly modified error events compared to [4] and some additional
ones. We find it necessary to write these down explicitly

1. Eo:x ¢ T(X).
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2. Eq: There exists no indices so that

1 1
(x(l)’ ugn),z <V1n—2)’ ygn),zl,, - ¥ <Q1n—21m )’

1
YElzl (thl))
€ Tel‘(X/ Uln_zl Yln_zln/ Yn,‘l)

3. Ey: Notall the indices (Bay,, ..., B(,_2)1,, B,—1) are greater than zero.

4. E3: For some subset S C I, with |S| = k € {2,...,n — 2} there exists some other Q;
in bins Byg so that (We use a slightly different notation for E3 compared to [4], which
we think is clearer.

! I !
(yl(<5)<Q;<S)'ygk),1[j’u§k)> € T (Y, Y1 U,

5. E4: Not all the indices B, are greater than zero.
6.  Es: For some 2 < k < n — 2 there exist another index V| # Vj in bin B, so that

l I I
(yﬁk),llj/u;i)(Vé),u( : ) e TL(Yy, 1, Us,) (A2)

T

7. Eg: There is a decoding error in the (1, k) MDS erasure code for By.
8.  Ey: There is a decoding error in the (1, n — 1) MDS erasure code for B,,_.
First by Remark Al, P(Eg), P(E;) — O as long as the rates before the MDS is scaled
appropriately.

As in [4] we have P(Ey) — 0 as ] — oco. For E; as in [4] we define E;; as an encoding
error on layer i given that the previous layers have been encoded correctly and in addition,

here, that ul(l) has been encoded correctly. Then, as in [4], we find that P(E;;) — 0 if

nRy > nH (Y1) — H(Y1,|X, Up)
nR; > nH(Yn) — H(Y,|X, Yy, 1, Ur, )

1

nR;,l > 1(Yy-1; X, YIn—ZInUIn72) (A3)

with the difference being the addition of the U. variables. Similarly, we can define Ef,; as an

0

encoding error of u; ’ given that the previous layers have been encoded correctly, and we
similarly have that P(E};) — 0if

R}y > H(Uy) — H(U|X)
R;i > H(Ul) — H(Ui|X,Y[,711n,U1’.71) (A4)

1

The proof that P(E;) — 0 is unchanged from [4], and the proof that P(E;) — 0 is similar.
The proof that P(E3) — 0 is similar to [4], except that at the time of decoding at

layer k the decoder has access to ugi). The relevant probability of decoding error at
layer k is therefore P(Es|E§ ey ES5, Eg, Eg I E{, ES), and since we search for codewords

in T! (Yk I Yo 10 Ulk) , the condition for this error probability converging to zero is

1
Ry > R — H(Yjq) + EH(Yka|U1k,Y1k711k) (A5)

instead of [4] (A17).
To prove that P(Es) — 0, we let Esi be the decoding error on layer k, and then bound

P5, = P(E5k|E§1,Hr E5, E, Eglk—l’ E¢, E7). If we pick a random codeword u,((l) e Té(Uk), the
probability that this is jointly typical, i.e., the event (A2), is

p< 2—l(l(l,lk;Y1k71 Uy ,)—d(e))
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There are ¢, = 2!(Ri—Ruct7uk) elements in each bin, and therefore,
Psy < GukP
if we let v, > 6(€), we have Py, — 0if

R Kk Ry < I(uk; Ylkfl ulk—l )

u

Together with (A4), this gives (5).

Appendix A.6. Analysis of Repair Error

If E4 — Ey, from above happen, there is also a repair error. Notice that at time of repair,
we have access to n — 1 nodes, and we can therefore use decoding for # — 1 nodes, and in
that case we have proven that 217:4 P(E;) — 0as ! — oo. We have the following additional
repair error events:

1. E,:Some W, =0fork eI, 5.
2. E,p: Fork € I,,_5, there exists another bin index Q;m in bin W so that

1 1 1
Yo Q) v -+ Qi) ul (Vi)
S Té(YIkln/ U[k)

3. Es;:Fork € I,_, there is a decoding error in the (1, n — 1) MDS erasure code for Wi.

Appendix A.6.1. Bounding E;q

In total, for all bins, we pick N = 2Rwg, = 2/ ("R +714) elements with replacement

zan

from a set of size #. The probability that a particular element was never picked is then

P(E;) = (1 - 2—”1Rik)N and

logP(Erl) = NlOg(l - 2_”1R;k) < _Nz—an;k

Appendix A.6.2. Bounding E;,

First, we will argue that if (A1) is satisfied, we can predict y,(cln) with probability

()

approaching one. We can state this as follows: if we pick a random y, = € T!(Yi,), what is
the probability P that

i Y60, 4 (@t 3 1, (Qu 1) (V)
€ Ty, Up,) (A6)
This is actually a standard channel coding problem, so we get
p < 2 M kniYi, _y Yir, Ui )=0(€)) (A7)
Since the codebook C,; has 2/Rk elements, we then have
P(E) < 2/Rip

Thus, P(E,5x) — 0as! — oo if

Ry < H(Yin) — H(Yin| Yt Yir, ,, Uy,) — 6(€)
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Now in consideration of (A5) there is no gain from making R} larger than needed. Thus, R;,
is chosen arbitrarily close to the limit given by (A3), and we therefore have P(E,y) — 0 if

1
H(Yy) — EH(YkIn X, Y1, 11, Us_,)
< H(Ykl’l) - H(Ykn‘ykln,llyﬂn,]l qu) - 5(6)

which is (A1).
Now, turn to the case when (A1) is not satisfied. We look for vectors (Q};, Q},, - - -, Q},,) €
{1,...,2'Rc}" that

1. Are in the bin indicated by W;.
2. Has Q;a = Qki/i < n—1.
3. Arejointly typical, i.e., satisfy (A6).

For condition 3, (A7) is still valid. Each bin contains & = 2/("Ri~Ri+71t) vectors. Each of
these has probability P, = 2~/("=1Rik of satisfying conditions 2. Therefore,
P(E) < ExPoP = 2/(Ri-Rut1) p
if we choose 7, > 6(e) we have P(E,5;) — 0as ! — oo if
Ry — Rye < H(Ykw) — H(Yin| Yer, . Yir, ;. Uy,)

Which together with (A3) and the argument above leads to (6).

Appendix B. Proof of Theorem 3

We use the following simple converse: when one node fails and the remaining n — 1
nodes collaborates with the repair node, they have to be able to restore X with distortion
D,,. Therefore,

1 1
—1)R+R, > zlog| = A
(n—1)R+ r_20g<Dn> (A8)
While the calculations in the proof are in principle straightforward, we include some

detail to make it simpler for readers to further develop the results. The three different cases
in the Theorem are as in [9] (Section VI.A). We put

Yip, = X+ Qx
uk:X+Q11
Yn:X+Qn

with Q.. zero-mean Gaussian, E[Q3] = 07, E[Q%] = 07, E[Q3] = 07, E[QiQyj] = pof for
i # j, and all other noise variables uncorrelated. Let

R; = (1—p)I+p117

_ 1 Y T
R 1= I— 11
K 7 1-p (1-p)A+(k-1)p)

Here, 1 is a column vector of all 1s, so 117 is a matrix of all ones.
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We first calculate the distortions,

2
| o 0
Dk - |: 0 O'I?Rk :|

-1
Dy = (1+17D;"1)

:(1+0_2+U_2< LI P ))l (A9)
R \1-p (1-p)(1+(k-1)p)

= (140,72 ko * B A10
A CRACAR wa ay (A10)

_ 2 2
_ (1 + (k= p)ofo A

(14 (k—1)p)otoz + (1 + (k —1)p)of + ko?
2 0 0
Q=|0 2 0
0 0 R,
D, = (1+17Q;"1)
no_ 2 -
-2, -2 k
= D Al2
<1+0'n +o, +1+(n—1)p> (A12)
The D distortion constraint is always satisfied with equality, and therefore
2
o2 = kDy0 (A13)

(1+ (k=1)p)(¢ — Dxo — Dx)

In general, we can write
1 n
h(X|Y) = 3 log((Zne) det Kx|Y)
1 -
= 5 10g((27'[€)n det (KXX — K%XKYiKYX))

So we just need to the various conditional covariances

2
(o
K =117+ 2R, — —— 11T = 2R, + —2 11T
Yk,k|llk k k 0_51 k k 1+0_51
2
_qqT. | % O
Ko =117 | § g |
{Uuz 0 ]HT[(THZ 0 }
Kl [ 0,2 20 1 } Lo g’R! 0 o °R;!
Yt 0 A 1+1T{ R ]1
0 o, "Ry,

— 2 _ 4Ty -1
KYVI‘YkIn u, = 1+ 0y, 1 KYkIy,/ukl

1+ (n— 1)p)(7,§ + no?
(1+(n— 1)p)cr,3(¢7§ +1) + no?

:1+(7,%—

2
KYkln xu = Ko, = Ry

_ 2
Ky, |xu, = o



Entropy 2022, 24, 612 17 of 19

We need

2
_ 2 Tu T
det(KYklka) = det (ak Rt q + 02 1 )

-2 2
g, ~0,
=(1- -k "%1TR11 ] detc?R

< 1+02° Tk KTk

2 ko2
B 0y O 2k e T _
= <1+1+051+(k—1)p>0k (1+1_p1 Il> det(1 —p)I

2 ko2 k k
_ Uu k _ 2 p
<1+1+agl+(k—1)p>((1 PW’C) <1+1—p>

det (KYkln |XUk) = det (U]?Rn)

Then we get

1 1 ke N
R=72klos (1_1+agll+(k1)p><(1_P)U’<) (1+1p>

<1+02 B (14 (n—1)p)o¢ +nog ))

(14 (n—1)p)oE(02 +1) +no

— %log ((1 —P)‘Tlg)n(l + ln—p.ﬂ>)

For repair we need

o2 0 ]

_ T
KUkYkan =1 +{ 0 U%Rn,l

{ au’z 0 } 117 { %—2 0 }
Kl = [ ot 0 ] 0 o ’R, 0 o R
—2p—1 - -
U Yig 0 0 Rni1 LT o, 2 0 1
0 o R}

n—1

Ky, iy,  =[1 (1+pog)1" ]

_ 2
Ky, 1xu, = ocRn
(nfl)crk’2
1+(n—2)p

140,24+

2
(1+p0107)

(n—l)U']:Z
1+(n—2)p

0'u_2+

_ 2
KYkn\UkYkln,l =140

(14 (n—2)p)02 + (n —1)02(1+ p02)’
1+ (n— Z)p)a,f(of; +1)+ (n—1)02

:1+0]%—
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From which

(1+ (1= 2)p)? + (n = 1)o2 (1 + pr1})*
(14 (n—2)p)oE(02+1)+ (n— 1)o7

_ zlnlog(((l —p)azf)n(l * 1n—pp>>

1 1 (1+ (n—1)p)o? + no?
—log| = (1+02— k u Al4
o Og(a,% < o (14 (n—1)p)oZ (0% +1) + no? (A14)

For case 1, we set 02 = o0 and p = 0. Then

A
ZkOg D,

independent of 2. We choose ¢? so that we get exactly Dy. Solving for 02 and inserting in

(A14) results in
. 1 Dk(i’l — k)
- 210g<Dk(n —k—1)+D,

1 Dy (1 — k) 1
(I’Z 1)R—|—Rr = 210g<Dk(nk 1) + D, D]Enl)/k)

Then,

fork =n—1we get

~ Lo (Pe LY Lo (L
(n—l)R—l—Rr—zlog(Dn Dk) Zlog(Dn)

which achieves (A8)
For case 2, we put 02 = 02 = 0. We solve for p so that we exactly achieve Dy,

B Dy((n —k)Dy, + k) —
p= Dy(Dyn —k(Dy +n—1)) + Dy(k—1)n

Giving

1 (D — 1)Dyu(k—n)\ V" [ (D — 1) (k —n)\ /¥
R‘zl"g(( o) (e

_ _ —1/n
(Dg = 1)n(n — k) (L Oxfken) )

Din+Dy,+n—1)+ (Dy—1)(n—1)n

Ry = log (=

Inserting k = n — 1 and simplifying, it is seen that (A8) is achieved.
Now region III. We put ¢? = oo, and find 013 and ¢? to exactly satisfy Dy and D,.

This

We minimize the resulting (large) expression with respect to p, giving p = DD iy

results in
R=R —110 (1 )
= r—z g ,l,—Dn
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