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1 | INTRODUCTION

Abstract

In-field visual inspections have inherent challenges associated with humans
such as low accuracy, excessive cost and time, and safety. To overcome these
barriers, researchers and industry leaders have developed image-based methods
for automatic structural crack detection. More recently, researchers have pro-
posed using augmented reality (AR) to interface human visual inspection with
automatic image-based crack detection. However, to date, AR crack detection is
limited because: (1) it is not available in real time and (2) it requires an external
processing device. This paper describes a new AR methodology that addresses
both problems enabling a standalone real-time crack detection system for field
inspection. A Canny algorithm is transformed into the single-dimensional math-
ematical environment of the AR headset digital platform. Then, the algorithm
is simplified based on the limited headset processing capacity toward lower
processing time. The test of the AR crack-detection method eliminates AR
image-processing dependence on external processors and has practical real-time
image-processing.

in image-based crack detection include, but are not lim-
ited to, faster processing of images (e.g., Miao et al., 2020),

Recent computer science advances have made image pro-
cessing broadly applicable to engineering applications.
The application of vision systems for the inspection of
the infrastructure has received increasing interest (Mar-
tinez et al., 2019). Researchers are adopting image-based
structural crack detection as a substitute for traditional
non-destructive tests because of its explicitness and its
diversity (Mohan & Poobal, 2018). Recent achievements
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near real-time crack identification from video signals (e.g.,
Piyathilaka et al., 2020), crack detection with unmanned
aerial vehicles (e.g., Dorafshan et al., 2019), and meth-
ods to detect the low contrast cracks (e.g., Li et al., 2014).
Several recent studies utilized different deep learning algo-
rithms for crack detection (Aravind et al., 2021; Celik &
Konig, 2022; Cha et al., 2017; Chen & He, 2022; Dung
& Anh, 2019; Le et al., 2021; C. Liu & Xu, 2022; Miao
& Srimahachota, 2021; Ni et al., 2019; Piyathilaka et al.,
2020; Zarski et al., 2022; Zhang & Yuen, 2021; Zheng et al.,
2022; Zhou et al., 2022; Zou et al., 2022). Alternatively,
several studies have focused on pattern recognition crack
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TABLE 1 Comparison of unsupervised pattern recognitions, machine learning (ML) and artificial neural networks (Al-Faris et al., 2020;
Georgiou et al., 2020; Salehi & Burguefio, 2018; Wang et al., 2020; Zare et al., 2018)
ML
Artificia intelligence
method Pattern recognition Artificial neural network Other ML methods

Advantages —Applicative for traditional structural
health monitoring (SHM) systems
-Functional for image-based detection
and classification SHM systems
-Does not obligatorily require large

datasets to be trained

time for training and implementation

—Effective for vision-based SHM systems —Appropriate for traditional and

-High efficiency without data
pre-processing

-High performance for managing big
data

-Excellent computational performance -Excellent computational

-Requires lower processing power and -Ability to learn features directly from

data-driven SHM systems
—-Optimizable detectability
-Does not obligatorily require

large datasets to be trained

performance

raw data

-Enables automatic feature selection

Disadvantages

-Its performance depends on in-depth

from raw data
-Does not automatically learn from new -Inefficient for traditional SHM systems —Not suitable for image-based
data —Requires large dataset for effective
training process

SHM systems

data pre-processing, optimal pattern -Requires high processing power and

selection, and feature selection
algorithm

-Includes several ungeneralizable steps
(e.g., feature selection)

detection as another approach to image-based methods
(Dorafshan et al., 2019; Iyer & Sinha, 2005; Li et al., 2014;
Miao et al., 2020; Safaei et al., 2022; W. Wang et al., 2018;
Y. Wang et al., 2019). Table 1 shows the benefits and limita-
tions of different artificial intelligence approaches used for
structural health monitoring (SHM). The artificial neural
network can spontaneously extract features of crack pat-
terns from a training set of images and does not depend on
pre-processing to ensure high accuracy. This approach uti-
lizes a set of large data for training the predictive model
that necessitates a computationally powerful processor
(Zare et al., 2018). Other machine learning (ML) methods
have high computational performance and are appropri-
ate for traditional and data-driven SHM systems. On the
other hand, unsupervised pattern recognition extracts the
features matched with a predefined pattern and needs
an efficient predefined pattern and comprehensive pre-
processing to enhance detection efficiency. This approach
does not necessarily require high computational power to
ensure high accuracies.

All of the aforementioned research conducted image-
based crack detection with a computer and excluded
the user interface for human crack inspection processes
(Karaaslan et al., 2019). On the other hand, human visual
inspection is still important in the field to enable ad
hoc decisions that experts need to conduct in person
(Shaohan Wang et al., 2020). Therefore, researchers have
recently proposed several alternatives for human-in-the-
loop image-based crack detection methods. Researchers
and industry leaders are interested to equip human inspec-

time for training

tors with a real-time image-processing decision-assistance
tool in the field. Specifically, the human inspector needs to
instantly validate the imaged-based crack detection with
the real crack on the structure. Past studies have pro-
posed implementing image-based crack detection methods
inside augmented reality (AR) headsets as the interface of
the image-processing and the structural crack inspection
(Shaohan Wang et al., 2020). AR headsets can deploy a
crack detection/characterization application for humans,
enabling hands-free visual inspections while automatically
obtaining useful data via computer-environment interac-
tion (Karaaslan et al., 2019). Past studies explored the use
of AR technology for object recognition (Bahri et al., 2019;
Corneli et al., 2019; Farasin et al., 2020; L. Liu et al., 2019;
Pepe et al., 2018; Shuai Wang et al., 2018). Evaluation
of infrastructure inspection with AR headsets is among
the recent interests in SHM and maintenance methods
(Maharjan et al., 2021; Mascarefias et al., 2021). Developing
new AR methods for crack detection is also investigated in
earlier studies such as Yamaguchi et al. (2019) and Shaohan
Wang et al. (2020).

This study develops a standalone real-time system for
image-based crack detection that can be instantly deployed
in AR headsets. Training of the predictive algorithm for the
pattern recognition approach requires less computational
power, compared to the artificial neural network (Al-Faris
et al., 2020), which implies higher adaptability of pattern
recognition with an AR headset platform. Therefore, the
proposed system includes a pattern recognition algorithm
for image processing. Figure 1 presents the methodology
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Publication Method Device Function Requirt'ad Architecture
Connection
Farasin et. al. (2020)
Artificial Photo capturing: AR headset
Wang et. al. (2018) P 8 . Server to AR
neural Image processing: server headset
Bahri (2019) network AR to processor interface: NA ‘ Raw AR 4
Localization/rendering: AR headset E> ‘ E> processe
) photo headset photo
Liu (2019)
- Neural
% computer
Artificial Photo capturing: AR headset PCto AR P
y ) Image processing: neural computer headset and
Corneli et. al. (2019) neural
HERTEIE AR to processor interface: PC PC to neural
Localization/rendering: AR headset computer Raw I:f) AR I:> processed
photo headset photo
Photo capturing: camera |:> AR |;'> processed
Artificial : Server to AR B headset photo
rtificia Image processing: server Headset-and
Yamaguchi et. al.(2019) neural AR to processor interface: NA - ﬁ
network Localization/rendering: AR headset Raw LJ‘>
camera photo
Photo capturing: Computed AR processed
» Tomography (CT) scan bC 1o AR = headset D photo
Pepe et. al. (2018) afférfl Image processing: PC to ﬁ
recognition AR to processor interface: NA headset
Localization/rendering: AR headset CT Scan
photo
Al Ph(;ﬁ;;len::;:egs:sﬁ;-h;édse[ PCto AR AR d
We il * Raw . - processe
ung et al. (2020) nr:\l:;arlk AR to processor interface: NA headset photo E> headset ‘- photo
Localization/ rendering: AR headset
Yallern II::aogt: ;:gz:::?xlgg/:}{h}f;:dsir No connection R AR AR
. . aw y -
Present study recognition AR to processor interface: NA requirement photo E> headset E> pm;:.::ed
Localization/rendering: AR headset P

FIGURE 1 A brief illustration of the past and present researches. AR, augmented reality

of the mentioned past studies and the proposed research.
The first column of Figure 1 shows the significant studies,
which have contributed to our understanding of AR sys-
tems for image processing. The second column of Figure 1
demonstrates that Pepe et al. (2018) used pattern recogni-
tion algorithms for object detection/localization in their
methodology. The other past studies applied artificial neu-
ral network for their image processing. The third column
shows the stationary external processor employed in the
past studies i.e., Personal Computer (PC), server, and neu-
ral computer. The fourth column explains the required
connection between different components of the systems.
Specifically, this shows the required connection between
the AR headset and the stationary processing device. The
interactions between the main components are illustrated
in the fifth column. The last row of Figure 1 shows that the
present methodology does not use any external processor
and does not require any physical or Internet connection.

Therefore, this study removes the dependence on AR crack
detection methods from external processing devices.

Table 2 shows the benefits and limitations of network-
based and standalone AR crack detection. The network-
based AR crack detection approach offers high accuracy
because it can run complex algorithms. This approach
suffers from a latency associated with data transmission
between the AR headset and external processor and has
mobility limitations corresponding to connection estab-
lishment. AR-standalone approach can achieve real-time
processing by removing the mentioned latency and has no
limitation in mobility. However, this approach is not able to
conduct complex algorithms with current standalone pro-
cessing capabilities unless the algorithms are streamlined
for the required levels of complexity.

To implement the proposed methodology, in the first
phase, the researchers test the use of a Canny algorithm
with a Sobel-Feldman operator to extract cracks’ edges
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TABLE 2
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Benefits and limitations of network-based and standalone augmented reality (AR) crack detection

Existing AR network-based approach (previous works with external processor)

Advantages

—Capability to run complex algorithms such as artificial
neural network (e.g., Karaaslan et al., 2019; Wang et al.,
2021):

« Can implement existing efforts from the community
without modifications

« The fundamental analysis and computation can be
instantly validated with existing state of the art results,
which should be identical

-Efficient crack detection approach with high level of
success in the presence of high-quality internet and
adequate on-site external processors

New AR standalone approach (proposed work)

Limitations

-Existing AR-based methods require connecting AR headset to an

external processor with two associated drawbacks:

« Physical connection of AR headset to external device causes
limitation in mobility (Lang et al., 2019)

« AR headset connection to external processor through the Internet
suffers from access issues if the inspection field is at remote
locations (Pourhomayoun et al., 2016) especially in developing
countries (Sambuli, 2016)

-The latency caused by transferring big datasets (e.g., high quality

video stream) between the external processor and the AR headset
hinders real-time image-processing (L. Liu et al., 2019)

Advantages

-Near real-time processing by removing the latency
caused by transferring big datasets between external
processor and AR headset

-Drops the requirement for availing external processors
in inspection fields

-Does not need Internet connection to operate:

« Full mobility for the inspector who is not restrained
by internet or wire connection to external processors
« Can be used in remote locations without Internet

after reducing noise from the crack images using a median
filter. During the second phase, the authors transform the
algorithm to streamline the detection process and reduce
the processing time to deal with the processing capac-
ity limitations of AR headsets. Maximum accuracy drops
resulting from the simplification are ~9.5% and ~7.0%
for the first and second generations, respectively. The
simplifications streamline the algorithm toward real-time
processing. Additionally, several experiments were con-
ducted to explore the effect of the following parameters
in AR image processing: crack width, pattern recogni-
tion thresholds, camera mode, and headset position. In
the experiments, researchers tested the crack detection
tool using two different AR headsets. This study uses
Recall-Precision analysis to quantify the effect of the
parameters and to detect the Recall-Precision direction
with the change in the mentioned parameters.

2 | TECHNICAL APPROACH

2.1 | Headset device and software

This study employs a Microsoft HoloLens headset utiliz-
ing its capability to perceive the space around it (Brito
et al., 2019). To have a wider assessment of the variabil-
ity of headsets, this study is conducted with two different
versions of the HoloLens headset, which assist to eval-

Limitations

—Complex algorithms such as artificial neural network may not be

deployable in AR headsets even when the training set is small
(Wang et al., 2021)

« The AR headset is not able to conduct the existing algorithms
with current standalone processing capabilities

« Consequently, current algorithms need to be adapted to the AR
standalone environment, which requires an optimization that
streamlines the algorithm for required levels of complexity.

» Optimization is based on some knowledge on the environment to
keep low latency and high accuracy

uate different technical capabilities. Microsoft HoloLens
is a see-through AR headset that enables eye tracking,
hand gestures and voice commands, and sensor capabil-
ities (Ungureanu et al., 2020). Unreal and Unity engines
are two platforms to develop applications for AR headsets
with integrated computing capabilities such as Microsoft
HoloLens (Santi et al., 2021). Microsoft recommends Unity
to create HoloLens applications for the Universal Windows
Platform (Evans et al., 2017). In addition, Microsoft implies
that expert developers can develop AR app by writing
native 3D renderers in OpenXR for HoloLens (Microsoft
website, 2022). The AR developers use C# programing
language to develop each project.

Table 3 compares the two available generations of
Microsoft HoloLens. The second generation of HoloLens
is lighter than the first and possesses higher computa-
tional capacity. For example, the Central Processing Unit
(CPU) speed is 4 and 8 in the first and the second gener-
ation, respectively that implies a higher processing speed
in the second generation. The higher resolution of the
second generation’s camera compared to the first gener-
ation, as shown in Table 3, provides more photo pixel
information for image processing. Table 3 shows that con-
trary to the first generation, the second generation has
the capabilities of eye-tracking and hand-tracking for both
hands.

Unity game software and Microsoft Visual Studio are
employed for creating a crack detection app. To enable all
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TABLE 3 Comparison of two evaluated headsets
Generation First Second
CPU cores 4 8
Memory 1GB 4GB
Storage 64 GB 64 GB
Hand tracking One hand Both hands
Eye-tracking No Yes
Horizontal field of view 67° 64.69°
Weight 579g 566 g
Photo resolution (pixels) 2048 x 1152 3904 x 2196
Video resolution (pixels) 1280 x 720 2272 X 1278

features and interactions, C# is used as the programming
language for developing the application.

2.2 | Limitations of AR integration with
pattern recognition

There are two technical limitations to integrate the AR
headset capability with pattern recognition image process-
ing (1) the computer software and programming languages
limitations (Santi et al., 2021); and (2) the scarce processing
capability of AR headsets that prevents the implementa-
tion of algorithms with high memory complexity (Shaohan
Wang et al., 2020).

To overcome these limitations, past studies have con-
nected AR headsets to stationary processing devices using
a physical connection or the Internet for implementing
their methods (e.g., see Figure 1). In the methodology of
this paper, the two mentioned problems are overcome by:
(1) making the pattern recognition algorithm compatible
with the AR headset digital platform and (2) reducing
the memory complexity of the algorithm by streamlining
the code. The resulting integrated tool does not require
connecting to an external processing device to perform
the end-to-end image processing in real time. Section 2.3
outlines the integration of AR and pattern recognition.

2.3 | Outline of the integration

Figure 2 outlines the proposed crack detection system. The
key steps of the system include the acquisition of the input
image, image processing, localization, and rendering. For
feeding the input image, two camera modes are available
in AR headsets, that is, photo capturing and webcam (or
video) mode as demonstrated in Figure 2. Photo captur-
ing mode captures a photo, and webcam mode records a
video from the Hololens web camera. In the present sys-
tem, a repeated photo capture or webcam video script in
the Unity-C# environment produces the input images. The

@ MALEK ET AL.

images are then processed inside the AR headset using
a streamlined Canny algorithm. The major steps of the
image processing algorithm are: (1) graying, (2) applying
the simplifications (3) noise filtering, (4) gradient quantifi-
cation, (5) edge thinning by suppression of non-maximum
pixels, (6) double-thresholding, and (7) edge connection
using hysteresis. Finally, the processed photos, in which
the cracks are overlaid with red indications, are rendered
on the concrete surface after the AR headset locates the
correct rendering position.

Section 2.4 details the steps in the image process-
ing in the AR headsets platform and describes the
approach employed for memory complexity reduction.
Afterward, the authors describe the computational chal-
lenges involved in AR integration and pattern recognition.
Finally, the methodology to overcome those challenges is
described.

2.4 | Integration implementation

2.41 | Canny algorithm transformation

This study employs the Canny algorithm as the detection
technique. Canny edge detection is a pattern recogni-
tion technique to recognize the edge pixels in the images
(Canny, 1986). Compared to other traditional edge detec-
tion methods, the Canny method is superior for its low
computational demand, high processing speed, and low-
contrast edge detection capabilities (Shan et al., 2016).

Canny is a multi-stage algorithm, and each stage has a
special function in the detection process. Figure 3 summa-
rizes the image processing steps. The photos in Figure 3a,h
are from the headset view when the AR crack detection
app is running, but the other photos in Figure 3 are pro-
cessed in Python using the same algorithm and are shown
for demonstration purposes.

The first step in the image processing is the acquisi-
tion of RGB image from the headset camera. The second
step involves employing a weighted method to convert a
red, green, and blue (RGB) image to a grayscale image.
The weighted method computes the grayscale pixel values
by weighing R, G, and B according to their wavelengths
(Gopinathan & Gayathri, 2016) as shown in Figure 3b.
The third step includes storing the grayscale pixels’ infor-
mation in one-dimensional arrays as shown in Figure 3c.
Array appears to be the only possible means in the headset
for saving big numerical data. Afterward, a noise reduc-
tion Kernel reduces the number of false indications in
processed photos. Figure 3d ranks the noise performance,
processing time, and edge preservation characteristics of
several smoothing filters (Moreu & Malek, 2021). As a
result, because of its satisfactory characteristic, this study
uses a median filter to reduce the noise in images. After the

2SUAOIT suowwoy) aAnea1) ajqeatjdde ayy £q paUIdA0S a1k SA[OILIER () £aSN JO SA[NI 10J AIRIqIT SUI[UQ AS[TA UO (SUONIPUOD-PUB-SULIA)/ W0 KI[IM"AIRIqI[aul[uoy//:sdy) suonipuo)) pue swId ], a1 32§ ‘[£707/60/1¢] uo A1eiqry aurjuQ A3[IA\ ‘091Xa]N MaAN JO ANSIdAIUN £AQ 7E6TT 291/ [ [ ][0 [/10p/wod Kafim Areiqiautjuo//:sdny woly papeojumo( ‘g ‘€702 ‘L998L9+1



MALEK ET AL. 5 W l L E Y 1005

Greying/ blurring

l

Streamlining/ simplification
Smoothing

l

Gradient calculation

|

Non-maximum suppression

l

Double-thresholding

l

Edge tracking by hysteresis

Bloom gesture
to end the loop

Preprocessed-Headsets' view

Processing Result-Headset's
View

Image
Acquisition

Photo capturing

Video recording

Localization/rendering

FIGURE 2 Integration of augmented reality (AR) and pattern recognition for crack detection
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FIGURE 3 Image processing steps: (a) image acquisition, (b) saving grayscale pixels’ information in one dimensional array, (c)
smoothing, (d) Sobel operator for gradient evaluation, (e) suppression of non-maximum pixels, (f) double-thresholding and edge evaluation
using hysteresis, (g) streamlining by two simplifications, and (h) processed image
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filtering process, the Canny algorithm applies a gradient
operator to compute the image gradient. Canny convolves
the image with the operators G, and G,, which are the
first derivatives of a 2D Gaussian G in X and Y directions
(Canny, 1986). The integration of other operators such as
Sobel gradient into Canny algorithm to improve speed or
accuracy is also explored in previous studies (e.g., Luo &
Duraiswami, 2008; Ogawa et al., 2010). This study uses
Sobel-Feldman operator in X and Y directions as shown in
Figure 3e to compute the image gradient in the direction
of image width and image height, respectively. Afterward,
the algorithm calculates the amplitude and the direction
of the resultant gradient. As Figure 3f illustrates, the next
step involves the process of non-maximum suppression to
remove any irrelevant pixels, that is, the pixels that are less
likely to form an edge. The method employs double thresh-
olding and edge-tracking by hysteresis method to detect
and connect crack edges as illustrated in Figure 3g. Finally,
the algorithm adds red color to detected pixels. Figure 3h
shows the processed image captured from the headsets’
view.

The headset current computational power is lower
than stationary or hand-held computing devices (Santi
et al., 2021). Therefore, the Canny algorithm is not imple-
mented in real time inside the AR headsets, and the initial
image processing algorithm requires memory complexity
reduction to be real time. The researchers make two sim-
plifications to the algorithm that streamline the system and
reduce the processing time. Figure 4 describes those sim-
plifications. First, this study assumes that the user’s field
of attention is limited to a specific part at the center of the
camera’s field of view. Therefore, the photo off-center (to
the extent that it is outside the user’s field of attention)
is excluded from the image processing as demonstrated in
Figure 4a. The AR tool is designed so that the users can
adjust the size of the processed part. Second, this study
reduces the memory complexity by avoiding pixel-by-pixel
processing of images. The researchers apply the Canny
algorithm to the pixels in every other row and column as
shown in Figure 4b. The unprocessed pixels are evaluated
based on the result of adjacent processed pixels as shown
in Figure 4c. The algorithm considers the unprocessed pix-
els on the edge of the crack if at least half of their adjacent
processed pixels are on an edge.

2.42 | Computational challenge

The research team initially design the algorithm as a C#
code for a Unity project in a computer. The proposed
methodology is applicable for AR headsets with embed-
ded processing capabilities that can deploy Unity projects.
Unity engines is a software to develop applications for AR

@ MALEK ET AL.

headsets and is compatible with diverse platforms such as
Windows, OS, IOS Linux, Mac, and Android (Santi et al.,
2021). Therefore, the methodology for real-time AR crack
detection proposed in this study can be implemented in
any other AR headset with the following properties: (1)
integrated computing ability (2) optical see-through fea-
tures, and (3) automatic photo capturing/rendering. In
addition, this study implies the independence of the pro-
posed method from AR headset by testing the method for
two generations of AR headsets.

There are two major software limitation in image pro-
cessing in the AR Headsets: (1) matrix capability is not
available inside the Unity-C# environment to save the
photo’s information. (2) Unity-C# environment proves
deficient in sophisticated image arithmetic functions. A
possible solution to overcome the mentioned limitations
is to install an auxiliary package inside the Unity project.
For example, OpenCVSharp, a library of programming
functions, provides facility for the real-time processing of
images. Therefore, the researchers initially develop the
AR crack-detection tool using OpenCVSharp package and
successfully deploy it in a stationary AR device (a PC).
However, OpenCVSharp package appears to be incompati-
ble with the AR headsets, and after employing the possible
methods to deploy the package, the AR headsets are unable
to load its dynamic-link library files. Therefore, this study
redesigns the crack detection tool without supplementary
packages and saves the pixel values of the photos in the
single-dimensional array. This appears to be the only possi-
ble means in C#-Unity environment for saving big numeric
data. Then, this study utilizes the limited math operators
available in C#-Unity to write the detection code and cre-
ate a new Unity project compatible with the AR headsets
platform. The challenge in deploying the computer image-
processing project in the AR headset is that several factors
such as photo length and width are different in computer
and AR headset. In this stage, the researchers set up a
correspondence between C# code variables’ indexes in the
computer and the pixels’ indexes in the AR headset photo
and finally deploys the crack detection project in the AR
headset.

The next section describes the processing time and
several potential civil engineering applications of the
methodology.

3 | PROPOSED AR-CRACK DETECTION

3.1 | AR standalone crack detection

This study develops an AR decision-assisting tool for
human crack inspection in the field. The implemented
crack detection methodology is standalone and does not
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pixels at every column and rows, and (c) assessment of the unprocessed pixels based on their adjacent processed pixels

require a wire connection to link to external processors.
The physical connection of an AR headset to a process-
ing device imposes a limitation in mobility for users (Lang
et al., 2019). Therefore, the proposed system eliminates the
mobility limitation caused by wire connection to exter-
nal processors. Additionally, the developed AR app does
not require connecting to the Internet. This indepen-
dence from the Internet connection removes the latency
caused by data transfer between the external processor
and the AR headset (L. Liu et al., 2019). In addition,
this self-dependence resolves the problem caused by Inter-
net limitations in remote locations (Pourhomayoun et al.,
2016) especially in developing countries (Sambuli, 2016).
Furthermore, the AR headset can connect to external pro-
cessors only when running on the same wireless network
(Jana et al., 2017). Therefore, the self-sufficiency of the pro-
posed system drops the requirement for availing external
processors in inspection fields.

The existing AR crack detection methods that utilize
external processing units are superior in accuracy because
they benefit from higher processing power. Therefore,
those methods can run more sophisticated algorithms such
as video processing or ML and provide more accurate
results. The approach with an external processor, however,

involves non-real-time processing because of the latency
that exists in the connection establishment between the
AR device and the processing unit (L. Liu et al., 2019). For
example, Mojidra et al. (2022) developed a system for crack
detection in structures using AR. They created a com-
puter vision algorithm to analyze short videos recorded
from cracked surfaces and made a database and hotspot
connection between the AR headset and the algorithm.
They detected and localized cracks with high accuracy
and decreased the detection time to approximately 30 s.
The following discussion quantifies the processing time of
the developed AR tool showing the proposed method can
achieve real-time processing.

3.2 | Processing time

The top priority of infrastructure planners is to enable the
inspectors to collect/process field data in real time while
performing inspections, according to past studies (Byers &
Otter, 2006; Maharjan et al., 2021). To reduce the process-
ing time, this study uses the two mentioned simplifications
that include: (1) limiting the processing to a rectangu-
lar part in the center of the image and (2) applying the

[umo( ‘8 “€70T ‘L998LIYT

:sdyy woiy pap

2SUAOIT suowwoy) aAnea1) a[qeatjdde ayy £q paUIdA0S a1k SA[OILER () £aSN JO SINI 10] AIRIqIT SUI[UQ) AS[TA\ UO (SUONIPUOD-PUB-SULIS)/ W0 KA[IM"KIRIqI[aul[uoy/:sdiy) suonipuo)) pue swId ], a1 39S [£707/60/1¢] o A1eiqry autjuQ A3[IA\ ‘091Xa]N MaN JO ANSIdAIUN AQ 7E6TT 291/ [ [ 110 1/10p/wod Kafim Areiqijaut]



1008 WILEY COMPUTER-AIDED civiL AND INFRASTRUCTURE ENGINEERING PS4

Unprocessed
image

- Sides of the
~AR headset updates and processed part
~ shows the Processing- B W e

time at every time ste

FIGURE 5 Processing time computation in AR headset

Canny algorithm to the pixels in every other row and col-
umn of the rectangle. Figure 5 explores the processing time
computation inside the AR headset and shows how the
AR tool displays the processing time at every time step
in front of the user. Because the processing time is vary-
ing in each processed image, this study uses the average
time of 15 sequential images to evaluate the processing
speed.

Figure 6 shows the effect of simplifications on the pro-
cessing time. Y-axis shows the processing time, and X-axis
represents the proportion of the processed dimensions to
the image’s dimensions that is the same for both length and
width during the experiments. Figure 6a,b compares the
processing time of the simplified and original Canny algo-
rithms, respectively, for the first and second-generation
headsets when the image acquisition mode is photo captur-
ing. The result shows that the simplification significantly
reduces the processing time in both AR headsets. Figure 6¢
shows the processing time of the simplified Canny algo-
rithm for the two generations of the AR headset when the
image acquisition is through webcam mode. The result
shows that image processing in webcam mode is faster

MALEK ET AL.

than in photo capture mode. However, the webcam mode
domain of the application is limited to lighter algorithms.
For example, if the rectangle dimensions exceed 40% of the
photo dimensions, the only implementable camera mode
is photo capturing. Figure 6c demonstrates several exam-
ples of the processing time of the webcam mode for the
two headsets. To provide more insight into the processing
time of the AR tool, the image processing time is sepa-
rated from the time of photo capturing, localization, and
photo rendering. The total processing time includes the
time of photo capturing, image processing, localization,
and photo rendering. These examples show that the over-
all processing time of the first generation is more than the
second generation for the webcam mode.

3.3 | Civil engineering applications
The benefits of AR crack detection tools include, but is
not limited to (Karaaslan et al., 2019): (1) The inspectors
access a real-time image processing tool for crack detec-
tion, (2) the system can automatically save the processed
image of structures with the cracks marked in the image
to facilitate the damage assessment and damage progno-
sis process, (3) the inspector can detect the cracks if they
are distant or in a hard to access location. The AR headset
augments the image in those conditions and the inspectors
can perform their evaluation using the processed image
without needing any access devices such as conveyors or
stairs, (4) the inspector can enhance detection efficiency by
modifying the image processing parameters based on the
environmental conditions during the inspection, and (5)
identification of cracks’ edges in an image is the first step
in crack characterization methodologies (e.g., Y. -F. Liu
et al., 2020; Wang et al., 2018). The proposed method can
serve as the first step in crack dimensional characterization
and condition evaluation with AR headsets. The men-
tioned objective is one of the ongoing efforts, the research
team is focusing on as the future work of the proposed
methodology.

The next section explores the experimental setup used
to quantify the accuracy of the AR image processing tool.

4 | EXPERIMENT SETUP AND
ACCURACY QUANTIFICATION METHOD

The aim of the experiments is to assess the effect of sev-
eral parameters on detection accuracy. This section will
first explain the setting used for the field experiments.
Afterward, it explores the method used for quantifying the
accuracy of the experimental results.
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4.1 | Experiment setup

Several factors are effective in crack edge extraction with
image processing (Mohan & Poobal, 2018). The present
experiments analyze the effect of crack size, headset posi-
tion, camera modes and generation of AR-headset (the first
and second generations of HoloLens) on detection accu-
racy. Additionally, the effect of Canny parameters is briefly
evaluated in the experiments.

Experiment setup: (a) three test seats and their positions, (b) cracks’ view and description, and (c) example of the test

Figure 7 shows the test setup of the present research.
The researchers used a pylon with horizontal stoppers
and attached a horizontal bar to the AR headset to adjust
and fix the position of the HoloLens camera during the
experiments as illustrated in Figure 7a. The pylon con-
tains three stoppers at different positions on which the AR
headset remains fixed during the experiments as shown
in Figure 7b. Position 1 at 517 mm is within the allowable
range of visual inspection codes (e.g., ASME BPVC-Section
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considering different variables

I-T-952 for visual inspection mandates the inspectors’ eye
to be within 610 mm of the inspected region). The research
team selected this position as the benchmark for the high-
est accuracy, which corresponds to the arm’s length of the
inspector. The subsequent position at 911 mm was selected
using several preliminary tests to make sure the distances
between the stoppers cause a meaningful transition in the
quality measure values when changing from Position 1 to
2. Position 3 at 1266 mm, which is approximately 250% far-
ther than the arms-length case, corresponds to a distance
at which the inspector can miss some of the cracks with
unaided eyes and can benefit from the AR tool for iden-
tifying those cracks. Figure 7c shows the experiment on
a concrete crack and shows how the test setup enabled
fixing the distance from the headset to the concrete
surface.

The experiments involved testing the app on four con-
crete cracks of different width as demonstrated in Figure 8.
This figure provides examples of processed photos of
the four tested cracks associated with eight instances of
the experiments. The researchers measured cracks’ width
manually using a calibrated digital caliper with a reso-
lution of 0.01 mm. Figure 8 also describes the manual
measurements of the cracks’ average width. There were
two manual measurements in each centimeter of crack
length.

The performance of the implemented Canny algorithm
depends on three parameters; (1) the size of the median
filter used for noise reduction, (2) the upper, and (3) the
lower thresholds utilized in the edge tracking step. The
researchers conducted several preliminary experiments
and tested different filter sizes. The result of the prelimi-
nary tests implies that the increase in the size of the median

@ MALEK ET AL.

Kernel matrix to greater than [3 X 3] does not significantly
enhance the detection efficiency. Therefore, to reduce the
processing time a median filter of 3 X 3 was applied to the
algorithm during the accuracy evaluation experiments.

Canny proposed [% %] as the effective range of

upper threshold (Canny, 1986). After testing different thresh-
lower threshold

old ratios in preliminary experiments, the research team
selected a ratio of % for the accuracy evaluation exper-
iments. The normalized values of the upper threshold
range from O to 1 in the implemented Canny algorithm.
In the first phase of the accuracy evaluation experiment,
the research team selected the same upper threshold of 0.2
for both generations of the AR headset. This upper thresh-
old achieves optimum efficiency for the first generation at
Position 1 (517 mm) and for the second generation at posi-
tion 3 (1266 mm). In the second phase of the experiments,
a different threshold was applied for the two generations.
The research team applied an upper threshold of 0.1 and
0.3, respectively, to the first and second generations. Using
the mentioned thresholds, the Canny algorithm achieved
a high efficiency at Position 3 for the first generation and
Position 1 for the second generation.

The experiments took place from 7:00 to 8:00 a.m. dur-
ing three consecutive sunny days in August 2021 in shadow
when lighting conditions did not significantly vary during
the experiments.

4.2 | Accuracy quantification

For the evaluation of the exactness of the system,
Precision-Recall analysis (Fawcett, 2006) is used in this
study. Three quality measures, that is, Recall, Precision, and
Score quantify the quality of the detection system:

True Positive
Recall = — - @
True positive + False negative

.. True Positive
Precision = — — @)
True positive + False positive

Precision X Recall
Score =2 X 3
Precision + Recall &)

For Precision—Recall analysis, this study performs a
manual image modification in combination with an RGB-
pixel analysis code operating in MATLAB as explained
in Figure 9. This figure uses a real crack example to
show the steps of the quantification process. Figure 9a,b
is, respectively, unprocessed and processed images of the
AR headset recorded during an experiment. Figure 9c
shows how the processed image is enhanced using ImageJ
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(e) manual completion of the crack, (f) true and false positive pixels, (g) true positive pixels, and (h) true positive and false negative pixels

computer software. The red pixels in Figure 9c comprise
the entire positive predictions, that is, true positives plus
false positives. In Figure 9d, the researchers manually
remove the red indications associated with the false pre-
dictions, which means removing the false positives and
maintaining the true positives. Figure 9e shows the man-
ual process of adding red color to the false-negative pixels
used in Recall calculation. The manual process of adding
and removing red color to the pixels is conducted using
Image] software. The thickness of red color (the number
of pixels vertical to crack) is kept approximately constant
throughout the length of the crack during the manual
modifications, and therefore the evaluation is based on
the number of pixels along the crack. The researchers
evaluate each edge of cracks separately because in some
parts of the cracks, one edge is detected, and the other
edge is not. Finally, MATLAB processes the photos of
Figure 9c—e, counts the red pixels as shown in Figure 9f-h,
and calculates the quality measures as follows:

Red pixels;, panel (@)

Recall = =0.79

Red piXGlSm panel (e)

Red pixels;, panel (d) _ 0.94

Precision = -
Red plxelsin panel (c)

2 X Recall X Precision
Score = — =0.86
Recall + Precision

The next section discusses the effect of simplifications
and several ambient/ algorithmic parameters on the qual-
ity measures and describes the real-world applications and
the prospects of the proposed methodology.

5 | EXPERIMENTAL TESTS AND
ANALYSIS

To reduce the processing time, the present study stream-
lines the crack detection process using two simplifications.
The following section will first explore the effect of these
simplifications, on the quality measures, and then will con-
tinue with analyzing the effect of several ambient and algo-
rithm parameters on the quality measures. The last part of
the present section discusses the real-world applicability
and future direction of the proposed methodology.

5.1 | Simplification evaluation

While the first simplification discussed in Section 2.3,
does not affect the accuracy within the processed part, the
effect of the second modification requires serious scrutiny.
For evaluation of the simplification error, the researchers
deployed two projects in the AR headsets; the projects
are the same in every aspect except that the second
simplification is applied just to one of the projects. The
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researchers performed two similar sets of experiments
for the simplified and unmodified projects. Each set
included 24 experiments with distinct different parametric
combinations. The parameters that changed from one
experiment to another included: (I) headset position (three
positions), (II) crack width (four cracks) and (III) headset
generation (two generations). Therefore, this study
conducts 48 different experiments for simplification
evaluation.

This study uses two statistical analyses of experimen-
tal results to assess the influence of this modification, on
the quality measures. More specifically, the authors use
linear regression and random forest importance analysis
to compare the level of importance of the simplification
error and the importance of several parameters, includ-
ing headset position, crack width, and headset generation.
First, the authors briefly describe the mentioned statistical
methods.

51.1 | Random forest

Random forest (Breiman, 2001) is a famous ML algorithm.
Due to its high accuracy and efficiency, researchers widely
use the random forest in both classification and regres-
sion studies (Leistner et al., 2009). Tree impurity in a
random forest classifier or regression model quantifies the
effect of each independent variable on the dependent vari-
ables. The impurity calculation algorithm is quoted from a
reference:

For the ny, case in the data, its margin at the
end of a run is the proportion of votes for its
true class minus the maximum of the pro-
portion of votes for each of the other classes.
The measure of importance of the my, variable
is the average lowering of the margin across
all cases when the my, variable is randomly
permuted. (Breiman, 2002)

This study uses random forest impurity analysis in
RStudio software to compare the level of importance of
simplification with other mentioned parameters (headset
position, crack width, and headset generation) in quality
measures.

51.2 | Linear regression

Linear regression establishes a linear relationship between
the target data of dependent and independent variables
(Rodriguez-Barranco et al., 2017). Linear regression’s t-
value of an independent variable shows its level of
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FIGURE 10 Comparison of two quality measures using (a)
random forest and (b) linear regression

importance in the dependent variable (Ng et al., 2004):

(n — 1) MBE2

it 4
RMSE?2 — MBE? )

t —value =
where MBE is the mean bias error, RMSE is the root mean
square error, and n is the number of data. A high t-value
for an independent variable in a regression model indicates
its strong effect on the dependent variable (Malek et al.,
2021). This study uses linear regression’s t-value analysis
in RStudio software to compare the effect of simplification
with other mentioned parameters on accuracy.

5.1.3 | Results of simplification evaluation

Figure 10 compares the importance level of simplification
with the importance of selected effective parameters using
the two mentioned statistical methods. Random forest and
linear regression indicate a high significance level of crack
width, headset version, and headset position for all quality
measures, which shows their important effect on detection
accuracy. Compared to other factors, simplification does
not significantly affect accuracy. The authors provide an
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example from Figure 10 in the following to explore how
big the effect of the simplifications, compared to other
parameters, is. For instance, the t-value of the headset ver-
sion, crack width, crack position, and simplification for
Recall are 7.96, 7.34, 5.69, and 0.704, respectively. This
implies a minor effect of the simplification on the accuracy
especially, compared to the effect of the other parameters.
Overall, the results of linear regression and random forest
find simplification as the least important factor for all qual-
ity measures showing that it does not fundamentally affect
the accuracy.

Figure 11 compares the accuracy of the simplified and
original Canny algorithms. Each graph includes two point
plots and two smooth plots. The point plots demonstrate
the calculated values of the score as small circles and trian-
gles for the first and second generations, respectively. The
smooth plots are the solid curves showing the average score
values at each point for the two AR headsets. Figure 11
shows that the average score of the original Canny algo-
rithm is higher than the simplified algorithm used in this
study for the first and second generations. Maximum accu-
racy drops resulting from the second simplification during
the experiments are ~9.5% and ~7.0% for the first and sec-
ond generations, respectively. Additionally, the inaccuracy
caused by the simplifications decreases at higher crack
widths.

5.2 | Accuracy evaluation experience

5.2.1 | Preliminary experience

The preliminary experiments at the campus of the Uni-
versity of New Mexico included testing a dataset of 15
cracks with different patterns and widths at different dis-
tances and light conditions using several Canny thresholds
(Moreu & Malek, 2021). The examined patterns included
longitudinal, traverse, diagonal, map, craze, corner, and D-
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TABLE 4 Experiment combination summary

Parameter Options Number

Camera mode » Webcam 2
« Photo capturing

HoloLens version « First generation 2
« Second generation

Headset positions * 517 mm 3
* 911 mm

» 1266 mm

Cracks width « 0.59 mm 4

* 1.04 mm

e 1.61 mm

e 2.15 mm

Note: Total combinations: Camera Mode X Headset Version x Cracks Width x
Headset Positions =2 X 2 X 3 X 4 = 48.

crack. Overall, the result shows that the AR tool can detect
cracks of different patterns and shapes, and no signifi-
cant influence of crack type on the accuracy was observed
(Moreu & Malek, 2021).

Additionally, several preliminary experiments were con-
ducted to evaluate the sensitivity of the AR tool to
shadow and light conditions. The result of those experi-
ments shows that shadow availability in images does not
greatly influence the quality measures if the parameters of
the Canny algorithm are correctly established (Moreu &
Malek, 2021).

In addition, the results of preliminary experiments
provide insight into the effect of Canny thresholds on accu-
racy. The results show that the optimal Canny thresholds
change with the distance of the camera from the con-
crete surface. In other words, optimizing the algorithm
requires adaptation of the Canny threshold based on the
camera-crack distance. Automatic adaptation of Canny
parameters based on distance is a possible future work for
this study. Furthermore, the results of preliminary exper-
iments demonstrate that optimal Canny thresholds are
different in the two generations of the AR headset.

5.2.2 | Accuracy experiment parameters

After preliminary tests, the research team conducted accu-
racy evaluation experiments in two phases. The research
team conducted 48 new experiments in the first phase
and changed the selected effective parameters to explore
the trend of the quality measures with the change in the
effective factors. Table 4 shows the different combination
of parameters in the experiments. In the next phase, the
researchers performed several additional experiments to
explore the effect of Canny thresholds on accuracy.
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5.2.3 | Results of accuracy evaluation

Figures 12-14 summarize the effect of different factors on
the three quality measures: Recall, Precision, and Score,
respectively. The Y and X-axes show quality measure val-

@‘ MALEK ET AL.

ues and crack width, respectively. Moreover, each figure
includes six panels. The three panels in each row represent
the three positions of the AR headset, and the two panels
in each column represent camera modes (photocapturing
and webcam/video modes). Each panel includes a point
plot and a violin plot. In the point plots, the calculated
quality measure values are plotted as small opaque shapes
(circles for the first generation and triangles for the sec-
ond generation) on a coordinate plane. Dotted and hached
pattern blocks correspond to the violin plots. Violin plots
use density curves to demonstrate distributions of quality
measure data for the two AR headsets (hatched and dot-
ted patterns correspond to the first and second generations,
respectively). The widths of the violin curves are approxi-
mately proportional to the density of data points in each
part on the coordinate plane.

Figure 12 shows the effect of different factors on the
Recalls of both headsets. This figure shows that there is a
direct relationship between the crack size and Recall, for
both the AR headsets. This means a higher number of cor-
rectly predicted pixels (true positives) in wider cracks than
the narrower ones. In addition, Recall has an inverse rela-
tionship with the distance of the headset from the target
crack, and the higher and the lower Recall values corre-
spond to the closest (517 mm) and the furthest (1266 mm)
positions, respectively. The result also demonstrates that
the second generation achieves higher Recall values than
the first. This can be attributed to the higher camera resolu-
tion of the second generation as mentioned in Table 3. The
effect of camera mode on Recall follows different trends in
the first and second generations. Camera mode does not
seem to have a predictable effect on Recall in the first gener-
ation. However, using photo-capturing mode in the second
generation provides results with higher Recall compared to
webcam mode.

Figure 13 explains the effect of the effective factors on
Precision. Proximity to the cracks tends to increase the
false positives and the true positives that have a contrac-
tive effect on Precision (see Equation 2). These contractive
effect cause Precision not to be affected by the headset posi-
tion as shown in Figure 13. Moreover, Precision tends to
increase with the crack size. This corresponds to the rise
in true positives in wider cracks. Figure 13 shows the better
performance of the first generation over the second gener-
ation in Precision. The lower performance of the second
generation results from the more false positive pixels in
the second version’s processed photos thanks to the poor
fit between the current Canny thresholds and the higher
camera resolution of the second generation. Furthermore,
Precision does not show a significant relation to the camera
mode.

Figure 14 demonstrates the effect of the parameters
on the score. Score is in direct relationship with crack

[umo( ‘8 “€70T ‘L998LIYT

:sdyy woiy pap

2SUAOIT suowwoy) aAnea1) a[qeatjdde ayy £q paUIdA0S a1k SA[OILER () £aSN JO SINI 10] AIRIqIT SUI[UQ) AS[TA\ UO (SUONIPUOD-PUB-SULIS)/ W0 KA[IM"KIRIqI[aul[uoy/:sdiy) suonipuo)) pue swId ], a1 39S [£707/60/1¢] o A1eiqry autjuQ A3[IA\ ‘091Xa]N MaN JO ANSIdAIUN AQ 7E6TT 291/ [ [ 110 1/10p/wod Kafim Areiqijaut]



MALEK ET AL.

Decrease in Thresholds

Scarce True

Rise in True

1015
= WILEY-*

- -:? Ample True

Increase in

|7 s s | Positives Positives Positives : 2] False Positives
S =4 l: - - ki 2
e g ee
1 e———— ety
z = IS S L R : { B
=@ 8 (b) (o) MRS we
(d)
Increase in Thresholds Increase in Thresholds
- - T et = = b | Drop in True
= Plentiful AR ; Plummetin Numerous in
é False Positives —~= | False Positives e __~"| True Positives g / Posmve§
g BER o S Sge
: B e = —F
B - 1 I S T
S eloo- s §
i. & - - [ o et P R 1 | Y =
» ; *. -t - | R e o™ s
(e) = (@ - == () h

FIGURE 15

width and in inverse relationship with the headset distance
from the cracked surface. Moreover, Figure 14 illustrates
that the second version has a higher average Score than the
first version. However, when the AR headset is as close as
517 mm to the cracked surface, the first generation demon-
strates slightly higher Scores than the second generation.
In addition, the second generation achieves higher Scores
with photo capturing mode than with webcam mode.

The researchers conducted a new set of experiments
to explore the effect of pattern recognition thresholding.
The Canny algorithm employs maximum and minimum
threshold values so that pixels with a gradient ampli-
tude of more than the maximum threshold are assumed
edges and those below minimum thresholds are not.
The decision for those pixels between these two thresh-
olds depends on their proximity to previously detected
crack pixels(Canny, 1986). Therefore, decreasing the Canny
thresholds results in more (true/false) positive predictions
(more red indications in photos) and vice versa. Figure 15a
shows the Recalls of the first generation at 1266 mm in
the first set of experiments, which is relatively low due
to the scarcity of true positives. To mitigate these low
Recall values, the researchers repeated the experiments
with the first generation and imposed lower thresholds
to the system. Figure 15b shows that more red indica-
tions overlay the crack with the higher thresholds, leading
to higher Recall values. Figure 15c,d shows the processed
image of the first generation form 517 mm with the thresh-
olds used in the first set of experiments and with the new
thresholds, respectively. Lowering the thresholds in the
first generation rises the false positives at 517 mm but
does change the true positives significantly. Therefore, this
new threshold decreases the precision (see Equation 2).
Figure 15e shows that the second generation produces

Explanatory photos of crack “No 2” with different Canny thresholds

numerous false indications at 517 mm. The research team
repeated the experiments with the second generation and
applied higher thresholds to the system. Applying higher
Canny thresholds sharply reduces the false positive pre-
dictions at 517 mm as shown in Figure 15f. However, the
results show that the new higher thresholds negatively
influence the Recall at 1266 mm. For example, Figure 15g,
which corresponds to the first set of experiments, has
fewer correct positive predictions, compared to Figure 15h,
that relate to the new experiments with higher thresholds.
Therefore, this new thresholding causes a drop in Recall
values.

In short, the object-detection capability of the AR head-
sets relates directly to crack width and relates inversely
to the headset distance. Photo capturing mode results in
higher Recalls than webcam mode in the second genera-
tion, but in the first generation, camera mode produces a
minor effect on the accuracy. The effect of Canny thresh-
olding on the Recall and Precision appears to be contractive
depending on how far the headset is placed from the crack.
Two generations of AR headset have different optimal
thresholding criteria. However, using the same thresholds,
the second generation of the AR headset works more accu-
rately in crack detection from 911 mm and further, while
the first generation’s functions are more accurate from
511 mm and closer positions.

5.3 | Industry feedback and future work

The research team is now focusing on the industrial
applicability and future steps required for the industry
implementation of the proposed methodology. The first
effort consisted of field test with bridge inspectors and
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(b)

FIGURE 16 Test of industrial applicability with Department of Transportation (DOT) bridge inspectors and managers: (a) the bridge
inspectors describing normal bridge inspection process, (b) AR inspector testing the app on a tiny crack on the bridge, and (c) the results of

AR inspection

@) B (b)

FIGURE 17 Testof preliminary crack characterization tool
based on the proposed methodology (a) the traditional crack
measurement approach and (b) AR crack characterization approach

managers interested to test new crack detection tools on
their own bridge. The feedback from the inspectors and
managers is critical to ensure that the work has an impact
in the infrastructure industry. Figure 16 summarizes the
field test of the AR tool developed in this study with bridge
inspectors from the Department of Transportation (DOT).
Figure 16a shows the research team learning about the
interest of inspectors, bridge inspection requirements, and
defect evaluation criteria at a specific bridge. Figure 16b
shows the AR inspector conducting the crack inspection in
front of the bridge managers; Figure 16c shows the results
of the inspection that the bridge managers saw in the field
on real time with the help of a monitor that shared the AR
inspection results for those not wearing the headset.

DOT inspectors pointed out that the contribution of AR
in bridge inspection increases by evolving the AR tool to
a crack quantification tool that can measure the cracks
and record the measurement data. Dimensional quantifi-
cation of cracks and keeping a digital record of the crack
distributions between inspections can serve as a digital

change detector and tracker for inspectors. The inspector
can compare the distribution of cracks from the past with
any subsequent inspection and digitally score the changes
using those data. Using this feedback, the research team
is currently adding a new feature to the AR tool that aims
to quantify the width of the crack in real time. Figure 17a
shows traditional crack width measurement with a crack
ruler that is locally measuring the crack width; Figure 17b
shows the preliminary measurement tool (Moreu & Malek,
2021) examining a given strip of a surface crack along the
crack length.

6 | CONCLUSION

This study deploys a crack detection algorithm based on
the Canny method in AR headsets. The proposed method-
ology for AR crack detection is generalizable for any AR
headset with embedded processing capability, which is
compatible with Unity software. To reduce the process-
ing time, several modifications have been made to the
original algorithm. The experimental evaluation of the
modification effect shows a maximum reduction of 9.5%
in detection accuracy for the tested cracks. The mod-
ifications, however, enable real-time processing in the
AR headset by reducing the processing time to 503 and
422 ms in two generations of AR headsets. In addition,
several experiments on concrete cracks detail the effect
of different ambient and algorithmic parameters such as
headset position, camera resolution, Canny thresholds,
and crack size on crack detection with AR headsets. Based
on the accomplished steps of this study, the following
future work is suggested by the authors:

1. The experiments conducted in this study show that
the optimal parameters of the Canny algorithm change

[umo( ‘8 “€70T ‘L998LIYT

:sdyy woiy pap

puoD pue SR L, 3 39S *[€207/60/1¢] U0 AT1RIqIT AUIUQ A[IA “0IIXIN MIN JO ANSIAIUN AQ TE6TT 91U/ T [ [ [°01/10p/wi0d" K[im Areiqriauty

isdpy)

110)/W09" KA 1M KIeIqrjaul|

p

ASUAOI'T suowwo)) aAneal1) ajqeatjdde ayy £q pauIdA0S a1k Sa[O1IR () aSN JO SINI 10J AIRIqIT duI[uQ) A3[IAN UO (SUONIp



MALEK ET AL.

with the distance of the camera from the concrete sur-
face. Future work can be coding the distance of the AR
headset from the crack using the depth camera capa-
bility of AR headsets to optimize the parameters of
the Canny algorithm at different crack distances; the
new algorithm will automatically optimize the Canny
parameters at different distances.

2. The canny algorithm is a classic algorithm, which is
superseded by new shape-based pattern recognition
algorithms. New algorithms use more realistic assump-
tions (e.g., Iyer & Sinha, 2005), which can distinguish
between cracks edges and irrelevant edges. In the next
phase, the authors are going to use more effective algo-
rithms, which are particularly aimed at detecting crack
edges as opposed to Canny, which generalizes edges.

3. This study provides enough information for the
research team to find the optimal Canny threshold
within the distance evaluated in this paper, which is
the practical range of crack measurement based on
the camera resolution of the AR headset. Therefore, a
future step of this research includes using the optimal
detection level for developing a new algorithm that
enables dimensional characterization of cracks within
the distances evaluated in this paper.

The details of the modified Canny algorithm are cur-
rently being developed and evaluated by the industry to
ensure its impact in a practical context is satisfactory for
civil infrastructure inspectors and managers. It is expected
that the code can be publicly accessible once industrially
validated.
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