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Abstract. We characterize heavy-traffic process and steady-state limits for systems staffed
according to the square-root safety rule, when the service requirements of the customers
are perfectly correlated with their individual patience for waiting in queue. Under the
usual many-server diffusion scaling, we show that the system is asymptotically equivalent
to a system with no abandonment. In particular, the limit is the Halfin-Whitt diffusion for
the M=M=n queue when the traffic intensity approaches its critical value 1 from below,
and is otherwise a transient diffusion, despite the fact that the prelimit is positive recurrent.
To obtain a refined measure of the congestion due to the correlation, we characterize a
lower-order fluid (LOF) limit for the case in which the diffusion limit is transient, demon-
strating that the queue in this case scales like n3=4. Under both the diffusion and LOF scal-
ings, we show that the stationary distributions converge weakly to the time-limiting
behavior of the corresponding process limit.
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1. Introduction
Service systems often experience abandonment due to customer impatience for waiting in queue. The significant
impacts that abandonment has on the queueing dynamics are clear from the fact that stability— the most funda-
mental performance measure of a queueing system—is guaranteed to hold under weak regularity conditions on
the system’s primitives, regardless of the value of the traffic intensity; see Kang and Ramanan [10, section 4]. To
model customer abandonment, it is typically assumed that the patience of the customers are independent and
identically distributed (i.i.d.) random variables, that are also independent of all other random variables and proc-
esses in the model. However, it stands to reason that, in practice, the patience of customers depends on their indi-
vidual service requirement, as was indeed empirically demonstrated to be the case in contact centers (Reich [16])
and restaurants (De Vries et al. [4]).

A heuristic fluid model developed in Wu et al. [23] (see also Wu et al. [24]) suggests that a positive dependence
between the service and patience times of customers has large impacts on steady-state performance measures,
such as the expected steady-state queue length and waiting times, when the system is overloaded (in the sense
that the arrival rate exceeds the maximum service capacity). However, in overloaded systems, practically all the
customers are delayed in queue, and their waiting times are, asymptotically (under fluid scaling), of the same
order as the service time. It is therefore not immediately clear whether the insights in Wu et al. [23] extend to sys-
tems that are not overloaded, so that a significant proportion of the customers are not delayed at all, and the
waiting times of those customers that are delayed are asymptotically negligible.

In this paper, we carry out asymptotic analysis in this latter setting, by considering systems that are staffed
according to the square-root rule, whose aim is to put the systems in the Halfin-Whitt limiting regime. This
regime, which was first characterized in the seminal paper by Halfin and Whitt [7] for the M=M=n (Erlang-C)
queue, and was later extended in Garnett et al. [6] to theM=M=n+M (Erlang-A) model, which includes exponen-
tially distributed customer patience, is also known as the quality-and-efficiency (QED) regime, as it achieves both
efficient utilization, while simultaneously providing high quality of service. In particular, under standard inde-
pendence assumptions of the system’s primitives, the square-root staffing rule guarantees that almost all the
service capacity is utilized at all times, as is the case in the conventional heavy-traffic regime, yet the probability
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that arrivals are delayed in queue is smaller than 1 in the limit, and waiting times of delayed customers are
asymptotically negligible; see, for example, van Leeuwaarden et al. [19] and Whitt [20]. It is significant that
the Erlang-A model operates in the QED regime even if the traffic intensity approaches 1 from above, namely,
if the service capacity in the system is smaller than the demand for service by an O( ��

n
√ ) term. We elaborate in

Section 3.3.

1.1. The Impact of the Correlation
When the service and patience times are positively correlated, one expects the system to be more congested than
when the two times are independent, because delayed customers that do not abandon tend to spend more time
in service than a “generic” customer. On the other hand, the waiting times and the proportion of abandonment
in the QED regime are asymptotically negligible, and so the extent to which correlation impacts the queueing
dynamics is not a priori clear.

Our results show that, in the perfect-correlation case, abandonment has an asymptotically diminishing impact
on the queues under diffusion scaling, in that the system behaves much like a system that has no abandonment
at all. Thus, unlike in the typical independent models (which assume that all the primitive processes are mutu-
ally independent), the diffusion limit can be transient, despite the fact that the prelimit is always stable. The exact
extent to which the correlation impacts congestion follows from limits for the queue process and for its steady-
state distribution that are achieved under an n3=4 spatial scaling.

Specifically, we prove the following functional weak limit theorems. The diffusion limit, which is achieved
under the usual many-server diffusion scaling (see Section 3.1), is the same limit that is obtained for the Erlang-C
model under the square-root staffing rule. Thus, if the traffic intensity approaches 1 from below as n→∞, then
the diffusion limit is the Halfin-Whitt diffusion in Halfin and Whitt [7]. On the other hand, if the traffic intensity
approaches 1 from above, then the limit is a transient diffusion, having a positive drift. To obtain the exact order
of congestion in the latter case, we derive a lower-order fluid (LOF) limit, and a corresponding weak limit for the
stationary distributions, both obtained under a spatial scaling of n3=4 (with the former limit being obtained under
a time scaling of n1=4). Given that the Erlang-A model operates in the QED regime under the square-root staffing
rule, those latter limit theorems imply that the correlation causes an increase of order O(n1=4) in congestion rela-
tive to the independent case.

1.2. Implications
Even though perfect correlation between the service and patience times of customers is unlikely to be encountered
in practice, this case is worth studying because the limits we obtain for the queues are simple one-dimensional
Markov processes that are easy to interpret, despite the non-Markovian nature of the prelimit queue. That one-
dimensional characterization is achieved by decomposing the service times of served customers into two phases,
exploiting the perfect-correlation assumption together with the memoryless property of the exponential distribu-
tion; see (4). More general dependence structures will necessarily require complex (e.g., measured-valued) process
descriptors, which will in turn lead to more complex, infinite-dimensional limiting processes; see Puha andWard
[13] for background. On the other hand, the diminishing impact of the abandonment on the system’s dynamics,
and the resulting congestion, are likely to hold in much greater generality than the special case we study. (Much
like the QED regime, which was initially developed for systems with exponentially distributed service times, and
was only later shown to hold in greater generality (Gamarnik and Goldberg [5], Puhalskii and Reiman [14], Reed
[15]).)

We further remark that a certain martingale property, that is key to deriving measure-valued limits for a non-
Markovian many-server queues with abandonment, relies heavily on having the service and patience times be
independent; see Kang and Ramanan [9, proposition 5.1]. In the special case we consider, we circumvent this
issue by employing an intricate representation of the state descriptors, exploiting submartingale properties of
certain two-parameter processes. See the state descriptors in Section 5.2 and Lemma 7.

1.3. Notation
All the random elements are defined on a complete probability space (Ω,F ,P); expectation with respect to P is
denoted by E. We let R and Z denote the sets of real numbers and integers, respectively, with R+ :� [0,∞) and
Z+ :� Z ∩ R+. For k ∈ N, we let Rk denote the space of k-dimensional vectors with real components. We let Dk

denote the space of right-continuous Rk-valued functions with left limits on R+, endowed with the usual Skoro-
khod J1 topology; see Billingsley [1]. We let D :�D1 and D0 :� {x ∈D : x(0) ≥ 0}. We use Ck (and C :� C1) to denote
the subspace of Dk of continuous functions, and C0 :�D0 ∩ C. It is well known that the J1 topology relativized to
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Ck coincides with the uniform topology on Ck, which is induced by the norm

‖x‖t :� sup
0≤u≤t

‖x(u)‖,

where ‖x‖ denotes the usual Euclidean norm of x ∈ R
k. We use η : R→ R for the identity map, that is, η(t) � t for

t ≥ 0, so that, in particular, 0η is the zeroth function in D.
Let ⇒ denote convergence in distribution of a sequence of random elements in a metric space (see, e.g., Whitt

[21, section 11.3.2]). For a sequence of processes {Yn : n ≥ 1} and a sequence of scalars {an : n ≥ 1}, we write (i)
Yn � oP(an), if for any t ≥ 0 we have ‖Yn=an‖t ⇒ 0 in R, as n→∞; (ii) Yn �OP(an), if Yn is stochastically bounded,
that is, {‖Yn=an‖t : n ≥ 1} is a tight sequence in R for any t ≥ 0; (iii) Yn �Θp(an) if Yn �OP(an) but not oP(an). We
write �d to denote equality in distribution, and ≤st: to denote the usual stochastic order. Namely, for two random
variables X and Y, we write X≤st:Y if P(X > x) ≤ P(Y > x) for all x ∈ R. For a random variable with values in Z+,
and a sequence of random variables {Xi : i ≥ 1}, we define

∑N
i�1Xn :� 0 on the event {N � 0}.

We let x+ :�max{x, 0} and x− :� −min{x, 0} for x ∈ R. For x, y ∈ R we let x�y :�min{x,y} and x�y :�max{x,y}.
Moreover, we let the latter min and max operators � and � have higher precedence than multiplication, so that
xy�z � x(y�z), and in particular, x+ y� z � x+ (y� z), for x,y,z ∈ R.

1.4. Background
Consider a sequence of systems, in which the nth element has a pool of n statistically homogeneous agents serv-
ing a single class of statistically homogeneous customers. Let λn denote the arrival rate to system n and μ denote
the service rate of a customer (the latter does not scale with the system). The square-root staffing rule stipulates
that the number of agents and the arrival rate satisfy the relation

lim
n→∞

��
n

√ (1 − ρn) � β, (1)

for some β > 0, where ρn :� λn=(nμ) is the traffic intensity to system n. In particular, the square-root rule implies
that λn � nμ−O( ��

n
√ ) as n→∞.

Now, consider the special case of Poisson arrivals and exponentially distributed service times, namely, the
Erlang-C queue. Let Xn

C :� {Xn
C(t) : t ≥ 0} denote the number-in-system process, and let X̂

n
C :� {X̂n

C(t) : t ≥ 0} denote
its diffusion-scale version,

X̂
n
C(t) :� n−1=2(Xn

C(t) − n), t ≥ 0:

Theorem 2 in Halfin and Whitt [7] states that, if (1) holds, and in addition X̂
n
C(0) ⇒ X0 in R, then X̂

n
C ⇒ X̂C uni-

formly on compact (time) intervals as n→∞, where X̂C :� {X̂C(t) : t ≥ 0} is the unique strong solution (e.g., see
Revuz and Yor [17]) to the stochastic differential equation (SDE)

dX̂C(t) �mC(X̂C(t))dt+
����
2μ

√
dB(t), X̂C(0) � X0, (2)

for

mC(x) :� −μβ if x ≥ 0;
−μ(β+ x) if x < 0,

{
and B :� {B(t) : t ≥ 0} denoting a standard Brownian motion.
If, in addition, customers are assumed to have finite patience that is exponentially distributed with mean 1=θ

that is independent of all other random variables in the model, namely, if the Erlang-A queue is considered, then
the square-root staffing rule can be generalized by allowing β in (1) to be nonpositive. In particular, let Xn

A(t)
denote the number-in-system process in a system with abandonment, and let

X̂
n
A(t) :� n−1=2(Xn

A(t) − n), t ≥ 0:

Theorem 2 in Garnett et al. [6] proves that, if (1) holds with β ∈ (−∞,∞), and in addition, X̂
n
A(0) ⇒ X0 in R for

some random variable X0, then X̂
n
A ⇒ X̂A uniformly over compact time intervals as n→∞, where

dX̂A(t) �mA(X̂A(t))dt+
����
2μ

√
dB(t), X̂A(0) � X0: (3)
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Here, B denotes a standard Brownian motion as before, and

mA(x) :� −(μβ + θx) if x ≥ 0;
−μ(β + x) if x < 0:

{
We observe that both the diffusion limit in (2) and the limit in (3) imply that the stochastic fluctuations of Xn

C and
Xn

A about n (the number of agents) are OP( ��
n

√ ), namely, are of order
��
n

√
. Therefore, both the number of idle

agents and the number of customers waiting in queue are OP( ��
n

√ ) as well, as n→∞. Moreover, both diffusion
processes achieve values in R, implying that a nonnegligible proportion of the customers do not wait at all,
whereas the waiting times of those customers who are delayed in queue are OP(n−1=2), and so are asymptotically
negligible, as n→∞.

1.5. Organization
The rest of the paper is organized as follows: We introduce the model in Section 2. Themain results—the diffusion
and LOF limits, as well as the corresponding weak limits for the stationary distributions—appear in Section 3.
To simplify the exposition, we first introduce the stochastic-process limit theorems under a simplifying assump-
tion on the initial conditions; we weaken that assumption significantly in Section 3.3. We summarize the results in
Section 4. The following sections are dedicated to proving the main results: In Section 5.1, we provide a character-
ization of the system’s dynamics that is key to establishing the main results, whose proofs appear in Section 5.
Proofs of supporting results are given in Section 6–Appendix A.

2. The Model
We consider a sequence of systems denoted byM=Mpc=n+Mpc, indexed by the number of agents n; the subscript
“pc” is mnemonic for “perfect correlation.” Each of the systems along the sequence consists of a single service
pool with statistically homogeneous agents, and an infinite buffer in which customers wait for their service. Cus-
tomers arrive to system n according to a Poisson process with rate λn, where λn=n→ λ as n→∞, for some λ > 0.
Customers begin service with an agent immediately upon arrival, if an idle agent is available, and otherwise
waits in the queue for their turn to enter service. We assume that customers are served in accordance with
the first-come-first-serve (FCFS) discipline, namely, in the order of arrival, and that each customer has finite
patience for waiting in queue: customers who run out of patience before their turn to enter service abandon the
queue without returning. We further assume that the service requirement and the patience time of each customer
are (marginally) exponentially distributed with respective means 1=μ and 1=θ, μ,θ > 0, and that these two expo-
nential random variables are independent from the arrival process and from the service and patience times of all
other customers. Without loss of generality, we measure time in service-time units, taking μ � 1. We further
assume that n, λn and μ are related via the limit (1) (so that λ � μ � 1), for some β ∈ (−∞,∞).
Unlike the standardM=M=n+M queue, we assume that the service requirement of a customer is perfectly cor-

related with the customer’s patience. In particular, let (S, T) denote a random variable in R
2, such that T is expo-

nentially distributed with mean 1=θ and S is exponentially distributed with mean 1=μ � 1. The assumption that
S and T are perfectly correlated indicates that T � S=θ with probability 1 (w.p.1). We assume that the service
requirement and patience of each customer is a draw from the joint distribution of S and T, independently of all
other customers and of the arrival process.

Due to the assumed correlation, the service-time distribution of a served customer is different from the service-
time distribution of a generic customer. For w ≥ 0, temporarily let S(w) denote a generic service time of a cus-
tomer who waited w time units in queue. Utilizing the memoryless property of the exponential distribution, we
have that

S(w)�d Sb +θw, (4)

where Sb is an exponentially distributed random variable with mean 1. (We emphasize that our analysis hinges
on the decomposition of S(w) in (4), which holds only when the service and patience times are perfectly corre-
lated.) Thus, the service time of each customer can be thought of as having two independent phases: conditional
on the waiting time of the customer being w, phase 1 takes θw units of time, and phase 2 is distributed like Sb.
Observe that the waiting time in queue completely determines the length of phase 1, whereas the length of phase
2 does not depend on the waiting time.

For t ≥ 0 and n ≥ 1, let Zn(t) denote the number of customers in service at time t, and let Zn
i (t) denote the num-

ber of customers in phase I at time t, i � 1, 2, so that Zn(t) � Zn
1(t) +Zn

2(t). We denote by Qn(t) the number of
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customers waiting in queue, and by Xn(t) the total number of customers in the system at time t, so that
Xn(t) :� Zn(t) +Qn(t).

2.1. Preliminary: Stationarity of the M=Mpc=n1Mpc System
Clearly, Xn is not a Markov process, because its evolution depends on the waiting times of the customers in Zn

1.
However, it is a regenerative process—a fact we employ to prove the following theorem.

Theorem 1. The process Xn possesses a unique steady-state distribution, which is also its limiting distribution, as t→∞.

Proof. First, note that, due to the arrival process being Poisson, and the fact that all customers entering service
immediately upon arrival have i.i.d. exponential service times, Xn is a regenerative process, with state 0 being a
regeneration point. Note that a regenerative cycle of Xn may consist of only one interarrival and one service time,
both of which can be arbitrarily short. In particular, for τn denoting a generic cycle length of Xn, we have P(τn ≤
t) > 0 for all t > 0, implying that Xn is nonlattice. By Sigman and Wolff [18, theorem 2.1(b)], we only need to dem-
onstrate that Xn is a positive recurrent regenerative process. We prove this result by bounding the sample paths
of Xn from above with a positive recurrent process via coupling theM=Mpc=n+Mpc with an infinite-server queue.
To this end, we give the two systems the same initial number of customers, and the same Poisson arrival process,
letting the service time of each arrival to the infinite-server queue be equal to the service plus patience time
of the corresponding customer in the M=Mpc=n+Mpc system. In particular, with (Si,Ti) denoting the service-
patience times bivariate corresponding to the ith arrival to the M=Mpc=n+Mpc system, we take Si +Ti to be the
service time of the same arrival to the infinite-server system. Note that Si +Ti is exponentially distributed with
rate θ=(1+θ) because Si � θTi.

If Xn(0) � K > 0, then we endow each initial customer k, 1 ≤ k ≤ K, with a bivariate (Sk, Tk), such that Sk is expo-
nentially distributed with mean 1, Tk � Sk=θ, and these K bivariates are i.i.d. We let the remaining service time of
each such customer k in the infinite-server queue be Sk +Tk (so that it is exponentially distributed with rate
θ(1+θ)−1), and the remaining service time in theM=Mpc=n+Mpc system be an arbitrary number that is no larger
than Sk; the remaining time to abandon of customer k that is waiting in the M=Mpc=n+Mpc queue is no larger
than Tk.

Under this construction, the infinite-server queue is anM=M=∞ system. Because the time that a customer with
patience T and service requirement S spends in theM=Mpc=n+Mpc is smaller than S + Tw.p.1, the kth initial cus-
tomer and the ith arrival after time 0 depart the M=Mpc=n+Mpc system (either via service completion or aban-
donment) before they depart the infinite-server system, implying that the sample path of the queue in the latter
system is no smaller than in the former w.p.1. In turn, whenever the M=M=∞ system is empty, so is the
M=Mpc=n+Mpc system. Now, the M=M=∞ queue is an ergodic continuous-time Markov chain (CTMC), regard-
less of the values of the arrival and service rates, and so its expected busy cycle is finite. This immediately implies
that the regenerative cycle length is finite w.p.1 in theM=Mpc=n+Mpc system as well. w

Henceforth, we let Xn(∞) denote a random variable having the unique stationary (and limiting) distribution of
the process Xn.

3. Main Results
In this section, we present the main results of the paper, namely the diffusion and LOF limit, and the correspond-
ing weak limits for the stationary distributions. Throughout, we assume that (1) holds; the specific range of val-
ues that β achieves is specified in the formal statements.

3.1. Limit Theorems Under Diffusion Scaling
The diffusion limit is achieved under the usual many-server diffusion scaling for the scaled number-in-system
process:

X̂
n
:� n−1=2(Xn − n):

We note that because Xn is not a Markov process, the value of Xn(0) does not determine the law of Xn. Neverthe-
less, we can characterize the dynamics of Xn without resorting to infinite-dimensional (measure-valued) Markov
representation for a special class of natural initial conditions. In particular, we can consider the case in which the
system has started operating before time 0, such that all of the customers at time 0 are in service, and none of
them experienced any wait before entering service. (For example, the system can be initialized empty.) In this
case, the remaining service times of all the customers in the system at time 0 are i.i.d. exponentially distributed

Perry and Yu: Queueing System with Perfect Correlation
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 1119–1157, © 2022 INFORMS 1123

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

29
.1

19
.2

35
.2

6]
 o

n 
22

 S
ep

te
m

be
r 2

02
3,

 a
t 0

8:
21

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



random variables with mean 1. We can slightly generalize this initial condition by allowing Xn(0) to be larger
than n, but require that the waiting time of each customer in queue at time 0 is equal to 0.

To simplify the exposition, we first state the stochastic-process limit theorems under the previous assumption
on the initial condition (see Assumption 1). However, we remark that wemust consider muchmore general initial
conditions in order to prove the limit theorems for the stationary distributions. Thus, we substantially generalize
Assumption 1 in Section 3.3 (see (Ia) and (Ib) there), and prove the process limit theorems in the generalized
setting.

Recall that Zn
1(0) is the number of customers in phase 1 service at time 0. Let ℓni � {ℓni (t) : t ≥ 0} be the elapsed

waiting time of the ith customer (labeled in descending order of their arrival times) in queue at time t, i ≥ 1,
where ℓni (t) :� 0 for i >Qn(t).
Assumption 1 (Initial Condition). Zn

1(0) � 0 and
∑Qn(0)

i�1 ℓni (0) � 0 w.p.1.
In particular, the condition Zn

1(0) � 0 implies that the remaining service times of all the customers in service at
time 0 are exponentially distributed with mean 1.

The following functional central limit theorem (FCLT) shows that, for large n, the M=Mpc=n+Mpc system
behaves much like the Erlang-C model. We remark that the asymptotic relation between the two systems is more
intricate than what the diffusion limit reveals, as the LOF limit in Theorem 4 will show.

Theorem 2 (Diffusion Limit). Assume that (1) holds with β ∈ R. If Assumption 1 holds and, in addition, X̂
n(0) ⇒ X0 in R,

then X̂
n ⇒ X̂C in D as n→∞, for X̂C in (2).

It is well known that the solution to the SDE (2) has a unique steady-state distributionwhen β > 0, which is expo-
nential on the positive real line, and normal on the negative real line; see theorem 1 and corollary 2 in Halfin and
Whitt [7]. In particular, let X̂C(∞) denote a random variable with that steady-state distribution, and let Φ denote
the cumulative distribution function (cdf) of the standard normal random variable. Then,

P(X̂C(∞) > x |X̂C(∞) > 0) � e−βx, for x > 0, (5)

P(X̂C(∞) ≤ x |X̂C(∞) ≤ 0) � Φ(β+ x)=Φ(β), for x ≤ 0, (6)

where

P(X̂C(∞) > 0) � [1+ ����
2π

√
βΦ(β)eβ2=2]−1: (7)

On the other hand, when β ≤ 0, the diffusion process X̂C is either null recurrent (when β � 0) or transient (when
β < 0). This follows easily from the fact that X̂C is distributed like an ergodic Ornstein–Uhlenbeck process on
(−∞, 0), and like a Brownian motion on (0,∞), which is driftless in the case β � 0, and has a positive drift when
β < 0.

We next characterize the limits of the stationary distributions of X̂
n
for the two cases in which (i) the time-

limiting behavior of X̂C exists, namely, when β < 0, and (ii) when β > 0. To this end, we say that a sequence of
random variables Yn converges in distribution to infinity, and write Yn ⇒∞, if P(Yn >M) → 1 as n→∞ for any
M > 0.

Theorem 3. The following hold for the sequence {X̂n(∞) : n ≥ 1} as n→∞:
i. If β > 0, then X̂

n(∞)⇒ X̂C(∞).
ii. If β < 0, then X̂

n(∞)⇒∞.

When β > 0, Theorems 1, 2, and 3 imply the following interchange of limits:

lim
t→∞ lim

n→∞P(X̂n(t) > x) � P(X̂C(∞) > x) � lim
n→∞ lim

t→∞P(X̂n(t) > x), for all x ∈ R: (8)

Note that an analogous limit-interchangeability result holds for the Erlang-C system (see theorem 1 and corollary
2 in Halfin andWhitt [7]). Roughly speaking, Theorems 2 and 3 suggest that the perfect correlation between serv-
ice time and patience time “removes” the effect of abandonment when β > 0 for sufficiently large systems. Given
that the diffusion limit when β ≤ 0 is transient, it stands to reason that an analogous result to assertion (ii) of The-
orem 3 holds when β � 0; this can be proved in the special case θ < μ � 1.

Proposition 1. Let β � 0. If θ < 1, then X̂
n(∞)⇒∞ as n→∞.
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3.2. Limit Theorems Under the LOF Scaling When b£0
Theorem 2 shows a discrepancy between the diffusion limit and the prelimit when β < 0, as the process Xn is
ergodic for all n ≥ 1, whereas the diffusion limit X̂C is transient. Theorem 3 further emphasizes this discrepancy
by showing that {X̂n(∞) : n ≥ 1} converges weakly to infinity. In turn, this latter result implies that X̂

n
needs to

be spatially scaled in order to achieve a nontrivial limit as t→∞. The LOF stated in Theorem 4 below identifies
the exact additional spatial scaling of X̂

n
to be n1=4.

However, the spatial scaling of n3=4 by itself is not sufficient to obtain a nontrivial process limit. To see why,
note that, for an unstable M=M=n (Erlang-C) system with arrival rate λn and service rate 1, such that λn �
n− β

��
n

√
for some β < 0, it takes Θ(n1=4) units of time for the queue to grow by Θ(n3=4). Because, for the

M=Mpc=n+Mpc sequence, the diffusion limit of {X̂n
: n ≥ 1} is the same as that of a sequence of Erlang-C systems

with the same arrival and service rates by Theorem 2, it stands to reason that the two sequences of systems
share the same growth rate of the queues, which is indeed the case as we show next. Thus, consider the follow-
ing process:

X̃
n(t) :� X̂

n(n1=4t)
n1=4

� Xn(n1=4t) − n
n3=4

, t ≥ 0:

The next theorem characterizes the weak limit of X̃
n
as the unique solution to an initial-value problem (IVP),

which is why we refer to that limit as a fluid limit. (It is an LOF limit due to the spatial scaling, which is of lower
order than the typical spatial scaling by n that gives rise to functional weak laws.)

Theorem 4 (LOF limit). Assume that (1) holds with β ≤ 0. If Assumption 1 holds and in addition, X̃
n(0) ⇒ x0 in R, where

x0 ≥ 0 is deterministic, then X̃
n ⇒ xF in D as n→∞, where xF is the unique solution to the IVP

ẋF � −β−θ2

2
x2F, xF(0) � x0: (9)

Remark 1 (The Necessity of x0 ≥ 0). Although the IVP (9) has a unique solution for all x0 ∈ R+, the only relevant
solutions are for x0 ≥ 0. To see why, note that x0 < 0 implies that there are idle agents initially, and in particular,
that Xn(0) � n−ΘP(n3=4) < n for all n large enough. Now, for tn0 :� inf {t ≥ 0 : Xn(t) � n} (namely, tn0 is the first time
in which all agents are busy), the departure rate from the system is n−Xn(t) �OP(n3=4) for all t ∈ [0, tn0), whereas
the arrival rate is λn, so that the idleness decreases at rate λn −Xn(t) �OP(n3=4) over [0, tn0). In turn,

lim
n→∞P sup

t∈(0,ε]
X̃

n(t) ≥ −ε
( )

� 1, for all ε > 0:

Thus, if x0 < 0, a limit process x of X̃
n
is not right-continuous at t � 0 because x(t) ≥ 0 for all t > 0, implying that

x ∉D. As a result, X̃
n
does not converge in Dwhen X̃

n(0) ⇒ x0 < 0 in R.
For x0 ≥ 0, one can check that (9) has a closed-form expression, depending on the value of β.

Corollary 1 (Closed-form Solution). The unique solution xF to (9) is

xF(t) �
������−2β√
θ

������−2β√ + θx0
( )

1 − e−
����−2β√

θt
( )

+ 2θx0e−
����−2β√

θt������−2β√ + θx0
( )

1 − e−
����
−2β

√
θt

( )
+ 2

������−2β√
e−

����
−2β

√
θt
, when β < 0, (10)

and

xF(t) � 2x0
2 + θ2x0t

when β � 0: (11)

A point a ∈ R+ is a stationary point of xF if xF(t) � a for all t ≥ 0 whenever xF(0) � a; it is R+-globally asymptoti-
cally stable (and then also the unique stationary point), if xF(t) → a as t→∞, for any x0 ∈ R+. Let

x∗ :� ������−2β√
=θ (12)

The next corollary follows immediately from Corollary 1.
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Corollary 2 (Stability of the IVP). x∗ is an R+-globally asymptotically stable stationary point of (9).

In fact, any solution xF to (9) approaches x∗ monotonically, as can be seen from (10) and (11), or alternatively,
from the fact that ẋF(t) < 0 whenever xF(t) > x∗, and ẋF(t) > 0 whenever xF(t) < x∗ (the latter being relevant only
when β < 0).

Due to the n1=4 time scaling, the LOF captures how the dynamics of an M=Mpc=n+Mpc system differ from that
of an Erlang-C system when β < 0; the latter is characterized by the limit in the following statement. Recall that η
is the identity process, η(t) � t, t ≥ 0, and that Xn

C denotes an the queue in an M=M=n system. We use X̃
n
C to

denote the LOF-scaled queue process.

Proposition 2. If β ≤ 0 and X̃
n
C(0) ⇒ x0 in R for x0 ≥ 0, then X̃C ⇒ xC :� x0 − βη in D as n→∞.

Note that the solution xF to (9) is equal to xC in Proposition 2 when θ � 0. Observe also that, when β < 0 and
xF(0) � xC(0), xF(t) < xC(t) for all t > 0. Further, xC(t) →∞ while xF → x∗, as t→∞. Indeed, the divergence of xC(t)
to infinity as t→∞ corresponds to the fact that Xn

C is transient when β < 0. In contrast, anM=Mpc=n+Mpc system
is always stable due to the abandonment.

Analogously to Theorem 3, we can prove that x∗ is the weak limit for the stationary random variables

X̃
n(∞) :� X̂

n(∞)
n1=4

� Xn(∞) − n
n3=4

:

Theorem 5. If β ≤ 0, then X̃
n(∞)⇒ x∗ in R as n→∞.

Theorems 1, 4, and 5 again imply the following interchangeability of limits:

lim
t→∞ lim

n→∞P(X̃n(t) > x) � 1{x∗ > x} � lim
n→∞ lim

t→∞P(X̃n(t) > x), for all x ∈ R+\{x∗}: (13)

Let Qn(∞) denote a random variable with the steady-state distribution of the queue process; Qn(∞) � (Xn(∞) − n)+.
Because x∗ > 0 when β < 0, Theorem 5 implies thatQn(∞) isΘP(n3=4).

In ending, we remark that the time scaling in X̃
n
implies that the relaxation time of Xn, namely, the time it

takes to Xn to converge to its steady state (under any metric), is increasing in nwhen β ≤ 0.

3.3. Generalizing the Initial Condition
The process limit results in Theorems 2 and 4 are both achieved under Assumption 1. However, to prove the
limit theorems for the stationary distributions, we need to allow for more general initial conditions. (In partic-
ular, Theorems 3 and 5 will be proved by initializing the corresponding processes according to their station-
ary distribution.) To this end, we assume that, similarly to the customers arriving after time 0, the service
time of each customer that is in service at time 0 also has two phases: phase 1 (corresponding to the delay that
that customer experienced in queue before entering service) and phase 2, which is exponentially distributed
with mean 1.

Observe that Theorems 2 and 4 do not necessarily hold if there are customers in phase 1 service initially. For
example, if for some c > 0, all customers in service present at time 0 have at least c time units of remaining phase
1 service time, then there will be no departures from service in the first c time units, so that the queue will grow
at rate λn in system n, and the system will have an initial period of overload. In that initial period, an FCLT
clearly cannot hold. Hence, to generalize the initial condition in Theorems 2 and 4, we must enforce regularity
conditions that prohibit such overload incidents.

Let rnj (t) be the remaining phase 1 service time of the customer with server j at time t, 1 ≤ j ≤ n, for all t ∈ R+, or
rj(t) � 0 if the customer is in phase-2 or server j is idle at time t. Recall also that ℓni (t) is the elapsed waiting time
of the ith customer in the queue at time t. Let

Ln(t) :� ∑Zn(t)

j�1
rnj (t) +

∑Qn(t)

i�1
ℓni (t), t ≥ 0: (14)

Proposition 3. Ln possesses a unique stationary distribution, which is also the limiting distribution of Ln(t) as t→∞.

Proof. Similarly to Xn, Ln is a regenerative process, regenerating when Xn hits state 0, namely, when the system
empties. It follows from Theorem 1 that Ln is nonlattice and the expected cycle length of Ln is finite, so that Ln is
positive recurrent, implying the result. w
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The proof of the next proposition appears in Section 5.7. Let Ln(∞) denote a random variable that has the sta-
tionary distribution of Ln.

Proposition 4. The following hold:
a. If β > 0, then E[Ln(∞)] �O(1).
b. If β ≤ 0, then E[Ln(∞)] �O(n1=2).
Let

L̂
n(0) :� Ln(0)

n1=2
and L̃

n(0) :� Ln(0)
n3=4

,

and consider the families of initial conditions satisfying the following: for a random variable X0,

(X̂n(0), L̂n(0)) ⇒ (X0, 0) in R
2 as n → ∞, (Ia)

(X̃n(0), L̃n(0)) ⇒ (X0, 0) in R
2 as n → ∞, where X0 ≥ 0 w:p:1: (Ib)

Theorem 6. Assume that (1) holds with β ∈ R. If (Ia) holds, then X̂
n ⇒ X̂C in D as n→∞.

Theorem 7. Assume that β ≤ 0. If (Ib) holds, then X̃
n ⇒ xF in D as n→∞, where, conditional on {X0 � x0}, for a positive

scalar x0, xF is the unique solution to the IVP (9).

Both Conditions (Ia) and (Ib) hold trivially if Assumption 1 holds. As a result, Theorems 6 and 7 immediately
imply the statements in Theorems 2 and 4, respectively. Due to Proposition 4, (Ia) and (Ib) also hold when the

system is initialized at stationarity, that is, when Ln(0)�d Ln(∞), a result needed to prove Theorems 3 and 5.

3.4. A Numerical Example
In this section, we demonstrate the convergence of the properly scaled version of Xn to the diffusion limit XC and
the LOF limit xF. We fix μ � 1, θ � 0:3, and vary n for different system sizes. For the diffusion limit, we take β � 0:7
and choose n ∈ {64,256,1, 024} for three different M=Mpc=n+Mpc systems. To estimate the probability density
function (pdf) of X̂

n(∞), we generate 512 independent sample paths. Each was ran for 100 time units, with a
warm-up period of 50 time units. We compare the estimated pdf of the three simulations with the pdf of the diffu-
sion limitXC(∞), given in Garnett et al. [6, theorem 2*]. This comparison is depicted in the left panel of Figure 1.

To demonstrate the convergence to the LOF limit, we fix β � −1:0 and estimate {E[X̃n(t)] : t ∈ [0, 25]} for three
different M=Mpc=n+Mpc systems with different values of n. We initialize each of the three systems such that, at

Figure 1. (Color online) Convergence of X̂
n(∞) toXC(∞)when β > 0 (left panel), and E[X̃n] to xFwhen β < 0 (right panel).
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time 0, there are n customers in the system, all of which are in phase 2 of their service, while no customer is wait-
ing in the queue. For n ∈ {128, 2, 048,32, 768}, we generate {8,128, 2,048, 512} independent sample paths for each
system. We need more sample paths for smaller systems because for each t, X̃

n(t) has a higher coefficient of var-
iation than for larger n. The systems are run for 25n1=4 time units and we compute {E[X̃n(t)] : t ∈ [0, 25]} by aver-
aging over the independent sample paths. We plot {xF(t) : t ∈ [0, 25]} by using the closed-form solution (10). The
comparison of the simulations to xF is depicted in the right panel of Figure 1.

4. Summary
In this paper, we consider the M=Mpc=n+Mpc model, in which the patience and service times of each customer
are perfectly correlated. We prove that, under the usual square-root staffing rule and diffusion scaling, the queue
process of theM=Mpc=n+Mpc system is asymptotically equivalent to the queue process of the Erlang-C system in
the sense that both queues have same diffusion limit. Furthermore, when the sequence ofM=M=n, n ≥ 1, is stable
for all n large enough (namely, when the traffic intensity is smaller than 1), the sequences of stationary distribu-
tions for both models have the same limit as well. When the traffic intensity is larger than 1 for all n large enough,
the sequence of stationary distributions of the M=Mpc=n+Mpc system converges weakly to infinity (a result that
also holds in the critical case, when β � 0, provided the abandonment rate is smaller than the service rate). These
results demonstrate the diminishing impact of abandonment on the queueing dynamics M=Mpc=n+Mpc as n
increases.

However, unlike the Erlang-C model, which is not always stable, the M=Mpc=n+Mpc model is stable, and in
particular, converges weakly with time to a unique stationary distribution, regardless of the traffic intensity. To
approximate the stationary distribution of the M=Mpc=n+Mpc system, we consider the LOF limit and its unique
stationary point x∗ in (12), which is proved to be the many-server heavy-traffic limit of the stationary queue
process.

Even though all the results in this paper hold for the M=Mpc=n+Mpc system, it stands to reason that similar
results hold under less restrictive assumption on the correlation between service and patience times. In particu-
lar, we expect that positive correlation between these two random variables causes a system to be more heavily
loaded than when the service and patience are independent (or negatively correlated). We leave proving this
open problem for the future; see the discussion in Moyal and Perry [11].

5. Proofs of Main Results
To help navigate the proofs, we provide the following roadmap: First, Theorems 2 and 4 follow immediately
from Theorems 6 and 7. The proofs of Theorems 6 and 7 appear in Sections 5.3 and 5.4, respectively, after pro-
viding sample-path and martingale representations in Sections 5.1 and 5.2. Theorem 5, whose proof relies on
Theorem 7, is proved in Section 5.5, where we also prove Theorem 3 by utilizing both Theorem 6 and Theo-
rem 5. The proof of Proposition 1 appears in Section 5.6, building on a coupling result between two
M=Mpc=n+Mpc systems. Utilizing the same coupling, Proposition 4 is proved in Section 5.7. Many proofs in
this section build on auxiliary results, the proofs of which are relegated to Section 6. Finally, the proof of
Proposition 2 appears in Appendix B.

5.1. Sample-Path Representation
Let

βn :� n−1=2(n − λn), (15)

and note that, due to the square-root staffing rule in (1), βn → β as n→∞.
Recall that Zi(t) (i � 1, 2) are the number of customers in phase I service at time t and Z(t) � Z1(t) +Z2(t). We

can write

Zn
1(t) �

∑Zn(t)

j�1
1{rnj (t) > 0}, (16)

which provides a representation of Z1 ∈D and Z2 � Z−Z1 ∈D.
Let A, S, and R be three independent unit-rate Poisson processes. We represent the Poisson arrival process in

system n via An(t) :� A(λnt), t ≥ 0, and exploit the memoryless property of the exponential distribution to charac-
terize the departures from service and abandonment. In particular, for Dn(t) and Rn(t) denoting the number of
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departures from service and number of abandonment by time t in system n, respectively, we have

Dn(t) � S
∫ t

0
Zn
2(s)ds

( )
and Rn(t) � R θ

∫ t

0
Qn(s)ds

( )
, t ≥ 0:

Then,

Xn(t) � Xn(0) + A(λnt) − S
∫ t

0
Zn
2(s)ds

( )
− R θ

∫ t

0
Qn(s)ds

( )
, t ≥ 0: (17)

Notice that the following basic equalities hold:

Qn � (Xn − n)� 0, Zn � Xn � n, Zn � Zn
1 + Zn

2 : (18)

To fully characterize Xn, we need to characterize Zn
2, or equivalently, Z

n
1. Let Z

n
0(t) denote the number of custom-

ers who were in the system initially (at time 0), and are in their phase 1 service at time t. Let Tn
0 be the time in

which the last customer from the initial queue leaves the queue, either by entering service or by abandoning the
queue; in particular, at any t < Tn

0 there are customers in queue that were waiting in the queue at time 0, and
there are no such customers in the queue at any time t ≥ Tn

0 . For any t ≥ 0, let wn(t) be the minimum between t
and the waiting time of the head-of-line customer. We set wn(t) :� 0 if Qn(t) � 0.

Now, if a departure from service occurs at time s ∈ [Tn
0 , t] and Qn(s−) > 0, then the customer at the head of the

line begins the phase 1 service, and that customer is still in phase 1 at time t if and only if θwn(s−) + s > t. Note
that the latter statement holds trivially if Qn(s−) � 0, because then wn(s−) � 0. We can therefore characterize Zn

1
via the departure process as follows:

Zn
1(t) � Zn

0(t) +
∫ t

Tn
0 � t

1{θwn(s−) + s > t}dDn(s), t ≥ 0: (19)

To characterize the process wn, we number the customers that arrive after time 0 by the order of their arrival, and
denote by En

k the arrival time of the kth customer to system n, that is, En
k :� inf {t : An(t) � k}. Let Tn

k denote the
patience time of the kth arrival to system n, so that {Tn

k : k ≥ 1} is a sequence of independent exponential random
variable with mean 1=θ for each n ≥ 1. Under the FCFS policy, the arrival time of any customer that is in queue
at time t is no less the arrival time of the head-of-line customer at that time, the latter being equal to t−wn(t).
Hence, if the kth customer arrives during the time interval [t−wn(t), t), then that customer is still in the system
(waiting in queue) at time t if and only if En

k +Tn
k > t. This gives

Qn(t) �
∫ t

t−wn(t)
1{En

An(s) +Tn
An(s) > t}dAn(s) +Qn

0(t), for all t ≥ 0, (20)

where Qn
0(t) is the number of customers that were waiting in queue at time 0 and are still waiting in queue at

time t. Note that, due to abandonment, Qn
0(t) ≤ (Qn(0) −Dn(t))+, and that there are no waiting customers at time t

if there are idle agents, so that

(Zn − n)wn � 0η: (21)

If we assume that Ln(0) � 0, so that Qn
0 � Zn

0 � 0η, then (17)–(20) characterize the system’s dynamics via the primi-
tives An, Sn, and {Tn

k : k ∈ Z+}. When Ln(0) > 0, the dynamics of the nth system depend also on {ℓni (0)} and {rnj (0)}.
However, as will be proved later, the impact of these two sequences is asymptotically negligible, in that they do
not alter the diffusion limit and LOF limit under our assumed initializations in (Ia) and (Ib).

5.2. A Martingale Representation
Let Fn

0 be the σ-algebra generated by

{Xn
0 ,ℓ

n
i (0), rnj (0) : 1 ≤ i ≤Qn(0), 1 ≤ j ≤ Zn(0)},

augmented by including all P-null sets. For t ≥ 0 and n ≥ 1, let F n :� {F n
t : t ≥ 0}, where F n

t is the right-
continuous σ-algebra associated to the σ-algebra generated by

(F n
0,ℓ

n
i (s), rnj (s),An(s),Dn(s),Rn(s) : 1 ≤ i ≤Qn(t), 1 ≤ j ≤ Zn(t), s ∈ [0, t]):

Note that the processes Xn,Qn,Qn
0,Z

n,Zn
i , i � 0, 1, 2, and wn have sample paths in D by construction. Now,

wn(t) � 1{Qn(t) > 0}ℓn1(t), so that wn is F n-adapted, and it therefore follows from (16)–(19) that Xn, Qn, Zn, and Zn
i ,
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i � 0, 1, 2, are also Fn-adapted. Finally, noting that Tn
0 � inf {t ≥ 0 : wn(t) > t} shows that Tn

0 is an Fn-stopping
time.

Consider the following processes:

Mn
A(t) :� An(t) − λnt, Mn

S(t) :� Dn(t) −
∫ t

0
Zn
2(s)ds,

Mn
R(t) :� Rn(t) − θ

∫ t

0
Qn(s)ds, t ≥ 0:

Because Zn
2 ≤ n and Dn(t) ≤ S(nt), we have E[ |Mn

i (t) | ] <∞ and E[ |Mn
i (t) |2] <∞, for i � A and S. Therefore, Mn

A
and Mn

S are square-integrable F n-martingales. Note that Rn and Qn have nonnegative sample paths that are
bounded pathwise by the sample paths of An +Xn(0). For τnk :� k1{ |Xn(0) |< k}, Mn

R(·�τnk ) is a square-integrable
F n-martingale, and because τnk →∞ w.p.1 as k→∞, Mn

R is an Fn-local martingale. Thus, (17) admits the follow-
ing martingale representation:

Xn(t) � Xn(0) +λnt−
∫ t

0
Zn
2(s)ds−θ

∫ t

0
Qn(s)ds+Mn

A(t) −Mn
S(t) −Mn

R(t):

Next, for

Un
1 (t) :�

∫ t

Tn
0�t

1{θwn(s−) + s > t}dMn
S(s), t ≥ 0, (22)

we can rewrite (19) to obtain

Zn
1(t) �

∫ t

Tn
0�t

1{θwn(s) + s > t}Zn
2(s)ds +Un

1 (t) + Zn
0(t), (23)

so that ∫ t

0
Zn
1(s)ds �

∫ t

0
(Un

1 (s) + Zn
0(s))ds +

∫ t

0

∫ s

Tn
0�s

1{θwn(u) + u > s}Zn
2(u)duds

�
∫ t

0
(Un

1 (s) + Zn
0(s))ds +

∫ t

Tn
0�t

(θwn(u))� (t − u)Zn
2(u)du: (24)

The last integral in (24) follows from Fubini’s theorem together with the fact that∫ b

a
1{s < c}ds � b� c − a� c, for a ≤ b,

so that ∫ t

u
1{θwn(u) + u > s}ds � (θwn(u) + u)� t − u � θwn(u)� (t − u):

Finally, let

Fn(s, t) :�
∫ s

0
1{En

An(u) + Tn
An(u) > t}dAn(u) + θ−1λn(e−θt − e−θ(t−s)): (25)

Then, for

Un
2 (t) :� Fn(t, t) − Fn(t − wn(t), t), (26)

we can rewrite (20) as follows:

Qn(t) � θ−1λn(1 − e−θw
n(t)) +Un

2 (t) +Qn
0(t), t ≥ 0: (27)
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Plugging (24) and (27) in (17), and using the equality Z � Z1 +Z2, give the following modified martingale repre-
sentation:

Xn(t) � Xn(0) +λnt−
∫ t

0
Zn(s)ds+Vn(t) +

∫ t

0
Zn
0(t) −θQn

0(s)
( )

ds

+
∫ t

0
Un

1 (s) −θUn
2 (s)

( )
ds+Mn

A(t) −Mn
S(t) −Mn

R(t), t ≥ 0, (28)

where

Vn(t) :�
∫ t

Tn
0�t

θwn(s)( )� (t− s)Zn
2(s)ds−

∫ t

0
λn(1− e−θw

n(s))ds: (29)

5.3. Proof of Theorem 6
We consider the following diffusion-scaled random variables and processes:

Q̂
n
:� n−1=2Qn, Ẑ

n
:� n−1=2(Zn − n) L̂

n(0) :� n−1=2Ln(0), ŵ :� n1=2wn,

Ẑ
n
1 :� n−1=2Zn

1, Ẑ
n
2 :� n−1=2(Zn

2 − n), Q̂
n
0 :� n−1=2Qn

0 , Ẑ
n
0 :� n−1=2Zn

0 :

We similarly consider the diffusion-scaled processes in the martingale representation

M̂
n
i :� n−1=2Mn

i , i � A, S,R, Û
n
1 :� n−1=2Un

1 , Û
n
2 :� n−1=2Un

2 , V̂
n
:� n−1=2Vn:

Using the diffusion scaling in (28) gives

X̂
n(t) � X̂

n(0) − βnt −
∫ t

0
Ẑ

n(s)ds + V̂
n(t) +

∫ t

0
Ẑ

n
0(s) − θQ̂

n
0(s)

( )
ds

+
∫ t

0
Û

n
1(s) − θÛ

n
2(s)

( )
ds + M̂

n
A(t) − M̂

n
S(t) − M̂

n
R(t): (30)

The proof of Theorem 6 is a straightforward application of the continuous mapping theorem, given the following
key result, whose proof appears in Section 6.4.

Proposition 5. Assume that (Ia) holds. Then, as n→∞,

a.
(∫ ·

0
Q̂

n
0(s)ds,

∫ ·
0
Ẑ

n
0(s)ds

)
⇒ (0η, 0η) in D2;

b.
(∫ ·

0
Û

n
1(s)ds,

∫ ·
0
Û

n
2(s)ds, V̂

n)⇒ (0η, 0η, 0η) in D3; and

c. (M̂n
A,M̂

n
S,M̂

n
R) ⇒ (B1,B2, 0η) in D3, where B1 and B2 are two independent standard Brownian motions.

Proof of Theorem 6. Using the equality Ẑ
n � X̂

n
�0 and (15) in (30), we have

X̂
n(·) − X̂

n(0) + βnη(·) −
∫ ·

0
X̂

n(s)�0ds⇒ ��
2

√
B(·) in D as n→∞, (31)

where B is a standard Brownian motion.
By Pang et al. [12, theorem 4.1], there exists a unique solution x ∈D to the integral equation

x(t) � x(0) − βt−
∫ t

0
x(s)�0ds+ y(t), for all t ≥ 0, (32)

and the mapping φ :D→D, which maps the function y in (32) to the solution x, is continuous in the J1 topology.
Further, if y is continuous, then so is x. Hence, the statement of the theorem follows from (31) and the continuous
mapping theorem, by noting that

X̂
n � φ(X̂n(·) − X̂

n(0) + βnη(·) −
∫ ·

0
X̂

n(s)�0ds),

and that X̂C � φ( ��
2

√
B). w
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5.4. Proof of Theorem 7
To establish the LOF limit, we consider the following scaled processes:

Q̃
n(t) :� n−3=4Qn(n1=4t), Z̃

n(t) :� n−3=4(Zn(n1=4t) − n),

Z̃
n
1(t) :� n−3=4Zn

1(n1=4t), Z̃
n
2(t) :� n−3=4(Zn

2(n1=4t) − n),

Q̃
n
0(t) :� n−3=4Qn(n1=4t), Z̃

n
0(t) :� n−3=4Zn

0(n1=4t),

Ũ
n
1(t) :� n−3=4Un

1 (n1=4t), Ũ
n
2(t) :� n−3=4Un

2 (n1=4t),

Ṽ
n(t) :� n−3=4Vn(n1=4t), L̃

n(t) :� n−3=4Ln(n1=4t),

w̃n(t) :� n1=4wn(n1=4t), T̃
n
0 :� n−1=4Tn

0 ,

and M̃
n
i (t) :� n−3=4Mn

i (n1=4t), for i � A,S,R. Then the corresponding scaled process in (17) is represented via

X̃
n(t) � X̃

n(0) − βnt− n1=4
∫ t

0
Z̃

n(s)ds+ Ṽ
n(t) + n1=4

∫ t

0
Z̃

n
0(s) −θQ̃

n
0(s)

( )
ds

+ n1=4
∫ t

0
Ũ

n
1(s) −θŨ

n
2(s)

( )
ds+ M̃

n
A(t) − M̃

n
S(t) − M̃

n
R(t): (33)

The proof of Theorem 7 builds on the following three supporting propositions, whose proofs appear in Section 6.
Throughout, we assume that (Ib) holds.

Proposition 6. As n→∞,

a. n1=4
(∫ ·

0
Zn
0(s)ds,

∫ ·
0
Qn

0(s)ds
)
⇒ (0η, 0η) inD2 and Tn

0 ⇒ 0 inR;

b. (M̃n
A,M̃

n
S,M̃

n
R) ⇒ (0η, 0η, 0η) in D3;

c. n1=4
∫ ·
0
Ũ

n
1(s)ds⇒ 0η in D; and

d. n1=4Ũ
n
2 ⇒ 0η, so that n1=4

∫ ·
0
Ũ

n
2(s)ds⇒ 0η in D.

Proposition 7. {Q̃n
: n ≥ 1} is C-tight in D.

Proposition 8. As n→∞

Ṽ
n(·) +θ2

2

∫ ·

0
(Q̃n(s))2ds⇒ 0η inD: (34)

For a given φ ∈D0, we say that (y,ψ) ∈D2 is a solution to the Skorokhod problem if

y � φ+ψ;∫ t

0
y(s)dψ(s) � 0, for all t ≥ 0;

y ≥ 0, ψ(0) � 0 and ψ is nondecreasing: (35)

It is well known (e.g., see Chen and Yao [2, theorem 6.1]) that the Skorokhod problem in (35) admits a unique sol-
ution (y,ψ), and that h :D0 →D2, mapping the input φ to that solution, namely, the map defined via

h(φ) :� (y,ψ), (36)

is (Lipschitz) continuous in the J1 topology; see theorems 13.4.1 and 13.5.1 in Whitt [21]. (Continuity of h is
proved only in the uniform topology in Chen and Yao [2].) Further, if φ is continuous, then so is h(φ).
Proof of Theorem 7. Due to Proposition 7, any subsequence of {Q̃n

: n ≥ 1} has a further weakly converging sub-
sequence in D. Let {Q̃k

: k ≥ 1} denote such a converging subsequence, and let Q denote its weak limit. Let Φk ∈D
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and Φ ∈ C be defined via

Φk(t) � X̃
k(t) + k1=4

∫ t

0
Z̃

k(s)ds, (37)

Φ(t) � X0 − βt−θ2

2

∫ t

0
Q2(s)ds: (38)

By (33), Propositions 6 and 8, and the continuous mapping theorem, it holds that

Φk − X̃
k(0) + βkη + θ2

2

∫ ·

0
(Q̃k(s))2ds ⇒ 0η in D as k → ∞:

The convergence Q̃
k ⇒Q in D and the continuous mapping theorem together give

(Q̃k
,Φk) ⇒ (Q,Φ) in D2 as k→∞:

We need the following lemma, the proof of which appears at the end of this section. Recall h from (36).

Lemma 1. (Φk, X̃
k
, X̃

k −Φk) ⇒ (Φ,h(Φ)) as k→∞ in D3.

Denote (X,Ψ) :� h(Φ), so that X � Φ+Ψ and X ≥ 0 w.p.1. Because h maps C0 to C2 and Φ ∈ C0, we have
(X,Ψ) ∈ C2. The convergence Xk ⇒ X and the continuous mapping theorem imply that

Q̃
k � X̃

k
�0⇒ X�0, in D as n→∞,

and thus Q � X�0 � X, w.p.1. In particular, (38) simplifies to

Φ(t) � X0 − βt−θ2

2

∫ t

0
X2(s)ds: (39)

It follows from (35) and the fact that (X,Ψ) � h(Φ) thatΨ is a nondecreasing process withΨ(0) � 0, such that

X � Φ+Ψ and
∫ ·

0
1{X(s) > 0}dΨ(s) � 0η(·):

Hence, conditional on {X0 � x0}, for x0 ≥ 0, and using (39), (y,ψ) :� (X,Ψ) satisfies the following:

y(t) � x0 − βt−θ2

2

∫ t

0
y2(s)ds+ψ,

∫ t

0
1{y > 0}dψ � 0,

(y,ψ) ∈ C2, y ≥ 0, ψ(0) � 0, and ψ is a nondecreasing process: (40)

The next lemma is proved at the end of this section.

Lemma 2. There exists a unique solution (y,ψ) � (xF, 0η) to (40) for any input x0 ≥ 0 and β ≤ 0, where xF is the unique
solution to (9). Further, the function g : R+ → C2, mapping x0 to (y,ψ), is continuous.

It follows that, conditional on {X0 � x0}, X � xF w.p.1, so that (X,Q,Z) � (xF,xF�0, 0η) w.p.1. The uniqueness of
the limit implies the stated weak convergence. w

Proof of Lemma 1. For fixed τ > 0 and ε > 0, and for each k ≥ 1 such that k−3=4 < ε, define the event

Ξk ≡ Ξk(ε,τ) :� −ε < X̃
k(0), inf

t≤τ X̃
k(t)�0 < −3ε

{ }
:

We first show that Ξk is an asymptotically null event in the sense that P(Ξk) → 0 as n→∞. To this end, let tk1 be

such that X̃
k(tk1) < −3ε. For

tk2 :� sup t < tk1 : X̃
k(t) ≥ −ε

{ }
,
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it holds that X̃
k(tk2−) ≥ −ε. As Xk is a pure jump process with jumps of size 1 and –1 w.p.1,

X̃
k(tk2) ≥ X̃

k(tk2−) − k−3=4 > −2ε:

Let φ :� −β−θ2(Q)2=2 ∈D so that Φ(t) �Φ(0) + ∫ t

0
φ(s)ds for t ≥ 0:

−ε > X̃
k(tk1) − X̃

k(tk2) � Φk(tk1) −Φk(tk2) − k1=4
∫ tk1

tk2

X̃
k(s)�0ds

≥ Φ(tk1) −Φ(tk2) − 2‖Φk −Φ‖τ + k1=4(tk1 − tk2)ε

≥ −(tk1 − tk2)‖φ‖τ − 2‖Φk −Φ‖τ + k1=4(tk1 − tk2)ε:

This strict inequality can hold if either ‖φ‖τ ≥ k1=4 or ‖Φk −Φ‖τ ≥ ε=2, implying that

Ξk ⊆ {‖Φk −Φ‖τ ≥ ε=2} ∪ {‖φ‖τ ≥ k1=4}:
As both events on the right-hand side are asymptotically null under the probability measure P, we conclude that
P(Ξk) → 0 as n→∞.

Next, X0 ≥ 0 implies that P(X̃k(0) > −ε) → 1. Together with the fact that P(Ξk) → 0, we have

P inf
t≤τ X̃

k(t)�0 < −3ε
( )

→ 0, for all ε > 0 and τ > 0,

and thus

X̃
k
�0⇒ 0η in D as n→∞: (41)

It is easy to check that Φk − X̃
k
�0 ∈D0 and that

X̃
k
�0, k1=4

∫ ·

0
X̃

k(s)�0ds
( )

� h(Φk − X̃
k
�0):

Now, due to (41)

Φk − X̃
k
� 0 ⇒ Φ in D as n → ∞,

and so

(X̃k
� 0, X̃

k −Φk) ⇒ h(Φ) in D2 as n → ∞:

Thus

(Φk, X̃
k
� 0, X̃

k − Φk) ⇒ (Φ, h(Φ)) in D3 as n → ∞:

Writing X̃
k � X̃

k
�0+ X̃

k
�0 and employing (41) gives the stated limit. w

Proof of Lemma 2. First, it follows from the standard theory of ordinary differential equation that (9) has a
unique solution. (It is easy to check that xF in (10) and (11) satisfies (9) when β < 0 and β � 0, respectively.) Then,
(xF, 0η) trivially satisfies (40), and it remains to show that it is the unique element in C2 to have this property.

To this end, let (y1,ψ1) ∈ C2 be a solution to (40). The fact that ψ1 ≥ 0 implies that

y1(t) − xF(t) � −θ2

2

∫ t

0
(y21(s) − x2F(s))ds+ψ1(t)

≥ −θ2

2

∫ t

0
(y1(s) + xF(s))(y1(s) − xF(s))+ds,
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and

(y1(t) − xF(t))− ≤ (y1(t) − xF(t))+ +θ2

2

∫ t

0
(y1(s) + xF(s))(y1(s) − xF(s))+ds, for all t ≥ 0:

By Gronwall’s inequality, for each t, there is a ct ≥ 0 such that

(y1(t) − xF(t))− ≤ ct(y1(t) − xF(t))+: (42)

As a− > 0 implies that a+ � 0 for a ∈ R, (42) implies that (y1 − xF)− � 0, so that y1 ≥ xF. Therefore, if either β < 0 or
x0 > 0, we have y1(t) ≥ xF(t) > 0 for all t > 0. By (40), we immediately have ψ1 � 0η, and thus y1 solves (9) and
must equal xF.

Next, consider the case β � 0 and x0 � 0. For t such that y1(t) > 0, we have

dy1(t)=dt � −θ2y1(t)2=2 < 0, for all t ≥ 0 such that y1(t) > 0:

Together with y1(0) � 0 and y1 ∈ C, we have y1 � 0η, so that ψ1 � −y1 � 0η.
Finally, it follows (10) (or (11)) and ψ � 0η that the map x0 �→ (y,ψ) is continuous, completing the proof of

Lemma 2. w

5.5. Proof of Theorems 3 and 5
We will need the following two supporting propositions, the proof of which are given in Section 6.5. We omit the
proof of Theorem 3 since its assertion (i) follows immediately from Theorem 5, and its assertion (ii) follows from
Proposition 10 and Theorem 6 by similar arguments used to show that Theorem 5 follows from Proposition 9
and Theorem 7.

Proposition 9. For any β ∈ R, {X̃n(∞) : n ≥ 1} is tight in R. Further, X̃
n(∞)�0⇒ 0 in R as n→∞.

Proposition 10. If β > 0, then {X̂n(∞) : n ≥ 1} is tight in R.

Proof of Theorem 5. For each n ≥ 1, we consider a stationary version of the processes Xn and Ln by taking

Xn(0)�d Xn(∞) and Ln(0)�d Ln(∞): (43)

Due to Proposition 9, each subsequence of {X̃n(∞) : n ≥ 1} has a further weakly converging subsequence; let

{X̃k(∞) : k ≥ 1} be such a converging subsequence, and let X0 be its weak limit. Then by our choice of the initial

distribution, it holds that X̃
k(0) ⇒ X0, and the stated convergence in Proposition 9 implies that X0 ≥ 0 w.p.1.

Moreover, by Proposition 4 it holds that L̃
k(0) ⇒ 0 as k→∞.

Now, conditional on the event {X0 � x0}, for x0 ∈ R+, we have X̃
n ⇒ X0

F in D as n→∞ by virtue of Theorem 7,
where X0

F is the unique solution to the IVP (9) with initial condition X0
F(0) :� X0 � x0. Moreover, the stationarity

of the prelimit {X̃n
: n ≥ 1} implies that the limit X0

F is strictly stationary as well, so that X0
F(t)�d X0 for all t ≥ 0.

To show that X0 � x∗, w.p.1., recall that any solution to the ODE in (9) converges monotonically to x∗ as t→∞.
Hence, on the event E0 :� {X0 ≠ x∗}, it holds that

|X0
F(t) − x∗ | < |X0 − x∗ | for all t > 0,

in contradiction to the stationarity of X0, so that E0 is a P-null event. Thus, the limit of all weakly converging sub-
sequences of {X̃n(0) : n ≥ 1} is x∗, implying that X̃

n(0) ⇒ x∗ as n→∞. The result follows from our choice of the
initial conditions in (43). w

5.6. Proof of Proposition 1
To prove Proposition 1, we need the following comparison lemma, whose proof appears at the end of this sec-
tion. Consider twoM=Mpc=n+Mpc systems, denoted by P1 and P2, both having service rate μ � 1. Let the arrival
rates λi in Pi, i � 1, 2, satisfy λ1 ≥ λ2, the abandonment rate θ1 of P1 satisfy 0 ≤ θ1 < 1, and the abandonment rate
θ2 of P2 satisfy

θ2 ≥ θ1=(1−θ1) ≥ θ1:

Perry and Yu: Queueing System with Perfect Correlation
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 1119–1157, © 2022 INFORMS 1135

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

29
.1

19
.2

35
.2

6]
 o

n 
22

 S
ep

te
m

be
r 2

02
3,

 a
t 0

8:
21

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Note that we allow for θ1 � 0, in which system P1 reduces to an M=M=n system. (In this case, we assume that all
the customers that are initially in the system have exponentially distributed remaining service times, each with
mean 1.)

Let Xi denote the number-in-system process in Pi, i � 1, 2. If either θi > 0 or λi < n, Theorem 1 implies that Xi

has a stationary distribution, which we denote by Xi(∞).
Lemma 3. If θ1 > 0 or λ1 < n so that X1(∞) and X2(∞) exist, then X1(∞)≥st:X2(∞).
Proof of Proposition 1. We write X̂C(t;β) to make explicit the dependence of the distribution of the process X̂C
on the value of β, as well as of its stationary distribution (when t :�∞). Fix ε > 0, and consider a sequence {βnε :
n ≥ 1} ⊂ R+ satisfying βnε ≥ βn and βnε → ε as n→∞. Let a sequence of M=Mpc=n+Mpc systems be labeled by n,
with arrival rate λn

ε :� n− βnε , service rate 1, and patience rate θ=(1−θ). Denote by Xn
ε (∞) the stationary distribu-

tion of the number-in-system process of the nth system. Lemma 3 and the existence of Xn
ε (∞) imply that

Xn
ε (∞)≤st:Xn(∞), so that, for anyM > 0,

P(X̂n(∞) >M) ≥ P(X̂n
ε (∞) >M):

On the other hand, Theorem 3 gives

P(X̂n
ε (∞) > M) → P(X̂C(∞; ε) > M) as n → ∞,

so that

lim inf
n→∞ P(X̂n(∞) > M) ≥ P(X̂C(∞; ε) > M), for all M > 0:

Finally, (5)–(7) give

lim
ε→0+

P(X̂C(∞; ε) > M) � 1:

Therefore, P(X̂n(∞) >M) → 1 as n→∞ for anyM > 0, implying the result. w

It remains to prove Lemma 3.

Proof of Lemma 3. We assume that the arrival process to P1 is the superposition of two independent Poisson
streams, with stream 1 having rate λ2 and stream 2 having rate λ1 −λ2. We consider a coupling of P1 and P2
such that (i) both systems start empty; (ii) stream 1 arrivals to P1 and all arrivals of P2 follows the same Poisson
process; and (iii) any stream 1 arrival to P1 and the corresponding arrival of P2 have the same service time. Using
this coupling, we will show that the sojourn time of every stream 1 arrival to P1 is at least as long as that of the
same arrival in P2. We label the stream 1 arrivals to P1, that also constitute the arrivals to P2, by 1, 2, ⋯, and
denote by Si the service time of customer i. We denote the coupled number-in-system processes in P1 and P2 by
X̌1 and X̌2, respectively.

The proof proceeds by induction. First, customer 1 in P2 enters service immediately upon arrival, so that the
customer’s sojourn time is S1. The same customer in P1 may (i) enter service immediately, and experience the
same sojourn time S1; (ii) enter service after waiting in queue, so that the customer’s sojourn time is greater than
S1; or (iii) abandon the system, after waiting for θ−1

1 S1 > S1 units of time. In all three scenarios, the sojourn time
of customer 1 in P1 is at least as large as in P2.

Take the induction hypothesis that the first j customers have equal or shorter sojourn times in P2 than in P1.
There are three cases to consider in order to show that the same is true for the ( j+ 1) st customer.

Case 1: Customer j 1 1 abandons P1. In this case, that customer’s sojourn time in P1 is equal to θ−1
1 Sj+1. On the

other hand, the sojourn time of customer j + 1 in P2 is bounded from above by the service requirement Sj+1 plus
the patience time θ−1

2 Sj+1. Because (1+θ−1
2 )Sj+1 ≤ θ−1

1 Sj+1, the ordering of the sojourn times for the first j custom-
ers in the two systems remains to hold for the ( j+ 1) st customer.

Case 2: Customer j 1 1 is served in P1 but abandons P2. For 1 ≤ k ≤ j+ 1, denote by D1
k and D2

k the time when
the kth customer leaves system P1 and system P2, respectively. By the induction hypothesis, we have D1

k ≥D2
k for

k � 1, 2, ⋯ , j. Denote by F1j+1 the time when customer j + 1 enters service in P1. Clearly, the first j customers are
not in queue at this time, namely, each of them is either in service or has left P1 (either via abandonment or
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service completion). In particular, if customer k ≤ j is still in system P1, this customer must be in service. For a
system with n servers, we then have∑j+1

i�1
1{D1

i ≤ F1j+1} ≤ n, and D1
j+1 � F1j+1 + Sj+1 > F1j+1,

so that ∑j

i�1
1{D1

i ≤ F1j+1} ≤ n− 1:

Using D1
k ≥D2

k for k � 1, 2, ⋯ , j, we have∑j

i�1
1{D2

i ≤ F1j+1} ≤
∑j

i�1
1{D1

i ≤ F1j+1} ≤ n− 1,

so that there are no more than n – 1 of the first j stream 1 customers in P2 at time F1j+1. As system P2 has n servers
and customer j + 1 abandons system P2, customer j + 1 must have abandoned system P2 by time F1j+1. Therefore,
customer j + 1 has equal or shorter sojourn time in system P2 than system P1.

Case 3: Customer j 1 1 is served in both systems P1 and P2. As in Case 2, there are no more than n – 1 custom-
ers of label 1, 2, ⋯ , j present in system P2 at time F1j+1. In this case, customer j + 1 is served in system P2, so this
customer must have entered service by time F1j+1, implying that the customer’s delay in queue in P2 is no longer
than the customer’s delay in queue in P1. Because the service time of this customer is the same in both coupled
systems, the ordering of the customer’s sojourn times in both systems remains as in the previous two cases.

In either of these three cases, the ordering of the sojourn times of the stream 1 customers imply that X̌1(t) ≥
X̌2(t) w.p.1, so that X1(t)≥st:X2(t), for all t ≥ 0. Because Xi(t) ⇒ Xi(∞) as t→∞, for i � 1, 2, by Theorem 1 (inde-
pendently of the initial condition), the result follows from the fact that stochastic order is maintained under
weak convergence (Kamae et al. [8, proposition 3]). w

5.7. Proof of Proposition 4
Let wn

v be the offered waiting-time process in the nth system, namely, wn
v(t) is the time that an infinite-patient cus-

tomer (that does not abandon) would have to wait if the customer arrives at time t. Similar to the proofs of Theo-
rem 1 and Proposition 3, (Xn,Qn,Zn,Ln,wn

v) has a unique joint stationary distribution. Let Zn(∞) and wn
v(∞)

follow the marginal stationary distribution of Zn and wn
v , respectively. Notice that Zn(∞) � Xn(∞)�n and let

Ẑ
n(∞) :� n−1=2(Ẑn(∞) − n) � X̂

n(∞)�0:
Consider a generic customer with service requirement S and patience time T � θ−1S arriving at the system
in steady state. The offered waiting time of such a customer is distributed like wn

v(∞) due to PASTA (Possion
arrivals see time average), and is independent of S and T.

To prove Proposition 4, we need the following lemma, the proof of which appears in Section 6.5.

Lemma 4. For any β ∈ R,

E[Zn(∞)]=λn +θ2E[(wn
v(∞)�T)2]=2 � 1, for all n ≥ 1, and limsup

n→∞
E[Ẑn(∞)] > −∞: (44)

Proof of Proposition 4. We will show that

E[Ln(∞)] ≤ λn(1 + θ2)E[(wn
v(∞)�T)2]=2, for β ∈ R: (45)

and give separate estimation of the right-hand side to prove assertions (a) and (b).
To prove (45), we consider the generalization of Little’s law, known as H � λG; for example, see Wolff [22,

chapter 5]. Assume that the system is initialized in steady state, and let En
j , v

n
j , and Tn

j be, respectively, the arrival
time, offered wait, and the patience of the jth arrival. Also let

gnj (t) :� (t−En
j )1{t ∈ [En

j ,E
n
j + (vnj �Tn

j )]}
+ (θvnj − (t−En

j − vnj ))1{t ∈ [En
j + vnj ,E

n
j + (1+θ)vnj ],vnj ≤ Tn

j },
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We claim that

Ln(t) � ∑∞
j�0

gnj (t), for all t ≥ 0: (46)

To see this, recall that Ln(t) is the sum of the elapsed waiting time for all customers that are in the queue, plus the
remaining phase 1 service time for all customers in service. Now, customer j is in the queue at time t if j is an ele-
ment of the set { j : En

j ≤ t ≤ En
j + (vnj �Tn

j )}, and the elapsed waiting time of that customer is t−En
j . On the other

hand, customer j is in phase 1 of service if j is an element of the set { j : Tn
j ≥ vnj ,E

n
j + vnj ≤ t ≤ En

j + (1+θ)vnj }, and
the remaining phase 1 service time for that customer is θvnj − (t−En

j − vnj ). Hence, we obtain (46).
Let

Gn
j :�

∫ ∞

0
gnj (t)dt � (vnj �Tn

j )2=2 + 1{Tn
j ≥ vnj }(θvnj )2=2:

Because the system is considered to be in steady state, Gn
j is, for each j ≥ 1, distributed like

Gn :� (wn
v(∞)�T)2=2+ 1{wn

v(∞) ≤ T}(θwn
v(∞))2=2,

where wn
v(∞) is the stationary offered wait defined in Section 6.5, and T is an exponentially distributed random

variable with rate θ that is independent of wn
v(∞).

It follows from the following inequality,

Gn � (wn
v(∞)�T)2=2 + 1 wn

v(∞) ≤ T
{ }(θwn

v(∞))2=2 ≤ 1 + θ2

2
(wn

v(∞)�T)2, (47)

and the trivial inequality wn
v(∞)�T ≤ T, that E[Gn] <∞. It is also easy to check that (198) in chapter 5 of Wolff

[22] holds, so that, by theorem 5 in this reference,

E[Ln(∞)] � λnE[Gn],
which, together with the inequality in (47), gives (45).

To prove assertion (a), it is sufficient to prove that, if β > 0, then

E[(wn
v(∞)�T)2] �O(n−1): (48)

Consider a sequence of M=M=n (Erlang-C) systems, each with service rate 1, and with arrival rate λn to the nth
system. Notice that the M=M=n system can be regarded as an M=Mpc=n+Mpc system with no abandonment, so
that we can apply the coupling in Lemma 3 between the two M=Mpc=n+Mpc systems (one with abandonment
rate that is equal to 0, and the other with rate θ).

Let the two coupled systems be initially empty and consider a customer that arrives at both systems. Inspect-
ing the three cases in the proof of Lemma 3, we claim that the customer experiences longer delay in the Erlang-C
system. First, Case 1 is irrelevant, because there is no abandonment in the Erlang-C system. The proof of Case 2
in Lemma 3 shows that the patience of the customer in the M=Mpc=n+Mpc is shorter than the waiting time of
that customer in the Erlang-C system. In particular, the delay in queue of the customer is shorter in the
M=Mpc=n+Mpc system than in the Erlang-C system. Finally, the proof of Case 3 in the proof of Lemma 3 shows
again that the waiting time of the customer in M=Mpc + n=Mpc system is shorter than in the Erlang-C system.
Therefore, the waiting time of any customer is smaller in the M=Mpc=n+Mpc system than in the coupled Erlang-
C system. As β > 0 implies that βn > 0 for sufficiently large n, there exists N0 ∈ Z+ such that the Erlang-C system
is stable for all n >N0. In particular, for n ≥N0, the stationary waiting time of the M=Mpc=n+Mpc system is sto-
chastically dominated from above by the stationary waiting time of the Erlang-C system.

Let wn
U(∞) denote the stationary waiting time in the Erlang-C system, and note that the stationary waiting

time of a generic customer in the M=Mpc=n+Mpc is distributed like wn
v(∞)�T. Then, the stochastic ordering

wn
v(∞)�T≤st:wn

U(∞) just argued implies that

E[(wn
v(∞)�T)2] ≤ E[(wn

U(∞))2]: (49)

Now, the waiting time of an arriving customer to the Erlang-C system that finds q – 1 customers in queue, q ≥ 1,
is distributed like the sum of q independent exponential variables with mean n−1. Letting {γn

i } be a sequence of
i.i.d. exponential random variables with mean n−1 and Qn

U(∞) be the stationary distribution of the queue length
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process in the Erlang-C system, it holds that wn
U(∞)�d ∑Qn

U(∞)
i�1 γn

i , due to PASTA, so that

E[(wn
U(∞))2] � E

∑Qn
U(∞)

i�1
γn
i

( )2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � n−2E[(Qn

U(∞))2] + n−2E[Qn
U(∞)]:

Because {Qn
U(∞) : n ≥ 1} is a sequence of stationary queues of M=M=n systems staffed according to (1), we can

apply the (explicit) limits for the first and second moments of the diffusion-scaled process in Halfin and Whitt [7,
corollary 1], to conclude that E[(wn

U(∞))2] �O(n−1). Hence, (48), (45), and thus assertion (a), follow from (49).
Finally, by Lemma 4,

E[(wn
v(∞)�T)2] � −2θ−2(λn)−1n1=2E[Ẑn(∞) + βn] �O(n−1=2),

(45), and thus assertion (b), immediately follow. w

6. Proofs of Supporting Results for Process Limits
In this section we prove Propositions 5–10 and Lemma 4. The proofs of Proposition 6–8 appear in Sections
6.1–6.3, respectively. A few supporting lemmas that are used in the proofs of the propositions are given in
Appendix A. The proof of Proposition 5 is given in Section 6.4, as it requires arguments that are developed in
Sections 6.1–6.3. The proofs of Propositions 9 and 10 and Lemma 4 appear in Section 6.5.

6.1. Proof of Proposition 6
We refer to the customers that are in the system at time 0 as the initial customers.

Proof of Assertion (a). For i � 1, 2, ⋯ ,Zn(0) and j � 1, 2, ⋯ ,Qn(0), let gni (t) be the elapsed phase 1 service time of
the ith initial customer in service, and hnj (t) be the elapsed phase 1 service time of the jth initial customer in the
queue, at time t. Then ∫ t

0
Zn
0(s)ds �

∑Zn(0)

i�1
gni (t) +

∑Qn(0)−Qn
0 (t)

i�1
hni (t):

Notice that gni (t) ≤ rni (0), for any i � 1, 2, ⋯ ,Zn(0) and t ≥ 0 and that

hni (t) ≤ θℓni (0) +θ(Tn
0 � t)

for an initial customer iwho has left the queue by time t. Hence,∫ t

0
Zn
0(s)ds ≤

∑Zn(0)

i�1
rni (0) +θ

∑Qn(0)

j�1
ℓni (0) +θ(Tn

0 � t)(Qn(0) −Qn
0(t))

≤ (1+θ)Ln(0) +θ(Tn
0 � t)(Qn(0) −Qn

0(t)), for all t ≥ 0: (50)

To bound
∫ t

0
Qn

0(s)ds, notice that each initial customer in the queue waits for at most Tn
0 � t during [0, t], so that∫ t

0
Qn

0(t)dt ≤ (Tn
0 � t)Qn(0), for all t ≥ 0: (51)

Now, since Z̃
n
0 and Q̃

n
0 are nonnegative processes, (50) and (51) give

0 ≤ n1=4
∫ ∞

0
Z̃

n
0(s)ds ≤ (1+θ)̃Ln(0) +θTn

0Q̃
n(0),

0 ≤ n1=4
∫ ∞

0
Q̃

n
0(s)ds ≤ Tn

0Q̃
n(0):

Due to (Ib), it suffices to prove that Tn
0 ⇒ 0 in R, as n→∞; in particular, we need only consider the event

{Tn
0 > 0 for all n large enough}. Let

Tn
1 :� 4n−1(1+θ)(Ln(0) + 1),

and note that Tn
1 ⇒ 0 in R as n→∞. For each n ≥ 1, define the event

Υn :� {Tn
1 < Tn

0 and Zn
2(t0) < n=2 for some t0 ∈ [Tn

1 ,T
n
0 ]}:
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We will show that P(Υn) → 0 as n→∞. To this end, note that, because Zn
1(s) � Zn

0(s) for s ≤ Tn
0 (because Zn

0(s) is
the number of initial customers that are in phase 1 at time s) and Zn

0 +Qn
0 is nonincreasing, it holds on the event

Υ that, for all s ∈ [0,Tn
1 ],

Zn
0(s) +Qn

0(s) ≥ Zn
0(t0) +Qn

0(t0) ≥ Zn
0(t0) � Zn

1(t0) > n=2:

The last inequality and (50) give the bounds

nTn
1

2
<

∫ Tn
1

0
(Zn

0(s) +Qn
0(s))ds ≤ (1 + θ)(Ln(0) + 2Tn

1Q
n(0))

<
nTn

1

4
+ 2(1 + θ)Tn

1Q
n(0), (52)

where the equality in (52) follows from the definition of Tn
1 . Notice that (52) cannot hold when Qn(0) ≤ (1+θ)−1

n=8, and so, together with (Ib),

P(Υn) ≤ P(Qn(0) > (1+θ)−1n=8) → 0 as n→∞:

Thus, we need only consider sample paths on the complementary event Υc. On this event, either Tn
0 ≤ Tn

1 or, if
Tn
0 > Tn

1 , then there are at least n=2 customers in phase 2 service over the interval [Tn
1 ,T

n
0 ], in which case the total

service rate is at least n=2. In either case, for a sequence of i.i.d. exponentially distributed random variables
{En

k : k ≥ 1}, each having rate n=2, it holds that

Tn
0 ≤st: Tn

1 +
∑Qn(0)

k�1
En
k ,

where the latter sum is defined to be equal to 0 on {Qn(0) � 0}. It follows that Tn
0 ⇒ 0 in R as n→∞, implying

the result. w

We need the following lemma, whose proof appears in Appendix A, for the proofs of assertions (b) and (c).

Lemma 5. If (Ib) holds, then {Q̃n
: n ≥ 1} is stochastically bounded.

Proof of Assertion (b). Consider the predictable quadratic variation of the (local) martingales (M̃n
A,M̃

n
S,M̃

n
R). As

n→∞, the following limits hold in D:

〈M̃n
A〉(·) � n−3=2(n1=4λn)η(·) → 0η,

0 ≤ 〈M̃n
S〉(·) � n−3=2

∫ n1=4·

0
Zn(s)ds ≤ n−1=4η→ 0η,

0 ≤ 〈M̃n
R〉(·) � n−3=4

∫ ·

0
Q̃

n(s)ds⇒ 0η,

where the last weak convergence follows from Lemma 5. Hence, (M̃n
A,M̃

n
S,M̃

n
R) ⇒ (0η, 0η, 0η) in D3, as n→∞ by,

for example, theorem 8.1 in Pang et al. [12]. w

To prove assertions (c) and (d), we need the following lemma, whose proof appears in Appendix A.

Lemma 6. {w̃n : n ≥ 1} is stochastically bounded in D.

Proof of AssertiI (c). We will show that {n1=2∫ ·
0
Ũ

n
1(s)ds : n ≥ 1} is stochastically bounded in D, from which the

assertion follows immediately. To this end, note that similar arguments to those in (24) give

n1=2
∫ t

0
Ũ

n
1(s)ds � n1=2

∫ t

T̃
n
0 � t

(n−1=2θw̃n(s1−))� (t− s1)dM̃n
S(s1)

�
∫ t

T̃
n
0 � t

θw̃n(s1−)dM̃n
S(s1)

− n1=2
∫ t

T̃
n
0 � t

n−1=2θw̃n(s1−) − t+ s1
( )+

dM̃
n
S(s1): (53)
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Because M̃
n
S is an F n

t -martingale and w̃n(s1−) is a predictable process,
∫ ·
0
w̃n(s1−)dM̃n

S(s1) is also an Fn
t -martingale,

with corresponding predictable quadratic variation process,∫ t

0
θw̃n(s1−)dM̃n

S(s1)
〈 〉

�
∫ t

0
(θw̃n(s1−))2d〈M̃n

S〉(s1) ≤ (‖θw̃n‖t)2〈M̃n
S〉(t):

If follows from Lemma 6 and the proof of assertion (b) that∫ ·

0
θw̃n(s1−)dM̃n

S(s1)
〈 〉

⇒ 0η in D as n → ∞,

implying that ∫ ·

0
w̃n(s1−)dM̃n

S(s1) ⇒ 0η in D as n → ∞,

due to the martingale FCLT (e.g., theorem 8.1 in Pang et al. [12]). Hence, for any t ≥ 0,

εn(t) :� sup
s∈[0, t]

∣∣∣∣∣
∫ s

T̃
n � s

w̃n(s1−)dM̃n
S(s1)

∣∣∣∣∣ ⇒ 0 in R as n→∞: (54)

To treat the second integral in the right-hand side of (53), we first observe that, for s1 ∈ [0, t],
(n−1=2θw̃n(s1−) − t+ s1)+ ≤ n−1=2θ‖w̃n‖t1{s1 + n−1=2θw̃n(s1) ≥ t}

≤ n−1=2θ‖w̃n‖t1{s1 ≥ t− n−1=2θ‖w̃n‖t},
so that ∣∣∣∣∣n1=2

∫ t

T̃
n
0 � t

n−1=2θw̃n(s1−) − t+ s1
( )+

dM̃
n
S(s1)

∣∣∣∣∣ ≤ ‖θw̃n‖t
∫ t

t−n−1=2θ‖w̃n‖t
d |M̃n

S(s1) | : (55)

Furthermore (recalling that Z̃
n
2 is centered about n),

M̃
n
S(t) + n1=4

∫ t

0
(n1=4 + Z̃

n
2(s))ds � n−3=4Dn(n1=4t), (56)

is a nondecreasing pure jump process and −n1=4 ≤ Z̃
n
2 ≤ 0, we have∫ t

s
d |M̃n

S(s1) | ≤
∫ t

s
(n−3=4dDn(n1=4t) + |n1=2 + n1=4Z̃

n
2(s1) |ds1)

≤ n−3=4Dn(n1=4t) − n−3=4Dn(n1=4s) + ��
n

√ (t− s)

� M̃
n
S(t) − M̃

n
S(s) + 2

��
n

√ (t− s) + n1=4
∫ t

s
Z̃

n
2(s1)ds1

≤ 2‖M̃n
S‖t + 2

��
n

√ (t− s), (57)

for all 0 ≤ s ≤ t. Plugging (57) in (55) gives∣∣∣∣∣n1=2
∫ t

T̃
n � t

n−1=2θw̃n(s1−) − t+ s1
( )+

dM̃
n
S(s1)

∣∣∣∣∣ ≤ 2‖θw̃n‖t(‖M̃n
S‖t + ‖θw̃n‖t): (58)

It follows from Lemma 6 and assertion (b) that the right-hand side of (58) is tight in R. Next, plugging (54) and
(58) in (53) gives ∣∣∣∣∣

∣∣∣∣∣n1=2
∫ ·

0
Ũ

n
1(s)ds

∣∣∣∣∣
∣∣∣∣∣
t

≤ εn(t) + 2‖θw̃n‖t(‖M̃n
S‖t + ‖θw̃n‖t) for all t ≥ 0:

Therefore, n1=2
∫ ·
0
Ũ

n
1(s)ds : n ≥ 1

{ }
is tight in D for any t ≥ 0. w

Perry and Yu: Queueing System with Perfect Correlation
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 1119–1157, © 2022 INFORMS 1141

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

29
.1

19
.2

35
.2

6]
 o

n 
22

 S
ep

te
m

be
r 2

02
3,

 a
t 0

8:
21

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



To prove assertion (d), we need the following lemma, the proof of which appears in Section A of the appendix.
Recall Fn(s, t) from (25).

Lemma 7. For each t > 0, {Fn(s, t) : s ∈ [0, t]} is a martingale, and {eθtsups∈[0,t] |Fn(s, t) | : t ≥ 0} is a submartingale, both
with respect to their augumented natural filtration.

Proof of Assertion (d). For τ > 0, K > 0, and Fn(s, t) in (25), let

Mn(τ,K; s, t) :� sup
s, t∈[0,n1=4τ],

t−s∈[0,n−1=4K]

|Fn(s, t) | ,

and observe that

n1=4‖Ũn
2‖τ ≤ 2n−1=2Mn(τ, ‖w̃n‖τ; s, t):

Thus, the proof of the assertion will follow if we show that, for any ε > 0,

P(n−1=2Mn(τ, ‖w̃n‖τ; s, t) > ε) → 0 as n→∞,

which is what we prove next.
Fix ε > 0. Because {w̃n : n ≥ 1} is stochastically bounded in D by Lemma 6, we can find a K :� K(ε) > 2, such

that P(‖w̃n‖τ > K) < ε for any n. Notice that the value of Fn(s, t) only depends on arrival times at (s, t] and the
patience times of those arrivals, implying that Fn is time-invariant in its two parameters, in the sense that Fn(s, t)
and Fn(s+ r, t+ r) have the same law for any r ≥ 0.

Let Jn be the smallest integer satisfying Jn + 1 ≥ n1=2τ=K, and let

Inj :� [n−1=4K( j− 1),n−1=4K( j+ 1)] ∩ [0,n1=4τ], for j � 1, 2, ⋯ , Jn:

Observe that, for j � 1, 2, ⋯ , Jn − 1, the length of each Inj is 2n−1=4K and the length of Inj ∩ Inj+1 is n−1=4K. It holds
that, for any s, t ∈ [0,n1=4τ] for which [s, t] ⊆ [0,n1=4τ] and t− s < n−1=4K, the interval [s, t] is contained in at least
one of the intervals {Inj : j � 1, 2, ⋯ , Jn}. Therefore,

P(n−1=2Mn(τ,K; s, t) > ε) ≤ ∑Jn
j�1

P n−1=2 sup
s, t∈In

j
, s≤t

|Fn(s, t) | > ε

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ JnP n−1=2 sup
s, t∈In1 , s≤t

|Fn(s, t) | > ε

( )
, (59)

where the second inequality is due to the aforementioned time-invariance property of Fn, which implies that all
the probabilities in the sum, except possibly the last one (which may be smaller than the rest), are equal.

Employing Lemma 7, we have

P n−1=2 sup
0≤s≤t≤2n−1=4K

|Fn(s, t) | > ε

( )

≤ P sup
t∈[0, 2n−1=4K]

eθt sup
s∈[0, t]

|Fn(s, t) | > n1=2ε

( )

≤ ε−6n−3E e2θn
−1=4K sup

s∈[0,2n−1=4K]
|Fn(s, 2n−1=4K) |

( )6⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ ε−6e12θn

−1=4K(6=5)6E (n−1=2Fn(2n−1=4K, 2n−1=4K))6
[ ]

, (60)

where the second and the last inequalities follow from Doob’s Lp-maximal inequality (e.g., Revuz and Yor [17,
theorem 1.7]) for p � 6, for the (sub)martingales in Lemma 7.

It remains to compute E[(n−1=2Fn(2n−1=4K,2n−1=4K))6] to bound the right-hand side of (59). Note that, condi-
tional on An(t), the vector of arrival times (En

1,E
n
2, : : : ,E

n
An(t)) is distributed as the vector of ordered statistic of An(t)
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uniform random variables on [0, t]. Therefore,∫ t

0
1{En

An(s) +Tn
An(s) ≥ t}dAn(s)

is, conditional on An(t), distributed like
∑An(t)

k�1 Bk(t), where, for each t ≥ 0, {Bk(t) : k ≥ 1} is a sequence of i.i.d. Ber-
noulli random variables, each distributed like Bt :� 1{U+T ≥ t}, where U is uniform on [0, t], and T is exponen-
tially distributed with rate θ that is independent of U. Thus, E[Bt] � (θt)−1(1− e−θt), and

Fn(t, t)�d ∑An(t)

k�1
Bk(t) −E[Bt]λnt:

Let b̄n denote E[Bt] for t � n−1=4K;

b̄n :� E[Bn−1=4K] � (n−1=4θK)−1(1− e−n
−1=4θK):

Let φn denote the moment generating function of n−1=2Fn(n−1=4K,n−1=4K). Using the identity E[aAn(t)] � exp ((a−
1)λnt) for each a > 0,

φn(s) :� E[exp (sn−1=2Fn(n−1=4K,n−1=4K))]
� E[(E[en−1=2sB1])An(n−1=4K)]exp (−sλnn−3=4Kb̄n)
� E[(b̄nen−1=2s + 1− b̄n)An(n−1=4K)]exp (−sλnn−3=4Kb̄n)
� exp (n−1=4λnKb̄n(en−1=2s − 1))exp (−sλnn−3=4Kb̄n)
� exp (γn(en−1=2s − 1− n−1=2s)), for all s ≥ 0,

where

γn :� n−1=4λnKb̄
n � θ−1λn(1− e−n

−1=4θK) �O(n3=4):
We claim that φ(k)

n (0) �O(n−k=8) for all k ∈ Z+, whereφ(k)
n (s) denotes the kth derivative ofφn taking value at s. We let

gn(s) :� γn(en−1=2s − 1− n−1=2s), for s ≥ 0,

so that φn � exp (gn), and note that gn(0) � g′n(0) � 0 and g(k)n (0) �O(n3=4−k=2) for k ≥ 2.

We prove this latter claim by induction. First, for k � 1, we have

φ′
n(0) � φn(0)g′n(0) � 0 � O(n−1=8):

Next, take the induction hypothesis that φ(m)
n (0) �O(n−m=8) for all m ≤ k, and consider the (k+ 1) st derivative:

φ(k+1)
n (0) � (φng

′
n)(k)(0)

� ∑k
j�0

k

j

( )
φ(k−j)
n (0)g( j+1)n (0)

� ∑k
j�1

k

j

( )
φ(k−j)
n (0)n1=4−j=2

� ∑k
j�1

O(n−1=8(k−j))n1=4−j=2

�O(n−1=8(k−1))n−1=4
�O(n−1=8(k+1)):

This proves our claim that φ(k)
n (0) �O(n−k=8) for all k ∈ Z+. In particular, taking k � 6 gives

E[(n−1=2Fn(n−1=4K,n−1=4K))6] �O(n−3=4):
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Using this fact in (59), and then in the upper bound in (60), we obtain

P(n−1=2Mn(τ,K; s, t) > ε) � O(n−1=4), for all ε > 0: w

6.2. Proofs of Proposition 7
To prove Proposition 7, we need the following lemma, the proof of which appears in Section A of the appendix,
together with the proofs of the rest of the supporting lemmas of this section.

Lemma 8. If (Ib) holds, then {X̃n
: n ≥ 1}, {Z̃n

: n ≥ 1}, {Z̃n
1 − Z̃

n
0 : n ≥ 1}, and {Z̃n

2 + Z̃
n
0 : n ≥ 1} are stochastically bounded

in D.

Proof of Proposition 7. We first show that, as n→∞,

Ṽ
n(·) − 1

2

∫ ·

0
θ2(w̃n)2(s)ds+

∫ ·

0
θ(Z̃n

1(s) − Z̃
n
0(s))w̃n(s)ds⇒ 0η in D: (61)

Using the definition of Vn in (29), we have

Ṽ
n(t) �

∫ t

T̃
n
0 � t

[(θw̃n(s))� (n1=2t − n1=2s)](Z̃n
2(s) + n1=4)ds

−
∫ t

0
n−1=2λn(1 − e−n

−1=4θw̃n(s))ds

�
∫ t

0
θw̃n(s)Z̃n

2(s)ds +
1
2

∫ t

0
(θw̃n(s))2ds −

∫ T̃
n
0 � t

0
θw̃n(s)(Z̃n

2(s) + n1=4)ds

−
∫ t

T̃
n
0 � t

(n−1=2θw̃n(s) − t + s)+(n3=4 + n1=2Z̃
n
2(s))ds

+
∫ t

0
n1=4θw̃n(s) − 1

2
(θw̃n(s))2 − n−1=2λn(1 − e−n

−1=4θw̃n(s))
( )

ds: (62)

Noting that 0 ≤ Z̃
n
2 + n1=4 ≤ n1=4 and that n1=4T̃

n
0 � Tn

0 → 0 in R as n→∞. By Proposition 6(a), we have that, for all
t > 0, ∣∣∣∣∣

∣∣∣∣∣
∫ T̃

n
0 � ·

0
θw̃n(s)(Z̃n

2(s) + n1=4)ds
∣∣∣∣∣
∣∣∣∣∣
t

≤ n1=4T̃
n
0‖w̃n‖t ⇒ 0, as n→∞: (63)

Next, using the fact that

(n−1=2θw̃n(s1) − t + s1)+ ≤ n−1=2θ‖w̃n‖t1{s1 ≥ t − n−1=2θ‖w̃n‖t}, for s1 ∈ [0, t],
we have

0 ≤
∫ t

T̃
n
0 � t

n3=4 + n1=2Z̃
n
2(s1)

( )
(n−1=2θw̃n(s1) − t + s1)+ds1

≤
∫ t

0
n1=4θ‖w̃n‖t1{s1 ≥ t − n−1=2θ‖w̃n‖t}ds1

� n1=4θ‖w̃n‖t(t − (t − n−1=2θ‖w̃n‖t)+)

≤ n−1=4θ2(‖w̃n‖t)2 ⇒ 0η in D, as n → ∞, (64)

where the equality follows from ∫ b

a
1{s ≥ c}ds � b� c − a� c for all a, b, c ∈ R:
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Define the functions

f1(x) :�
(e−x − 1 + x)=x if x ≠ 0

0 if x � 0,

{

f2(x) :�
e−x − 1 + x − 1

2
x2

( )
=x2 if x ≠ 0

0 if x � 0,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (65)

and note that both f1 and f2 are continuous at R. It follows from Lemma 6 that n−1=4w̃n ⇒ 0η in D as n→∞, and
so fi(n−1=4w̃n) ⇒ 0η in D as n→∞, for i � 1, 2, by virtue of the continuous mapping theorem. Writing
λn � n− βn

��
n

√
, we have

n1=4θw̃n − 1=2(θw̃n)2 − n−1=2λn(1− e−n
−1=4θw̃n)

� (θw̃n)2f2(θn−1=4w̃n) − n−1=4βnθw̃n(1+ f1(n−1=4θw̃n)) ⇒ 0η in D as n→∞: (66)

Using the weak limits established in (63), (64), and (66) in (62), gives

Ṽ
n(·) − 1

2

∫ ·

0
θ2(w̃n)2(s)ds −

∫ ·

0
θZ̃

n
2(s)w̃n(s)ds ⇒ 0η in D as n → ∞: (67)

Now, it follows from (21) and Z̃
n � Z̃

n
1 + Z̃

n
2 that Z̃

n
w̃n � 0η, so that

Z̃
n
1w̃

n � −Z̃n
2w̃

n
2 : (68)

Finally, by Proposition 6(a) and Lemma 6,∣∣∣∣∣
∣∣∣∣∣
∫ ·

0
Z̃

n
0(s)w̃n(s)ds

∣∣∣∣∣
∣∣∣∣∣
t

≤ ‖w̃n‖t
∫ t

0
Z̃

n
0(s)ds ⇒ 0η in D:

This, together with (67) and (68), gives (61).
Next, for x ∈D, τ > 0, and δ > 0, consider the modulus of continuity

vτ(x,δ) :� sup
t−s≤δ

{ |x(s) − x(t) | : 0 ≤ s < t ≤ τ}:

Given the assumed convergence of the sequence of initial conditions {Q̃n(0) : n ≥ 1} the statement of the proposi-
tion will follow from Billingsley [1, theorem 15.5] once we show that

lim
δ→0

limsup
n→∞

P(vτ(Q̃n
,δ) ≥ ε) � 0, for all ε > 0: (69)

To estimate vτ(Q̃n
,δ), note that, due to Proposition 6 and (61), we can write (33) as follows:

X̃
n(·) � X̃

n(0) − βnη− n1=4
∫ ·

0
Z̃

n(s) + 1
2

∫ ·

0
θ2(w̃n)2(s)ds

−
∫ ·

0
θ(Z̃n

1(s) − Z̃
n
0(s))w̃n(s)ds+ εn(t), (70)

for some εn ∈D satisfying εn � oP(1). Let

ξn(t) :� −βnt+ 1
2

∫ t

0
θ2(w̃n)2(s)ds−

∫ t

0
θ(Z̃n

1(s) − Z̃
n
0(s))w̃n(s)ds, t ≥ 0:

Because Z̃
n � X̃

n
�0, we have

X̃
n(t) � ξn(t) − n1=4

∫ t

0
X̃

n(s)�0ds+ εn(t), t ≥ 0: (71)
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Fix 0 ≤ s ≤ t ≤ τ. Conditional on the event En
+ :� {infu∈[s,t)Q̃n(u) > 0}, we have that X̃

n(u) � Q̃
n(u) > 0 for all

u ∈ [s, t), in which case (71) implies that

|Q̃n(t) − Q̃
n(s) | ≤ |ξn(t) − ξn(s) | + ‖εn‖τ:

Next consider the event En
0 :� {infu∈[s,t)Q̃n(u) � 0}. Take

s0 :� inf {u ∈ [s, t) : Q̃n(u) � 0} and t0 :� sup{u ∈ [s, t) : Q̃n(u) � 0},

and note that Q̃
n
is a pure jump process, so that s0 < t0 w.p.1. Then Q̃

n(s0) � Q̃
n(t0−) � 0, and X̃

n(u) � Q̃
n(u) > 0

for all u ∈ [s, s0) ∪ [t0, t). Thus, on En
0,

|Q̃n(t) − Q̃
n(s) | ≤ |Q̃n(s0) − Q̃

n(s) | + |Q̃n(t) − Q̃
n(t0−)|

≤ |ξn(s0) − ξn(s) | + |ξn(t) − ξn(t0) | + 2‖εn‖τ:
Overall, we see that

|Q̃n(t) − Q̃
n(s) | ≤ 2 sup

s1, t1∈[s, t]
|ξn(s1) − ξn(t1) | + 2‖εn‖τ,

and thus

vτ(Q̃n
, δ) ≤ 2vτ(ξn, δ) + 2‖εn‖τ: (72)

Now,

|ξn(t) − ξn(s) | ≤ (t − s)
(
− βn + 1

2
θ2(‖w̃n‖τ)2 + θ‖Z̃n

1 − Z̃
n
0‖τ‖w̃n‖τ

)
,

and so, Lemmas 6 and 8 imply that, for any ε > 0, there is anM :�M(ε) > 0 for which

limsup
n→∞

P( |ξn(t) − ξn(s) | ≥M(t− s)) ≤ ε:

Thus,

lim sup
n→∞

P(vτ(ξn, δ) ≥ Mδ) ≤ ε, for all δ ∈ [0, τ), (73)

implying that

lim
δ→0

lim sup
n→∞

P(vτ(ξn, δ) ≥ ε′) � 0, for all ε′ > 0:

This, together with (72) and the fact that εn � oP(1), gives (69), proving the statement of the proposition. w

6.3. Proof of Proposition 8
We start by proving that

Q̃
n − Q̃

n
0 − w̃n ⇒ 0η in D: (74)

To this end, consider the LOF-scaled version of (27),

Q̃
n − Q̃

n
0 � θ−1n−3=4λn(1 − e−θn

−1=4w̃n) + Ũ
n
2 : (75)

and the (continuous) function f1 in (65). It follows from the proof of Proposition 7 (the arguments below (66)) that
f1(n−1=4θw̃n) ⇒ 0 in D as n→∞, so that

n−3=4λn(1− e−n
−1=4θw̃n ) � n−1λnθw̃n 1− f1(n−1=4θw̃n)

( )
� n−1λnθw̃n + oP(1):

Using the latter equality, λn=n→ 1, and Proposition 6(c) in (75), gives (74).
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We next prove that ∫ ·

0

∣∣∣Z̃n
1(s) − Z̃

n
0(s) − θw̃n(s)

∣∣∣ds ⇒ 0η in D, as n → ∞: (76)

Consider the LOF-scaled version of (19):

Z̃
n
1(t) − Z̃

n
0(t) � n−3=4

∫ t

T̃
n
0 � t

1{n−1=2θw̃n(s−) + s > t}dDn(n1=4s), t ≥ 0: (77)

Fix a constant τ > 0 and let

Δn :� sup
t∈[0,τ], s∈[T̃n

0�t, t],
t−s ≤ n−1=2θ‖w̃n‖τ

|w̃n(s−) − w̃n(t) | :

Using (74), the fact that Q̃
n
0(t) � 0 for all t ≥ T̃

n
0, and noting that the jumps of Q̃

n
are of size 6n−1=4 w.p.1, so that

sups∈[0,τ] |Q̃
n(s) − Q̃

n(s−)| → 0 as n→∞w.p.1,

Δn � sup
t∈[0,τ], s∈[T̃n

0�t, t],
t−s ≤ n−1=2θ‖w̃n‖τ

|Q̃n(s−) − Q̃
n(t) | + δn ≤ sup

0≤s<t≤τ,
t−s≤n−1=2θ‖w̃n‖τ

|Q̃n(t) − Q̃
n(s) | + δn,

where δn ⇒ 0 in R as n→∞. Thus, Lemma 6 and the C-tightness of {Q̃n
: n ≥ 1} in Proposition 7 imply that Δn ⇒

0 in R, as n→∞. Then, for s ∈ [T̃n
0 � t, t],

1{n−1=2θ(w̃n(t) −Δn) + s > t} ≤ 1{n−1=2θw̃n(s−) + s > t} ≤ 1{n−1=2θ(w̃n(t) +Δn) + s > t}:
For T̃

n
Δ :� T̃

n
0 + n−1=2θ(‖w̃n‖τ +Δn) and t ∈ [0,τ], let Υn

t :� {Tn
Δ < t}, and note that Tn

0 ⇒ 0 in R as n→∞ by Proposi-
tion 6(a), wn �OP(1) by Lemma 6, and Δn ⇒ 0 as shown previously, imply together that, for all t ∈ (0,τ],

T̃
n
Δ ⇒ 0 in R as n→∞, so that P(Υn

t ) → 1 as n→∞:

Now, on the event Υt,

t− n−1=2θ(w̃n(t)6Δn) ≥ T̃
n
0 � T̃

n
0 � t,

and it follows from (77) and the equality∫ a

b
1{s > c}dF(s) � F(a� c) − F(b� c),

that

Z̃
n
1(t) − Z̃

n
0(t) ≥ n−3=4

∫ t

T̃
n
0 � t

1{s > t− n−1=2θ(w̃n(t) −Δn)}dDn(n1=4t)

� n−3=4Dn(n1=4t) − n−3=4Dn(n1=4t− n−1=4θ(w̃n(t) −Δn)): (78)
Similarly,

Z̃
n
1(t) − Z̃

n
0(t) ≤ n−3=4Dn(n1=4t) − n−3=4Dn(n1=4t − n−1=4θ(w̃n(t) + Δn)): (79)

For any 0 ≤ s1 ≤ t1 ≤ τ, (56) gives

n−3=4 |Dn(n1=4t1) −Dn(n1=4s1) − n5=4(t1 − s1) |

�
∣∣∣∣∣
∫ t1

s1
n1=4Z̃

n
2(s)ds+ M̃

n
S(t1) − M̃

n
S(s1)

∣∣∣∣∣
≤ n1=4

∫ t1

s1
|Z̃n

2(s) |ds+ 2‖M̃n
S‖τ

≤ n1=4
∫ τ

0
Z̃

n
0(s)ds+ n1=4

∫ t1

s1
|Z̃n

2(s) + Z̃
n
0(s) |ds+ 2‖M̃n

S‖τ

≤ n1=4‖Z̃n
2 + Z̃

n
0‖τ(t1 − s1) + n1=4

∫ τ

0
Z̃

n
0(s)ds+ 2‖M̃n

S‖τ:
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Plugging t1 � t, and the values t− n−1=2θ(w̃n(t) +Δn), as well as t− n−1=2θ(w̃n(t) −Δn) instead of s1, shows that, for
all t ∈ [0,τ],

|n−3=4Dn(n1=4t) − n−3=4Dn(n1=4t− n−1=4θ(w̃n(t)6Δn)) −θw̃n(t) |

≤ θΔn + n−1=4θ‖Z̃n
2 + Z̃

n
0‖τ(‖w̃n‖τ +Δn) + n1=4θ

∫ τ

0
Z̃

n
0(s)ds+ 2‖M̃n

S‖τ ≕ δnτ: (80)

It follows from assertions (a) and (b) of Proposition 6, Lemma 8, and the fact that Δn ⇒ 0 in R, that δnτ ⇒ 0 in R.
Further, by (78) and (79),

|Z̃n
1(t) − Z̃

n
0(t) −θw̃n(t) | ≤ δnτ for all t ∈ [0,τ],

so that ∫ τ

Tn
Δ
�τ

|Z̃n
1(s) − Z̃

n
0(s) −θw̃n(s) |ds⇒ 0 in R: (81)

Finally, notice that ∫ Tn
Δ

0
|Z̃n

1(s) − Z̃
n
0(s) − θw̃n(s) |ds ≤ Tn

Δ(‖Z̃
n
1 − Z̃

n
0‖Tn

Δ
+ ‖θw̃n‖Tn

Δ
) ⇒ 0 in R,

where the equality (order of magnitude) follows from the stochastic boundedness of {Z̃n
1 − Z̃

n
0 : n ≥ 1} and {w̃n :

n ≥ 1} in D, established in Lemmas 8 and 6, respectively. Together with (81), this shows that∫ τ

0
|Z̃n

1(s) − Z̃
n
0(s) −θw̃n(s) |ds⇒ 0 in R, for all τ > 0:

The uniform convergence over compact intervals in (76) follows from to the monotonicity in τ of the integral; see
Dai [3, lemma 4.1].

Now, ∣∣∣∣∣
∫ t

0
w̃n(s)(θw̃n(s) − Z̃

n
1(s) + Z̃

n
0(s))ds

∣∣∣∣∣ ≤ ‖w̃n‖t
∫ t

0

∣∣∣∣∣θw̃n(s) + Z̃
n
0(s) − Z̃

n
1(s)

∣∣∣∣∣ds, (82)

for all t ≥ 0. It follows from (76) and the fact that w̃n �OP(1), that the right-hand side of (82) is stochastically
bounded in R for each t ≥ 0, and because it is also nondecreasing in t,∫ ·

0
w̃n(s)(θw̃n(s) − Z̃

n
1(s) + Z̃

n
0(s))ds � oP(1),

so that ∫ ·

0
(Z̃n

1(s) − Z̃
n
0(s))w̃n(s)ds �

∫ ·

0
θ(w̃n(s))2ds+ oP(1): (83)

On the other hand, for all t ≥ 0,∫ t

0
((w̃n(s))2 − (Q̃n(s))2)ds

∣∣∣∣ ∣∣∣∣
�

∫ t

0
(w̃n(s) + Q̃

n(s))(w̃n(s) − Q̃
n(s))ds

∣∣∣∣ ∣∣∣∣
≤ (‖w̃n‖t + ‖Q̃n‖t)

∫ t

0
( |w̃n(s) + Q̃

n
0(s) − Q̃

n(s) | + Q̃
n
0(s))ds: (84)

By Proposition 6(a), (74), and the facts that w̃n �OP(1) and Q̃
n �OP(1), the right-hand side of (84) weakly con-

verges to 0 in R as n→∞, for any t ≥ 0. Notice that the right-hand side of (84) is nondecreasing in t, we obtain∫ ·

0
((w̃n(s))2 − (Q̃n(s))2)ds⇒ 0η in D as n→∞,
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so that ∫ ·

0
(w̃n(s))2ds �

∫ ·

0
(Q̃n(s))2ds+ oP(1): (85)

The statement of the proposition follows by employing (85) in (83), and then in (61). w

6.4. Proof of Proposition 5
We now prove Proposition 5, building on some of the previous arguments. Of course, Condition (Ia) is stronger
than Condition (Ib), and we can therefore use Propositions 6–8 in the current proof.

Proof of Assertion (a). The inequalities in (50) and (51) give∫ ∞

0
Ẑ

n
0(s)ds ≤ L̂

n(0) + Tn
0Q̂

n(0) and
∫ ∞

0
Q̂

n
0(s)ds ≤ Tn

0Q̂
n(0): (86)

The weak limit Tn
0 ⇒ 0 in R as n→∞ in Proposition 6(a) implies the assertion. w

Proof of Assertion (b). Notice that

Û
n
1(t) � n1=4Ũ

n
1(n−1=4t), Û

n
2(t) � n1=4Ũ

n
2(n−1=4t) and V̂

n(t) � n1=4Ṽ
n(n−1=4t), t ≥ 0:

Proposition 6(d) implies that Û
n
2 ⇒ 0η in D, and thus

∫ ·
0
Û

n
2(s)ds⇒ 0η in D, as n→∞.

To prove ∫ ·

0
Û

n
1(s)ds � n1=2

∫ n−1=4·

0
Ũ

n
1(s)ds ⇒ 0η in D as n → ∞: (87)

Using similar arguments as in the proof of Proposition 6(a), one can check that, under (Ia), n1=4Tn
0 ⇒ 0 in R as

n→∞. Inspecting the proof of Proposition 6(c) (see, in particular, (53), (54), and (58)), it is sufficient to prove that
‖w̃n‖n−1=4τ ⇒ 0 in R for all τ ≥ 0. Notice that w̃n(T̃n

0) ≤ n1=4Tn
0 and Q̃

n
0(s) � 0 for s ≥ T̃

n
0 . Then, for τ ≥ 0,

‖w̃n‖n−1=4τ ≤ n1=4Tn
0 + sup{w̃n(s) : s ∈ [T̃n

0 � (n−1=4τ),n−1=4τ]}
≤ n1=4Tn

0 + ‖Q̃n‖n−1=4τ + sup{ |w̃n(s) − Q̃
n(s) − Q̃

n
0(s) | : s ∈ [T̃n

0,n
−1=4τ]}

≤ n1=4Tn
0 + ‖Q̃n‖n−1=4τ + ‖w̃n − Q̃

n − Q̃
n
0‖n−1=4τ: (88)

Now,

‖Q̃n‖n−1=4τ ≤ ‖Q̃n(t) − Q̃
n(0)‖n−1=4τ + ‖Q̃n(0)‖n−1=4τ

≤ sup
s, t∈[0, n−1=4τ]

|Q̃n(t) − Q̃
n(s) | + ‖Q̃n(0)‖n−1=4τ ⇒ 0 in R as n → ∞,

where the convergence follows from Proposition 7 and (Ia). Further, ‖w̃n − Q̃
n − Q̃

n
0‖n−1=4τ ⇒ 0 in R as n→∞ by

(74). Because n1=4Tn
0 ⇒ 0 in R, as was mentioned earlier, ‖w̃n‖n−1=4τ ⇒ 0 in R as n→∞, for τ > 0 by (88).

The proof that V̂
n ⇒ 0η in D builds on arguments in the proof of Proposition 7, by replacing t in the proof (61)

with n−1=4t. Because n1=2T̃
n
0 � n1=4Tn

0 ⇒ 0 and ‖w̃n‖n−1=4τ ⇒ 0 in R for all τ ≥ 0, the left-hand side of (63), (64), and
(66), regarded as processes of t, are all oP(n−1=4). Using this in (62) gives that

Ṽ
n(n−1=4·) − 1

2

∫ n−1=4·

0
θ2(w̃n)2(s)ds+

∫ n−1=4·

0
θ(Z̃n

1(s) − Z̃
n
0(s))w̃n(s)ds � oP(n−1=4):

The stochastic boundedness of {Z̃n
1 − Z̃

n
0 : n ≥ 1} (Lemma 8), and the fact that ‖w̃‖n−1=4τ ⇒ 0 in R as n→∞, imply

that

V̂
n � n1=4Ṽ

n(n−1=4·) ⇒ 0η, in D as n→∞: w
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Proof of Assertion (c). By the Poisson FCLT (e.g., theorem 4.2 in Pang et al. [12]),

A(nt) − nt��
n

√ ,
S(nt) − nt��

n
√ ,

S(nt) − nt��
n

√
( )

⇒ (B1,B2, 0η), in D3 as n → ∞, (89)

for two independent standard Brownian motions (B1, B2). Notice that M̂
n
A, M̂

n
S, and M̂

n
S are the compositions of

the scaled compensated Poisson processes in (89) with the time changes

Φn
A : t �→ n−1λnt, Φn

S : t �→ n−1
∫ t

0
Zn
2(s)ds, and Φn

R : t �→ n−1
∫ t

0
Qn(s)ds,

respectively. By (15), (86), and the stochastic boundedness of {Q̃n
: n ≥ 1} and {Z̃n

2 + Z̃
n
0 : n ≥ 1} in D, established

in Lemmas 5 and 8, respectively,

n−1λnt � t+ o(1), n−1
∫ ·

0
Qn(s)ds �

∫ n−1=4·

0
Q̃(s)ds � oP(1),

n−1
∫ ·

0
Zn
2(s)ds � η+

∫ n−1=4·

0
(Z̃n

2(s) + Z̃
n
0(s))ds− n−1=2

∫ ·

0
Ẑ

n
0(s)ds � η+ oP(1),

implying that

(Φn
A,Φ

n
S,Φ

n
R) ⇒ (η,η, 0η), in D3 as n→∞,

and the joint convergence in assertion (c) follows from the continuity of the composition map, for example, theo-
rem 13.2.1 in Whitt [21]. w

6.5. Proofs of Lemma 4 and Propositions 9 and 10
An essential step in the proofs in this section is the following stochastic-order lower bound for Xn. For n ≥ 1, con-
sider an M=M=n+M (Erlang-A) system, having independent service and patience times, with arrival rate λn,
service rate 1, and patience rate θ. Let Xn

A,Q
n
A,Z

n
A denote the queueing processes in this Erlang-A system, analo-

gously to the corresponding processes Xn, Q
n, Ln, and Zn in theM=Mpc=n+Mpc.

Lemma 9. Xn
A(∞)≤st:Xn(∞).

Proof. We prove the lemma by coupling M=Mpc=n+Mpc and the presented Erlang-A system, and showing
that the inequality in the statement holds w.p.1 for the coupled systems. In particular, we give the M=Mpc=n+
Mpc system and the M=M=n+M system the same arrival stream and initial condition. Let En

k denote by the
arrival epoch of the kth customer to the nth system. Exploiting the PASTA (Poisson arrivals see time averages)
property, and using induction, it is sufficient to prove that, if Xn(En

k ) ≥ Xn
A(En

k ), then Xn(En
k+1) ≥ Xn

A(En
k+1), for all

k ≥ 1, where the inequalities hold w.p.1 for the coupled systems, from which the stochastic ordering in the
statement follows.

Hence, we initialize both systems with the same number of customers, so that Xn(0) � Xn
A(0), and take the

induction hypothesis that Xn(En
k ) ≥ Xn

A(En
k ). Consider the dynamics of the M=Mpc=n+Mpc when all arrivals are

“turned off” after the kth arrival, and let (X′,Q′,Z′
1, {ℓ′}, {r′}) denote the corresponding Markov process. Let X′

A
be the corresponding pure-death process for the Erlang-A system with arrivals turned off after the kth arrival.
Note that the death rate of this process at state m ≥ 1 is

dA(m) :� θ(m− n)�0+m�n,

and that X′(En
k + ·) is a pure jump process with X′(En

k ) jumps until it reaches state 0. For j � 1, : : : ,X′(En
k ), let Nj

denote the jth jump time of X′(En
k + ·), so that Nj is the jth customer that leaves the system after Ek. Due to the

memoryless property of the exponential distribution, at t ≥ En
k ,

i. The number of customers in queue is (X′(t) − n)�0, each having a remaining patience time that is exponentially
distributed with rate θ, and is independent of everything else.

ii. The number of customers in phase 2 service is X′(t)�n−∑Z′
1(t)

i�1 1{t ≤ En
k + r′i (En

k )}, with each of those custom-
ers having a remaining service time that is exponentially distributed with rate 1, independently of everything
else.
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Then Nj+1 −Nj is, conditional on (X′(Nj),Z′
1(Nj)), distributed as the interarrival time in a nonhomogeneous

Poisson process with intensity function

dj(t) :� θ(X′(Nj) − n)�0+X′(Nj)�n−
∑Z′
1(Nj)

i�1
1{t ≤Nj + r′i (Nj)}:

Clearly, dj(t) ≤ dA(X′(Nj)) for all t ≥ 0 and j � 1, 2, ⋯ X′(En
k ), implying that, for j ≤ X′

A(En
k ), the sojourn time of the

process X′
A(En

k + ·) in state j is dominated by the corresponding sojourn time of X′(En
k + ·). Using the induction

hypothesis X′
A(En

k ) ≤ X′(En
k ), we conclude that X′

A(En
k + t) ≤ X′(En

k + t) for all t ≥ 0. Finally, because En
k+1 −En

k is
independent of (X′

A(En
k + ·),X′(En

k + ·)), we have that X′
A(En

k+1) ≤ X′(En
k+1), implying that XA(En

k+1) ≤ X(En
k+1) for the

two coupled systems. w

Proof of Lemma 4. To prove the equality in (44), consider a generic customer arriving at the system in steady
state, and let vn be the offered waiting time of the customer, namely, the waiting time of the customer if the cus-
tomer never abandons. By PASTA, vn�d wn

v(∞). When the customer has service time S and patience time
T � θ−1S, the waiting time of the customer is T�vn. Note that T and vn are independent, the customer enters serv-
ice if and only if T ≥ vn, and the customer contributes 1{T ≥ vn}S of work to the workload. In particular, the Pois-
son arrivals contribute to the mean workload of the system

λnE[1{T ≥ vn}S] � θλnE[1{T ≥ vn}T]:
On the other hand, each working server reduces the workload at a constant rate 1, so that the pool of servers
reduces the workload by Zn(∞) per unit time in steady state. Because the mean workload is constant in steady
state, we have

E[Zn(∞)] � θλnE[1{T ≥ vn}T]
One can check that, for any x ∈ R+,

E[(x�T)2] � 2θ−2(1− e−θx(1+θx)) and θE[1{T ≥ x}T] � e−θx(1+θx),
so that

θ2E[(x�T)2]=2+θE[1{T ≥ x}T] � 1: (90)

Exploiting the independence of T and vn, taking x � vn in (90), and using E[T�vn] � E[T�wn
v(∞)], give the equal-

ity in (44).
For the inequality in (44), observe that, by Lemma 9,

Zn(∞) � Xn(∞)�n≥st: Xn
A(∞)�n � Zn

A(∞),
where Zn

A(∞) is the stationary distribution of the Erlang-A system. To estimate E[Zn
A(∞)], let P(AbnA) denote the

long-run fraction of customers that abandon the system, so that E[Zn
A(∞)] � λn(1−P(AbnA)). By Garnett et al. [6,

theorem 4], P(AbnA) �O(n−1=2). Therefore, using λn=n→ 1 as n→∞,

1− n−1E[Zn
A(∞)] �O(n−1=2),

implying the inequality in (44). w

Proof of Proposition 9. Let

Z̃
n(∞) :� n−3=4(Zn(∞) − n) � n−1=4Ẑ

n(∞) ≤ 0:

By Lemma 4, E[Z̃n(∞)] → 0 as n→∞. By Markov’s inequality,

P(−Z̃n(∞) > ε) ≤ −ε−1E[Z̃n(∞)], for all ε > 0,

implying that X̃
n(∞)�0 � Z̃

n(∞)⇒ 0 in R.
To prove the tightness of {X̃n(∞) : n ≥ 1}, it remains to show that {Q̃n(∞) : n ≥ 1} is tight, where

Q̃
n(∞) :� n−3=4Qn(∞) � X̃

n(∞) − Z̃
n(∞):
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Again notice that the stationary waiting time of the arrivals is distributed as wn
v(∞)�T. By Little’s law,

E[Qn(∞)] � λnE[wn
v(∞)�T] ≤ λn(E[(wn

v(∞)�T)2])1=2:
By Lemma 4,

E[Qn(∞)] ≤ θ−1n1=4(λn)1=2(−βn − E[Ẑn(∞)])1=2 � O(n3=4):
By Markov’s inequality, we have that, for anyM > 0,

lim sup
n→∞

P(n−3=4Qn(∞) ≥ M) ≤ M−1 lim sup
n→∞

n−3=4E[Qn(∞)] < ∞:

Therefore, {Q̃n(∞) : n ∈ Z+} is tight in R, and so is {X̃n(∞) : n ∈ Z+}. w

Proof of Proposition 10. First, βn → β > 0 as n→∞ implies that there exists N, such that βn > 0 for n ≥N so that
Xn

U(∞) exists. As in the proof of Proposition 4, we consider a coupling of the M=Mpc=n+Mpc system with an
Erlang-C system having the same arrival process and service rate 1. In turn, the Erlang-C system can be consid-
ered to be an M=Mpc=n+Mpc system with patience that is exponentially distributed with rate 0, so that the cou-
pling in Lemma 3 can be applied. Denote by (Xn

U,Q
n
U,Z

n
U) the number-in-system process, the queue length

process, and the number-in-service process in the nth Erlang-C system. For n ≥N, Lemma 3 implies that
Xn

U(∞)≥st:Xn(∞). In particular,

E[X̂n(∞)] ≤ E[X̂n
U(∞)] → E[X̂C(∞)] <∞ as n→∞,

where the convergence follows from Halfin and Whitt [7, theorem 1] and the last inequality follows from corol-
lary 1 in this reference.

On the other hand, Lemma 4 gives

lim inf
n→∞ E[X̂n(∞)] ≥ lim inf

t→∞ E[Ẑn(∞)] > −∞:

Therefore,

lim sup
n→∞

E[ |X̂n(∞) | ] < ∞,

implying the statement of the proposition. w
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Appendix A. Remaining Proofs of Lemmas in Section 6
In this section we prove Lemmas 5–8. The flowchart in Figure A.1 depicts how the proofs in this section depend on each
other, as well as on other results that were established in Section 6.

Figure A.1. (Color online) Flowchart detailing how the proofs in this section are related to each other and to proofs of other
results.
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Proof of Lemma 5. We again use a coupling of theM=Mpc=n+Mpc system with another queueing system, which we denote
by Un, using the same notation as in the proof of Proposition 10 for the corresponding process (Xn

U,Q
n
U,Z

n
U). We take system

Un is a degenerated M=Mpc=n+Mpc system with arrival rate λn and service rate 1, in which customers have infinite patience.
For the coupling, we initialize system Un and the M=Mpc=n+Mpc system as follows: first, we take Xn

U(0) � Xn(0); second, any
initial customer in queue has the same service time in both systems; third, any initial customer in service system U has the
same remaining service time in the M=Mpc=n+Mpc system. Note that system Un is not an Erlang-C system per se because
some of the initial customers in servicemay be in their phase 1. (There is no phase-1 service for any of the customers that arrive
after time 0 in this system.

Using the same arguments as in the proof of Lemma 3, we can construct a coupling between Xn and Xn
U such that

Xn(t) ≤ Xn
U(t), and thus Qn(t) ≤Qn

U(t), w.p.1 for all t ≥ 0. Let Q̃
n
U(t) :� n−3=4Qn(n1=4t). It is sufficient to prove that {Q̃n

U : n ≥ 1} is
stochastically bounded inD.

Let A and S be two unit-rate Poisson processes. Let Zn
U0 and Zn

U be the processes that characterize the number of cus-
tomers in phase 1 service and phase 2 service, respectively. (Recall that arrivals have only phase 2 service, but initial cus-
tomers may have phase 1 service). Let

X̃
n
U(t) :� n−3=4(Xn

U(n1=4t) − n), Z̃
n
U(t) :� n−3=4(Zn

U(n1=4t) − n), Z̃n
U0(t) :� n−3=4Z̃

n
U0(n1=4t):

Following similar arguments as in Section 5.2, X̃
n
U admits the following martingale representation

X̃
n
U(t) � X̃

n
U(0) − βnt− n1=4

∫ t

0
Z̃

n
U(s)ds+ M̃

n
UA(t) − M̃

n
US(t), for all t ≥ 0, (A.1)

where

M̃
n
UA(t) � n−3=4(A(n1=4λnt) − n1=4λnt), and

M̃
n
US(t) � n−3=4 S

∫ n1=4t

0
Zn
U(s)ds

( )
−

∫ n1=4t

0
Zn
U(s)ds

( )
, for t ≥ 0:

It follows from the Poisson FCLT (e.g., theorem 4.2 in Pang et al. [12]) that

n−5=8(A(n5=4·) − n5=4η(·)) ⇒ B(·) and n−5=8(S(n5=4·) − n5=4η(·)) ⇒ B(·), for all t ≥ 0,

for a standard Brownian motion B, so that

‖n−3=4(A − η)‖n5=4t ⇒ 0 and ‖n−3=4(S − η)‖n5=4t ⇒ 0, for all t ≥ 0:

Therefore,

n1=4λnt � O(n5=4)t and
∫ n1=4t

0
Zn
U(s)ds ≤ n5=4t

imply that

(M̃n
UA, M̃

n
US) ⇒ (0η, 0η) in D2, as n → ∞:

Consider the process

ξn(t) :� M̃
n
UA(t) − M̃

n
US(t) + n1=4

∫ t

0
Z̃

n
U0(s)ds, t ≥ 0:

Using similar arguments as in the proof of Proposition 6(a), one can show that

n1=4
∫ ·

0
Z̃

n
U0(s)ds � oP(1),

so that ξn � oP(1). Using the equality Z̃
n
U � X̃

n
U �0−Zn

U0, (A.1) becomes

X̃
n
U(t) � X̃

n
U(s) − βn(t− s) − n1=4

∫ t

s
X̃

n
U(s1)�0ds1 + ξn(t) − ξn(s), t ≥ s ≥ 0: (A.2)

Take s :� sup {u ∈ [0, t] : Xn
U(u) < 0}, where, for ∅ denoting the empty set, sup∅ :� 0. Then either s � t or Xn

U ≥ 0 on [s, t),
implying that n1=4

∫ t

s
X̃

n
U(s)�0ds � 0. Moreover, either s � 0 or Xn

U(s−) ≤ 0, where in the latter case Xn
U(s) ≤ 1 because Xn

U

only has either positive or negative jumps of size 1. In particular, Xn
U(s) ≤ Xn

U(0)�0+ 1. Therefore,

X̃
n
U(t) ≤ X̃

n
U(0)�0+ n−3=4 − (βn �0)t+ 2‖ξn‖t: (A.3)
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Notice that the right-hand side is strictly positive and nondecreasing in t. Using Q̃
n
U � X̃

n
U �0,

‖Q̃n
U‖t ≤ X̃

n
U(0)�0+ n−3=4 − (βn �0)t+ 2‖ξn‖t:

As n→∞, X̃
n
U(0) ⇒ X0 in R and βn → β ∈ R, so that the right-hand side is stochastically bounded in R for any t ≥ 0, so

that {Q̃n
: n ≥ 1} is stochastically bounded in D, as stated. w

Proof of Lemma 6. We first observe that, for any t > 0,

Qn(t) ≥ An(t) − An(t − wn(t)) − Rn(t) + Rn(t − wn(t)): (A.4)

To see this, note that the head-of-line customer arrived at time t−wn(t). Thus, any waiting customer at time t must either
be an initial customer, or a customer that arrived to the system during [t−wn(t), t). On the other hand, the number of
those customers that arrived during [t−wn(t), t] and abandoned by time t is clearly no larger than the total number of
abandonments during [t−wn(t), t]. Thus, we get (A.4).

Notice that

n−3=4An(n1=4t) � M̃
n
A(t) + n−1=2λnt,

n−3=4An(n1=4t − wn(n1=4t)) � M̃
n
A(t − n−1=2w̃n(t)) + n−1=2λn(t − n−1=2w̃n(t))

n−3=4Rn(n1=4t) � M̃
n
R(t) + θ

∫ t

0
n1=4Q̃

n(s)ds

n−3=4Rn(n1=4t − wn(n1=4t)) � M̃
n
R(t − n−1=2w̃n(t)) + θ

∫ t−n−1=2w̃n(t)

0
n1=4Q̃

n(s)ds,

Plugging these equalities in (A.4) and using the LOF scaling gives

Q̃
n(t) ≥ n−3=4(An(n1=4t) − An(n1=4t − wn(n1=4t))

− Rn(n1=4t) + Rn(n1=4t − wn(n1=4t)))
� n−1λnw̃n(t) + M̃

n
A(t) − M̃

n
A(t − n−1=2w̃n(t))

− θ

∫ t

t−n−1=2w̃n(t)
n1=4Q̃

n(s)ds − M̃
n
R(t) + M̃

n
R(t − n−1=2w̃n(t))

≥ w̃n(t)(n−1λn − n−1=4θ‖Q̃n‖t) − 2‖M̃n
A‖t − 2‖M̃n

R | t:

The statement follows from the facts that the processes Q̃
n
, M̃

n
A, and M̃

n
R are all oP(1), n−1=4‖Q̃n‖t ⇒ 0 in R, and

λn=n→ 1. w

Proof of Lemma 7. Fix n ≥ 1. That Fn(s, t) is integrable follows from −θ−1λn ≤ Fn(s, t) ≤ An(s). Let {Gn
s,t : s ≥ 0} be the natu-

ral filtration generated by Fn(s, t), augmented by including all P-null sets. Note that, for 0 ≤ s1 < s2 ≤ t,

Fn(s2, t) − Fn(s1, t) �
∫ s2

s1
1{En

An(s) +Tn
An(s) > t}dAn(s) −θ−1λn(eθ(s2−t) − eθ(s1−t)),

and that the right-hand side is independent of Gn
s1,t. Hence,

E
∫ s2

s1
1{En

An(s) +Tn
An(s) > t}dAn(s)

∣∣∣Gn
s1,t

[ ]
� E

∫ s2

s1
1{En

An(s) +Tn
An(s) > t}dAn(s)

[ ]
� E

∫ s2

s1
E[1{En

An(s) +Tn
An(s) > t} |En

An(s)]dAn(s)
[ ]

:

Because Tn
An(s)—the patience of the last customer to arrive before time s—is exponentially distributed and is independent

of the arrival time En
An(s),

E[1{En
An(s) +Tn

An(s) > t} |En
An(s)] � exp (−θ(En

An(s) − t)):
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Therefore,

E
∫ s2

s1
E[1{En

An(s) + Tn
An(s) > t} |En

An(s)]dAn(s)
[ ]

� E
∫ s2

s1
exp (−θ(En

An(s) − t))dAn(s)
[ ]

:

Finally, An is a simple counting process, and En
An(s) � s when dAn(s) � 1, so that

E
∫ s2

s1
exp (−θ(En

An(s) − t))dAn(s)
[ ]

� E
∫ s2

s1
e−θ(s−t)dAn(s)

[ ]
� θ−1λn(eθ(s2−t) − eθ(s1−t)):

Thus,

E[Fn(s2, t) − Fn(s1, t) |Gs1,t] � 0, for 0 ≤ s1 ≤ s2 ≤ t,

implying that {Fn(s, t) : s ∈ [0, t]} is a martingale.
To prove that {eθtsups∈[0,t] |Fn(s, t) | : t ≥ 0} is a submartingale, let {Gn

t : t ≥ 0} be the right-continuous filtration generated
by

An(s), 1{Tn
k +En

k < t} : s ≤ t, k ≤ An(t)( )
,

and augmented by including all P-null sets. It is easy to check that Fn(s, s+ t) ∈ Gn
s+t and sups∈[0,t] |F(s, t) | ∈ Gn

t . We will show that
sups∈[0,t] |F(s, t) | is a Gn-submartingale, and therefore also a submartingale with respected to the (augmented) natural filtration.

To this end, fix 0 ≤ t1 ≤ t2. for s1 ∈ [0, t1] such that En
An(s1) +Tn

An(s1) > t1. Due to the memoryless property of Tn
An(s1), E

n
An(s1) +

Tn
An(s1) − t1 is also an exponential random variable with rate θ, so that

P En
An(s1) +Tn

An(s1) > t2 |En
An(s1) +Tn

An(s1) > t1
( )

� eθ(t1−t2):

Trivially,

En
An(s1) + Tn

An(s1) ≤ t2 if En
An(s1) + Tn

An(s1) ≤ t1:

Now, En
An(s1) +Tn

An(s1) > t2 is, conditional on the event {En
An(s1) +Tn

An(s1) > t1}, independent of Gn
t1 . Finally, 1{En

An(s1) +Tn
An(s1) > t1}

∈ Gn
t1 , implying that

E[1{En
An(s1) +Tn

An(s1) > t2} |Gn
t1 ] � eθ(t1−t2)1{En

An(s1) +Tn
An(s1) > t1}:

Integrating both sides of the equality with respect to s1 over [0, s], and using the equality

eθ(t1−t2)θ−1λn(e−θ(t1−s) − e−θt1 ) � θ−1λn(e−θ(t2−s) − e−θt2 ),
gives

E[Fn(s, t2) |Gn
t1 ] � eθ(t1−t2)Fn(s, t1), for all 0 ≤ s ≤ t1 ≤ t2:

In particular, {eθ(s+t)Fn(s, s+ t) : t ≥ 0} is a {Gn
s+t : t ≥ 0}-martingale.

Now, let 0 ≤ t1 ≤ t2 and an arbitrary random time S ≤ t1 such that S ∈ Gn
t1 . We have

E eθt2 sup
s∈[0, t2]

|Fn(s, t2) |
∣∣∣∣∣Gn

t1

[ ]
≥ E[ |eθt2Fn(S, t2)‖Gn

t1 ]:

It follows from the facts that S ∈ Gn
t1 , and that {eθ(s+t)Fn(s, s+ t) : t ≥ 0} is a {Gn

s+t : t ≥ 0}-martingale, that

E[eθt2Fn(S, t2) |Gn
t1 ] � eθt1Fn(S, t1):

By Jensen’s inequality

E[ |eθt2Fn(S, t2)‖Gn
t1 ] ≥ eθt1 |Fn(S, t1) | ,

so that

E eθt2 sup
s∈[0, t2]

|Fn(s, t2) |
∣∣∣∣∣Gn

t1

[ ]
≥ eθt1 |Fn(S, t1) | : (A.5)

Finally, |Fn(s, t1) | ∈ Gn
t1 for any s ∈ [0, t1]. Because Fn(·� t1, t1) has right-continuous paths, for each ε > 0, we can choose Sε ∈

Gn
t1 such that

sup
s∈[0, t1]

|Fn(s, t1) | ≤ |Fn(Sε, t1) | + ε,w:p:1:
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Taking S � Sε in (A.5) gives

E eθt2 sup
s∈[0, t2]

|Fn(s, t2) |
∣∣∣∣∣Gn

t1

[ ]
≥ eθt1 sup

s∈[0, t1]
|Fn(s, t1) | − ε, for all t1 ≥ 0 and ε > 0:

The proof follows upon taking ε→ 0. w

Proof of Lemma 8. We first prove that {Ũn
1 : n ≥ 1} is stochastically bounded in D. Consider the LOF-scaled process in

(22),

Ũ
n
1(t) �

∫ t

T̃
n
0 � t

1{n−1=2θw̃n(s−) + s > t}dM̃n
S(s):

Notice that the integrand is nonnegative and satisfies

1{n−1=2θw̃n(s−) + s > t} ≤ 1{s ≥ t − n−1=2θ‖w̃n‖t}, for all 0 ≤ s ≤ t: (A.6)

Thus,

|Ũn
1(t) | ≤

∫ t

0
1{s ≥ t − n−1=2θ‖w̃n‖t}d |M̃n

S(t) | ≤
∫ t

t−n−1=2θ‖w̃n‖t
d |M̃n

S(t) | ≤ 2‖M̃n
S‖t + 2θ‖w̃n‖t,

where the last inequality follows from (57). By Proposition 6(b) and Lemma 6, the right-hand side is stochastically

bounded in D, implying that {Ũn
1 : n ≥ 1} is stochastically bounded in D as well.

To prove that {Z̃n
1 − Z̃

n
0 : n ≥ 1} is stochastically bounded in D, consider the LOF-scaled process in (23):

Z̃
n
1(t) − Z̃

n
0(t) �

∫ t

T̃
n
0 � t

1{n−1=2θw̃n(s−) + s > t}(n1=2 + n1=4Z̃
n
2(s))ds+ Ũ

n
1(t):

Again, using Z̃
n
2 ≤ 0 w.p.1 and (A.6),

| Z̃n
1(t) − Z̃

n
0(t) | ≤ n1=2

∫ t

0
1{s ≥ t− n−1=2θ‖w̃n‖t}ds+ |Ũn

1(t) | ≤ θ‖w̃n‖t + ‖Ũ1‖t:

Since the right-hand side is nondecreasing in t, Lemma 6 and the stochastic boundedness of {Ũn
: n ≥ 1} in D imply that

{Z̃n
1 − Z̃

n
0 : n ≥ 1} is also stochastically bounded in D.

To prove that {X̃n
: n ≥ 1} is stochastically bounded in D, we use the same arguments as in the proof of Proposition 7

to obtain (71), and in particular,

X̃
n ≥ ξn + εn,

where εn � oP(1). It follows from the stochastic boundedness of {w̃n : n ≥ 1} and {Z̃n
1 − Z̃

n
0 : n ≥ 1} in D that ξn is also OP(1).

Therefore, ξn + εn ≤ X̃
n ≤ Q̃

n
implies that {X̃n} is stochastically bounded in D, and thus Z̃

n � X̃
n
�0 implies that {Z̃n

: n ≥ 1}
is stochastically bounded in D. Finally, Z̃

n
2 + Z̃

n
0 � Z̃

n − (Z̃n
1 − Z̃

n
0) implies that {Z̃n

2 + Z̃
n
0 : n ≥ 1} is stochastically bounded in

D. w

Appendix B. Proof of Proposition 2
Recall system Un from the proof of Lemma 5, and notice that this system becomes an Erlang-C system if all the custom-
ers that are initially in the system have zero remaining phase 1 service time. As a result, all arguments regarding Xn

U in
the proof of Lemma 5 hold for Xn

C as well. Therefore, (A.2) (taking s � 0) and (A.3) together give

X̃
n
C(t) ≥ X̃

n
C(0) − βnt+ ξn(t), and X̃

n
C(t) ≤ X̃

n
C(0)�0+ n−3=4 − (βn �0)t+ 2‖ξn‖t, t ≥ 0,

for some process ξn ∈D, which is oP(1). Using βn → β ≤ 0 and X̃
n
C(0) ⇒ x0 ≥ 0 in R, we have X̃

n
C � xC + oP(1), implying that

X̃
n
C ⇒ xC in D.

References
[1] Billingsley P (1968) Convergence of Probability Measures (Wiley, Hoboken, NJ).
[2] Chen H, Yao DD (2013) Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization, vol. 46 (Springer Science & Busi-

ness Media, Berlin).
[3] Dai JG (1995) On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models. Ann. Appl. Pro-

bab. 5(1):49–77.
[4] De Vries J, Roy D, De Koster R (2017) Worth the wait? How waiting influences customer behavior and their inclination to return. J.

Oper. Management 63(1):59–78.

Perry and Yu: Queueing System with Perfect Correlation
1156 Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 1119–1157, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

29
.1

19
.2

35
.2

6]
 o

n 
22

 S
ep

te
m

be
r 2

02
3,

 a
t 0

8:
21

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



[5] Gamarnik D, Goldberg DA (2013) Steady-state GI=G=n queue in the Halfin–Whitt regime. Ann. Appl. Probab. 23(6):2382–2419.
[6] Garnett O, Mandelbaum A, Reiman M (2002) Designing a call center with impatient customers. Manufacturing Service Oper. Management

4(3):208–227.
[7] Halfin S, Whitt W (1981) Heavy-traffic limits for queues with many exponential servers. Oper. Res. 29(3):567–588.
[8] Kamae T, Krengel U, O’Brien GL (1977) Stochastic inequalities on partially ordered spaces. Ann. Probab. 5(6):899–912.
[9] Kang W, Ramanan K (2010) Fluid limits of many-server queues with reneging. Ann. Appl. Probab. 20(6):2204–2260.
[10] Kang W, Ramanan K (2012) Asymptotic approximations for stationary distributions of many-server queues with abandonment. Ann.

Appl. Probab. 22(2):477–521.
[11] Moyal P, Perry O (2022) Many-server limits for service systems with dependent service and patience times. Queueing Systems 100(3):

337–339.
[12] Pang G, Talreja R, Whitt W (2007) Martingale proofs of many-server heavy-traffic limits for Markovian queues. Probab. Surveys

4:193–267.
[13] Puha AL, Ward AR (2019) Scheduling an overloaded multiclass many-server queue with impatient customers. Operations Research &

Management Science in the Age of Analytics (INFORMS, Catonsville, MD), 189–217.
[14] Puhalskii AA, Reiman MI (2000) The multiclass GI=PH=N queue in the Halfin-Whitt regime. Adv. Appl. Probab. 32(2):564–595.
[15] Reed J (2009) The G=GI=N queue in the Halfin–Whitt regime. Ann. Appl. Probab. 19(6):2211–2269.
[16] Reich M (2012) The offered-load process: Modeling, inference and applications. PhD thesis, Technion-Israel Institute of Technology,

Haifa, Israel.
[17] Revuz D, Yor M (2013) Continuous Martingales and Brownian Motion, vol. 293 (Springer Science & Business Media, Berlin).
[18] Sigman K, Wolff RW (1993) A review of regenerative processes. SIAM Rev. 35(2):269–288.
[19] van Leeuwaarden JSH, Mathijsen BWJ, Zwart B (2019) Economies-of-scale in many-server queueing systems: Tutorial and partial review

of the QED Halfin–Whitt heavy-traffic regime. SIAM Rev. 61(3):403–440.
[20] Whitt W (1992) Understanding the efficiency of multi-server service systems. Management Sci. 38(5):708–723.
[21] Whitt W (2002) Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues (Springer, Berlin).
[22] Wolff RW (1989) Stochastic Modeling and the Theory of Queues, vol. 14 (Prentice Hall, Englewood Cliffs, NJ).
[23] Wu C, Bassamboo A, Perry O (2018) Service system with dependent service and patience times. Management Sci. 65(3):1151–1172.
[24] Wu CA, Bassamboo A, Perry O (2021) When service times depend on customers’ delays: A solution to two empirical challenges. Oper.

Res. ePub ahead of print December 1, https://doi.org/10.1287/opre2021.2179.

Perry and Yu: Queueing System with Perfect Correlation
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 1119–1157, © 2022 INFORMS 1157

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

29
.1

19
.2

35
.2

6]
 o

n 
22

 S
ep

te
m

be
r 2

02
3,

 a
t 0

8:
21

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

https://doi.org/10.1287/opre2021.2179

	s1
	s1A
	s1B
	s1C
	s1D
	s1E
	s2
	s2A
	s3
	s3A
	s3B
	s3C
	s3D
	s4
	s5
	s5A
	s5B
	s5C
	s5D
	s5E
	s5F
	s5G
	s6
	s6A
	s6B
	s6C
	s6D
	s6E

