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1. Introduction

Service systems often experience abandonment due to customer impatience for waiting in queue. The significant
impacts that abandonment has on the queueing dynamics are clear from the fact that stability— the most funda-
mental performance measure of a queueing system—is guaranteed to hold under weak regularity conditions on
the system’s primitives, regardless of the value of the traffic intensity; see Kang and Ramanan [10, section 4]. To
model customer abandonment, it is typically assumed that the patience of the customers are independent and
identically distributed (i.i.d.) random variables, that are also independent of all other random variables and proc-
esses in the model. However, it stands to reason that, in practice, the patience of customers depends on their indi-
vidual service requirement, as was indeed empirically demonstrated to be the case in contact centers (Reich [16])
and restaurants (De Vries et al. [4]).

A heuristic fluid model developed in Wu et al. [23] (see also Wu et al. [24]) suggests that a positive dependence
between the service and patience times of customers has large impacts on steady-state performance measures,
such as the expected steady-state queue length and waiting times, when the system is overloaded (in the sense
that the arrival rate exceeds the maximum service capacity). However, in overloaded systems, practically all the
customers are delayed in queue, and their waiting times are, asymptotically (under fluid scaling), of the same
order as the service time. It is therefore not immediately clear whether the insights in Wu et al. [23] extend to sys-
tems that are not overloaded, so that a significant proportion of the customers are not delayed at all, and the
waiting times of those customers that are delayed are asymptotically negligible.

In this paper, we carry out asymptotic analysis in this latter setting, by considering systems that are staffed
according to the square-root rule, whose aim is to put the systems in the Halfin-Whitt limiting regime. This
regime, which was first characterized in the seminal paper by Halfin and Whitt [7] for the M/M/n (Erlang-C)
queue, and was later extended in Garnett et al. [6] to the M /M /n + M (Erlang-A) model, which includes exponen-
tially distributed customer patience, is also known as the quality-and-efficiency (QED) regime, as it achieves both
efficient utilization, while simultaneously providing high quality of service. In particular, under standard inde-
pendence assumptions of the system’s primitives, the square-root staffing rule guarantees that almost all the
service capacity is utilized at all times, as is the case in the conventional heavy-traffic regime, yet the probability
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that arrivals are delayed in queue is smaller than 1 in the limit, and waiting times of delayed customers are
asymptotically negligible; see, for example, van Leeuwaarden et al. [19] and Whitt [20]. It is significant that
the Erlang-A model operates in the QED regime even if the traffic intensity approaches 1 from above, namely,
if the service capacity in the system is smaller than the demand for service by an O(y/n) term. We elaborate in
Section 3.3.

1.1. The Impact of the Correlation

When the service and patience times are positively correlated, one expects the system to be more congested than
when the two times are independent, because delayed customers that do not abandon tend to spend more time
in service than a “generic” customer. On the other hand, the waiting times and the proportion of abandonment
in the QED regime are asymptotically negligible, and so the extent to which correlation impacts the queueing
dynamics is not a priori clear.

Our results show that, in the perfect-correlation case, abandonment has an asymptotically diminishing impact
on the queues under diffusion scaling, in that the system behaves much like a system that has no abandonment
at all. Thus, unlike in the typical independent models (which assume that all the primitive processes are mutu-
ally independent), the diffusion limit can be transient, despite the fact that the prelimit is always stable. The exact
extent to which the correlation impacts congestion follows from limits for the queue process and for its steady-
state distribution that are achieved under an 1/ spatial scaling.

Specifically, we prove the following functional weak limit theorems. The diffusion limit, which is achieved
under the usual many-server diffusion scaling (see Section 3.1), is the same limit that is obtained for the Erlang-C
model under the square-root staffing rule. Thus, if the traffic intensity approaches 1 from below as 1 — oo, then
the diffusion limit is the Halfin-Whitt diffusion in Halfin and Whitt [7]. On the other hand, if the traffic intensity
approaches 1 from above, then the limit is a transient diffusion, having a positive drift. To obtain the exact order
of congestion in the latter case, we derive a lower-order fluid (LOF) limit, and a corresponding weak limit for the
stationary distributions, both obtained under a spatial scaling of #%/* (with the former limit being obtained under
a time scaling of n'/4). Given that the Erlang-A model operates in the QED regime under the square-root staffing
rule, those latter limit theorems imply that the correlation causes an increase of order O(n'/#) in congestion rela-
tive to the independent case.

1.2. Implications

Even though perfect correlation between the service and patience times of customers is unlikely to be encountered
in practice, this case is worth studying because the limits we obtain for the queues are simple one-dimensional
Markov processes that are easy to interpret, despite the non-Markovian nature of the prelimit queue. That one-
dimensional characterization is achieved by decomposing the service times of served customers into two phases,
exploiting the perfect-correlation assumption together with the memoryless property of the exponential distribu-
tion; see (4). More general dependence structures will necessarily require complex (e.g., measured-valued) process
descriptors, which will in turn lead to more compleX, infinite-dimensional limiting processes; see Puha and Ward
[13] for background. On the other hand, the diminishing impact of the abandonment on the system’s dynamics,
and the resulting congestion, are likely to hold in much greater generality than the special case we study. (Much
like the QED regime, which was initially developed for systems with exponentially distributed service times, and
was only later shown to hold in greater generality (Gamarnik and Goldberg [5], Puhalskii and Reiman [14], Reed
[15]).)

We further remark that a certain martingale property, that is key to deriving measure-valued limits for a non-
Markovian many-server queues with abandonment, relies heavily on having the service and patience times be
independent; see Kang and Ramanan [9, proposition 5.1]. In the special case we consider, we circumvent this
issue by employing an intricate representation of the state descriptors, exploiting submartingale properties of
certain two-parameter processes. See the state descriptors in Section 5.2 and Lemma 7.

1.3. Notation

All the random elements are defined on a complete probability space (Q, F, P); expectation with respect to P is
denoted by E. We let R and Z denote the sets of real numbers and integers, respectively, with R, := [0, o) and
Z,:=7NR,. For ke N, we let R* denote the space of k-dimensional vectors with real components. We let D*
denote the space of right-continuous R¥-valued functions with left limits on R, endowed with the usual Skoro-
khod J; topology; see Billingsley [1]. We let D := D' and Dy := {x € D : x(0) > 0}. We use C* (and C := C') to denote
the subspace of D" of continuous functions, and Cy := Dy N C. It is well known that the J; topology relativized to
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C* coincides with the uniform topology on C¥, which is induced by the norm

Il = sup [1va),

O<u<t
where ||x|| denotes the usual Euclidean norm of x € R*. We use 17: R — R for the identity map, that is, 7(t) = t for
t >0, so that, in particular, 07 is the zeroth function in D.

Let = denote convergence in distribution of a sequence of random elements in a metric space (see, e.g., Whitt
[21, section 11.3.2]). For a sequence of processes {Y" :n > 1} and a sequence of scalars {a" : n > 1}, we write (i)
Y" = op(a"), if for any t > 0 we have ||Y"/a"|; = 0 in R, as n — oo; (ii) Y” = Op(a"), if Y" is stochastically bounded,
that is, {||Y"/a"[|; : n > 1} is a tight sequence in R for any t > 0; (iii) Y" = ®,(a") if Y" = Op(a") but not op(a"). We
write d to denote equality in distribution, and < to denote the usual stochastic order. Namely, for two random
variables X and Y, we write X<y Y if P(X > x) < P(Y > x) for all x € R. For a random variable with values in Z,,
and a sequence of random variables {X; : i > 1}, we define 3V, X,, := 0 on the event {N = 0}.

We let x* := max{x,0} and x™ := —min{x, 0} for x € R. For x, y € R we let x Ay := min{x, y} and x vy := max{x,y}.
Moreover, we let the latter min and max operators A and v have higher precedence than multiplication, so that
xy Az = x(y Az), and in particular, x + yAz = x + (Y Az), for x,y,z € R.

1.4. Background

Consider a sequence of systems, in which the nth element has a pool of n statistically homogeneous agents serv-
ing a single class of statistically homogeneous customers. Let A" denote the arrival rate to system n and u denote
the service rate of a customer (the latter does not scale with the system). The square-root staffing rule stipulates
that the number of agents and the arrival rate satisfy the relation

lim V(1 - p") =, M

for some f > 0, where p" := A" /(nu) is the traffic intensity to system 7. In particular, the square-root rule implies
that A" = nu — O(\/n) as n — co.

Now, consider the special case of Poisson arrivals and exponentially distributed service times, namely, the
Erlang-C queue. Let X{ := {X{(f) : t > 0} denote the number-in-system process, and let 5(2 = {)A(Z(t) :t >0} denote
its diffusion-scale version,

Xt = V(X2 —n), £20.

Theorem 2 in Halfin and Whitt [7] states that, if (1) holds, and in addition 3\(2(0) = Xp in R, then 5(2 = Xc uni-

formly on compact (time) intervals as n — oo, where Xc:= {Xc(t): t > 0} is the unique strong solution (e.g., see
Revuz and Yor [17]) to the stochastic differential equation (SDE)

dXc(t) = me(Xc(8)dt + 2udB(t), Xc(0) = Xo, )
for
_[—up ifx>0;
mc(x) := {—y(ﬁ +x) ifx<0,

and B := {B(t) : t > 0} denoting a standard Brownian motion.

If, in addition, customers are assumed to have finite patience that is exponentially distributed with mean 1/6
that is independent of all other random variables in the model, namely, if the Erlang-A queue is considered, then
the square-root staffing rule can be generalized by allowing g in (1) to be nonpositive. In particular, let X% (t)
denote the number-in-system process in a system with abandonment, and let

X(0) = V25 (5 ), £20.

Theorem 2 in Garnett et al. [6] proves that, if (1) holds with € (o0, 00), and in addition, 5(2(0) = Xp in R for

~n o~
some random variable Xy, then X , = X4 uniformly over compact time intervals as n — oo, where

dX a(t) = ma(Xa(£)dt +2udB(t), Xa(0) = Xo. 3)
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Here, B denotes a standard Brownian motion as before, and

ma(x) == {_(“ﬁ +0x) %f x>0;
—u(B+x) ifx<0.

We observe that both the diffusion limit in (2) and the limit in (3) imply that the stochastic fluctuations of X and
X% about n (the number of agents) are Op(y/n), namely, are of order y/n. Therefore, both the number of idle
agents and the number of customers waiting in queue are Op(+/n) as well, as n — co. Moreover, both diffusion
processes achieve values in R, implying that a nonnegligible proportion of the customers do not wait at all,
whereas the waiting times of those customers who are delayed in queue are Op(n~/2), and so are asymptotically
negligible, as n — co.

1.5. Organization

The rest of the paper is organized as follows: We introduce the model in Section 2. The main results—the diffusion
and LOF limits, as well as the corresponding weak limits for the stationary distributions—appear in Section 3.
To simplify the exposition, we first introduce the stochastic-process limit theorems under a simplifying assump-
tion on the initial conditions; we weaken that assumption significantly in Section 3.3. We summarize the results in
Section 4. The following sections are dedicated to proving the main results: In Section 5.1, we provide a character-
ization of the system’s dynamics that is key to establishing the main results, whose proofs appear in Section 5.
Proofs of supporting results are given in Section 6-Appendix A.

2. The Model

We consider a sequence of systems denoted by M /Mpc /n+ My, indexed by the number of agents 1; the subscript
“pc” is mnemonic for “perfect correlation.” Each of the systems along the sequence consists of a single service
pool with statistically homogeneous agents, and an infinite buffer in which customers wait for their service. Cus-
tomers arrive to system n according to a Poisson process with rate A", where A" /n — A as n — oo, for some A > 0.
Customers begin service with an agent immediately upon arrival, if an idle agent is available, and otherwise
waits in the queue for their turn to enter service. We assume that customers are served in accordance with
the first-come-first-serve (FCFS) discipline, namely, in the order of arrival, and that each customer has finite
patience for waiting in queue: customers who run out of patience before their turn to enter service abandon the
queue without returning. We further assume that the service requirement and the patience time of each customer
are (marginally) exponentially distributed with respective means 1/ and 1/6, u, 0 > 0, and that these two expo-
nential random variables are independent from the arrival process and from the service and patience times of all
other customers. Without loss of generality, we measure time in service-time units, taking u = 1. We further
assume that n, A" and  are related via the limit (1) (so that A = y = 1), for some f € (-0, c0).

Unlike the standard M/M/n + M queue, we assume that the service requirement of a customer is perfectly cor-
related with the customer’s patience. In particular, let (S, T) denote a random variable in R?, such that T is expo-
nentially distributed with mean 1/60 and S is exponentially distributed with mean 1/p = 1. The assumption that
S and T are perfectly correlated indicates that T =S/0 with probability 1 (w.p.1). We assume that the service
requirement and patience of each customer is a draw from the joint distribution of S and T, independently of all
other customers and of the arrival process.

Due to the assumed correlation, the service-time distribution of a served customer is different from the service-
time distribution of a generic customer. For w > 0, temporarily let S(w) denote a generic service time of a cus-
tomer who waited w time units in queue. Utilizing the memoryless property of the exponential distribution, we
have that

S(w) 4 Sy + Ow, 4)

where S;, is an exponentially distributed random variable with mean 1. (We emphasize that our analysis hinges
on the decomposition of S(w) in (4), which holds only when the service and patience times are perfectly corre-
lated.) Thus, the service time of each customer can be thought of as having two independent phases: conditional
on the waiting time of the customer being w, phase 1 takes Ow units of time, and phase 2 is distributed like Sj.
Observe that the waiting time in queue completely determines the length of phase 1, whereas the length of phase
2 does not depend on the waiting time.

Fort>0and n>1, let Z"(t) denote the number of customers in service at time ¢, and let Z}'(t) denote the num-
ber of customers in phase I at time ¢, i = 1, 2, so that Z"(t) = Z/(t) + Z5(t). We denote by Q"(t) the number of
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customers waiting in queue, and by X"(t) the total number of customers in the system at time f, so that
X"() = Z"(t) + Q" (D)-

2.1. Preliminary: Stationarity of the M/Mp:/n+Mp. System
Clearly, X" is not a Markov process, because its evolution depends on the waiting times of the customers in Zf.
However, it is a regenerative process—a fact we employ to prove the following theorem.

Theorem 1. The process X" possesses a unique steady-state distribution, which is also its limiting distribution, as t — co.

Proof. First, note that, due to the arrival process being Poisson, and the fact that all customers entering service
immediately upon arrival have i.i.d. exponential service times, X" is a regenerative process, with state 0 being a
regeneration point. Note that a regenerative cycle of X" may consist of only one interarrival and one service time,
both of which can be arbitrarily short. In particular, for " denoting a generic cycle length of X", we have P(7" <
t)> 0 for all t > 0, implying that X" is nonlattice. By Sigman and Wolff [18, theorem 2.1(b)], we only need to dem-
onstrate that X" is a positive recurrent regenerative process. We prove this result by bounding the sample paths
of X" from above with a positive recurrent process via coupling the M /M, /n + M, with an infinite-server queue.
To this end, we give the two systems the same initial number of customers, and the same Poisson arrival process,
letting the service time of each arrival to the infinite-server queue be equal to the service plus patience time
of the corresponding customer in the M/M,./n+ M, system. In particular, with (S; T;) denoting the service-
patience times bivariate corresponding to the ith arrival to the M/M,./n + M. system, we take S; + T; to be the
service time of the same arrival to the infinite-server system. Note that S; + T; is exponentially distributed with
rate /(1 + 6) because S; = 6T;.

If X*(0) = K > 0, then we endow each initial customer k, 1 < k < K, with a bivariate (Si, Ty), such that Sy is expo-
nentially distributed with mean 1, T = S/0, and these K bivariates are i.i.d. We let the remaining service time of
each such customer k in the infinite-server queue be Si + Ty (so that it is exponentially distributed with rate
O(1+6)™"), and the remaining service time in the M/M,./n + M, system be an arbitrary number that is no larger
than S;; the remaining time to abandon of customer k that is waiting in the M/M,./n + M,. queue is no larger
than T;.

Under this construction, the infinite-server queue is an M/M/co system. Because the time that a customer with
patience T and service requirement S spends in the M/M,/n + M, is smaller than S + T w.p.1, the kth initial cus-
tomer and the ith arrival after time 0 depart the M/M,./n + M, system (either via service completion or aban-
donment) before they depart the infinite-server system, implying that the sample path of the queue in the latter
system is no smaller than in the former w.p.1. In turn, whenever the M/M/co system is empty, so is the
M/Myc/n + M, system. Now, the M/M/eco queue is an ergodic continuous-time Markov chain (CTMC), regard-
less of the values of the arrival and service rates, and so its expected busy cycle is finite. This immediately implies
that the regenerative cycle length is finite w.p.1 in the M/M,./n + M, system as well. [

Henceforth, we let X"(c0) denote a random variable having the unique stationary (and limiting) distribution of
the process X".

3. Main Results

In this section, we present the main results of the paper, namely the diffusion and LOF limit, and the correspond-
ing weak limits for the stationary distributions. Throughout, we assume that (1) holds; the specific range of val-
ues that § achieves is specified in the formal statements.

3.1. Limit Theorems Under Diffusion Scaling
The diffusion limit is achieved under the usual many-server diffusion scaling for the scaled number-in-system
process:

X" = VX - ).

We note that because X" is not a Markov process, the value of X"(0) does not determine the law of X". Neverthe-
less, we can characterize the dynamics of X" without resorting to infinite-dimensional (measure-valued) Markov
representation for a special class of natural initial conditions. In particular, we can consider the case in which the
system has started operating before time 0, such that all of the customers at time 0 are in service, and none of
them experienced any wait before entering service. (For example, the system can be initialized empty.) In this
case, the remaining service times of all the customers in the system at time 0 are i.i.d. exponentially distributed
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random variables with mean 1. We can slightly generalize this initial condition by allowing X"(0) to be larger
than 1, but require that the waiting time of each customer in queue at time 0 is equal to 0.

To simplify the exposition, we first state the stochastic-process limit theorems under the previous assumption
on the initial condition (see Assumption 1). However, we remark that we must consider much more general initial
conditions in order to prove the limit theorems for the stationary distributions. Thus, we substantially generalize
Assumption 1 in Section 3.3 (see (Ia) and (Ib) there), and prove the process limit theorems in the generalized
setting.

Recall that Z/(0) is the number of customers in phase 1 service at time 0. Let ¢ = {¢/(t) : t > 0} be the elapsed
waiting time of the ith customer (labeled in descending order of their arrival times) in queue at time ¢, i>1,
where €7 (t) := 0 for i > Q"(t).

Assumption 1 (Initial Condition). Z}(0) = 0 and ZQ © £(0)=0w.p.1.

In particular, the condition Z}(0) = 0 implies that the remaining service times of all the customers in service at
time 0 are exponentially distributed with mean 1.

The following functional central limit theorem (FCLT) shows that, for large n, the M/M,./n+ M, system
behaves much like the Erlang-C model. We remark that the asymptotic relation between the two systems is more
intricate than what the diffusion limit reveals, as the LOF limit in Theorem 4 will show.

Theorem 2 (Diffusion Limit). Assume that (1) holds with g € R. If Assumption 1 holds and, in addition, f(n(O) = XpinR,
then X = }A(C in D as n — oo, for }A(c in (2).

It is well known that the solution to the SDE (2) has a unique steady-state distribution when f > 0, which is expo-
nential on the positive real line, and normal on the negative real line; see theorem 1 and corollary 2 in Halfin and
Whitt [7]. In particular, let X c(o0) denote a random variable with that steady-state distribution, and let ® denote
the cumulative distribution function (cdf) of the standard normal random variable. Then,

P(Xc(o0) > x| Xc(e0) > 0) = ¢, forx>0, ®)
P(Xc(o0) < x| Xc(o0) < 0) = D(B +x)/D(B), forx <0, o

where
P(Xc(o0) > 0) = [1+V2rpo(p)e” *] . o

On the other hand, when g <0, the diffusion process X is either null recurrent (when B = 0) or transient (when

B <0). This follows easily from the fact that Xc is distributed like an ergodic Ornstein-Uhlenbeck process on
(—c0,0), and like a Brownian motion on (0, o), which is driftless in the case = 0, and has a positive drift when
p<0.

We next characterize the limits of the stationary distributions of X" for the two cases in which (i) the time-
limiting behavior of Xc exists, namely, when 8 <0, and (ii) when $ > 0. To this end, we say that a sequence of
random variables Y" converges in distribution to infinity, and write Y" = oo, if P(Y” > M) — 1 as n — oo for any
M>0.

Theorem 3. The following hold for the sequence {X"(c0) :m > 1} as n — oo:
L IfFB>0, then X (c0) = Xc(00).
ii. If <0, then Xn(oo) = oo.

When > 0, Theorems 1, 2, and 3 imply the following interchange of limits:

}1—{2 ]11_r)n P(X t)>x)= P(XC(OO) > x) = hm 11m P(X (t)>x), forallxeR. (8)
Note that an analogous limit-interchangeability result holds for the Erlang-C system (see theorem 1 and corollary
2 in Halfin and Whitt [7]). Roughly speaking, Theorems 2 and 3 suggest that the perfect correlation between serv-
ice time and patience time “removes” the effect of abandonment when g > 0 for sufficiently large systems. Given
that the diffusion limit when f < 0 is transient, it stands to reason that an analogous result to assertion (ii) of The-
orem 3 holds when § = 0; this can be proved in the special case 0 < u =1.

Proposition 1. Let = 0. If 0 < 1, then }A(n(oo) = 0045 1 — oo.
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3.2. Limit Theorems Under the LOF Scaling When <0

Theorem 2 shows a discrepancy between the diffusion limit and the prelimit when f <0, as the process X" is
ergodic for alln > 1, whereas the diffusion limit Xc is transient. Theorem 3 further emphasizes this dlscrepancy
by showing that {X (c0) : n =1} converges weakly to infinity. In turn, this latter result implies that X" needs to
be spatially scaled in order to achieve a nontrivial limit as  — co. The LOF stated in Theorem 4 below identifies
the exact additional spatial scaling of X to be n!/4.

However, the spatial scaling of n%* by itself is not sufficient to obtain a nontrivial process limit. To see why,
note that, for an unstable M/M/n (Erlang-C) system with arrival rate A" and service rate 1, such that A" =
n—pn for some B <0, it takes ©(n'/*) units of time for the queue to grow by O(n*/*). Because, for the
M/Mpc/n + M, sequence, the diffusion limit of {X :n > 1} is the same as that of a sequence of Erlang-C systems
with the same arrival and service rates by Theorem 2, it stands to reason that the two sequences of systems
share the same growth rate of the queues, which is indeed the case as we show next. Thus, consider the follow-
ing process:

1/4 (/4
X(n t) X(n t)—n 150

X (t) - 7’[1/4 1’[3/4 7 =

The next theorem characterizes the weak limit of X as the unique solution to an initial-value problem (IVP),
which is why we refer to that limit as a fluid limit. (It is an LOF limit due to the spatial scaling, which is of lower
order than the typical spatial scaling by n that gives rise to functional weak laws.)

Theorem 4 (LOF limit). Assume that (1) holds with p < 0. If Assumption 1 holds and in addition, S(H(O) = xo in R, where
Xo = 0 is deterministic, then X'= xr in D as n — oo, where xr is the unique solution to the IVP

2

tr=—p-0 5 0= ©

Remark 1 (The Necessity of xy > 0). Although the IVP (9) has a unique solution for all x; € R, the only relevant
solutions are for xp > 0. To see why, note that xy < 0 implies that there are idle agents initially, and in particular,

that X"(0) = n — ©p(n®*) < n for all n large enough. Now, for #1 :=inf {t > 0 : X"(t) = n} (namely, # is the first time
in which all agents are busy), the departure rate from the system is n — X"(t) = Op(n*/*) for all t € [0, ), whereas
the arrival rate is A", so that the idleness decreases at rate A" — X"(t) = Op(1n%/*) over [0, t). In turn,

lim P sup y(n(t) >—¢|=1, foralle>D0.
=00\ te(0, €]

Thus, if xy <0, a limit process x of X" is not right-continuous at t = 0 because x(t) > 0 for all ¢ > 0, implying that

x ¢ D. As a result, X" does not converge in D when 5(’1(0) = xo<0inR.
For xy > 0, one can check that (9) has a closed-form expression, depending on the value of .

Corollary 1 (Closed-form Solution). The unique solution xg to (9) is

V-28 (\/_—25 + 9950)(1 - e_ﬁet) + ZQer‘@et

(t) = , when B <0, (10)
Xp 0 (@+ Gxo)(l _e_ﬁet)+2\/_—zﬁe_@9t when B
and
xp(t) = szxot when B = 0. (11)

A point a € R, is a stationary point of xg if xr(t) = a for all t > 0 whenever xz(0) = 4; it is R,-globally asymptoti-
cally stable (and then also the unique stationary point), if x¢(t) — a as t — oo, for any xp € R,. Let

=+/-2B/6 (12)

The next corollary follows immediately from Corollary 1.
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Corollary 2 (Stability of the IVP). x* is an R..-globally asymptotically stable stationary point of (9)

In fact, any solution xr to (9) approaches x* monotonically, as can be seen from (10) and (11), or alternatively,
from the fact that Xr(f) <0 whenever xr(f) > x*, and xr(f) > 0 whenever xr(f) <x* (the latter being relevant only
when 8 <0).

Due to the n'/# time scaling, the LOF captures how the dynamics of an M/M,./n + M, system differ from that
of an Erlang-C system when f < 0; the latter is characterized by the limit in the following statement. Recall that n
is the identity process, n(t)=t, t>0, and that X! denotes an the queue in an M/M/n system. We use Xc to
denote the LOF-scaled queue process.

Proposition 2. If <0 and 5(2(0) = x¢ in R for xo > 0, then S(C = xc:=x9—pninDasn— co.

Note that the solution xf to (9) is equal to x¢ in Proposition 2 when 6 = 0. Observe also that, when <0 and
xr(0) = xc(0), xp(t) < xc(t) for all t > 0. Further, xc(t) — co while xr — x*, as t — co. Indeed, the divergence of x(f)
to infinity as t — oo corresponds to the fact that X7 is transient when g < 0. In contrast, an M/M,/n + M, system
is always stable due to the abandonment.

Analogously to Theorem 3, we can prove that x* is the weak limit for the stationary random variables

X'(e0) _ X"(e0) =11

—n
X (00) 1= al/A T

Theorem 5. If § <0, then X" (c0) = x* inRas n — oo.

Theorems 1, 4, and 5 again imply the following interchangeability of limits:

lim lim PX"(t) > x) = 1{x" > x} = lim lim P(X"(t) > x), forall x € R,\{x'}. (13)
—00 N1—00 Nn—o0 f—o00

Let Q"(c0) denote a random variable with the steady-state distribution of the queue process; Q"(c0) = (X"(c0) —11)".
Because x* > 0 when 8 < 0, Theorem 5 implies that Q"(c0) is ®p(1%/4).

In ending, we remark that the time scaling in X' implies that the relaxation time of X", namely, the time it
takes to X" to converge to its steady state (under any metric), is increasing in # when < 0.

3.3. Generalizing the Initial Condition

The process limit results in Theorems 2 and 4 are both achieved under Assumption 1. However, to prove the
limit theorems for the stationary distributions, we need to allow for more general initial conditions. (In partic-
ular, Theorems 3 and 5 will be proved by initializing the corresponding processes according to their station-
ary distribution.) To this end, we assume that, similarly to the customers arriving after time 0, the service
time of each customer that is in service at time 0 also has two phases: phase 1 (corresponding to the delay that
that customer experienced in queue before entering service) and phase 2, which is exponentially distributed
with mean 1.

Observe that Theorems 2 and 4 do not necessarily hold if there are customers in phase 1 service initially. For
example, if for some ¢ > 0, all customers in service present at time 0 have at least c time units of remaining phase
1 service time, then there will be no departures from service in the first c time units, so that the queue will grow
at rate A" in system #, and the system will have an initial period of overload. In that initial period, an FCLT
clearly cannot hold. Hence, to generalize the initial condition in Theorems 2 and 4, we must enforce regularity
conditions that prohibit such overload incidents.

Let r/(t) be the remaining phase 1 service time of the customer with server jat time t, 1 <j <n, forall t € Ry, or

rj(t) = 0 if the customer is in phase-2 or server j is idle at time ¢. Recall also that £} (t) is the elapsed waiting time
of the ith customer in the queue at time ¢. Let
ZM() Q')
L"(t):= Z (6 + Z i), t>0. (14)

]:

Proposition 3. L" possesses a unique stationary distribution, which is also the limiting distribution of L"(t) as t — oo.

Proof. Similarly to X", L" is a regenerative process, regenerating when X" hits state 0, namely, when the system
empties. It follows from Theorem 1 that L" is nonlattice and the expected cycle length of L" is finite, so that L" is
positive recurrent, implying the result. O
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The proof of the next proposition appears in Section 5.7. Let L"(c0) denote a random variable that has the sta-
tionary distribution of L".

Proposition 4. The following hold:
a.Ifp > 0, then E[L"(c0)] = O(1).
b. If B <0, then E[L"(c0)] = O(n'/?).

Let

Zn(O) = Ln”li(g) and En(O) :

_L"O)
TR

and consider the families of initial conditions satisfying the following: for a random variable X,
(X" (0),L"(0)) = (Xo,0) in R? as 1 — o, (Ia)

(f(”(O), En(O)) = (Xo,0) in R? as n — oo, where Xy > 0 w.p.1. (Ib)

Theorem 6. Assume that (1) holds with p € R. If (1a) holds, then X'= XcinDasn— oo,

Theorem 7. Assume that p < 0. If (Ib) holds, then X" = xp in D as n — oo, where, conditional on {X = xo}, for a positive
scalar xo, xp is the unique solution to the IVP (9).

Both Conditions (Ia) and (Ib) hold trivially if Assumption 1 holds. As a result, Theorems 6 and 7 immediately
imply the statements in Theorems 2 and 4, respectively. Due to Proposition 4, (Ia) and (Ib) also hold when the

system is initialized at stationarity, that is, when L"(0) dpn (o0), a result needed to prove Theorems 3 and 5.

3.4. A Numerical Example

In this section, we demonstrate the convergence of the properly scaled version of X" to the diffusion limit X and
the LOF limit xp. We fix p =1, 0 = 0.3, and vary n for different system sizes. For the diffusion limit, we take = 0.7
and choose n € {64\,”256, 1,024} for three different M/M,./n+ M, systems. To estimate the probability density
function (pdf) of X (o), we generate 512 independent sample paths. Each was ran for 100 time units, with a
warm-up period of 50 time units. We compare the estimated pdf of the three simulations with the pdf of the diffu-
sion limit X(c0), given in Garnett et al. [6, theorem 2*]. This comparison is depicted in the left panel of Figure 1.

To demonstrate the convergence to the LOF limit, we fix = —1.0 and estimate {E[y(n(t)] :t€[0,25]} for three
different M /Mpc /n+ M. systems with different values of n. We initialize each of the three systems such that, at

Figure 1. (Color online) Convergence of X" (c0) to Xc(co) when B > 0 (left panel), and E (X n] to xr when f < 0 (right panel).
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time 0, there are n customers in the system, all of which are in phase 2 of their service, while no customer is wait-
ing in the queue. For n € {128,2,048,32,768}, we generate {8,128, 2,048, 512} independent sample paths for each
system. We need more sample paths for smaller systems because for each ¢, X"() has a higher coefficient of var-
iation than for larger 1. The systems are run for 251'/4 time units and we compute {E[f(n (t)] : t € [0,25]} by aver-
aging over the independent sample paths. We plot {x¢(t) : t € [0,25]} by using the closed-form solution (10). The
comparison of the simulations to xr is depicted in the right panel of Figure 1.

4. Summary

In this paper, we consider the M/M,/n + M, model, in which the patience and service times of each customer
are perfectly correlated. We prove that, under the usual square-root staffing rule and diffusion scaling, the queue
process of the M/M,./n + My, system is asymptotically equivalent to the queue process of the Erlang-C system in
the sense that both queues have same diffusion limit. Furthermore, when the sequence of M/M/n, n > 1, is stable
for all n large enough (namely, when the traffic intensity is smaller than 1), the sequences of stationary distribu-
tions for both models have the same limit as well. When the traffic intensity is larger than 1 for all n large enough,
the sequence of stationary distributions of the M/M,./n + M, system converges weakly to infinity (a result that
also holds in the critical case, when g = 0, provided the abandonment rate is smaller than the service rate). These
results demonstrate the diminishing impact of abandonment on the queueing dynamics M/M,/n+M,. as n
increases.

However, unlike the Erlang-C model, which is not always stable, the M/M),./n + M, model is stable, and in
particular, converges weakly with time to a unique stationary distribution, regardless of the traffic intensity. To
approximate the stationary distribution of the M/M,./n + M, system, we consider the LOF limit and its unique
stationary point x* in (12), which is proved to be the many-server heavy-traffic limit of the stationary queue
process.

Even though all the results in this paper hold for the M/M,./n + M, system, it stands to reason that similar
results hold under less restrictive assumption on the correlation between service and patience times. In particu-
lar, we expect that positive correlation between these two random variables causes a system to be more heavily
loaded than when the service and patience are independent (or negatively correlated). We leave proving this
open problem for the future; see the discussion in Moyal and Perry [11].

5. Proofs of Main Results

To help navigate the proofs, we provide the following roadmap: First, Theorems 2 and 4 follow immediately
from Theorems 6 and 7. The proofs of Theorems 6 and 7 appear in Sections 5.3 and 5.4, respectively, after pro-
viding sample-path and martingale representations in Sections 5.1 and 5.2. Theorem 5, whose proof relies on
Theorem 7, is proved in Section 5.5, where we also prove Theorem 3 by utilizing both Theorem 6 and Theo-
rem 5. The proof of Proposition 1 appears in Section 5.6, building on a coupling result between two
M/Mpc/n + M, systems. Utilizing the same coupling, Proposition 4 is proved in Section 5.7. Many proofs in
this section build on auxiliary results, the proofs of which are relegated to Section 6. Finally, the proof of
Proposition 2 appears in Appendix B.

5.1. Sample-Path Representation
Let

Bri=n"(n-A"), (15)

and note that, due to the square-root staffing rule in (1), " — p asn — co.
Recall that Z;(t) (i = 1, 2) are the number of customers in phase I service at time t and Z(t) = Z1(t) + Z,(t). We
can write

ZM(1)

Zi() = > 1{r (>0}, (16)
j=1

which provides a representation of Z; € D and Z, =Z - Z; € D.

Let A, S, and R be three independent unit-rate Poisson processes. We represent the Poisson arrival process in
system n via A"(t) := A(A"t), t > 0, and exploit the memoryless property of the exponential distribution to charac-
terize the departures from service and abandonment. In particular, for D"(f) and R"(t) denoting the number of
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departures from service and number of abandonment by time t in system 7, respectively, we have
D(t) = s( /0 tZZ(s)ds) and R"(f) = R(e /0 tQ”(s)ds), £>0.
Then,
X"(t) = X"(0) + A(A") — s( /O tZ’;(s)ds) - R(Q /0 tQ“(s)ds), £>0. (17)

Notice that the following basic equalities hold:
Q"=X"-n)v0, Z'"=X"an, Z'=Z{+27j. (18)

To fully characterize X", we need to characterize Z3, or equivalently, Z/. Let Zj(t) denote the number of custom-
ers who were in the system initially (at time 0), and are in their phase 1 service at time t. Let T} be the time in
which the last customer from the initial queue leaves the queue, either by entering service or by abandoning the
queue; in particular, at any t < Tjj there are customers in queue that were waiting in the queue at time 0, and
there are no such customers in the queue at any time f > Tj. For any ¢ > 0, let w"(t) be the minimum between ¢
and the waiting time of the head-of-line customer. We set w"(t) := 0 if Q"(t) = 0.

Now, if a departure from service occurs at time s € [Tj, t] and Q"(s—) > 0, then the customer at the head of the
line begins the phase 1 service, and that customer is still in phase 1 at time ¢ if and only if Ow"(s—) +s > t. Note
that the latter statement holds trivially if Q"(s—) =0, because then w"(s—) = 0. We can therefore characterize Z/
via the departure process as follows:

Z0(t) = Z0(t) + /r t tl{@w”(s—)+s>t}dD”(s), £>0. (19)

To characterize the process w", we number the customers that arrive after time 0 by the order of their arrival, and
denote by E} the arrival time of the kth customer to system #, that is, E} :=inf{t: A"(t) = k}. Let T} denote the
patience time of the kth arrival to system #, so that {T} : k > 1} is a sequence of independent exponential random
variable with mean 1/6 for each n > 1. Under the FCFS policy, the arrival time of any customer that is in queue
at time f is no less the arrival time of the head-of-line customer at that time, the latter being equal to t — w"(t).
Hence, if the kth customer arrives during the time interval [t —w"(t),t), then that customer is still in the system
(waiting in queue) at time ¢ if and only if E} + T} > t. This gives

t
Q'(t) = / UEl ) + T > A (s) + Qj(1), forall £ >0, (20)
F—w"(t)

where Qf(t) is the number of customers that were waiting in queue at time 0 and are still waiting in queue at
time t. Note that, due to abandonment, Qi (t) < (Q™(0) — D"(t))", and that there are no waiting customers at time ¢
if there are idle agents, so that

(Z" =n)w" =0n. (21)
If we assume that L"(0) = 0, so that Qf = Zf; = 07, then (17)-(20) characterize the system’s dynamics via the primi-
tives A", 8", and {T} : k € Z,}. When L"(0) > 0, the dynamics of the nth system depend also on {£;(0)} and {r}’(O)}.

However, as will be proved later, the impact of these two sequences is asymptotically negligible, in that they do
not alter the diffusion limit and LOF limit under our assumed initializations in (Ia) and (Ib).

5.2. A Martingale Representation
Let F§ be the o-algebra generated by
{X3,€1(0),7(0): 1 <i < Q*(0), 1 <j < Z"(0)},

augmented by including all P-null sets. For t>0 and n>1, let 7" :={F}:t>0}, where F} is the right-
continuous o-algebra associated to the g-algebra generated by
(8, €2(5),72(5), A™(5), D(s), R"(s) : 1 < < Q'(8), 1< < Z°(8), s € [0, ).

Note that the processes X",Q",Qp,Z",Z}, i = 0, 1, 2, and w" have sample paths in D by construction. Now,
w"(t) = 1{Q"(t) > 0}£](t), so that w" is F"-adapted, and it therefore follows from (16)—(19) that X", Q", Z", and Z/,
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i=0,1,2, are also F"-adapted. Finally, noting that Tj; = inf{f > 0:w"(t) > t} shows that T} is an F"-stopping
time.
Consider the following processes:

ML) == A™(¢t) — A, s(t):==D"(t) - /tZg(s)ds,
0

Mi(H) = R"(H) - 0 /0 ‘Q's)ds, 20,

Because Zj <n and D"(t) < S(nt), we have E[|M(t)|] < co and E[|M/(t)|*] < oo, for i = A and S. Therefore, M"
and M{ are square-integrable F"-martingales. Note that R” and Q" have nonnegative sample paths that are
bounded pathwise by the sample paths of A" + X"(0). For 7} := k1{|X"(0)|< k}, M} (- AT}) is a square-integrable
F"-martingale, and because 7} — oo w.p.1 as k — oo, M} is an F"-local martingale. Thus, (17) admits the follow-
ing martingale representation:

X"(£) = X"(0) + A"t / Z1(s)ds - 0 / 07 (5)ds + M () — M() — ML),
0 0
Next, for

uy(t) = /T t H{Ow"(s-) +s > t}dMii(s), t>0, (22)

mn
oAt

we can rewrite (19) to obtain

Zn(t) = /T C {ow' () +s > £Z2(s)ds + LI (E) + Z1(8), (23)

"
oAb

so that

/0 Zi(s)ds = /0 (U} (s) + Z3(s)ds + /0 /TSAsl{Qw”(u)+u>s}Z§(u)duds

- / (U (s) + Z2(5))ds + / (0" (1)) A (t — 1) Z2 (). (24)
0 T

"
oAb

The last integral in (24) follows from Fubini’s theorem together with the fact that

b
/ H{s<clds=bac—anc, fora<p,
a

so that
/tl{Qw”(u) +u > shds = (Ow" (u) + u) At —u = Ow"(u) A (t — u).
Finally, let
F'(s, t) = ‘/Osl{EZn(u) + Ty > tHAA™ (1) + O7IAM (7% — e 0, (25)
Then, for
Us(t) := F'(t, 1) — F'(t — w" (1), 1), (26)

we can rewrite (20) as follows:

Q'(t) = 67 A" (1 — e W) + Uy (t) + Qp(#), t > 0. (27)
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Plugging (24) and (27) in (17), and using the equality Z = Z; + Z,, give the following modified martingale repre-
sentation:

t t
X"(£) = X"(0) + A"t — / Z(s)ds + V(¢) + / (Z2(t) — BQU(s))ds
0 0

+ / t(uy(s) — QU (s))ds + M (t) — ME(t) — Mik(t), >0, (28)
0
where
t t
V(t) = (OW"(s)) A (t —5)Z(s)ds — / A1 = e 0" ds. (29)
Tg/\t 0

5.3. Proof of Theorem 6
We consider the following diffusion-scaled random variables and processes:

én — n_l/ZQn/ 2” — n_l/Z(Zn _ 1’1) Z”(O) — n_l/an(O), 0= nl/anl
~n ~n —~ —~
Zy =022y, Zy=aTVA 2y -n), Q= nV2QL, Zyi=nTlRZE

We similarly consider the diffusion-scaled processes in the martingale representation

n

M; =n"2M], i=AS,R, Uy =n'PUp, Uy:=n2Ug, V'i=n12ym,

Using the diffusion scaling in (28) gives
~n ~n " tn ~n t~n —~n
X0 =X"0) - p't - /0 7" (s)ds + V(1) + /0 (Z5() - 605 s))ds
tn ~n ~n ~n ~n
+ / (Ul(s) - Guz(s))ds + M ,(t) — Mg(t) — Mg(t). (30)
0

The proof of Theorem 6 is a straightforward application of the continuous mapping theorem, given the following
key result, whose proof appears in Section 6.4.

Proposition 5. Assume that (1a) holds. Then, as n — oo,
a. (/O'Qo(s)ds, /O'Zg(s)ds) = (0n,0n) in D%

b. [ UL s)ds, [ Uy(s)ds, V") = (09,00, 0n) in D*; and

C. (]VIZ,]OIZ,M;) = (By, By, 0n) in D3, where By and B, are two independent standard Brownian motions.

Proof of Theorem 6. Using the equality 7" =X"A0and (15) in (30), we have

X'()=X"(0)+ () - /0 X"(s)A0ds = V2B(-) in D asn— oo, (31)

where B is a standard Brownian motion.
By Pang et al. [12, theorem 4.1], there exists a unique solution x € D to the integral equation

t
x(t) = x(0) — Bt — / x(s) AOds + y(t), for all £ > 0, (32)
0
and the mapping ¢ : D — D, which maps the function y in (32) to the solution x, is continuous in the J; topology.

Further, if y is continuous, then so is x. Hence, the statement of the theorem follows from (31) and the continuous
mapping theorem, by noting that

X" =p(X"()=X"(0)+p"n() - /0 R"(s) A0ds),

and that X¢ = $(V2B). O
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5.4. Proof of Theorem 7
To establish the LOF limit, we consider the following scaled processes:

én(t) = 71_3/4Q”(n1/4t), z"(t) = 1’1_3/4(Zn(7’11/4t) _ 7’1),
—~n _

Zl(i’) = n*3/4Z;1(n1/4t)l Z;(t) = n—3/4(zrzz(nl/4t) —n),
ég(f) = n_3/4Qn(1’ll/4f), Zj(t) = n—3/4zg(n1/4t)l
ﬁ’f(t) = n AU (4, ﬁ;(t) = n AU (4,
\7n(t) = n_3/4vn(7’ll/4t), En(t) = n—3/4Ln(nl/4t)/
w"(t) := n' " ('), Ty :=n/4T],

and M?(t) :=n~3/4*MP*(n'/4), for i = A, S,R. Then the corresponding scaled process in (17) is represented via
on on f—n ~n tin ~n
X(n:X(m—ﬁ%—#M/}z@m9+V(ﬂ+#M/(zdg—9Q&@ys
0 0
t—n ~n ~n ~n ~n
+MM/(ug@—euggyyuwAﬂ—Mgﬂ—N%a) (33)
0

The proof of Theorem 7 builds on the following three supporting propositions, whose proofs appear in Section 6.
Throughout, we assume that (Ib) holds.
Proposition 6. Asn — oo,

a. n1/4(/O'Zg(s)ds, /O'Qg(s)ds) = (0n,0n) inD?and T = 0inR;

b. (M, Mg, My) = (0n,0n,0n) in D

c. n1/4/0‘ U (s)ds = On in D; and

d. n'/4U, = 0, so that n1/4/0'ag(5)d5 = 0ninD.

Proposition 7. {én :n > 1} is C-tight in D.
Proposition 8. Asn — o
=n 0* [ =n 2 ,
VO+7/@@D%:%mD (34)
0

For a given ¢ € Dy, we say that (y,1) € D? is a solution to the Skorokhod problem if
y=o+y;

¢
/ y(s)dy(s) =0, forall t > 0;
0

y >0, Y(0) =0 and 1) is nondecreasing. (35)

It is well known (e.g., see Chen and Yao [2, theorem 6.1]) that the Skorokhod problem in (35) admits a unique sol-
ution (y,1), and that i : Dy — D?, mapping the input ¢ to that solution, namely, the map defined via

h(¢) = (v, ), (36)

is (Lipschitz) continuous in the J; topology; see theorems 13.4.1 and 13.5.1 in Whitt [21]. (Continuity of h is
proved only in the uniform topology in Chen and Yao [2].) Further, if ¢ is continuous, then so is hi(¢).

Proof of Theorem 7. lkDue to Proposition 7, any subsequence of {én :n > 1} has a further weakly converging sub-
sequence in D. Let {Q :k > 1} denote such a converging subsequence, and let Q denote its weak limit. Let ®* € D
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and @ € C be defined via
k d s [k
(=X (1) +k Z (s)ds, (37)
0
6>
D(E) =X~ pt - / Q2(s)ds. (38)
0

By (33), Propositions 6 and 8, and the continuous mapping theorem, it holds that

oF - Xk(O) + B + % / (Qk(s))zds =0n inD ask— oco.
0

~k
The convergence Q = Q in D and the continuous mapping theorem together give
@", @) = (Q,®) in D? as k — co,
We need the following lemma, the proof of which appears at the end of this section. Recall /1 from (36).
Lemma 1. (O, X ,X — ") = (D, (D)) as k — oo in D°.

Denote (X, W) := h(®), so that X=0+¥ and X >0 w.p.1. Because & maps Cj to C? and @ € Cy, we have
(X, W) € C2. The convergence X* = X and the continuous mapping theorem imply that

ék :)~(kv0 = Xv0, inD asn— o,
and thus Q = Xv0 =X, w.p.1. In particular, (38) simplifies to
92 t
D(t) = X — pt - o / X2(s)ds. (39)
0
It follows from (35) and the fact that (X, W) = h(®) that ¥ is a nondecreasing process with W(0) = 0, such that
X=®+W and / 1{X(s) > 0}d¥(s) = 0ry(.).
0

Hence, conditional on {Xy = x¢}, for xy > 0, and using (39), (y, ) := (X, V) satisfies the following:

2t
y(t)zxo—ﬁt—%/oyz(s)ds+¢,

/tl{y > 0)dy = 0,
0

(y,¥) € C% y>0,¥(0) =0, and ¢ is a nondecreasing process. (40)
The next lemma is proved at the end of this section.

Lemma 2. There exists a unique solution (y,¢) = (xr,0n) to (40) for any input xo > 0 and B <0, where xp is the unique
solution to (9). Further, the function ¢ : Ry — C2, mapping x to (y,1), is continuous.

It follows that, conditional on {Xy = xp}, X = xr w.p.1, so that (X, Q, Z) = (xg, x¢ v 0,0n) w.p.1. The uniqueness of
the limit implies the stated weak convergence. O

Proof of Lemma 1. For fixed 7 > 0 and € > 0, and for each k > 1 such that k3/* < ¢, define the event
Sk Sk
2k =5ke, 1) = {—e <X'(0), inf X' (A0 < —36}.
=T
We first show that 2 is an asymptotically null event in the sense that P(EF) — 0 as 11 — co. To this end, let £ be
<k
such that X (#5) < —3e. For

th= sup {t < t’{ : }~(k(t) > —e},
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it holds that }~(k(t’§—) > —e. As X" is a pure jump process with jumps of size 1 and ~1 w.p.1,
Xt = (o) — k3 > 2e.

Let¢p:=—p- QZ(Q)Z/Z € D so that ®(f) = ©(0) + /Otgb(s)ds fort>0:
—e > X (#5) = X (#5) = O () — OF(£) — k4 f "% (5) A 0ds
t

2 ®(t) - (t5) - 2| — P, + k' (t; - tr)e
> —( — Bl — 20 — D], + K/ ~ K)e.
This strict inequality can hold if either ||@||, > k'/* or ||®* — @||, > /2, implying that
B {[|0F - D, > ¢/2} U {[lgl, = k4.
As both events on the right-hand side are asymptotically null under the probability measure P, we conclude that

P(EF) — 0as n — oo. .
Next, Xy > 0 implies that P(X (0) > —e) — 1. Together with the fact that P(EF) — 0, we have

P 1tr<1f }~(k(t)/\0 <—-3¢|—0, foralle>0 andt>0,
=T
and thus
X'A0=0q inD asn— oo, 41)
It is easy to check that @ — X n0e Dy and that

(52" V0, k4 / X s) /\Ods) = (@ — X" A0).
0

Now, due to (41)
qu—f(k/\O:CD inD asn— oo,
and so
(;(kvo,fik - @) = B(®) in D> asn — co.
Thus

(DF, )~(kv0, i(k -0 = (®,h(®)) inD® asn— oo.

Writing X' =X"A0+X"v0and employing (41) gives the stated limit. [J

Proof of Lemma 2. First, it follows from the standard theory of ordinary differential equation that (9) has a
unique solution. (It is easy to check that xr in (10) and (11) satisfies (9) when <0 and = 0, respectively.) Then,
(xr,0n) trivially satisfies (40), and it remains to show that it is the unique element in C? to have this property.

To this end, let (y1,1,) € C? be a solution to (40). The fact that 1, > 0 implies that

2 et
n(0=x0= =5 [GO-¥6Ns 4,0

2 t
> - 67/0 (11(5) + xp(8)) (1 () — x¢(5)) " s,
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and

2 ot
(y1(t) —xp ()™ < (ya(F) — xp(£)" + %/ (y1(s) + x£(s))(y1(s) — xp(s))*ds, forall t > 0.
0

By Gronwall’s inequality, for each ¢, there is a ¢; > 0 such that
() = xp(1)” < cya(t) —xp(1)". (42)

As a™ >0 implies that a* =0 for a € R, (42) implies that (y; —xr)” =0, so that y; > xr. Therefore, if either f <0 or
xo >0, we have y;(t) > xp(f) > 0 for all + > 0. By (40), we immediately have 1), = 0n, and thus y,; solves (9) and
must equal xp.

Next, consider the case f = 0 and xy = 0. For ¢ such that y;1(f) > 0, we have

dy,(t)/dt = —0%y,(t)*/2 <0, forall t >0 such that y;(£) > 0.

Together with 1(0) = 0 and y; € C, we have y; = 0, so that i), = —y; = 0n.

Finally, it follows (10) (or (11)) and ¢ = 0n that the map xp — (y,¢) is continuous, completing the proof of
Lemma?2. O

5.5. Proof of Theorems 3 and 5

We will need the following two supporting propositions, the proof of which are given in Section 6.5. We omit the
proof of Theorem 3 since its assertion (i) follows immediately from Theorem 5, and its assertion (ii) follows from
Proposition 10 and Theorem 6 by similar arguments used to show that Theorem 5 follows from Proposition 9
and Theorem 7.

Proposition 9. Forany B € R, {)~(n(oo) :n > 1} is tight in R. Further, )~(n(oo) AO=0inRasn — oo.
Proposition 10. If 3 > 0, then {5(”(00) :n > 1} is tight in R.

Proof of Theorem 5. For each n > 1, we consider a stationary version of the processes X" and L" by taking
X"(0)2 X"(c0) and L"(0)2 L"(c0). (43)

Due to Proposition 9, each subsequence of {X"(c0):n>1} has a further weakly converging subsequence; let
{Xk(oo) :k>1} be such a converging subsequence, and let X, be its weak limit. Then by our choice of the initial
distribution, it holds that y(k(O) = Xo, and the stated convergence in Proposition 9 implies that X, >0 w.p.1.
Moreover, by Proposition 4 it holds that Zk(O) = 0ask — co.

Now, conditional on the event {X, = x¢}, for xp € R,, we have X'= Xg in D as n — oo by virtue of Theorem 7,
where X? is the unique solution to the IVP (9) with initial condition X%(0) := X; = xo. Moreover, the stationarity
of the prelimit {X "in>1} implies that the limit X? is strictly stationary as well, so that X%(t) d Xp forall t>0.

To show that Xy = x*, w.p.1., recall that any solution to the ODE in (9) converges monotonically to x* as t — co.
Hence, on the event Ej := {Xj # x*}, it holds that

IX0(t) — x| < |Xo—x"| forallt>0,

in contradiction to the stationarity of X;, so that Ej is a P-null event. Thus, the limit of all weakly converging sub-

sequences of {}~(n(0) :n >1} is x*, implying that }~(n(0) = x* as n — oo. The result follows from our choice of the
initial conditions in (43). O

5.6. Proof of Proposition 1

To prove Proposition 1, we need the following comparison lemma, whose proof appears at the end of this sec-
tion. Consider two M/M,./n + M, systems, denoted by P; and P,, both having service rate u = 1. Let the arrival
rates A;in P;, i = 1, 2, satisfy A1 > A, the abandonment rate 0, of Py satisfy 0 < 0; <1, and the abandonment rate
0, of P, satisfy

0, 291/(1—91)291.
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Note that we allow for 6; = 0, in which system P; reduces to an M/M/n system. (In this case, we assume that all
the customers that are initially in the system have exponentially distributed remaining service times, each with
mean 1.)

Let X; denote the number-in-system process in P;, i = 1, 2. If either 6, > 0 or A; <n, Theorem 1 implies that X;
has a stationary distribution, which we denote by X;(0).

Lemma 3. If 61 > 0 or Ay < n so that X;(co0) and Xp(o0) exist, then Xq(c0) >y Xp(c0).

Proof of Proposition 1. We write X¢(t; pB) to make explicit the dependence of the distribution of the process Xc
on the value of 8, as well as of its stationary distribution (when t := c0). Fix € > 0, and consider a sequence {f! :
n>1} CR, satisfying ! > " and B! — € as n — co. Let a sequence of M/M,./n + M, systems be labeled by #,
with arrival rate A} := n — B!, service rate 1, and patience rate 0/(1 — 0). Denote by X/(co) the stationary distribu-
tion of the number-in-system process of the nth system. Lemma 3 and the existence of X[(co) imply that
X! (00) <4 X"(0), so that, for any M > 0,

P(X"(00) > M) > P(X.(c0) > M).
On the other hand, Theorem 3 gives
P()A(:(oo) > M) — P(}A(c(oo;e) >M) asn— oo,
so that
liminf P(X ' (c0) > M) > P(Xc(c0;€) > M), for all M > 0.

Finally, (5)—(7) give

lim P(Xc(o0;€) > M) = 1.
e—0"

Therefore, P(X (c0) > M) — 1 as n — oo for any M > 0, implying the result. O
It remains to prove Lemma 3.

Proof of Lemma 3. We assume that the arrival process to P; is the superposition of two independent Poisson
streams, with stream 1 having rate A, and stream 2 having rate A; —A,. We consider a coupling of P; and P,
such that (i) both systems start empty; (ii) stream 1 arrivals to P; and all arrivals of P, follows the same Poisson
process; and (iii) any stream 1 arrival to P and the corresponding arrival of 7P, have the same service time. Using
this coupling, we will show that the sojourn time of every stream 1 arrival to P; is at least as long as that of the
same arrival in P,. We label the stream 1 arrivals to P;, that also constitute the arrivals to P,, by 1,2, ---, and
denote by S; the service time of customer i. We denote the coupled number-in-system processes in P; and P, by
X; and X,, respectively.

The proof proceeds by induction. First, customer 1 in P, enters service immediately upon arrival, so that the
customer’s sojourn time is S;. The same customer in P; may (i) enter service immediately, and experience the
same sojourn time Sy; (ii) enter service after waiting in queue, so that the customer’s sojourn time is greater than
Sy; or (iii) abandon the system, after waiting for 6{181 > S1 units of time. In all three scenarios, the sojourn time
of customer 1 in P; is at least as large as in P;.

Take the induction hypothesis that the first j customers have equal or shorter sojourn times in P, than in P;.
There are three cases to consider in order to show that the same is true for the (j + 1) st customer.

Case 1: Customer j + 1 abandons P;. In this case, that customer’s sojourn time in P; is equal to 91_15]-+1. On the
other hand, the sojourn time of customer j + 1 in P, is bounded from above by the service requirement S;,1 plus
the patience time 65'S;,1. Because (1 + 6,")S;41 < 67'S;41, the ordering of the sojourn times for the first j custom-
ers in the two systems remains to hold for the (j+ 1) st customer.

Case 2: Customer j + 1 is served in P but abandons P,. For 1 <k <j+1, denote by D,l and D% the time when
the kth customer leaves system P; and system P, respectively. By the induction hypothesis, we have D} > D? for
k=1,2, ---,j. Denote by F}H the time when customer j + 1 enters service in P;. Clearly, the first j customers are
not in queue at this time, namely, each of them is either in service or has left P; (either via abandonment or
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service completion). In particular, if customer k <7 is still in system Py, this customer must be in service. For a
system with n servers, we then have
j+1
> UD; <Fj,;}<n, and D}, = F},; +Sj1 > F}
i=1

+ j j+1 j+1s

so that
j
S YD} <Fl b <n-1.
i1
Using D; > D? fork=1,2, -+ ,j, we have
j j
S0P < By} < D! <Pl <01,
P P

so that there are no more than 7 — 1 of the first j stream 1 customers in P, at time F}H.

and customer j + 1 abandons system P,, customer j + 1 must have abandoned system P, by time F} -1~ Therefore,

As system P, has n servers

customer j + 1 has equal or shorter sojourn time in system P, than system P;.

Case 3: Customer j + 1 is served in both systems P and P,. As in Case 2, there are no more than n — 1 custom-
ers of label 1,2, -+, j present in system P, at time F,,. In this case, customer j + 1 is served in system P, so this
customer must have entered service by time F}H, implying that the customer’s delay in queue in P, is no longer
than the customer’s delay in queue in P;. Because the service time of this customer is the same in both coupled
systems, the ordering of the customer’s sojourn times in both systems remains as in the previous two cases.

In either of these three cases, the ordering of the sojourn times of the stream 1 customers imply that X;(t) >
}v{g(t) w.p.1, so that X;(t) > X»(t), for all £ > 0. Because X;(t) = X;(c0) as t — oo, for i = 1, 2, by Theorem 1 (inde-
pendently of the initial condition), the result follows from the fact that stochastic order is maintained under
weak convergence (Kamae et al. [8, proposition 3]). O

5.7. Proof of Proposition 4

Let w}, be the offered waiting-time process in the nth system, namely, w/(t) is the time that an infinite-patient cus-
tomer (that does not abandon) would have to wait if the customer arrives at time ¢. Similar to the proofs of Theo-
rem 1 and Proposition 3, (X",Q", Z",L",w!) has a unique joint stationary distribution. Let Z"(c0) and w/}(c0)
follow the marginal stationary distribution of Z" and w!,, respectively. Notice that Z"(co) = X"(c0) an and let

Z"(00) := " VA(Z" (00) — 1) = X" (c0) AO.

Consider a generic customer with service requirement S and patience time T =07'S arriving at the system
in steady state. The offered waiting time of such a customer is distributed like w!(c0) due to PASTA (Possion
arrivals see time average), and is independent of 5 and T.

To prove Proposition 4, we need the following lemma, the proof of which appears in Section 6.5.

Lemma 4. Forany €R,

E[Z"(0)]/A" + O*E[(w!(c0) A T)*1/2=1, foralln>1, and limsup E[Zn(oo)] > —co. (44)

n—oo

Proof of Proposition 4. We will show that
E[L"(c0)] < A"(1 + 6*)E[(w!(c0) AT)*]/2, for B€R. (45)

and give separate estimation of the right-hand side to prove assertions (a) and (b).
To prove (45), we consider the generalization of Little’s law, known as H = AG; for example, see Wolff [22,
chapter 5]. Assume that the system is initialized in steady state, and let EY, v}, and T} be, respectively, the arrival

time, offered wait, and the patience of the jth arrival. Also let
& (t):=(t—E)I{t € [E}, E] + (v] AT}

+ (60;7 —(t- E}‘ - v}‘))l{t € [E;? + v;’,E;? +(1+ 6)1)]'7],0;’ < T]’?},
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We claim that
(o)
L'(t) = > g} (t), for all ¢ > 0. (46)
j=0

To see this, recall that L"(¢) is the sum of the elapsed waiting time for all customers that are in the queue, plus the
remaining phase 1 service time for all customers in service. Now, customer j is in the queue at time ¢ if j is an ele-
ment of the set {;: Ef <t<E'+ (v]’-1 /\T}l)}, and the elapsed waiting time of that customer is f — E{'. On the other

hand, customer j is in phase 1 of service if j is an element of the set {j: T} > v, E} + v} <t <E} + (1 + 0)v}}, and
the remaining phase 1 service time for that customer is 60} — (t — Ef' — v}'). Hence, we obtain (46).
Let

G = /O gl (B)dt = ()} AT} /2 + T} 2 0] }(60]) /2.
Because the system is considered to be in steady state, G;’ is, for each j > 1, distributed like

G := (W) (e0) AT) /2 + H{w}(e0) < THOW}())* /2,

where w!}(0) is the stationary offered wait defined in Section 6.5, and T is an exponentially distributed random
variable with rate 0 that is independent of w!!(co).
It follows from the following inequality,
1+ 62
2

and the trivial inequality w!!(c0) AT < T, that E[G"] < co. It is also easy to check that (198) in chapter 5 of Wolff
[22] holds, so that, by theorem 5 in this reference,

E[L"(c0)] = A"E[G"],

G" = (w!(0) AT)?/2 + Hw!! (o) < THOW! (0))*/2 < (W' (c0) AT)?, (47)

which, together with the inequality in (47), gives (45).
To prove assertion (a), it is sufficient to prove that, if § > 0, then

E[(w!(c0) AT)*] = O(n ™). (48)

Consider a sequence of M/M/n (Erlang-C) systems, each with service rate 1, and with arrival rate A" to the nth
system. Notice that the M/M/n system can be regarded as an M/My./n + M, system with no abandonment, so
that we can apply the coupling in Lemma 3 between the two M/M,./n + M, systems (one with abandonment
rate that is equal to 0, and the other with rate 0).

Let the two coupled systems be initially empty and consider a customer that arrives at both systems. Inspect-
ing the three cases in the proof of Lemma 3, we claim that the customer experiences longer delay in the Erlang-C
system. First, Case 1 is irrelevant, because there is no abandonment in the Erlang-C system. The proof of Case 2
in Lemma 3 shows that the patience of the customer in the M/M,./n + M, is shorter than the waiting time of
that customer in the Erlang-C system. In particular, the delay in queue of the customer is shorter in the
M/Myc/n + M, system than in the Erlang-C system. Finally, the proof of Case 3 in the proof of Lemma 3 shows
again that the waiting time of the customer in M/My. +n/M,. system is shorter than in the Erlang-C system.
Therefore, the waiting time of any customer is smaller in the M/M,./n + M, system than in the coupled Erlang-
C system. As > 0 implies that " > 0 for sufficiently large #, there exists Ny € Z,. such that the Erlang-C system
is stable for all n > Ny. In particular, for n > Ny, the stationary waiting time of the M /Mpc /n+ M. system is sto-
chastically dominated from above by the stationary waiting time of the Erlang-C system.

Let w};(c0) denote the stationary waiting time in the Erlang-C system, and note that the stationary waiting
time of a generic customer in the M/M,./n+ M, is distributed like w/}(co) AT. Then, the stochastic ordering
wh(00) AT <4 wi;(00) just argued implies that

E[(w](00) AT)] < E[(a0]; ()] (49)
Now, the waiting time of an arriving customer to the Erlang-C system that finds g — 1 customers in queue, 4 > 1,

is distributed like the sum of g independent exponential variables with mean n~!. Letting {)} be a sequence of
i.i.d. exponential random variables with mean 7~ and Q%(c) be the stationary distribution of the queue length
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Qfj(e0)

process in the Erlang-C system, it holds that wu(oo) Y0 vt dueto PASTA, so that

Qi) \?
E[(w},(0))’] ( Z Vi ) ] n=2E[(Q};(00))*] + n™2E[Q}y(c0)].

Because {Q};(c0):n>1} is a sequence of stationary queues of M/M/n systems staffed according to (1), we can
apply the (explicit) limits for the first and second moments of the diffusion-scaled process in Halfin and Whitt [7,
corollary 1], to conclude that E [(w{‘l(oo))Z] =0O(n7'). Hence, (48), (45), and thus assertion (a), follow from (49).
Finally, by Lemma 4,

El(@}(00) T)"] = =207 2(A") 0 *E[Z" (00) + "] = O(n™'/%),
(45), and thus assertion (b), immediately follow. O
6. Proofs of Supporting Results for Process Limits
In this section we prove Propositions 5-10 and Lemma 4. The proofs of Proposition 6-8 appear in Sections
6.1-6.3, respectively. A few supporting lemmas that are used in the proofs of the propositions are given in

Appendix A. The proof of Proposition 5 is given in Section 6.4, as it requires arguments that are developed in
Sections 6.1-6.3. The proofs of Propositions 9 and 10 and Lemma 4 appear in Section 6.5.

6.1. Proof of Proposition 6
We refer to the customers that are in the system at time 0 as the initial customers.

Proof of Assertion (a). Fori=1,2, ---,Z"(0) and j = 1,2, -, Q"(0), let g/'(f) be the elapsed phase 1 service time of
the ith initial customer in service, and /1}(t) be the elapsed phase 1 service time of the jth initial customer in the

queue, at time ¢. Then

Z"(0) Q"(0)-Qg(6)

/ Zios= g0+ 3 HO,

i=1
Notice that g/'(t) < r7(0), forany i=1,2, ---,Z"(0) and t > 0 and that
hi(t) < 6€7(0) + O(Tj At)
for an initial customer i who has left the queue by time t. Hence,
Z"(0) Q'
/ Zisys < 31100+ 3 €10) + (T AN (0) - Qff)
<(1+6)L"(0) + O(Ty At)(Q"(0) — Qp(t)), for all £ > 0. (50)

To bound ./ot Qg (s)ds, notice that each initial customer in the queue waits for at most T} At during [0, ], so that

t
f Qu(t)dt < (T2 AHQ™(0), for all £ > 0. 51)
0
Now, since Zg and ég are nonnegative processes, (50) and (51) give

0<nl/ / ng(s)ds <(1+6)L"(0)+6TIQ"(0),
0

0<nl/t / On(s)ds < TiQ" (0).
0
Due to (Ib), it suffices to prove that Tj = 0 in R, as n — oo; in particular, we need only consider the event
{T§ > 0 for all n large enough}. Let
T} :=4n~'(1+ 6)(L"(0) + 1),
and note that T{ = 0in R as n — oo. For each n > 1, define the event

Y":={T} < T} and Z}(t;) < n/2 for some t; € [T}, T}
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We will show that P(Y") — 0 as n — co. To this end, note that, because Z(s) = Z{j(s) for s < Tjj (because Zj(s) is
the number of initial customers that are in phase 1 at time s) and Zj + Qj is nonincreasing, it holds on the event
Y that, forall s € [0, T}],

Zi(s) +Qp(s) = Zj(to) + Qp(to) = Zy(to) = Zi(to) > n/2.
The last inequality and (50) give the bounds

nT}
2

T
< A (Z3(s) + Qp(s))ds < (1 + 6)(L"(0) + 2T7Q"(0))

nT’lq nMn
<7t 2(1+0)T7Q"(0), (52)
where the equality in (52) follows from the definition of T7. Notice that (52) cannot hold when Q"(0) < (1 + 0)!
n/8, and so, together with (Ib),
P(Y") < P(Q"(0)> (1+0)'n/8) >0 asn— co.
Thus, we need only consider sample paths on the complementary event Y*. On this event, either Tjj < T7 or, if
T > TY, then there are at least 11/2 customers in phase 2 service over the interval [T, T ], in which case the total

service rate is at least n/2. In either case, for a sequence of ii.d. exponentially distributed random variables
{&; : k> 1}, each having rate n/2, it holds that
Q"0
Tg Sst. T? + Z S;cl,
k=1

where the latter sum is defined to be equal to 0 on {Q"(0) = 0}. It follows that Tj = 0 in R as n — oo, implying
the result. [

We need the following lemma, whose proof appears in Appendix A, for the proofs of assertions (b) and (c).
Lemma 5. If (Ib) holds, then {én :n > 1} is stochastically bounded.

Proof of Assertion (b). Consider the predictable quadratic variation of the (local) martingales (M;,M;,M;) As
n — oo, the following limits hold in D:

(M) = =32 m"4A")n() — o,
nl/a.

0< (MI)() = n3 / 77(s)ds < n V4 — 0y,
0

0< (M) =" / 0" (s)ds = On,
0

where the last weak convergence follows from Lemma 5. Hence, (]\712,]\71 ;,1\71;) = (0n,0n,0n) in D3, asn — oo by,
for example, theorem 8.1 in Pang et al. [12]. O
To prove assertions (c) and (d), we need the following lemma, whose proof appears in Appendix A.
Lemma 6. {w" : n > 1} is stochastically bounded in D.
Proof of Assertil (c). We will show that {n'/? /0 ' a};(s)ds :n > 1} is stochastically bounded in D, from which the

assertion follows immediately. To this end, note that similar arguments to those in (24) give

t""}’l t ~n ~n
n1/2/ U, (s)ds :nl/z/n (n™120w" (s1-)) A (t — 51)dMg(s1)
0 Tont

t ~n
_ / 6" (s1-)dM(s1)
Toynt

=N/
oAt

t _ + ~n
—n1/2/ (n_l/ZQw”(sl—)—t+S1) dM(s1). (53)
T
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Because ]\712 is an F}-martingale and w" (s;—) is a predictable process, /0 '%"(sl—)dﬂg(sl) is also an F}-martingale,

with corresponding predictable quadratic variation process,
([ o ciitiion) = [ (@i Pacitiy ) < (1071 P50
If follows from Lemma 6 and the proof of assertion (b) that
</0'9@"(51—)d]\~/12(51)> = 0n inDasn— oo,
implying that
‘/O‘it'}"(sl—)d]\zg(sl) =0n inDasn— oo,
due to the martingale FCLT (e.g., theorem 8.1 in Pang et al. [12]). Hence, for any ¢ > 0,

€"(t) := sup =0 inR asn— oo. (54)

s€l0,t]

s ~n
[ ® G-ty
T As

To treat the second integral in the right-hand side of (53), we first observe that, for s; € [0, ],
(200" (s1-) — t+51)" <nV20|[@"||,1{s, + n~20w" (s1) > t}

<n PO 151 2 £ - 2003,

so that
e [ 1/2 o= n v —ny [ =~
" // (265" (s1-) ~ t +51) dM(s1)| < T ||t/ Al (55)
Ty At t=n=1/20)[@" |,

Furthermore (recalling that Z ; is centered about n),

~ t ~

M(t) + n1/4/ (n"/* + Z5(s))ds = n~3/*D" (n'/44), (56)

0

is a nondecreasing pure jump process and —nl/t < ZZ <0, we have
/ AR < / D () + |2+ ) )
s s
<n=3ADM (A — 3D (' 4s) + \n(t —s)
= Mg(t) — Mg(s) + 2v/n(t —s) +n'/* / tz;(sl)dsl
s

< 2|[Mgl, +2vnl(t -s), (57)
for all 0 <s <t. Plugging (57) in (55) gives

< 2)16@" |, (IMgll, + 167" ],)- (58)

t + ~n
nl/zf (n’l/ZGZTJ"(sl—)—t+sl) dM(s1)
T

N

It follows from Lemma 6 and assertion (b) that the right-hand side of (58) is tight in R. Next, plugging (54) and
(58) in (53) gives

<e"(t) +2)|0@"||,(|MLll, + 16@"||,) for all £ > 0.

nl/z‘/. ﬁ?(s)ds
0

t

Therefore, {nl/z/o. EIT(S)dS n> 1} istightin D forany > 0. O



Downloaded from informs.org by [129.119.235.26] on 22 September 2023, at 08:21 . For personal use only, all rights reserved.

Perry and Yu: Queueing System with Perfect Correlation
1142 Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 1119-1157, © 2022 INFORMS

To prove assertion (d), we need the following lemma, the proof of which appears in Section A of the appendix.
Recall F"(s, t) from (25).

Lemma 7. For each t > 0, {F"(s,t) : s € [0, t]} is a martingale, and {eetsupse[oﬂ |F"(s,t)| : t = 0} is a submartingale, both
with respect to their augumented natural filtration.

Proof of Assertion (d). For 7 > 0, K > 0, and F"(s, t) in (25), let
M (1,K;s,t) = sup |F"(s,t)],
s, te[0,n'/*7],
t—se[0,n~1/4K]
and observe that
~n _ ~
n' AU, I, < 2n7V2M (g [@"| s, 8).-
Thus, the proof of the assertion will follow if we show that, for any € > 0,
P P M (z,||@"|,;5,t) > €) = 0 asn — oo,

which is what we prove next.

Fix € > 0. Because {w" : n > 1} is stochastically bounded in D by Lemma 6, we can find a K := K(e) > 2, such
that P(||w"||, > K) <€ for any n. Notice that the value of F(s,t) only depends on arrival times at (s,#] and the
patience times of those arrivals, implying that F” is time-invariant in its two parameters, in the sense that F"(s, f)
and F"(s +r,t +r) have the same law for any r > 0.

Let J" be the smallest integer satisfying J" + 1 > n'/?t /K, and let

[l := [0 A K(j - 1),n VA K(j+ D] N [0,n 7], forj=1,2, -, J".

Observe that, for j=1,2, --,]" — 1, the length of each I is 2n~1/4K and the length of Inr,, is n~Y4K. It holds
that, for any s,t € [0,n'/47] for which [s, ] € [0,#'/47] and t —s < n~'/*K, the interval [s,] is contained in at least

one of the intervals {I]” :j=1,2, ---,]"}. Therefore,

]Vl
P2 M (1,K;s,t) > €) < ZP[H‘” 2 sup |F'(s,1)] > 6]

— n <
]_1 s,)EI], ys<t

s]”P(nl/2 sup |F'(s,t)| > e), (59)

s, el s<t

where the second inequality is due to the aforementioned time-invariance property of F”, which implies that all
the probabilities in the sum, except possibly the last one (which may be smaller than the rest), are equal.
Employing Lemma 7, we have

P(n_l/2 sup |F'(s, t)| > e)

0<s<t<2n~1/4K

<Pl sup ¥ sup |F'(s,t)| >n'%
te[0,2n~1/4K] s€[0, t]

6
<enE

20K sup  |F'(s,2n"Y*K)|
se[0,2n-1/4K]

< 76120 K g /5)6E[(n’1/21-"” @n V4K, 2n’1/4K))6], (60)

where the second and the last inequalities follow from Doob’s [’-maximal inequality (e.g., Revuz and Yor [17,
theorem 1.7]) for p = 6, for the (sub)martingales in Lemma 7.

It remains to compute E[(n~"/2F"(2n~/*K2n~1/*K))®] to bound the right-hand side of (59). Note that, condi-
tional on A"(t), the vector of arrival times (E}, E,...,E", (t)) is distributed as the vector of ordered statistic of A"(f)
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uniform random variables on [0,t]. Therefore,
t
/ UE g + Ty = BAA™(5)
0

is, conditional on A"(t), distributed like Zf:;t) Bi(t), where, for each t >0, {Bi(t) : k > 1} is a sequence of i.i.d. Ber-
noulli random variables, each distributed like B, := 1{U + T > t}, where U is uniform on [0,t], and T is exponen-
tially distributed with rate 6 that is independent of U. Thus, E[B;] = 0571 (1-e), and

A”(t)
(L0 < Z By(t) - E[B;]A"
Let b, denote E[B;] for t = n'/*K;
B” = E[Bn‘1/41<] = (n_1/461<)_1(1 — e‘”_l/"(ﬂ().

Let ¢, denote the moment generating function of n~"/2F"(n"/4K,n"1/*K). Using the identity E[a*""] = exp ((a —
1)A"™t) for each a > 0,

®,(8) := E[exp (sn™ Y2 F"(n /4K, n"V/*K))]
= E[(E[¢" B ])An("imK)]exp (=sA"n3/*Kb,,)
= E[(bue” " +1=b,)"" """ Plexp (=sA"n"3/*Kb,)
=exp (VAN KD, (e - 1))exp (—sA"n~/4Kb,,)
=exp (y”(e”_l/zs —1-n"12s)), foralls>0,
where
Y= nVAAKE" = 9—1An(1 _ e—n’1/49K) — O(n3/4).

We claim that ¥ (0) = O(n7%/8) for all k € Z.., where ¢¥)(s) denotes the kth derivative of ¢, taking value ats. We let
Qn(s) = y”(e”_ms —1-n"%), fors>0,

so that ¢, = exp (g,), and note that g,,(0) = g/,(0) = 0 and g\ (0) = O(n¥/47*/2) for k > 2.

We prove this latter claim by induction. First, for k = 1, we have
9,(0) = 9,(0)3,,(0) = 0= O(m™"").
Next, take the induction hypothesis that ¢")(0) = O(n="/8) for all m < k, and consider the (k + 1) st derivative:
P00 = (9,8 (0)

—2( ) ®(0)g(0)
=0

-2

) () )1/ 4112

=

Z (n~ /80Dy 1 /412
j=1

= O(n~ /801y ~1/4
_ O(n—l/s(k+1)).

This proves our claim that ¢ (0) = O(n7*/®) for all k € Z. In particular, taking k = 6 gives
E[(n™2F"(n™*K, n7/*K))°] = O(n /%),
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Using this fact in (59), and then in the upper bound in (60), we obtain
P2 MM, K;s,t) > €) = O(n™%), foralle >0. O

6.2. Proofs of Proposition 7
To prove Proposition 7, we need the following lemma, the proof of which appears in Section A of the appendix,
together with the proofs of the rest of the supporting lemmas of this section.

Lemma 8. If (Ib) holds, then {f(n n>1}, {2n n>1}, {2? - Zg :n>1},and {2; + Zg :n > 1} are stochastically bounded
inD.

Proof of Proposition 7. We first show that, as n — oo,
V() - % /0 (@) (s)ds + /0 0(Z.(5) - Za(s))@" (s)ds = On in D. (61)
Using the definition of V" in (29), we have
V') = /T t t[(eaj"(s)) A2t =0 28)[(Z)(s) + n'/*)ds
A

t
_ / n—l/ZAn(l _ e—n‘1/491b”(s))ds
0

- /0 t@i}"(s)z;(s)ds+% /0 (03" (s))ds — /0 M o s ) + s

t -
- / (20T () — £+ )" (7 4 127 (5))ds
Tyt

t
+ / (nl/‘*ea;”(s) - %(6)&7"(5))2 —n 1221 - e‘”1/49ﬂ’"(5)))ds. (62)
0

Noting that 0 < Z + n/4 < n'/* and that n'/4T}; = T — 0 in R as  — co. By Proposition 6(a), we have that, for all
t>0,

T”/\‘ _ _
H/ 0 0W" (5)(Z(s) +n'/*)ds|| <n"/*Ty|[@"|l, =0, asn— oo. (63)
0

t

Next, using the fact that
(200" (s1) — t +51)" < nV20||@"||,1{s1 = t — n~V20||@"|,}, for s1 € [0, ],
we have

t —~
0< / (n3/4 + nl/ZZZ(sl))(n_l/zezT)"(sl) —t+51)"ds;
T

g/\t
t
< / nA01@" | 1s1 > £ — nV260[@" |, sy
0

= n'/*olw",(t ~ (¢ - n~'26l"l,)")

<nV4Q2([@"||,)* = O0n in D, as n — oo, (64)

where the equality follows from

b
/ H{s>clds=bvc—avc forallab,ceR.
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Define the functions

) = {(e"‘—1+x)/x %fxq&O
0 ifx=0,
-X _ _1 2 2

Hl) = (e 1+x ¥ )/x ifx#0 (65)

0 if x=0,

and note that both f; and f, are continuous at R. It follows from Lemma 6 that n='/4@0" = On in D as n — oo, and
so fi(n™*w")=0n in D as n— oo, for i = 1, 2, by virtue of the continuous mapping theorem. Writing
A" =n—p"\/n, we have

nA0w" —1/2(0@") - n~2AM(1 - e 0"
= (60" fo(On 40"y — n7 V4B 0" (1 + fL(n™V/*6w™)) = Onin D as n — oo. (66)

Using the weak limits established in (63), (64), and (66) in (62), gives
V() - %/ O*(@")2(s)ds — / QZZ(S)ZT)n(S)dS =0n inD asn— oo (67)
0 0
Now, it follows from (21) and Z" = Z} + Z, that Z @" = 0, so that
Ziw" = -Zywh. (68)

Finally, by Proposition 6(a) and Lemma 6,

/ Zh ()" (s)ds
0

‘L
<@, / Z!(s)ds = On in D.
0

t

This, together with (67) and (68), gives (61).
Next, forx € D, T >0, and 6 > 0, consider the modulus of continuity

0.(x,0) := sup {|x(s) —x(t)] : 0<s <t <1}

t—s<0

Given the assumed convergence of the sequence of initial conditions {én(O) :n > 1} the statement of the proposi-
tion will follow from Billingsley [1, theorem 15.5] once we show that

%irr}) limsup P(vT(én,é) >¢e)=0, foralle>D0. (69)

n—o0

To estimate vT(én, 0), note that, due to Proposition 6 and (61), we can write (33) as follows:

Sy oh " ‘=n 1/ »—n2
X'()=X"0)-p 77—”1/4/0Z (s) +§/0 O2(@")(s)ds
- /0 OZ1(5) - Zo($)@" (s)ds + "), (70)
for some ¢" € D satisfying ¢" = op(1). Let
&'ty = Bt + % / tez(%”)z(s)ds - / te(ZZ(s) —Zy(s)@"(s)ds, t=0.
0 0

~n -—n
Because Z =X A0, we have

X'(t) = &(t) - n'/A / ti’("(s) AOds + (), t>0. 71)
0
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Fix 0<s<t<rt. Conditional on the event & := {infue[s,t)én(u) >0}, we have that )?n(u) = én(u) >0 for all
u € [s,t), in which case (71) implies that

Q"1 -Q () < 1E"(B) = ") + lle"]l.-
Next consider the event & := {infue[s,t)én(u) = 0}. Take
So:=inf{u € [s,t): én(u) =0} and ty:=sup{uelst): én(u) =0},

and note that én is a pure jump process, so that sy < fop w.p.1. Then (:)n(so) = én(to—) =0, and Xn(u) = én(u) >0
forall u € [s,s0) U [fo,t). Thus, on &},
1Q"H-Q" @I =1Q" () - Q") +1Q" (1 - Q" (to-)
< |&%(s0) = " (s)| + [E"(H) — & (o) | +2[le" -

Overall, we see that

Q") -Q () <2 sup [&"(s1) = &E"(t)] + 2lle" e,

s1,t€ls, t]
and thus
0:(Q",6) < 20.(E",6) + 2||¢",. (72)

Now,
n n n 1 215 \2 AL ~n
[£"(H) =& )| < (t—s)| - B +50 (ko™ l1)" + OllZy = Zoll ™|l |,

and so, Lemmas 6 and 8 imply that, for any € > 0, there is an M := M(e) > 0 for which
limsup P(|&"() — &"(s)| = M(t—s)) <e.

n—o0

Thus,
limsup P(v.(&",0) > Mo) < ¢, for all 6 € [0, 1), (73)

implying that

léirr(l) limsup P(v(&",0) 2€’) =0, forall e >0.

n—oo

This, together with (72) and the fact that " = 0p(1), gives (69), proving the statement of the proposition. O

6.3. Proof of Proposition 8
We start by proving that
én - ég -w"=0n inD. (74)
To this end, consider the LOF-scaled version of (27),
Q" - Qp = 07 N1 — e Y L 1T (75)

and the (continuous) function f; in (65). It follows from the proof of Proposition 7 (the arguments below (66)) that
fi(nV*0w") = 0in D as n — oo, so that

n AL — e O = n‘l)\”GzTJ"(l - fl(n‘1/46z~t)”)) =n"'A"0w" +op(1).

Using the latter equality, A" /n — 1, and Proposition 6(c) in (75), gives (74).
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We next prove that
/O'|z;l(s) - Zg(s) - 6&7”(5)|ds = 0nin D, as n — oo. (76)
Consider the LOF-scaled version of (19):
Z(t) = Zy(t) = n73/ / t Hn V200" (s-) +s > t}dD"(n/%s), t>0. (77)

Tont
Fix a constant 7 > 0 and let
A" = sup |w" (s—) —w"(t)].

te[0, 7], se[Tyat, £,
t—s <n~120|[@"||,

Using (74), the fact that ég(t) =0forallt> fg, and noting that the jumps of én are of size +=n~1/* w.p.1, so that

SUPse(0.1] |©”(s) - én(s—)l —0asn—ocow.p.l,

=" =n ~n ~n
A'=  sup  [Q(s-)-Q (+d"<  sup  [Q(H)-Q () +0",
te[0, 7], se[Tont, £, 0<s<t<t,
t—s <n~120|[@" |, t-s<n~ 120",

where 0" = 0in R as n — co. Thus, Lemma 6 and the C-tightness of {Q":n>1}in Proposition 7 imply that A" =

0in R, as n — oco. Then, fors € [Tg At ],

Hn 120@" (1) — A") +5 > t} < H{n20w" (s—) +5 > t} < 1{n~20(@"(t) + A") +5 > t}.

For TZ = Tg +n7120(|[w"||, + A") and t € [0, 7], let Y} := {T" < t}, and note that Tj = 0 in R as n — co by Proposi-

tion 6(a), w" = Op(1) by Lemma 6, and A" = 0 as shown previously, imply together that, for all ¢ € (0, 7],

f2=>0 inR asn— oo, sothat P(Y})—1 asn— oco.

Now, on the event Y3},
t—n"20@"(t) = A") > Ty = Ty At,
and it follows from (77) and the equality

/ "1{s > c}dE(s) = Flavc) = E(bv o),
b

that
—n —n t —_
Zi() = Zy(t) =73/ / 1{s > t —n~20(@" (t) — A")}dD" (n'/*t)
Tg/\t
= n 34D (YA — n 7AD" (VA — VR O(@" (F) — AT)).
Similarly,

Z4(8) = Zo(t) < 734D (0 /4) — w74 DM (V4 — n7VAO@" () + AT)).

Forany 0 <s; <t; <1, (56) gives

n¥4 D" () — D" (n4s1) — %4 (1 — 51)]

t =n ~n ~n
/ VAZA (s)ds + Me(t) — M(s1)

S1

e [0 M.
<n /|ZZ(S)|ds+2||Ms||T
S1
T__ o = Y
sn1/4/ ZZ(s)ds+”l/4/ 1Z5(5) +Zo(s) s + 20IM],
0 s

o~ —~ T~ —~
< HZs + Zollo (b —50) + V4 / 7 (s)ds + 2 M.
0

(78)

(79)
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Plugging t; = t, and the values t —n~Y/20(w" (t) + A"), as well as t —n~Y/20(w" () — A") instead of s;, shows that, for
allt€[0,1],

|n=3/4D" (4 t) — n3AD (4t — n7VAO(@" (1) = AT)) — 62" (1)
< ON" +17V40)|Z) + Zo || ([@" ]|, + A") +n'/*0 / Zo(s)ds +2||M]|, =: 0" (80)
0
It follows from assertions (a) and (b) of Proposition 6, Lemma 8, and the fact that A" = 0 in R, that 6" = 0 in R.
Further, by (78) and (79),
|Z)(t) - Zy(t) - 03" (t)| < &7 forall t€[0,7],
so that

/T 1Z(s) = 71(s) = 6@"(s)|ds = 0 in R, (81)
T

n
A/\’[

Finally, notice that

T =n =n —n N —n .
/ |Z1(s) = Zy(s) — Ow (s)|ds < T (|27 - ZOHTZ + ||Ow ”TZ) =0 inR,
0

where the equality (order of magnitude) follows from the stochastic boundedness of {Z? - ZS :n>1} and {@":
n >1}in D, established in Lemmas 8 and 6, respectively. Together with (81), this shows that
/ 1Z1(5)~ Z(5) - 6" (s)|ds = 0 inR, forall 7> 0.
0

The uniform convergence over compact intervals in (76) follows from to the monotonicity in 7 of the integral; see

Dai [3, lemma 4.1].
S
0

Now,
for all t > 0. It follows from (76) and the fact that @" = Op(1), that the right-hand side of (82) is stochastically
bounded in R for each ¢ > 0, and because it is also nondecreasing in ¢,

/O B"($)(0F" ()~ Z1(5) + Z1(s))ds = op(1),

’ / ti)”(s)(GﬁJ"(s) — 71 (s) + Zy(s))ds 0w (s) + Zy(s) — Z, (s)|ds, (82)
0

so that
/ (Z1(s) — Z0(s)@"(s)ds = / 0@@"(s))%ds + op(1). (83)
0 0
On the other hand, for all t > 0,

\ /0 (@)~ (@"()P)ds

- ' /0 @)+ Q" (6)(@"(5) Q" (s))ds

< (I[@"l; + 11Q"I;) /O (1@"(s) + Qo(s) = Q" ()| + Qy (s))ds. (84)

By Proposition 6(a), (74), and the facts that w" = Op(1) and én = Op(1), the right-hand side of (84) weakly con-
verges to 0 in R as n — oo, for any t > 0. Notice that the right-hand side of (84) is nondecreasing in ¢, we obtain

/ (@) - (Q"(5)P)ds = 0 inD asn — oo,
0
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so that

[ @' epas= [ (@ @)asron). (85)
The statement of the proposition follows by employing (85) in (83), and then in (61). O
6.4. Proof of Proposition 5

We now prove Proposition 5, building on some of the previous arguments. Of course, Condition (la) is stronger
than Condition (Ib), and we can therefore use Propositions 6-8 in the current proof.

Proof of Assertion (a). The inequalities in (50) and (51) give
/ Zs)ds <T'(0)+ T20"(0) and / Oh(s)ds < T20"(0). (86)
0 0

The weak limit Tj = 0 in R as n — oo in Proposition 6(a) implies the assertion. O

Proof of Assertion (b). Notice that
U, (1) = n /AU, (07 4), Uy(t) = n/*Us(n" V) and V' (1) = n/AV" (nV4), t>0.

Proposition 6(d) implies that ﬁ; = 0nin D, and thus /0 ' ag(s)ds = 0nin D, asn — oo.

An n7
/Ul(s)ds = n1/2/
0 0

Using similar arguments as in the proof of Proposition 6(a), one can check that, under (Ia), n'/4T# = 0 in R as
n — oo. Inspecting the proof of Proposition 6(c) (see, in particular, (53), (54), and (58)), it is sufficient to prove that

|w"||,-1/4; = 0 in R for all T > 0. Notice that ZTJ"(T";) <n'/*T} and ég(s) =0fors> Tg Then, for 7 >0,

To prove

1

/1.
UY(s)ds =07 inD asn— co. (87)

@ ly1/ae < 0MVATE + sup{@"(s) : s € [Ty A (n~V47), 741}
<VATY +[1Q |y1s, +sup {|T"(5) — Q' (5) — Qo(s)| : 5 € [T, ™47}
<A AT+ (1Q e + 18" = Q" = Qolvic- (89)
Now,
1Q 12 < Q" () = Q" (ONly-va7 + 1Q" (O, -1/5¢
< sup Q') -Q" G +IQ Oy, =0 inR asn— oo,

s, te[0, n~1/41]
where the convergence follows from Proposition 7 and (la). Further, ||w" - én - QSHWMT = 0in R as n — oo by
(74). Because n'/*Tl! = 0 in R, as was mentioned earlier, |[@"||,-1:, = 0 in R as n — oo, for T > 0 by (88).
The proof that V= 0n in D builds on arguments in the proof of Proposition 7, by replacing t in the proof (61)
with n~1/4t. Because nl/zfg =n'/4T¢ = 0 and |[w"[|,-15, = 0 in R for all T > 0, the left-hand side of (63), (64), and
(66), regarded as processes of ¢, are all op(n~'/*). Using this in (62) gives that

1 ~1/4

/. =y
TACRES) —% / O2(@")(s)ds + / 07 (s) — Zo(s)@" (s)ds = op(n™"1).
0 0

The stochastic boundedness of {Z;l - Zg :n > 1} (Lemma 8), and the fact that |[w]],-11, = 0 in R as n — oo, imply
that

V' = n1/4Vn(n_1/4-) =0n, inD asn—oco. O
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Proof of Assertion (c). By the Poisson FCLT (e.g., theorem 4.2 in Pang et al. [12]),
A(nt) —nt S(nt) —nt S(nt) —nt
Voo looNn T

for two independent standard Brownian motions (B, B,). Notice that ]\A/IZ, ]\712, and 1\712 are the compositions of
the scaled compensated Poisson processes in (89) with the time changes

) = (B1,B,,01), inD® asn— o, (89)

¢ t
O it n A, Dt n‘1/ Z5(s)ds, and @f : f+— n_l/ Q"(s)ds,
0 0

respectively. By (15), (86), and the stochastic boundedness of {én :n>1} and {Z; + 23 :n > 1} in D, established
in Lemmas 5 and 8, respectively,
~1/4,

n A =t+o(1), n) /O Q"(s)ds = /0 " O(s)ds = op(1),

n_l‘/vZ’zi(s)ds =17 +/
0 0

(D, D5, PR) = (n,1,0n), in D?® asn— oo,

ao1/4.

(Zh(s) + Zo(s))ds — 2 / Z0(s)ds =+ op(1),
0

implying that

and the joint convergence in assertion (c) follows from the continuity of the composition map, for example, theo-
rem 13.2.1 in Whitt [21]. O

6.5. Proofs of Lemma 4 and Propositions 9 and 10

An essential step in the proofs in this section is the following stochastic-order lower bound for X". For n > 1, con-
sider an M/M/n+ M (Erlang-A) system, having independent service and patience times, with arrival rate A",
service rate 1, and patience rate 0. Let X%, Q% ,Z} denote the queueing processes in this Erlang-A system, analo-
gously to the corresponding processes X, Q", L", and Z" in the M /M. /n + M.

Lemma 9. X’ (c0) <y X"(c0).

Proof. We prove the lemma by coupling M/M,./n+ M, and the presented Erlang-A system, and showing
that the inequality in the statement holds w.p.1 for the coupled systems. In particular, we give the M/M,./n +
M, system and the M/M/n+ M system the same arrival stream and initial condition. Let E} denote by the
arrival epoch of the kth customer to the nth system. Exploiting the PASTA (Poisson arrivals see time averages)
property, and using induction, it is sufficient to prove that, if X"(E}}) > X’ (E}!), then X"(E}., ;) = X} (E},,), for all
k>1, where the inequalities hold w.p.1 for the coupled systems, from which the stochastic ordering in the
statement follows.

Hence, we initialize both systems with the same number of customers, so that X"(0) = X’ (0), and take the
induction hypothesis that X"(E}}) > X} (E}!). Consider the dynamics of the M/M,./n + M, when all arrivals are
“turned off” after the kth arrival, and let (X’,Q’,Z,{¢'},{r'}) denote the corresponding Markov process. Let X/,
be the corresponding pure-death process for the Erlang-A system with arrivals turned off after the kth arrival.
Note that the death rate of this process at state m > 1 is

da(m):=0(m—-n)v0+mnan,

and that X"(E} +-) is a pure jump process with X’(E}) jumps until it reaches state 0. For j=1,...,X"(E}), let N;
denote the jth jump time of X’(E} +-), so that N; is the jth customer that leaves the system after E;. Due to the
memoryless property of the exponential distribution, at t > E},,

i. The number of customers in queue is (X’(t) — 1) v 0, each having a remaining patience time that is exponentially

distributed with rate 0, and is independent of everything else.

ii. The number of customers in phase 2 service is X'(f) An — Z,.Z:ift) 1{t < E} +r}(E})}, with each of those custom-

ers having a remaining service time that is exponentially distributed with rate 1, independently of everything
else.
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Then Nj;1 —Nj is, conditional on (X'(N;), Z{(N;)), distributed as the interarrival time in a nonhomogeneous
Poisson process with intensity function
Z/(N))

d]'(t) = Q(X,(N]) - 1’1) vO+ X’(Nj)/\n - Z 1{t < N] + T:(N])}
i=1
Clearly, di(t) <da(X'(Nj)) forall t >0 and j = 1,2, --- X'(E}), implying that, for j < X/, (E}\), the sojourn time of the
process X/, (E}l +-) in state j is dominated by the corresponding sojourn time of X’(E} +-). Using the induction
hypothesis X/, (E}) < X'(E}), we conclude that X/, (E} +t) < X"(E} +t) for all t >0. Finally, because E},, —E} is
independent of (X/,(E} +-), X"(E} +-)), we have that X, (E},,) < X'(E},,), implying that X4(E},,) < X(E},,) for the
two coupled systems. O

Proof of Lemma 4. To prove the equality in (44), consider a generic customer arriving at the system in steady
state, and let v" be the offered waiting time of the customer, namely, the waiting time of the customer if the cus-
tomer never abandons. By PASTA, v" d w}(00). When the customer has service time S and patience time
T = 07'S, the waiting time of the customer is T Av". Note that T and v" are independent, the customer enters serv-
ice if and only if T > v", and the customer contributes 1{T > v"}S of work to the workload. In particular, the Pois-
son arrivals contribute to the mean workload of the system

AE[1{T > v"}S] = OA"E[1{T > v"}T].

On the other hand, each working server reduces the workload at a constant rate 1, so that the pool of servers
reduces the workload by Z"(c0) per unit time in steady state. Because the mean workload is constant in steady
state, we have

E[Z"(c0)] = OA"E[1{T > v"}T]
One can check that, for any x e R,
E[(xAT)*] =2072(1 —e (1 + 0x)) and OE[1{T > x}T] = ¢ %(1 + Ox),
so that
O?E[(x AT)*]/2 + OE[1{T > x}T] = 1. (90)

Exploiting the independence of T and v", taking x = " in (90), and using E[T Av"] = E[T Aw!(c0)], give the equal-
ity in (44).
For the inequality in (44), observe that, by Lemma 9,

Z"(00) = X"(00) At 25 X4 (00) A = Z1(0),

where Z (00) is the stationary distribution of the Erlang-A system. To estimate E[Z}(o0)], let P(Al);) denote the
long-run fraction of customers that abandon the system, so that E[Z/(c0)] = A"(1 — P(AV})). By Garnett et al. [6,
theorem 4], P(Ab) = O(n~'/2). Therefore, using A" /n — 1 asn — oo,

1-n"'E[Z}(c0)] = O(n™"/?),
implying the inequality in (44). O
Proof of Proposition 9. Let
7" (00) := n™¥4(Z"(00) — ) = n4Z" (00) < 0.
By Lemma 4, E [Z"(00)] = 0 as 1 — co. By Markov’s inequality,
P(-Z"(c0) > €) < =€ 'E[Z" (0)], foralle>0,

implying that 3(”(00) AD= Z”(oo) =0inR.
To prove the tightness of {y(n(oo) :n > 1}, it remains to show that {én(oo) :n > 1} is tight, where

Q' (00) 1= n™¥/4Q(00) = X" (00) = Z"(00).
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Again notice that the stationary waiting time of the arrivals is distributed as w/(co) AT. By Little’s law,
E[Q"(00)] = A"E[0}(c0) AT < A"(E[(wiy(e0) AT)*])2.
By Lemma 4,
EIQ"(e9)] < 0704 (=" — E[Z" ()" = O(1),
By Markov’s inequality, we have that, for any M > 0,
limsup P(n~>/4Q"(c0) > M) < M~ limsup n~>/*E[Q"(c0)] < c0.

n—oo n—oo
Therefore, {én(m) :n € Z,}is tightin R, and so is {)?n(OO) neZyy. O

Proof of Proposition 10. First, 8" — > 0 as n — oo implies that there exists N, such that 8" > 0 for n > N so that
X{(c0) exists. As in the proof of Proposition 4, we consider a coupling of the M/M,./n+ M, system with an
Erlang-C system having the same arrival process and service rate 1. In turn, the Erlang-C system can be consid-
ered to be an M/M,./n + M, system with patience that is exponentially distributed with rate 0, so that the cou-
pling in Lemma 3 can be applied. Denote by (X};, Q};,Z{;) the number-in-system process, the queue length
process, and the number-in-service process in the nth Erlang-C system. For n > N, Lemma 3 implies that
X} (00) 25 X"(c0). In particular,

E[X"(c0)] < E[X}(0)] = E[Xc(00)] < o0 as 11— oo,

where the convergence follows from Halfin and Whitt [7, theorem 1] and the last inequality follows from corol-
lary 1 in this reference.
On the other hand, Lemma 4 gives

liminf E[X (c0)] > lim inf E[Z" (c0)] > —c0.
Therefore,

lim sup E[|5(n(w)|] < 00,

n—oo

implying the statement of the proposition. [
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Appendix A. Remaining Proofs of Lemmas in Section 6
In this section we prove Lemmas 5-8. The flowchart in Figure A.1 depicts how the proofs in this section depend on each
other, as well as on other results that were established in Section 6.

Figure A.1. (Color online) Flowchart detailing how the proofs in this section are related to each other and to proofs of other
results.

Lemma 5 > | Proposition 6 (b) > | Lemma 6 > | Proposition 6 (c) l
~
Lemma 7 > | Proposition 6 (d)
b
Proposition 6 (a) [ Proposition6 | > Lemma 8
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Proof of Lemma 5. We again use a coupling of the M/M,/n + M, system with another queueing system, which we denote
by U", using the same notation as in the proof of Proposition 10 for the corresponding process (X}}, Qf;, Z;). We take system
U" is a degenerated M /M, /n + M, system with arrival rate A" and service rate 1, in which customers have infinite patience.
For the coupling, we initialize system &/" and the M/My./n + M. system as follows: first, we take X{;(0) = X"(0); second, any
initial customer in queue has the same service time in both systems; third, any initial customer in service system U/ has the
same remaining service time in the M/M,./n + M, system. Note that system /" is not an Erlang-C system per se because
some of the initial customers in service may be in their phase 1. (There is no phase-1 service for any of the customers that arrive
after time 0 in this system.

Using the same arguments as in the proof of Lemma 3, we can construct a coupling between X" and X}, such that
X"(t) < XU(t), and thus Q"(t) < Q},(t), w.p.1 for all > 0. Let é:,(t) = n73/4Q" (n/41). Tt is sufficient to prove that {QZ in>1}is
stochastically bounded in D.

Let A and S be two unit-rate Poisson processes. Let Z}}, and Zj; be the processes that characterize the number of cus-
tomers in phase 1 service and phase 2 service, respectively. (Recall that arrivals have only phase 2 service, but initial cus-
tomers may have phase 1 service). Let

X (t) = n= Xy (40 = n), Z{(t) = ¥ ZE ) — ), Zio () = n A Z g (n ).
Following similar arguments as in Section 5.2, )?Z, admits the following martingale representation

—~n -—n t"‘n ~n ~n
X () = Xo(0) = Bt — / 7! (s)ds + M () = Mlg(t), forall >0, (A1)
0

where

My,(8) = /%A * A7) = n/*A"),  and

J

It follows from the Poisson FCLT (e.g., theorem 4.2 in Pang et al. [12]) that
B (Am) - n®*n(-)) = B() and n~¥(S(n°*) — n®4n(-)) = B(), forall t>0,

Y

Mys(t) = n‘3/4(s

/At
zg,(s)ds)- / Z’Zl(s)ds), for £ > 0.
0

for a standard Brownian motion B, so that

n3/4(A = )ll,ss; = 0 and [n>/4(S = )|l = 0, for all t > 0.

Therefore,
1/4¢

n
n'/4A"t = O(m®*)t  and / 71 (s)ds < n°/4t
0
imply that
(]\~/IZA,]\~/IZ,S) = (0n,0n) in D? asn— co.
Consider the process
n ~n ~n 1/4 t~n
E'(t) = M (5) — Mirg(t) + 1 / Z0y()ds, >0,
0
Using similar arguments as in the proof of Proposition 6(a), one can show that
n1/4/'z7zm(s)ds =o0p(1),
0
so that &" = 0p(1). Using the equality ZZI = 3(71/\0 —Zjp, (A1) becomes
~ ~ t__
X0 (1) = X1o(s) = B (t —s) — 4 / X0 (51) AOdsy + E"() = E(s), t25>0. (A2)

Take s:=sup{u €[0,t]: X{,(u) < 0}, where, for  denoting the empty set, sup®:=0. Then either s = t or X};>0 on [s,t),
implying that n'/4 / tXZ(S)/\OdS =0. Moreover, either s = 0 or X};(s—) <0, where in the latter case X};(s) <1 because X},
S

only has either positive or negative jumps of size 1. In particular, X},(s) < X};(0) v0 + 1. Therefore,

X, (5 < X 0)v 0+ 1734 — (8" AO)E +2]1E"),. (A3)
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Notice that the right-hand side is strictly positive and nondecreasing in t. Using QZI = XZ v0,
IQull < X3 (0) v 0+ 1734 — (B" AO)E +2/IE"],.

As n— oo, }?Z(O) = Xp in R and p" — B€R, so that the right-hand side is stochastically bounded in R for any >0, so
that {@n :n > 1} is stochastically bounded in D, as stated. O

Proof of Lemma 6. We first observe that, for any t > 0,
Q"(t) = A™Mt) = A"(t —w"(t)) — R"(t) + R"(t — w"(t)). (A4)

To see this, note that the head-of-line customer arrived at time t —w"(t). Thus, any waiting customer at time ¢ must either
be an initial customer, or a customer that arrived to the system during [f—w"(t),t). On the other hand, the number of
those customers that arrived during [t —w"(f),f] and abandoned by time ¢ is clearly no larger than the total number of
abandonments during [t —w"(t),f]. Thus, we get (A.4).

Notice that

n AT A = MYy(H) + 7 2AM,

n3AAT (A — W (nV) = MUy (t— n 2@ (1) + n2A (- V2 (1))

~n t ~n
n~3AR (04 = Mg (f) + 6/ n'4Q (s)ds
0

. t—n~123" () _
n RN VA — w" (n'/4h)) = M;(t —-n 2% (1) + 9/ n1/4Qn(s)ds,
0

Plugging these equalities in (A.4) and using the LOF scaling gives
Q" (1) = AN /) - A" (1 - " (n!4D)
— Rn(n1/4t) + R"(n1/4t _ w”(n”“t)))

= n VD" () + My (F) — My (t — 20" (1)

-0 / t nAQ" (s)ds — My(t) + My(t — n~ 20" (£)
t

—n=128" (f)

> @" (1) A" =0 AOIQ ) — 2AIMll — 2/IM ..

The statement follows from the facts that the processes QW,MZ, and ]\7[72 are all op(1), n‘1/4||én||t$0 in R, and
AMn—1. O

Proof of Lemma 7. Fix n > 1. That F"(s,t) is integrable follows from —07IA" < F'(s,t) < A"(s). Let {Gi, 1520} be the natu-

ral filtration generated by F"(s,t), augmented by including all P-null sets. Note that, for 0 <s; <s, <t,

52
F'(s2,t) = F'(s1,) = / UES ) + Ty > A" (5) — 071 A" (0627 — 06171,

$1

and that the right-hand side is independent of G; ,. Hence,

E

52
/ UEL ) + Ty > HAA™(5) gl,t]
$1

52
:E[ [ 1B+ Ty > 1 ”(s)]
S1

52
- E[ / E[U{E} ) + Tl > t}|E,’Z‘”(S)]dA”(s)].

Because T, —the patience of the last customer to arrive before time s—is exponentially distributed and is independent
of the arrival time EZ"(S),

E[l{EZ”(S) + TZ\”(S) > t}lEZ\V’(s)] = eXp (_Q(EZ”(S) — t))
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Therefore,
So 52
E[ / E[l{E”,,(s)+T”;\,,(s)>t}|E/’}\,7(S)]dA”(s)]:E[ / exp(—Q(E/’}w(s)—t))dA”(s)].
1 51

Finally, A" is a simple counting process, and E%. 6 =S when dA"(s) =1, so that

S0 52
E[ / exp (~O(EL, - t))dA”(s)] - E[ / e-@“-f)dA"(s)]
s1 S1
— 9—1)\;1 (EQ(SZ—t) _ e@(sl—t)).

Thus,

E[Fn(52, t) - F“(sl,t)|gsl,t] =0, for 0 < 51 <sy <t
implying that {F"(s,t) : s € [0,t]} is a martingale.

To prove that {eefsupse[ort] |F"(s,t)| : t > 0} is a submartingale, let {G; : t > 0} be the right-continuous filtration generated
by
(A™(s), T} + E} <t}:s<t k< A'(t),

and augmented by including all P-null sets. It is easy to check that F"(s,s + t) € G, and sup, 1 |F(s,)| € G;'. We will show that

SUP.c(o 4] |EF(s, t)| is a G"-submartingale, and therefore also a submartingale with respected to the (augmented) natural filtration.
To this end, fix 0 < f; <t,. for s1 €[0,#;] such that EZ”(Sl) + TZWSI) > t1. Due to the memoryless property of T”n(sl), Eigs,) +
T, )~ t; is also an exponential random variable with rate 0, so that

P(EZ"(Sl) + Thuisyy > 21 Ednsy) + Thngsy) > tl) — Olh-b)
Trivially,
Eveny + Thnen St i Eluiey + Thogey) < B
o EZH(SI) § TZ”(SI) > t2 s, conditional on the event {Eg"(ﬁ) + Tq}\"(sl) > t}, independent of G; . Finally, 1{En"(51) + Tﬁ”(ﬂ) >t}
€ gﬁ ,implying that

E[UH{ES o)) + Thigey > 21 G1 1 = D UHEL )+ T, > i}

(s1
Integrating both sides of the equality with respect to s; over [0,s], and using the equality
e@(tl—tz)efl/‘n(e—e(h —s) _ e—etl) — 671/\11(6—6(1‘2—5) _ e—@tz),
gives
E[F'(s,t2)|G} ] = /=05 1), forall 0 <s <t <t.

In particular, {e?“*F"(s,s +1): t > 0} is a {G",, : t > 0}-martingale.
Now, let 0 < t; <t, and an arbitrary random time S <t; such that S € QZ. We have

E|e% sup |F"(s,t2)]

s€[0, 2]

gr | > E[1e®F"(S, )G .

It follows from the facts that S € G, and that {9 (s, s+ 1) : t > 0} is a {G",, : t > 0}-martingale, that
E[e"2F"(S,t2)|G} ] = ™ F*(S, th).
By Jensen’s inequality
E[[e”2F"(S, )G ] = ™ |[F'(S, 1),

so that

Ele? sup |F'(s,t)| > e% | F'(S, 1)]. (A.5)

s€[0, 2]

"
t

Finally, |F"(s,t1)| € Qt”l for any s € [0,f1]. Because F"(-Aty,t1) has right-continuous paths, for each € >0, we can choose S, €
Gy, such that

sup |F'(s,t1)| < |F"(Se, t1)| +€,w.p.1.

s€l0, 1]
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Taking S =S¢ in (A.5) gives

E|e% sup |F'(s,t2)|

s€l0, 2]

>e% sup |F'(s,t1)| —¢, forallt; >0 and e > 0.
s€l0,t1]

n
Gh

The proof follows upon taking e - 0. O

Proof of Lemma 8. We first prove that {EI;[ :n > 1} is stochastically bounded in D. Consider the LOF-scaled process in
(22),

~n t — ~n
Ul = / Un 20T  (s—) +5 > t}dML(s).
Tg/\t

Notice that the integrand is nonnegative and satisfies
Hn 200" (s=) +s > 1} < 1{s > t —n26||w"||,}, for all 0 <s < t. (A.6)

Thus,
t

_ t _ ~ _ ~ _
PHEIE / 1s > £ — n V201" |} | M4(1)| < / AV < 2IM2, + 201",
0 t

—n 120w,
where the last inequality follows from (57). By Proposition 6(b) and Lemma 6, the right-hand side is stochastically
bounded in D, implying that {Elll1 :n > 1} is stochastically bounded in D as well.
To prove that {Z’f - 28 :n > 1} is stochastically bounded in D, consider the LOF-scaled process in (23):

~ —~ t —~ ~
Zi() - Zy() = / Hn 20W" (s=) +5 > 3 (n'/2 +n'/*Z) (s))ds + U, (¢).
Tg/\t

Again, using ZZ <0 w.p.1 and (A.6),
— — t . ~ . ~
1Z3(8) = Zo ()] <n'? / s > t—n~ 200", }ds + | U, (£)] < O1[@"l, + IT1],-
0

Since the right-hand side is nondecreasing in ¢, Lemma 6 and the stochastic boundedness of {ﬁ” :n>1} in D imply that
{ZT - Zg :n > 1} is also stochastically bounded in D.

To prove that {in :n>1} is stochastically bounded in D, we use the same arguments as in the proof of Proposition 7
to obtain (71), and in particular,

—n
X >&+ ¢,

where " = o0p(1). It follows from the stochastic boundedness of {@w" : 7> 1} and {le1 - Z; :n>1} in D that &" is also Op(1).
Therefore, &" + ¢" < X'< én implies that {5("} is stochastically bounded in D, and thus Z"=X"A0 implies that {Z "in> 1}
is stochastically bounded in D. Finally, Z; + 23 =7"- (Z T - Zg) implies that {Z; + Zg :n > 1} is stochastically bounded in
D. O

Appendix B. Proof of Proposition 2

Recall system U" from the proof of Lemma 5, and notice that this system becomes an Erlang-C system if all the custom-
ers that are initially in the system have zero remaining phase 1 service time. As a result, all arguments regarding X}, in
the proof of Lemma 5 hold for X! as well. Therefore, (A.2) (taking s = 0) and (A.3) together give

Xe(t) > Xp(0) =t +&'(1), and Xo(t) < Xe(0)vO+n4 = (B AO)E+ 2], £>0,

for some process &" € D, which is op(1). Using " — <0 and )?2(0) = x>0 in R, we have )~(2 =xc +op(1), implying that
5(2 = xc in D.
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