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The fundamental problem in the study of parallel-server systems is that of finding and analyzing routing
policies of arriving jobs to the servers that efficiently balance the load on the servers. The most well-studied
policies are (in decreasing order of efficiency) join the shortest workload (JSW), which assigns arrivals to the
server with the least workload; join the shortest queue (JSQ), which assigns arrivals to the smallest queue;
the power-of-d (PW(d)), which assigns arrivals to the shortest among d > 1 queues that are sampled from
the total of s queues uniformly at random; and uniform routing, under which arrivals are routed to one of
the s queues uniformly at random.

In this paper we study the stability problem of parallel-server systems, assuming that routing errors may
occur, so that arrivals may be routed to the “wrong” queue (not the smallest among the relevant queues)
with a positive probability. We treat this routing mechanism as a probabilistic routing policy, named a p-
allocation policy, that generalizes the PW(d) policy, and thus also the JSQ and uniform routing, where p is
an s-dimensional vector whose components are the routing probabilities. Our goal is to study the (in)stability
problem of the system under this routing mechanism, and under its “non-idling” version, which assigns new
arrivals to an idle server, if such a server is available, and otherwise routes according to the p-allocation rule.
We characterize a sufficient condition for stability, and prove that the stability region, as a function of the
system’s primitives and p, is in general smaller than the set {p < 1}. Our analyses build on representing the
queue process as a continuous-time Markov chain in an ordered space of s-dimensional real-valued vectors,

and employing a generalized form of the Schur-convex order.

1. Introduction

We consider a parallel-server system with s > 2 statistically-homogeneous servers, each providing

service at rate u, that is fed by a rate-A Poisson arrival process of statistically identical jobs (or
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customers). For each server there is a dedicated infinite buffer in which jobs queue, waiting for
their turn to be served. Upon arrival, a job is routed to one of the s servers according to some pre-
specified dispatching (routing) rule, with no jockeying between the queues allowed. In this setting,
one seeks a “good” routing policy of jobs to the servers, e.g., a policy ensuring that steady state
waiting times are minimized, or that the total throughput rate is maximized. If the workload at
each queue can be computed, then it is natural to employ the Join the Shortest Workload (JSW)
routing policy, under which an arriving job is routed to the server with the least workload among
all s servers (together with some tie-breaking rule). However, if the workload is unknown, as is
often the case in practice, one may opt to employ the Join-the-Shortest Queue (JSQ) control, which
routes an arriving job to the server with the smallest number of jobs. Indeed, JSW was shown to
minimize the workload process in [13], whereas JSQ has been shown to be throughput maximizing
in terms of stochastic order, when the service-time distribution has a non-decreasing failure rate
[50], and in particular, when the service times are exponentially distributed [53].

However, even the queue at each server is not always known: In some settings, the number of
customers in each queue is estimated, either by the arriving customers who are free to choose which
queue to join (as in a supermarket or security lanes in airports), or by a central dispatcher (as is
often the case in passport-checking stations, for example). Even in automated settings the queue
lengths may not be known. For example, information regarding the queues to each of the servers
in web-server farms requires constant communication between the servers and the job dispatchers,
slowing down the response time, and is thus not always available; e.g., see [33].

For this reason, other routing policies have been considered in the literature, most notably the
“power-of-d” policy, which gives rise to the so-called “supermarket model” [37]. Under this policy,
upon each arrival d servers are chosen uniformly at random, and that arrival is routed to the
server with the smallest number of jobs among the d sampled queues, with ties broken uniformly
at random. We denote this routing rule by PW(d) and note that d =1 corresponds to uniform
routing (i.e. any incoming job is sent to a queue that is chosen uniformly at random), whereas

d = s corresponds to JSQ.
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1.1. Motivation and Goals

We are motivated by the fact that, unlike the idealized settings considered in the literature, routing
errors can occur in practice. In this regard, our main goal is to gain an understanding of how the
frequency at which such errors occur affects the overall system’s stability. To this end, we study
a particular form of error, under which arrivals are sent to the “wrong” queue (not the smallest)
with a fixed probability, and show that the system might not be stable in this case, even if its total
service rate is larger than the rate at which work arrives, i.e., if the traffic intensity to the system
is smaller than 1.

Routing errors are likely to occur when JSW is employed, because the actual workload at each
server can only be estimated, unless the server is idle. Similarly, such errors are likely to occur
under JSQ when customers are free to choose which queue to join, or when a central dispatcher
has only partial information about the queue lengths. Here we focus on the latter JSQ policy, since
under appropriate distributional assumptions (Poisson arrival process and exponentially distributed
service times), the queue process evolves as a continuous-time Markov chain (CTMC), whereas
under JSW, the analysis of the queue process requires a continuous-space Markov representation.
(Even under JSQ, exact analyses and steady-state computations of the queue are intractable, and
most of the literature is concerned with asymptotic approximations; see Section 2 below.) The
simulation examples in Section 6 suggest that our results extend to the JSW case.

Even though our main motivation is to study the impact of routing errors, we treat the allocation
of jobs to servers as a probabilistic routing policy. We do this for mathematical convenience, as
it allows us to treat PW(d), and therefore also JSQ and uniform routing, as a special case of the
family of allocation policies we consider. Specifically, we assume that the dispatcher (or the arriving
customer) chooses correctly the shortest queue with probability p;, the second-shortest queue with
probability p., and so forth. We also consider a “non-idling” version, in which routing errors are
made only when all servers are busy, so that the dispatcher (or arriving customer) always chooses

an idle server, if such a server is available, and otherwise makes errors as was just described. To
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show that such errors can lead to extreme departures from the desired behavior under JSQ, we
characterize the stability region under the allocation policy as a function of the system’s parameters
and the error probabilities, and prove that the usual traffic condition p:= A/(su) < 1 does not

guarantee that the system is stable, even in the non-idling case.

1.2. Background: PW(d) and Related Routing Policies

Note that it is not immediately clear that the condition p < 1 does not imply that the system under
a p-allocation policy is stable, especially under the non-idling mechanism, because such policies
leave a lot of “room” for making routing errors, as can be seen by comparing a system operating
under either one of the two extremes—JSQ and uniform routing. Clearly, uniform routing induces
a lot of “avoidable” idleness in the system, because arrivals are often routed to busy servers even
if there are idle servers present. Nevertheless, by symmetry, the rate at which jobs arrive at each
server is the same under this policy, implying that the traffic intensity at each server separately
is smaller than 1 whenever the traffic intensity p to the whole system is smaller than 1. When
the arrival process to the system is Poisson, this follows directly from the splitting property of the
Poisson process, which implies that each server operates as an M/G/1 queue independently of all
other servers. Indeed, if service times are exponentially distributed, in addition to having a Poisson
arrival process, so that the queue process evolves as a CTMC, the improvement that JSQ provides
over uniform routing follows from existing results, which we now review.

Let Q'Y (t) denote the total number of jobs in the system at time ¢ >0 under PW(d). Theorem
4 in [47] implies that', if d; > d,, then Q(Zdl) <a Q(ZdQ), where <,, denotes sample-path stochastic-
order. (That is, there exists a coupling of the two processes, such that Qgi 1)(75) < Q(Ed 2)(t) w.p.1 for

all ¢t > 0, provided that the inequality holds at time ¢ =0.) In particular, for s > 2,

The stability of a parallel-server system under PW(d) readily follows. To state this result formally,

we say that a parallel-server system is “Markovian” if its multi-dimensional queue process evolves
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as a CTMC. In particular, the arrival process is Poisson and the service times are independent and
identically distributed (i.i.d.) exponentially distributed random variables, that are independent of

the arrival process and of the state of the system.

COROLLARY 1. For a Markovian parallel-server system with s servers operating under PW(d),
1<d<s, the condition p:= \/(su) <1 is necessary and sufficient in order for the queue process

to be an ergodic CTMC.

Proof. 1t is easy to see that Q(Zd ) is an irreducible CTMC. If p > 1, then Q(Zd ) is either null
recurrent or transient, because it is bounded from below, in sample-path stochastic order, by the
number-in-system process in an M/M/1 queue with arrival rate A\ and service rate su. On the
other hand, if p < 1, then Q(El ) is ergodic, because it evolves as s independent M /M /1 queues, each
with arrival rate A/s and service rate p. In particular the empty state (zeroth vector) is positive
recurrent for the CTMC Qg), and, by virtue of (1), also for Q(Ed), 1<d<s. O

A more quantitative analysis can be carried out asymptotically, by taking the number of servers
s to infinity, assuming that the arrival rate grows proportionally to s. As was shown in [37, 49],
the steady-state probability that an arrival is routed to a queue of length at least k is pdk, ie., it is
doubly exponential in k for d > 2, as opposed to exponential when d =1 (which is tantamount to
uniform routing). The dramatic differences between the mazimum queue length in stationarity in
the cases d =1 and d > 2 is demonstrated in [34], which shows that the maximum queue length is of
order In(s)/In(1/\) when d =1, and of order Inln(s)/In(d) when d > 2 with probability converging
to 1 as s —» co. Further, heavy-traffic analysis shows that the performance under PW(d), for any
fixed d < s, is substantially worse than under JSQ. In particular, considering a sequence of systems
indexed by the number of servers s, and letting A, denote the arrival rate to system s, [16] and
[17] analyze a system operating under JSQ and PW(d), respectively, in the heavy-traffic limiting
regime, where \, = sy — ©(4/s). It is proved in [16] that, under JSQ, only a negligible proportion
(which converges to 0) of the customers encounter a queue upon arrival, and those customers that

have to wait encounter only one customer in queue. Thus, asymptotically, no queue is larger than
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2. (This result holds only after some transient period, because the initial condition may have many
larger queues.) On the other hand, [17] proves that, in the supermarket model with d > 1, the
fraction of queues that are of order log,+/s approaches 1 as s — co.

To conclude, the dimensionality of the queue process, and the fact that it is not reversible,
render exact analysis of parallel-server systems intractable, even under Markovian assumptions.
Other than stability results and stochastic domination, as in (1), little can be said about the
systems’ dynamics and steady-state distributions. Nevertheless, the aforementioned asymptotic
results suggest that JSQ is substantially more efficient than PW(d) for d < s, which, in turn, is
substantially more efficient than uniform routing, namely, than PW(1).

Of course, the possibility of experiencing congestion collapse in parallel-server systems can nev-
ertheless be considered a triviality for vacuous choices of the control. For example, if the arrival
rate A is larger than the service rate p (but is smaller than su), then the policy that routes all
arrivals to the same server is clearly unstable. Here, however, we perform a refined analysis of the
(in)stability region for the non-idling version of JSQ when routing errors occur with a nonnegligible

probability.

1.3. Notation

We use R to denote the set of real numbers, with R, =[0,00), Z, to denote the set of non-negative
integers, and Z% :=Z, — {0} the subset of (strictly) positive integers. For any g € Z and all sets
A, we denote by A? the set of vectors of dimension ¢ having elements in A, e.g., RY is the set
of g-dimensional real-valued vectors. Vectors are in general denoted by bold letters. For a vector
X = (x1,...,24) in RY, we denote by R (x) the ordered version of x, i.e. R (x) = (zn),Z2),---,%(q))
is any permutation of the elements of x such that x;) <z <--- <x(,). The set of ordered vectors
in A7 is denoted by R (A?); for example, R (R ) :={x RS 12y <--- <z }.

We let aox € R? denote the Hadamard product of two vectors x = (21, ...,x,) and y = (y1, ..., Y,)
in RY, ie., yox = (y121,...,Y,2,). For x € R%, we define n(x) to be the number of positive

coordinates of x, which is 0 if x is the zeroth vector 0:=(0,...,0). Let [p,q] =Z, Np,q|. For any
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i€[1,q], let e; denote the vector having all coordinates equal to 0 except the ith coordinate, which

is equal to 1, and let e denote the unit vector whose components are all equal 1; e := (1,...,1). For
any x € RY we denote by || x||=>"7  z; and || x ||»=+/>_;_, 27. For any two real numbers a and

b, let a Vb and a A b denote the maximum and the minimum of a and b, respectively, and denote

at:=aVO0.

1.4. Organization

The rest of the paper is organized as follows: We provide a detailed literature review in Section
2. The model, including the family of allocation policies, which we call p-allocation policies, is
formally introduced in Section 3. In Section 4 we study a class of p-allocation policies for which
the condition p < 1 implies that the system is stable. The insufficiency of this traffic condition to
imply stability in general is demonstrated in Section 5. In Section 6 we present simulation results
which suggest that our main results extend to workload-based routing policies. We summarize in

Section 7. Some of the technical proofs, together with auxiliary results, appear in an appendix.
2. Related Literature

Non-monotonic parallel queues. Under JSW, the dynamics of the system, as well as the sojourn
time of jobs, coincide with those of a single-queue s-server system operating under the First In
First Out (FIFO) service policy. In particular, that p <1 is a necessary and sufficient condition for
the stability of the system under JSW follows from from the basic stability theory of the GI/GI/s
queue, first proved in the seminal paper [27]. The sufficiency of the condition p < 1 for stability of
the G/G/s queue was generalized in [8] to the stationary ergodic framework, namely, when both
the inter-arrival and service-time sequences are time-stationary and ergodic, but not necessarily
independent; see also §2.2 of [3]. This general result was proved using a backwards scheme of the
Loynes type [31], building on the fact that the (random) updating map of the stochastic recursive
sequence representing the system is non-decreasing for the coordinate-wise vector ordering. For

the same reason, JSW is the unique routing rule within the class of semi-cyclic policies introduced
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in [46], which renders the total workload to be a non-decreasing function of s at all times; see
[39]. Therefore, the stability region under allocation policies other than JSW cannot simply be
characterized via a Loynes-type construction, and we must therefore adopt a different approach.

JSQ systems. The JSQ policy was first introduced in [25] for a system with two servers, each
having a different service rate. The first proof that the condition p < 1 is necessary and sufficient
for a Markovian parallel-server system under JSQ to be stable (admit a steady state) appears in
[28, Theorem 1] for a system with s =2 servers, building on a straightforward Lyapunov stabil-
ity argument. The main goal of [28] is to characterize the stationary distribution of the (stable)
system via generating functions; an explicit computation of this distribution is provided in [19].
Reference [15] studies a system with finite buffers, and provides closed-form expressions for the
loss probabilities. A non-idling version of JSQ was proposed and analyzed in [33] which considers
systems with more than one dispatcher, and analyzes how to balance information regarding idle
servers among those dispatchers.

There are several papers that study JSQ in asymptotic regimes. In addition to [16], which was
discussed above, we mention [23], which identifies a mean-field limit, and shows the chaoticity of
the system as NNV increases. An Ornstein-Uhlenbeck limit for the same model is obtained in [24].

In general, Lyapunov-stability arguments, as in [28], can be hard to generalize to higher-
dimensions, because of the need to control the drifts of the process at all states outside some
compact subset of the state space. Our proof of Theorem 1 below, that p < 1 implies that the
system is stable for a certain subset of control parameters, is a generalization of [28, Theorem 1],
both because it allows any number of servers s, and because it considers a larger family of routing
policies, for which JSQ is a special case. In the latter regard, it also generalizes Corollary 1. Our
proof is achieved by employing a certain partial-order relation (see Definition 2 in Section 4) in
conjunction with a Lyapunov-stability argument.

Power-of-d allocations. The PW(d) policy was first studied in [49] and [37], which also coined

the term “supermarket model” to describe a system operating under this control. The supermarket
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model has since received substantial attention due to its practical and theoretical significance.
Both [17] and [11] study the supermarket model in heavy traffic, namely, as the traffic intensity
approaches 1. The rate at which the equilibrium distribution of a typical queue converges to the
limiting one in the total-variation distance is studied in [35], which also quantifies the chaotic
behavior of the system, asymptotically, namely, the rate at which the joint distribution of any
fixed number of queues converges to the limiting product-form distribution. We also mention a
recent game-theoretic supermarket model in [54], which is analyzed asymptotically, as the number
of servers and arrival rate increase to infinity.

It is significant that the asymptotic result regarding the doubly exponential decay rate of the
queue size in equilibrium does not necessarily hold for general service-time distributions. Indeed,
[6] shows that, for some power-law service-time distributions, the equilibrium queue sizes decay at
an exponential, or even polynomial, rate, depending on the power-law exponent and the number
of sampled queues d.

In a recent paper [2], the PW(d) policy is studied (together with other policies) in a time-
varying setting and with non-homogeneous servers when both the arrival and service rates scale
proportionally to n, as n — oo; in particular, the system need not be in heavy traffic, and the queues
may be of fluid scale, at least some of the time. A sufficient condition is given, guaranteeing that the
difference between the largest and smallest queue is subdiffusive (namely, is o(y/n)), a phenomenon
known in the queueing literature as state-space collapse (SSC). (The authors in [2] reserve the term
SSC for the heavy-traffic setting, and use the term subdiffusivity of the deviation process in their
more general setting.) Under this condition, it is proved that PW(d) is asymptotically optimal in
the sense that the diffusion-scaled nominal workload process under this policy may be larger than
under any other policy by a random quantity that converges to 0 as n — oo; see Proposition 1 in
this reference.

Robustness of Control. The dynamics of a system under a given control are typically studied in

idealized settings, which do not fully hold in practice. In particular, even small deviations from the
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theoretical implementation of a control (due to, e.g., human or measurement errors, discretization
of a continuous control process, delays in making or applying a decision, etc.) can in turn lead
to substantial perturbations from theoretically predicted performance. Such discrepancies between
theory and implementation constitute an important area of research in dynamical control theory
(see, e.g., [26, §14] and [30]), but received little attention in the queueing literature. In [42] it
is shown how the implementation of a control, that has theoretically desirable performance in a
certain asymptotic regime, can lead to chattering of the queue process and, in turn, to congestion
collapse, namely, to a severe overload that is solely due to the implementation of the control.
We refer to [42, Section 9] for a detailed (informal) discussion on how small perturbations from
idealized control settings can have substantial impacts on the performance of queueing systems.
Instability of Subcritical Systems. Congestion collapse is related to the more general research
area regarding instability of subcritical networks, which initialized with the presentation of the
(deterministic) Lu-Kumar network studied in [32], and its stochastic counterpart, the Rybko-
Stolyar network [45]; see also [5] and [40] for applications and literature reviews. A non-idling
policy is considered in [38], in which an arrival is routed to the queue having the 2nd smallest
workload. A sufficient condition for stability, that is strictly stronger than p <1, is provided, and

it is conjectured that the latter condition is also necessary.

3. The Model

We consider the following class of parallel systems: There are s servers, each having its own infinite
buffer for waiting jobs. Jobs arrive to the system following an homogeneous Poisson process with
intensity A, and join one of the servers according to a routing policy from a class of policies that
will be formally defined immediately. If the server to which a job is routed is idle, that job enters
service immediately; otherwise, it joins the end of the server’s dedicated queue, waiting for its turn
to be served (there is no jockeying between queues). All jobs are statistically equivalent, requiring
i.i.d. service times that are exponentially distributed with mean 1/u, regardless of the server. We

let p:=M\/(su) denote the traffic intensity to the system.
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Recall that our goal is to study the possible impacts that departure from the idealized modeling
assumptions that are taken in the analyses of load-balancing controls has on the systems’ load. It
is nevertheless analytically convenient to carry-out this study by treating the erroneous execution
of the different policies as a control, since this allows us to study the different routing mechanisms
(both in the “idealized” and in our “erroneous” settings) simultaneously. In particular, we study
a probabilistic routing mechanism which we call a “p-allocation policy”, where p is the allocation
probability vector p = (p1, pa, ..., s ). For example, if JSQ is exercised, then the controller sends each
new arrival to the shortest queue with probability p;, to the second shortest queue with probability
P2, and so on. Of course, this routing-with-error mechanism is mathematically equivalent to a
controller that routes new arrivals according to the same p-allocation vector by choice. With this
view, the PW(d) policy, and therefore also JSQ and uniform splitting, becomes a special case of
the p-allocation policies; see (2)—(4) below.

Specifically, the class of allocation policies we consider depends only on the queue sizes (number
of customers in service plus the number of customers waiting in line) of the servers. To determine
the server allocations without ambiguity, we assume that the servers are re-labeled as 1,2,...;s
upon each event (arrival or departure), such that i < j if the queue size for server i is no larger than
the queue for server j. Servers having the same queue size have consecutive labels; the labeling
within each such group of servers can be arbitrary, but for concreteness, we assume that it is made
uniformly at random. Therefore, with @;(¢) denoting the queue size of server i at time ¢ > 0, the
vector Q(t) := (Q1(t),...,Qs(t)) is an element of R (Z%). We let Qx(t) = Zle Q:(t) denote the
total number of customers in the system at time t.

Let IT* denote the family of probability vectors on [0, 1]°, namely, a vector p := (py,...,ps) is in

I ifp,€0,1],1<i<s,and ),  p;=1.

DEFINITION 1. We call a routing policy a p-allocation policy, and call p the allocation (prob-
ability) vector, p € II°, if, upon arrival, a customer is sent to server ¢ with probability p;, inde-

pendently of everything else. A p-allocation policy is said to be non-idling if an incoming job is
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routed to an idle server, whenever there is one upon that job’s arrival, and is otherwise routed to

server ¢ with probability p;, independently of everything else.

In particular, for each p-allocation policy there is a corresponding non-idling version which uses
the same allocation vector to route jobs that arrive when all servers are busy, and otherwise route
the arrivals to one of the idle servers.

Observe that if two or more queues have equal size upon an arrival, a p-allocation policy assigns
the incoming customer to one of those queues with an equal probability. Indeed, if a customer enters
the system at ¢ and the consecutive indices j,j+1,...,k — 1,k are such that Q;_,(t7) < Q,(t7) =
Qj1(t7) =e.Qp-1(t—) = Qi(t—) < Qp4+1(t—), then by uniformity of the choice of labeling, server

£ is chosen with the probability

k
1 .
k—j‘f‘l;pi, for any /¢ € [j,k].
A particular class of p-allocation policies is the PW(d) policy, and its special cases, uniform
splitting and JSQ.

e For uniform splitting, the allocation vector is

pM=(1/s,...,1/s). (2)

e For JSQ, we have

p®:=(1,0,...,0). (3)

e More generally, under PW(d) an arriving job is routed to server i if it is one of the d draws,
and the other d — 1 servers drawn have indices in [i + 1, s]. Then the allocation vector for this

policy is (with ties broken uniformly at random)

(d) s—1 s .
Di :(dﬂ)/(d)a ie{l,...,s—d+1};

p'¥ = <p§d),...,p§d)> = "
p@ =, ie{s—d+2,...,s},

Observe that (2) and (3) are consistent with (4), and are achieved by taking d =1 and d = s,

respectively.
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3.1. The Stability Regions of the Allocation Policies

It is immediate that for any probability vector p € II°, the process @ is an R (Zi)—valued
continuous-time Markov chain (CTMC). The stability region of the parallel-server system corre-
sponding to the p-allocation policy, which we denote by S(p), is then defined as the set of values of
the traffic intensity p = \/(su) under which @ is stable in the sense that it is a positive recurrent.

Then for any p-allocation vector we define

S(p):={p€0,1) : Q is positive recurrent under the p-allocation policy};

S¥(p):={p€][0,1) : Q is positive recurrent under the non-idling p-allocation policy} .

It is intuitively clear that the stability region under a non-idling p-allocation policy cannot be
smaller than the stability region under the same allocation vector when the policy is not non-idling.

In other words, we have that
PROPOSITION 1. S(p) CSY(p) for all p € II°.

The proof of Proposition 1 is given in Appendix A.

As an immediate consequence of Proposition 1 we see that, if stability is proved for given system’s
parameters and for a specific p-allocation policy (a specific allocation vector p), then the system
is also stable under the non-idling version of that policy. On the other hand, a system is unstable

if operated under a p-allocation policy, if it is shown to be unstable under its non-idling version.

4. Maximal p-Allocation Policies

In this section we identify a sub-class of p-allocation policies under which the stability region is
the interval [0,1). We call such an allocation policy mazimal, since its stability region is the largest

possible. To this end, we introduce the following partial order on R .

DEFINITION 2. Let a= (ay,...,a,) and b= (by,...,b,) be two elements of R%, s > 1. We say that a

is smaller than b in the “generalized Schur-convex” order, and write a <. b, if

iai gibi for all k£ <s.
i=k i=k
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The relation “=<” defines a partial ordering on R? that is a variant (for non-necessarily ordered
vectors) of the partial semi-ordering “<” introduced in Definition 3 of [39], which itself generalizes
the well-known Schur-convex partial semi-ordering “<gx” (see e.g. [36]) to vectors of different total
sums. Specifically, we have a <y b if and only if a <.x b for any a,be R (Ri), and a =g b if
and only if a <sx b for any a,b € R (R3) such that || a|/=[/ b||. Observe that, for any random
variables X and Y having respective probability mass functions px and py in II* and values in
[1,s], it holds that X <, Y if and only if px =¢sc Py-

To state and prove the main result of this section, Theorem 1 below, we need the following
property of the generalized Schur-convex order. We remark that further properties of this order

are proved in Lemma 4 in Appendix A.

LEMMA 1. Let a and b be two vectors in R such that a Z¢sc b, and let x€R (Ri) Then,
X oa <ggc X0b.

Proof. As a=s b and x is ordered, we have that, for any k£ <'s,

S S
E Ti0; = Tpay + E E Tjp1—T;)a; + g Ty

i=k+1 j=k i=k-+1
—fﬂkzaz > )Y
i=k+1 j=i
Si’kZbl—F Z (xl_xl—l)ZbJ:ZbeZ
i=k i=k+1 =i i=k
THEOREM 1. If p satisfies
P =asc p(1)7 (5)

for ptM) = (1/s,...,1/s) in (2), then S(p) = [0,1), namely, the p-allocation policy is mazimal.

Proof. For n >0, let T,, denote the nth transition epoch of the CTMC @, with T, =0, and
consider the embedded discrete-time Markov chain (DTMC) {Q,, : n > 0} defined via Q,, := Q (T,).
We prove the result via a Lyapunov stability argument, employing the Lyapunov function V :

R (Z5) — R+ defined by V (z) = ||x||3. Let

K= {XGR Z5 Z 2\u+8§;}
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Then, for any n>1 and x = (xy,...,z,) EK°NR (Zi) we have

- S LN ©)
1
:A+m&M<éGEJWFﬂZ%)+AHﬁ@M)

Applying Lemma 1 with a:=p, b :=p"), where p!) is the uniform distribution on [1, s] in (2), and
the ordered vector x, we obtain that xop < xop™, and in particular, that >, piz; <137 | ;.
As nt(x) <s, this entails that the last expression in (6) is less than or equal to
1 A -
— | 2(==- i+ A+su |,
wau(&f0§'++0

which is strictly negative for x ¢ K. In particular, for all x = (1, ...,2,) € K°NR (Z3) and all n,

EV(Qu+1) =V (Qn) | Qn=x] <0.

We deduce from the Lyapunov-Foster Theorem (see, e.g., [10, §5.1]) that the DTMC {Q,, :n > 1} is
positive recurrent. In turn, this implies that the CTMC @ is positive recurrent as well, by Theorem
6.18 in [29], as the rate of the exponentially distributed holding time in each of the states is bounded
from below by A. O

As discussed in Section 2, the maximality of PW(d) follows from (1) which is proved via coupling

arguments. Theorem 1 can be used to provide an independent proof of this result.
COROLLARY 2. JSQ, uniform splitting, and PW(d), d > 2, are maximal allocation policies.

Proof. Recall (2), (3) and (4). As p® < pY (and p) <5 pM by definition), both the JSQ
and uniform splitting policies satisfy the assumptions of Theorem 1.

To prove the statement for PW(d) policies, d € [2,s — 1], fix such d and observe that, for any
k<s—d+1, the quantity Y ,_, pgd) is the probability that the d uniformly drawn servers have

indices in [k, s], which is equal to (*~%*")/(?). From this, we deduce that

p(d) =asc P(Q)' (7)



Moyal and Perry: Stability of Parallel Server Systems
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Indeed, for any k> s—d+2 we have Y, pgd) =0, whereas for any k <s—d+ 1, we have that

S (ENE) s d(smdkr)

Sr® ) G262kt

)

whence (7). Now, >°7 p¥ =0 and for all k <s—1, so that

S

1 Z(S_i)zs—ks—k+1<s—k:+1:i:}

(;) — s—1 s s s

- (2)
E p; =
1=k

implying that p® <. p). This, together with (7) and the transitivity of “<gs”, shows that
p@ <se V. Thus, PW(d) is maximal by Theorem 1. O

Theorem 1, Corollary 2 and Proposition 1 also imply

COROLLARY 3. 8M(p) =1[0,1) for any p satisfying (5). In particular, the non-idling versions of

uniform splitting and PW(d) allocation policies are mazimal.

5. Insufficiency of the Condition p <1

Theorem 1 requires, in addition to the usual traffic condition p < 1, that the allocation probability
p is smaller, in the generalized Schur convex order, than the uniform probability distribution on
[1,s]. We now demonstrate that the latter condition is not futile, and that the traffic condition
by itself does not imply stability of a system. To provide simple counter-examples, we consider
p,2-allocation probabilities, with p, 2 := (1 —p,p,0,...0), for 0 <p < 1. In other words, any arrival
is routed to the shortest queue with probability ¢ :=1 — p, or to the second-shortest queue with
probability p (ties broken by a uniform draw from the relevant queues.) We interpret p as the
probability that the controller (or the arriving customer) is making an error in distinguishing
between the shortest and the second shortest queue. We denote this p,s-allocation policy by
J2SQ(p), and its corresponding non-idling version by J2SQ™(p).

Under the non-idling version of the latter policy, the controller identifies idle servers, but oth-

erwise has a probability p of making an error by sending an arrival to the second-shortest queue.
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Thus, when all the servers are busy, errors are made according to a Bernoulli trial with a probability

p of “success.” Observe that, for pt) in (2),
Pp2 Zese PV if and only if p<1—1/s. (8)
For a given number of servers s > 1 and an error probability p > 0, let

Vi (p) := 52_31 <1+ 1+p(84—1))' (9)

We refer to V..(p) as the critical value (for stability; see Theorem 2 below). Simple algebra shows

that

LEMMA 2. For any s >2 and any p € [0,1] we have that

Ver(p) <1 if and only if p>1—1/s. (10)

In this case, we have that

Ver(p) > (11)

Sp
Moreover, V,.(p) is the only positive root of the polynomial x— s*px* — s(s — 1)px — (s — 1).

We can now state our main result regarding the insufficiency of the condition p < 1 to ensure

stability.
THEOREM 2. SV (p,.2) C[0,V.(p) A1) for any p € [0,1].

We defer the proof of Theorem 2 to §5.4. In view of (8) and (10), Theorems 1 and 2 immediately

imply the following.
COROLLARY 4. J25Q"(p) is mazimal if and only if p<1—1/s.

In view of Proposition 1, Corollary 4 implies that the stability region under the p, »-allocation

policy is also characterized by the value of p.

COROLLARY 5. S(py2) € [0,V..(p) A1) for all p € [0,1]. In particular J2SQ(p) is mazimal if and

only if p<1—1/s.
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5.1. S"(p,2) and S(p,2) in Two-Server Systems

A characterization of the stability regions under J2SQ(p) and J2SQY(p) is difficult, because it
requires controlling the drifts of the multi-dimensional CTMC corresponding to the queue process.
However, we can characterize the stability regions of J2SQ(p) and J2SQY(p) in the special case
s =2. (Observe that in the special case p =1, these policies then correspond to the join the longest
queue policy when s = 2.) Corollaries 4 and 5 imply that both J2SQ (p) and J2SQ(p) are maximal
if and only if p <1/2. The following two propositions, whose proofs are deferred to Appendices B.1

and B.2, characterize the stability regions under these two policies.

PROPOSITION 2. For s =2, it holds that
SY(pp2) =1[0,Ver(p) A1) for any p € [0,1]. (12)

PROPOSITION 3. For s =2, it holds that

S(Pp2) = [0, ;p A 1) for any pe0,1].

In particular, when p > 1/2, a system operating under J2SQ(p) is stable if and only if p < V. (p) <
1, and a system operating under J2SQ(p) is stable if and only if p < 1/(2p) < 1. It is easily checked
that, in this case, V., (p) < 1/(2p), so that S¥(p,2) € S(Pp.2)- Thus, the containment in Proposition

1 cannot be replaced with an equality.

5.2. Join the 2nd Shortest Queue Allocation Policy

The proof of Theorem 2 involves some technical details that obscure the main intuition for the
instability whenever the error probability p is greater than 1 — 1/s. Simplicity is achieved by
considering the special case p =1, which is tantamount to having the allocation vector be p; o :=
(0,1,0,...,0). In this case, the routing policy is simply join the second shortest queue, which we
denote by J2SQ; we denote its non-idling version by J2SQM. (As was mentioned above, this latter
policy is also the join-the-longest-queue policy in the spacial case s =2.) It follows from (10) that

Ver(1), defined in (9) with p =1, satisfies V,,(1) < 1.
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PROPOSITION 4. S¥(p12) C [0,V (1)). In particular, J2SQ™' is non-mazimal.

Proof. Let

A:={zeZ 2,€{0,1}, 2, >2, i €[2,s]}, (13)

and note that @ € A if and only if queue 1 (the smallest queue) has no jobs waiting for service,
whereas queue 2 (and thus all other queues) have waiting jobs.

Let s:=(0,2,...,2) € A, and for k=1,2,..., define the time t; :=inf{t > 0: Q(¢t) = s}, where
the event {t,, = oo} for some m >1 (and then for all £ >m) may have a positive probability. We
say that the kth wvisit (to A) begins at time ¢, and ends when @ exits the set A, namely, at a
random time ¢, 4+ T} such that Q((tr +7Tx)—) € A and Q(t, + T}) ¢ A. We henceforth refer to Ty
as the length of the kth visit.

We prove the result by making the contradictory assumption that () is positive recurrent, and
thus ergodic. Under this ergodicity assumption, P(t; < oo) =1 for all £ > 1, and the lengths of
the visits {1} : k > 1} are i.i.d. by virtue of the strong Markov property, with P(0 <T; <o0) =1
and E[T] < co. Now, during the kth visit, namely, during the intervals Iy := [tx,tx + T}), the
(ordered) queue process ) operates as follows: Any arrival is routed to server 1, if this server is
idle. Otherwise, the arrival is routed to server 2. Hence, over each interval I, we can view server
1 as a single-server loss system (to which we refer as the front server), with the overflow from this
front server constituting the arrival process to a system with s — 1 homogeneous servers operating
under the JSQ routing policy (to which we refer as the back servers).

If the first arrival during the kth visit finds the system in state s, then that arrival is routed
to server 1 (which is idle). Let A denote this latter event: with a; denoting the time of the first
arrival after time ¢y, A := {Q(a,—) =s}. By the strong Markov property, the events A;, A,,...
are independent and have the same probability, and it clearly holds that P(A;) > 0.

By Lemma 5 in Appendix C, the first arrival to a single-server loss system puts this system
in steady state. In particular, on [a;,t; + 7)) the instantaneous probability that an arrival finds

server 1 busy, and is therefore “overflowed” to the back system, is A\/(\A + w). Thus, due to the
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PASTA (Poisson Arrivals See Time Average) property, the “arrival rate” to the back servers during

[a1,t1+T1)is a:= A% /(A +p). It follows that the process Q1 := (Q2, ..., Q) coincides in distribution

with the ordered queue-length process of a JSQ system with s — 1 servers and arrival rate a.
Next, observe that V.. (1) <1 by (10), and that V,,(1) is thus the only positive root of the

polynomial z > s?z? — (s — 1)sz — (s — 1). It then readily follows that, for any p > 0,

>(s—1) ifandonly if p> V(1) (14)

Therefore, if p=A/su > V., (1), then a > (s — 1)u, and so the probability that the process Q_;
will never reach a state in which the smallest of the s — 1 queues is equal to 1 is strictly positive,
implying that P(T) =o00) > 0. If = (s —1)u (so that p="V,(1)), then Q_; is null recurrent, and
the expected time until a state with the smallest queue being 1 is reached is infinite. In either
case, the expected length of a visit is infinite, namely, E[I,] = E[T}] = oo, in contradiction to the
assumed ergodicity of Q). O

The proof of Proposition 4 makes the reason for the instability of the system we consider appar-
ent: Eventually, the system must split into a front loss single-server system whose overflow process
constitutes the arrival process to a back (s — 1) parallel-server system operating under the JSQ
policy. If the overflow process is larger than the service capacity of the “back servers”, then the
system as a whole is unstable, because the expected time for it to exit this split structure is infinite.
In particular, once the system splits, the expected time until () reaches states that are not in the set
A defined in (13) is infinite. In fact, the regenerative structure of @) implies that, if the traffic inten-
sity is strictly larger than the critical value, i.e., if p > V.. (p, s), then P(T}, = oo for some k>1)=1

and ||Q(t)|| — oo w.p.1 as t — oco.

REMARK 1. We note that the (in)stability of the back system is solely determined by the arrival
rate to that system and mean service time pu, and is independent of any other distributional
assumptions; in particular, it does not rely on the service time distribution. Furthermore, the

blocking probability of a loss system is insensitive to the service-time distribution, so that the
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overflow rate from the front server at stationarity is a = A\?/(\ + p) regardless of the assumption
that service times are exponentially distributed. Thus, a generalization of Proposition 4 can be

proved for a system with general service time distributions having a finite mean pu.

5.3. Join the m-Shortest Queue Allocation Policy

The arguments in the proof of Proposition 4 can be easily extended to the case in which there
are several “front servers” instead of just one such server, a scenario which arises when the p-
allocation policy follows the “join the mth shortest queue” assignment rule, corresponding to the
allocation vector p;,, = (0, ...,0,\1//,0, ...,0). Under this allocation policy, which we denote by
JmSQ, an incoming customer is roTlted to the mth shortest queue (2 <m <s) with probability 1.
The non-idling version of this policy is denoted by JmSQ™.
For m € [2, s]], define
sp(sp)”™”" /(m—1)!
S (sp)' /i

Ver(1,m) :=sup ¥(m). (16)

%(m)::{pG(O,l): <(5—m+1)}; (15)

Note that the set ¢(m) is not empty, since it contains all the positive numbers that are smaller
than (s —m +1)/s. In particular, V,,(1,m) is finite. Further, the inequality in the definition of

% (m) reduces to (14) when m =2, so that V,(1,2) = V.. (1), for V,,(1) in (9).
LEMMA 3. V..(1,m) <1 for all m € [2,s].

The proof of Lemma 3 appears in Appendix B.3. Given Lemma 3, the following result generalizes

Proposition 4.
PROPOSITION 5. SM(p1,m) C [0, Ve (1,m)); In particular, JmSQ" is non-mazimal.

Proof. Fix m € [2,s] and let

A ={zxe€Z} :2,€{0,1}, ic[l,m—1], and z; >2, j€[m,s]}.
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As in the proof of Proposition 4, the statistical homogeneity of the s servers implies that any vector
x € 75 that has exactly m — 1 coordinates with values in {0,1} can be considered in A,, since
R (x) € A,,. Further, as long as the system is in A,,, it is essentially split into two systems: the
first m — 1 servers operate like an M /M /(m — 1) loss system, and the remaining s —m + 1 servers
operate like a parallel system under the JSQ routing policy, whose arrival process is the overflow
from the first m —1 “front servers.” Let s=|0,...,0,2,...,2 | . We say that a wvisit begins when
—— N —

the system transitions into state s, and ends wheﬁat exizjcglJtrfle set A,,, namely, when the splitting
into a front and back servers ends.

Let L, :={L,,(t): t > 0} denote the number-in-system process in the M /M /(m —1) loss system,
and let L,,(c0) denote a random variable having the stationary distribution of L, which we denote
by T, i.€., T (j) := P(L,,(00) = j). Note that, during a visit, the number of busy servers in the
aforementioned m — 1 front-servers is distributed like L,,,. By Lemma 6 in Appendix C, there exists
a random time 7, such that L,,(t) 4 L,,(c0) for all t > 7, and therefore, the number of busy servers
among those front servers is also distributed like L,,(c0) for all t > 73, on the event E} := {1, <T}},
where T}, denotes the length of the kth visit, and {7, : k> 1} are i.i.d. with 7 4 By the strong
Markov property, all the visits are i.i.d. and P(E;) > 0. Therefore, { E}, : kK > 1} must occur infinitely
often, unless one of the visits is infinite, i.e., finitely-many FE)’s will occur if and only if T}, = oo,
for some k> 1.

Now, if E) occurs for the kth visit, then the overflow process from the front servers, which is
the arrival process into the back servers, has rate Am,,(m — 1) after time 7, due to PASTA. If
p >V (1,m), then An™(m — 1) > u(s —m+ 1), i.e. the arrival rate to the “back servers” is larger
than the maximum total service rate of those s —m + 1 servers after time 7, as long as the kth

visit is in process. Therefore, P(T), =o0) > 0 on the event Ej. We conclude that
P(T), = oo for some k>1)=1,

so that @ is either transient or null recurrent. O
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5.4. Proof of Theorem 2

The proofs of Propositions 4 and 5 build on the fact that each time a splitting of the system
occurs, the front “loss system” has a positive probability of reaching stationarity in finite time,
after which PASTA is employed to characterize the overflow rate into the “back servers.” In the
setting of Theorem 2 with p < 1 the splitting is as follows: There is one “front server” and s — 1
“back servers”, as in the proof of Proposition 4. However, the front server does not operate as a
loss system. Instead, during each “visit” (splitting event), the front server operates as an M /M /1
queue with an infinite buffer, having a Poisson arrival process with rate A. Each arrival to this
M/M/1 queue enters service if the server is idle, and otherwise joins its queue with probability
1 —p, and the back servers with probability p, independently of everything else. In particular, the
arrival process to the s — 1 back servers constitutes all the arrival who did not join the front server.
For the particular M /M /1 queue we obtain during a splitting event, the time to reach stationarity
is infinite, so that PASTA cannot be directly employed as in the proofs of Propositions 4 and 5.
Proof of Theorem 2. Consider p € (1 —1/s,1], and fix A\, such that p = \/su € [V (p,s),1).
Let Y"(t) € Z, be the number of customers in the front server at time ¢, and for i € [1,s — 1], let
Y X(t) be the size of the ith queue among the back servers, in the increasing order of queue lengths.
It is easily seen that both processes Y* and Y := (Y*,YF,...,Y2 ) (as functions of ¢) are CTMCs
on Z, and Z%5', respectively. In particular, Y is a Birth and Death (BD) process on Z, with

respective birth and death rates A and 0 at state 0, and A(1 —p) and p at all other states. By the

assumed values of p and p, Y* is ergodic with stationary distribution

F :u_)‘_l')\p
0)="—"",

7 (0) el
. A(1—p)>“A ‘

(@)= >—2)  Za(0),i>2.
(4) ( . . (0)

In particular the stationary probability that the front server is busy is

A sp
Cut+Ap 14spp

™ (Z3) =1-7"(0)
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Now, it is well-known that an ergodic BD process with birth and death rates that are uniformly
bounded is exponentially ergodic; e.g., see [48, §4]. Then letting | - ||rv denote the total-variation
norm (e.g., see [1]),

|P(Y*(t) €)= 7m()|lrv < Coe ™, t>0, (18)

for some Cj € [0,00) that depends on the initial condition only, and for some > 0 that is inde-
pendent of the initial condition.

For a given y € Z,, Let P/ denote the one-dimensional marginal distribution of the random
variable Y (¢) when Y"(0) =y. It follows from (18) that, for any € > 0, there exists a 7Y < co that

depends on the initial condition y, such that
|PY —7"||7y <e forallt>TY. (19)

Consider the Z2-CTMC X (t) := {(Y"(t), N,(t)) : t > 0}, where N,, is a Bernoulli splitting of the
Poisson arrival process to the system. In particular, each arrival to the system is an event in N,
with probability p, independently of all other events and of time. Next, define f:73 xZ3 — R
via

F((,9), (,37) = Viso,i=it j=j+1) (20)
It follows from Lévy’s formula (e.g., Equation (2.2) in [9, p.5]) that, for f in (20),
t
> f(X(U—%X(U))] =ApE {/ Livetu >0}] (21)
s<u<t s
Now, As in (14), one can easily check that p > V.. (p,2) if and only if Apr"(Z%) > (s — 1), so that
we can take € > 0 for which Ap (7" (Z%) —€) > (s — 1)p. Let Nog(a,b] denoting the overflow process
from the front server (which is the arrival process to the back servers) over the time interval (a,b],
0 <a<b. Then (19) and (21) imply that, for f in (20) and for all ¢ > 0,

FE NG T =B S f( (), <>>]:Ap [ prs e (23) ).

Te<u<Te+t

(22)
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The rest of the proof is similar to the arguments in the proof of Proposition 4: Taking the (contra-
dictory) assumption that @ is ergodic, a splitting to a forward and backward servers must occur
infinitely often. Letting a visit begin when, during such a splitting, the front server first reaches
the empty state, we have that the visits are i.i.d. and each lasts for at least 7T, time units with
a strictly positive probability, for any e satisfying the inequality in (22). (Note that, since a visit
begins at a fixed state, we can choose the same T, in (19) for all the visits.) More specifically, with
I, denoting the time interval during the kth visit beginning when the front server is empty and
ending when the visit ends, we have that P(I, >T.) > 0, so that {I, > T.}, k> 1, must occur i.o.
However, since the overflow process from the front server is guaranteed to be larger than the total
service rate u(s — 1) of the back servers after time T, there is a positive probability that a visit

will never end, contradicting the ergodicity assumption. The proposition is proved. O

6. Simulation Experiments for Workload-Based Allocation Policies

As discussed in Section 1.1, our results and analyses provide insights for systems operating under
allocation policies that are based on the workload (as opposed to the queue length). Indeed, it is
intuitively clear from the proofs of our main results that a system under JSW also experiences
random “splitting” into front and back subsystems, and that the back subsystem may be unstable
(so that the whole system is unstable) even if p < 1. In this section we present simulation experi-
ments to support this intuition. In fact, the simulations indicate that the bounds we obtained for
the stability regions in Theorem 2 and Propositions 4 and 5, are tight estimates of the stability
regions for the corresponding workload-based allocation policies, which are formally defined below.

Fix an integer m € [2,s], and Let W (t) := (Wy(t),...,Ws(t)), t > 0, denote the ordered workload
process, namely, W;(t) is the workload at time ¢ at queue i, 1 <i<s, and Wi(t) < Wy(t) <--- <
W(t). For m € [1,s] and p € [0,1], we say that the allocation policy is Join the mth shortest
workload with probability p, denoted by JmSW(p), if each arrival is sent to the queue having the
smallest workload with probability 1 —p (i.e., to the server having workload W;(t) at the arrival

time t), and is otherwise sent to the queue with the mth smallest workload (i.e., to the server
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having workload W,,(t)) with probability p. In the non-idling version of JmSW(p), denoted by
JmSWY (p), an arrival is sent to an idle server w.p.1, if such a server is available, and is otherwise
routed to a server according to JmSW(p).

Cases Considered. We simulated a system with 4 servers, each providing exponentially dis-
tributed service with mean 1, that is operating under J2SW*"'(p) (join the second-smallest workload
with probability p), where p € {0.8,0.9,1}. In addition, we simulated the system when it is oper-
ating under J3SW™ (1), namely, m =3 and p = 1. For each of these four systems we simulated
the corresponding embedded DTMC over 107 arrivals for two values of the traffic intensity p, one
that is slightly above, and the other slightly below, the critical values V., (p) (for J2SW"(p)) and
Ver(1,3) (for the system under J3SW™(1)). The critical values are computed via (9) and (15)—(16),
respectively. In particular, for each of the four examples we considered a traffic intensity that is
larger than the critical value of p by 2/10% = 0.002, and a traffic intensity that is smaller than
the corresponding critical value by 0.002. We emphasize that the critical values are for the same
system operating under J2SQY(p) and J3SW™(1), and so we do not know whether they are also
the critical values for the system under the simulated scenarios.

In Figure 1 we show a sample path of the most loaded server (in terms of workload) for each of the
six cases considered for the system under J2SW"(p), namely, two examples, each with a different
p for each of the three different values of p, as described above. Two sample paths simulated for
the system operating under J3SW" (1), one for each value of p, are shown in Figure 2.

We remark that, whenever p is equal to its critical value, the queue process is null recurrent,
and it is therefore hard to determine from simulation whether a system is stable when p is “too
close” to its critical value. (For any value of p in a small-enough neighborhood of the critical value,
the stochastic fluctuations are large, and one may observe a return to the empty state over any
finite time interval, even in the transient case.) Nevertheless, for each of the four simulated routing
policies, the system seems to be unstable for the larger value of p, and to be stable for the smaller

value of p. This, together with the fact that the difference between the two traffic intensities is



Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 27

500

0
|

Largest Workload
100 200 300 400
|

s=4; m=2; p=0.8; traffic load = 0.9854

0e+00 2e+06 4et+06 6e+06 Be+t06 1e+07

800
|

600
|

200
|

Largest Workload
400
|

Number of arrivals

s=4: m=2; p=0.9; traffic load = 0.9637

0e+00 2e+06 4et+06 6e+06 Be+t06 1e+07

Largest Workload
100 200 300 400 500

0
|

Number of arrivals

s=4; m=2; p=1; traffic load = 0.9458

0e+00 2e+06 4e+06 6e+06 B8e+06 1e+07

Figure 1

Number of arrivals

Largest Workload

Largest Workload

Largest Workload

3000 5000

1000

0

2000 4000 6000 8000

0

3000 5000

0 1000

s=4; m=2; p=0.8; traffic load = 0.9894

| | | | | |
0e+00 2e+06 4e+06 6Get+06 8e+06 1e+07

Number of arrivals

s=4; m=2; p=0.9; traffic load = 0.9677

| | | | |
0e+00 Z2e+06 4e+06 Get+06 8e+06 1e+07

Number of arrivals

s=4; m=2; p=1; traffic load = 0.9498

| | | | | |
Oe+00 Z2e+06 4e+06 6Ge+06 8e+06 1e+07

Number of arrivals

Sample paths of the largest workload process generated for 107 arrivals of a system with four servers operating
under J2SW"(p). The two figures in each row depict one value of p, with the left figure having p = V. (p) + 0.002,
and the right figure having p = V., (p) — 0.002. Upper panel: a system operating under J2SW"(0.8), for which
Ve (0.8) =~ 0.9874. Middle panel: a system operating under J2SW"(0.9), for which V.,(0.9) ~ 0.9657. Lower
panel: a system operating under J2SW" (1), for which V., (1) ~ 0.9478.
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Figure 2 Sample paths of the largest workload process generated for 107 arrivals of a system with four servers
operating under J3SW"(1), for which Vi (1,3) = 0.87. The left figure depicts a sample path when

p="Ve(1,3) — 0.002, and the right figure depicts a sample path when p = V.(1, 3) + 0.02.

just 0.004, suggests that the critical value of p for the system operating under the queue-based
allocation policy is very close (and may be equal) to critical value of p for the system operating

under the corresponding workload-based allocation policy.

7. Summary

Stability of a queueing system is the cruder performance measure and it is therefore among the
simplest performance measures to characterize. On the other hand, while more refined performance
measures, such as those corresponding to the queue length and waiting times, can be effectively
estimated via simulation, estimating the stability region of a stochastic system via simulation is
difficult, even for fixed parameters of the system’s primitives. (Of course, estimating the stability
region of a system as a function of these parameters is clearly harder.)

In this paper we considered the (in)stability problem of parallel server systems with s > 1 sta-
tistically homogeneous servers, to which jobs are routed upon arrival according to a family of

random-assignment rules, which we named p-allocation policies. That family of policies includes
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the PW(d) routing rule, and its special cases JSQ and uniform routing, as well as their “non-idling”
versions, under which an arrival is always routed to an idle server, if one is available at that arrival
time. Our motivation for this study was the fact that in practice, and unlike the ideal settings that
are typically considered in the literature, routing errors are likely to occur, so that jobs are not
necessarily routed to the shortest among the relevant queues.

We started by characterizing a sufficient condition for stability (Theorem 1) which, in addition
to the usual traffic condition p < 1, requires the p-allocation vector to be smaller, in the general-
ized Schur convex order, than the uniform distribution on [1,s]. In particular, under this latter
assumption on p, the p-allocation policy (and its non-idling version) is guaranteed to be maximal.

We then demonstrated that the condition p < 1 by itself does not guarantee that the system
is stable, even when a non-idling p-allocation policy is employed. Specifically, we considered the
stability region of the policy J2SQY(p), under which arrivals are always routed to an idle server,
if one is present, and are otherwise routed to the shortest queue with probability 1 — p, and to
the second shortest queue with an “error probability” p. Theorem 2 proves that p must be smaller
than a positive number V., which is strictly smaller than 1 for a range of values of p, implying
that the stability region under the control may be strictly contained in [0,1). Corollary 5 proves
that p must satisfy p <1—1/s in order for J2SQY(p) to be maximal.

Finally, simulation examples in §6 demonstrate that our results are insightful also for systems
operating under JSW, for which routing errors are more likely to occur, even in automated environ-
ments, because the actual workload in each queue can typically only be estimated. We conjecture
that the stability regions under JSQ and JSW are the same.

Further Implications of the Results. The fact that the p-allocation policy may not be maximal
has important implications well beyond the possibility of experiencing congestion collapse. Indeed,
even though the risk of instability caused by erroneous routing decisions is small when the prob-
ability of making an error is small, or when the number of servers is large, routing errors cause

any system to effectively be in “heavier traffic” than planned. Thus, if the system is designed to
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operate in heavy traffic, so that p = 1, even a small probability of making routing errors may lead to
harmful departures from the desired performance, and may even lead to instability. In particular,
SSC as in [2] and [43], may not hold asymptotically, even if it should hold under idealized modeling
assumptions (that ignore erroneous routing decisions). As a result, the goal of balancing the load
among the servers may not be achieved, even if the system is stable. We again refer to Sections 1

and 9 in [42] for a general discussion on congestion collapse caused by SSC-inducing controls.
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Appendix.

The appendix is organized as follows: We prove Proposition 1 in §A, after establishing several
properties of the generalized Schur-convex ordering in Lemma 4 below. We prove the Remaining
results from Section 5—Propositions 2 and 3, and Lemma 3— in §B. Finally, we state and prove

two auxiliary results in §C.

A. Proof of Proposition 1

In this section we prove Proposition 1, building on the next lemma.

LEMMA 4. Let a and b be two vectors of R (Ri) NZ3,. be such that a <¢sc b. Then,

1. for any i <i<s we have that
R(a+er) <ecR(b+e);
2. for any i <s such that a; > 1 and b; > 1, we have that
R(a—e€)=csc R(b—e¢);
3. for any i <s such that a; =0 and b; >0,

a=xwcR(b—e¢).
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Proof. The proof is reminiscent of the arguments in the proofs of Lemma 2 in [39] and Lemma
A.151in [14]. Fixaand be Z; NR (Ri) such that a <. b.
1. Fix z <i<s,and let a:=R(a+ey) and b:=R(b+e;). Fix k <s. We need to show that

Zaj < Zb for all k <s. The key relations are the following: for all k <'s,
j=k j=k

Zs:dj = (ZS:QJ) Y (ai/—i—l—{— ZS: aj> ; (23)

j=k+1
Z@z(ij)\/(bi—l—l—l— > b]). (24)
j=k j=k j=k+1

Consequently, for any k <4, we get that
doda=) a;+1<) b +1=3) b
j=k j=k j=k j=k
and whenever ¢/ <, for any ¢ < k <1, we obtain that

Zajgzaj+132bj+1:§:6j.
j=k j=k j=k j=k

Only the case where k > ¢ remains to be treated. We have the following alternatives:

(i) if ay < ay, then it immediately follows from (23)—(24) that
D2.8=) a; < b<} by
=k =k =k =k

(ii) if a;y = as,, we have three sub-cases:
(iia) If there exists ¢ € [i’, k] such that b, > a, = ay = a;» (take the first such ¢ in increasing
order), then (23)—(24) imply that

Za]—al +1+ z a; <bg+ Z b; <Z <

j=k+1 j=k+1 j=k

(iib) If a; > > b for all j € [¢/, k], and there exists £ € [¢/, k] such that by < ag = ay, then, we

k-1
have that Zaj > ij and thus, as Zaj < ij, we must have that Zaj < ij. Therefore,
j=e j=¢ j=¢ j=¢ j=k j=k
Za =ay+1+ Z a; <Za +1<Zb <Zb
Jj=k j=k+1

(iic) If a; =b; for all j € [/, k], then b; = by, = ay = ay, and so

Zaj_az +1+ Z aj<zaj+1<2b +1=0b+ Z b +1_Zb

j=k+1 j=k+1
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We conclude that a <4 B, and the first assertion follows.
2. To prove the second assertion, let a:=R(a—e;) and b:= R(b —e;). First, for any k >1i we
easily get that

s s s s
ji=k j=k j=k j=k

Now, for any k <4, we have that

Z&j:<2ajl>\/< Z aj>; (25)

j=k—1;j7#i
Z@:(ij—l)v( > bj>. (26)
Jj=k Jj=k Jj=k—1;j#1

Then there are two sub-cases to consider:

(i) If a; > ap_1, we deduce from (25)—(26) that

Za] Zaj—1<2b —1<

(ii) If a; = ap_1, we also have that a; = ax, and it follows from (25) that

j=k
s

z: S zaj

j=k—1;j#i
We are thus in the following alternative:

(iia) If by_1 = b;, then from (26) we get that
LS SIE

(iib) If Zaj < Z b;, then we obtain that

j=k j=k

Zaj Zaj<2bf §

(iic) If Zaj = ij and b,_; < b;, then observe, first, that it must be the case that b,_; >

=k j=k

ay—1. Indeed, by_1 < ap_; would imply that Z a; > z b;, a contradiction to the assumption
j=k—1 j=k—1
that a <qs b. Recalling that a and b are ordered, this implies, first, that b; > b,_1 > ar_1 =a; =a;

for all j € [k,7— 1] (whenever i > k), and second, that b; > by_; > aj,_1 = a;. We thus obtain that

Zaj Zaj Zaj+al+2aj<2b +b; — 1+Zb—2b71—26w

j=i+1 j=i+1

where sums over the set [k,7 — 1], k=14, are defined to equal 0.
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~

This shows that @ <qg b.
3. Regarding the third assertion, fix ¢ < s such that a; =0 and b; > 0, and denote again b=
R(b —e;). Then, for any k > i we clearly have that

S S S
> a; <> b=>"by,
=k =k =k

S S
whereas for k <1, as Z a; < Z bj, we have

j=it1 j=it1

s s 7 s s s
doa= D a; <y bi=14 Y b= b—1<) by
j=k j=i+1 j=k j=i+1 =k =k

where we used (26) in the last inequality.
0

Proof of Proposition 1. Consider two s-server systems, one operating under a stable p-
allocation policy, and the other operating under its non-idling counterpart; let @ and Q™ denote
the ordered queue processes (CTMCs) under the corresponding control. We couple the two sys-
tems (to which we refer as the “idling” and “non-idling” system) as follows: First, we feed both
systems by the same arrival process. Second, upon each arrival, a common draw of the distribution
p determines, independently of everything else, the targeted queue of the incoming customer in
the idling system, and in the non-idling system only if no idle server is present. If there is an idle
server in the non-idling system, then that arrival is routed according to the realization of p in the
idling system, but to the idle server in the non-idling system.

Finally, we couple the service times in both systems, so as to satisfy the following property:
for any ¢ <'s, at each time point ¢t such that @Q;(¢) >0 and Q}'(¢) > 0, the remaining service time
at server ¢ is equal in the two systems. In particular, ongoing services at the servers with the
same indices in both systems are synchronized. To this end, it suffices to reset the service times
of the customers in service at server ¢ using a common realization of the exponential service times
whenever there is a change concerning server ¢ in either system, e.g., a re-ordering of the queues,
or an arrival to server ¢ at a time when server ¢ is idling in one system but not in the other. Note
that resetting the service times does not change the distribution of the service times, due to the
memoryless property, and does not impact the overall distribution of the systems, due to their
strong Markov property.

Denote by Q and QN‘ the coupled ordered CTMCs of the two systems. From the construction
above it is clear that both these CTMCs are defined on the same probability space and that Q 4 Q
and Q™ < Q"' although the joint distributions of (Q, QNI) is different than the joint distribution of
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the original systems. (In fact, the original systems may not have any specified joint distribution.)

Take Q(0) = Q™'(0). We argue that
QV(t) Zese Q(t), forallt>0 w.p.l. (27)

As both processes are constant between event times, it suffices to show that (27) holds at event
times (arrivals and departures). Therefore, for Ty =0, and 7,, denoting the time of the nth event,
we need to show Q“(Tn) <asc Q(Tn) for all n >0 w.p.1. We prove this by induction on n. This is
true by assumption for n =0, and if this is true at a given n € Z,, then we are in the following
alternatives:
(i) If T,y is an arrival time in both systems and the common draw following the distribution p
draws index i, then:
(ia) if server 1 is busy in the non-idling system (i.e. the first coordinate of Q™ (Ty,) is non-
zero), then in view of the induction assumption, and by applying assertion 2 of Lemma 4 to i =1,

we have

QNI (Tn+1) = R <QNI (Tn) + ei) jGSC R (Q (Tn) + ei) — Q (Tn-i-l) .
(ib) If server 1is idling in the non-idling system (that is, Q™' (T,) =0), then from the induction

assumption, and by applying assertion 2 of Lemma 4 to i’ =1, we have
Q" (o) =R (Q" (T) +e1) Zesc R (Q(T) +€:) =@ (Tosa)

(ii) If 7,4, is a departure time from server i in both systems, then in view of the induction

assumption and applying assertion 1 of Lemma 4, we have

Q" (To1) =R (Q"(Tn) ) 2 R (Q(T) ~ ) =Q (Tur1)
(iii) If T,,4, is a departure from server 7 in the non-idling system, and if server i is idling at this

time in the idling system, then
QNI (Tn+1) =R (QNI (Tn) - ei) jcsc QNI (Tn) j(;sc Q (Tn) )

where we utilized the inductive assumption in the last inequality.
(iv) If T, is a departure time from server i in the idling system, and server i is idling at this
time in the non-idling system, then necessarily, QN‘ (T ”)i =0 and Q (Tn)Z > (0. Thus, using the

induction assumption together with assertion 3 of Lemma 4, we have

Q" (Ti1) = Q" (L) Zesc R (Q(T) — ) = Q (Ton)

Therefore, (27) holds, and in turn, > 5 Q¥(¢); <y >.,_, Q:(t) for all ¢ > 0. Thus, if Q is positive

recurrent, then so is Q™. O
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B. Remaining Proofs of Results in Section 5

In this section, we prove Propositions 2 and 3, and Lemma 3.

B.1. Proof of Proposition 2

We now turn to the proof of Proposition 2. We consider a J2SQ"'(p) system with s =2 servers.
Thanks to Proposition 4 and Theorem 1, only the right inclusion in (12) for p > 1/2 needs to
be proved. To this end, assume that p > 1/2 and p < V.. (p). It is useful in this case to label
the two servers, say server 1 and server 2, and to consider the CTMC Q(t) = (Ql(t),()g(t)>,
t > 0, where for all ¢t >0, Ql(t) denotes the queue at server i at time t, i =1,2. (In particular,
Q is not an R(ZS )—valued process.) Let {Q,} denote the embedded DTMC, i.e., the process
{(Ql( =), Qx(T; )) in > 1}, where T,, is the time of the nth event of the CTMC Q.

Under the J2SQY (p) policy, the planar chain {Q,} has the following transitions on the positive

quadrant:

Origin: P(O,O),(O,l) = 1/27 P(O,O),(I,O) = 1/2,

TQ. _ A *
z-axis:  Pao),e-10 =545 Peoey =35, TELL,
y-axis:  Poy)ow-1) =5 Powaw  =x  YEZLY,
Interior: Pyy),(2-1,4) = /\+2u Py (ay-1) = /\+2u CAS Zi? (28)

AQ- .
P(w,y),(z,y+1) )\+2u s P(z y),(z+1y) = >\+2u T,y € Z+, T >y,

Ap — 2(-p)
P(Z y),(z,y+1) = Xf2n P(z,y),(erl,y) - ,\+2i y T,Y € Z+7 T <y,

A2 A2 *
Poa)(eot) = 31550 Plew)et1e) = 5120 T ELL.

As the above transitions are not space-homogeneous, the DTMC {Qn} is not directly amenable
to the ergodicity criteria in Theorem 3.3.1 of [18]. To circumvent this difficulty we consider two

auxiliary DTMCs {Q!} and {Q?}, having the respective sets of transitions P! and P? defined via

Origin: P(lo,o),(o,l) = (2010)1(071) =1,
o 1 _ 2 _ 1 _ 2 A *
vaxis: Poo) 10 =Fe0e-10 =5 Peoen =Feoen = €L
_a~ria. 1 B 1 A * 2
y-axis: Py 0y-1) = Foy .00 =5 Powaw  =FPowawn =0  YELL, (29)

0T 1 _ p2 — 1 _ P2 _ *
Interior: i), e-10) = Plaw). -1 = 20 T - = Flow)e-10) = 520 BY LY,

_ p2 _ 2(1-p) 1 _ p2 _ _p
=Pl 1) = 3xze 0 Lty = D) @yt1) = Shop -

1
Py, (eyt1)

T,y €LY

The transitions of the three chains {Q,}, {Q1} and {Q?} are represented in Figure 3.
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1/2

1/2 1/2

Figure 3 Transitions of the Planar chains {Q,} (left) {QL} (middle) and {Q2} (right) for the J2SQ"(p) system.

For a planar Markov chain {U, } = {(UZ*,U¥)}, the mean horizontal (respectively, vertical) drift at u =
(u”,u¥) is defined to be E [Uz,, —UZ |U, =u] (respectively, E [UY,, —U? | U, =u]). Denote by (AL, Al),
(AL, Al) and (AL", AL") the mean (horizontal /vertical) drifts of the chain {Q1}, starting from, respectively,
the interior, the z-axis and the y-axis of the quarter plan. Similarly, denote by (A2, A?), (Ai’,Ai') and

(Ai”,Ai”) the mean (horizontal /vertical) drifts of the chain {Q2}, respectively, in the interior, the z-axis,

and the y-axis. It follows from (29) that these drifts are as follows.

- v v _ : sl 2 _n 2 _ .
zraxis: Ay =—3— A) = AJW zraxis: A7 =—3i—, A = Aﬂt
A1 " 32 "
QL1 —axis: 1 A v n. Q2 —axis: 2" _ A 2 _n .
{Q.} y-axis:  Aj = A, = e {Q.} y-axis: A7 = AL = pwms!
1_ Ap—p 1_ A(1=p)—p o A2 — 2A=p)=p A2 _ Ap—p
Interior: A} }\HM Ay =555 Interior: A7 = =575, Ay =S50

As A(1—p) —p<A/2—p <0, we have that A} = A2 <0. Recalling (11), there are two sub-cases:

Case 1: p <1/(2p). In this case we also have that Al = A2 <0. Then we have that

2

ALAY CAIAY = AQAQ” A2A2” H App® —2pp—1), 30
=y y (/\+M)()‘+2N)(pp pp ) (30)

2
ALAY —AIAY = A2AY A2NY = B (41— p)p?—2(1—p)p—1). 31

Now, the right-hand side in (30) is strictly negative, due to the facts that 0 < p < Vi.(p), and that V..(p)
is the only positive root of the polynomial x +— 4px? — 2px — 1, as mentioned in Lemma 2. Similarly, by
replacing p with (1 —p) in Lemma 2, we see that the right-hand side of (31) is also strictly negative. It follows

from Assertion (a-i) in Theorem 3.3.1 of [18] that the DTMC’s {Q1} and {Q?} are both positive recurrent.
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More specifically, applying the argument leading to assertion (3.15) in [18] shows that, for any e < 0, there
exist three real numbers u, v, w, such that u,v > 0, w? < 4uv and

2uA] +wA] = 2ul? + wA2 < —¢;
20A) + wAL =20A2 + wA? < —¢;

(32)
2uAY +wAl =2uA? + WA < —¢;

21}A1§” + wAglc“ = 2’0A3 + wAi, < —¢.

It is then clear that (32) also holds when replacing both u and v by u Vv throughout. Consequently, defining

the Lyapunov function F': (z,y) — /(uVv)22 + (u V v)y? + wzy, Lemma 3.3.3 in [18] implies that, for some

compact set K in the positive quadrant, for some ¢’ > 0, for any (z,y) ¢ K and any n€Z,,
(B|F@Qi) - F@)1Q=w)]) v (E[FQ2) - FQ2) Q2= @y)]) <—<.
Fix (z,y) ¢ K and n € Z, and recall (28-29). If >y > 0, we get that
E|F(@Qu) = F(@) | Q. = (:0)| =E[F(Qh) ~ F(@1) | Q= (2.9)] < ~¢

if0<z <y, we get

E[F(@ui) = F(Q) | Qu = (2.9)| =E [F(@2,,) ~ F(@2) | Q2 = (2.9)] < —¢.
Finally, if > 0, we obtain

B [F(Quen) = Q)| Q= (00)] = 55755 (5 (Pl 1) Floa)) 5 (Fla.a+1) = Floua)

(= 10) = Flo) + u(Fleo 1) - Flao) )

1

= 055 (Ap (F(z+1,2) = F(z,2)) + A1 —p) (F(z,2 + 1) — F(z,z))

(= 10) = Flo) + u(Fleo 1) - Fla.) )

1

(= 10) = Flo) + u(Fleo 1) - Fla.o) )
= SE[F@h)~ F@0) Qb= (w.0)] + 3B [F(Q20) ~ FG2) G2 = (2,0)]
< —€.

It follows from the Lyapunov-Foster Theorem that the DTMC {Qn} is positive recurrent, and in

turn, so is the CTMC Q by, e.g., [29, Theorem 6.18].
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Case 2: i < p < Ver(p). In this case A) = A2 > 0. Moreover, (30) still holds, so both chains
are again positive recurrent (applying respectively cases (b-i) and (c-i) of Lemma 3.3.1 in [18]).

Again, (32) is satisfied for some € > 0 and some u,v,w such that u,v >0 and w? < 4uv. One

can easily check that (32) still holds when replacing u by u A v and v by wV v. Therefore, by

[18, Lemma 3.3.3], there exist Lyapunov functions F*': (z,y) = v/(uAv)z? + (uV v)y2 + wry and

F2: (z,y) = /(uVv)a? + (uAv)y? +wzy for {QL} and {Q?}, respectively, two compact sets K'

and K?, and an ¢ > 0, such that for all (z,y) ¢ K' UK? and all n,
(B |7 (@) - FHQD 10k = @w)] ) v (B [FH(@) - FA@) Q2 = (@y)| ) < —¢. (33)
Let
F(,y) = FH@,9) Ly + F2(2,9) Lay-
It follows from (33) that for all n>1 and (z,y) ¢ K' U K?,

B [F(@ur)— F(@] Qo (o) E[FNQh) ~ FHAD QL= (ay)| <~ if0<z<y
n+1) — n n—\T,Y =
E[F(Q2) - FAQ) Q2= (e)] < —¢ if0<y<uw

Only the case of a starting point (z,z), for € Z* , remains to be treated. Then, simple algebra

shows that, for some positive constant C,
Fz+1,2) - Fl(z+1,2) =C (uVv) — (uAv)) (2z+1) >0,

and we obtain similarly that the quantities F*(x,z 4+ 1) — F?*(z,z+1), F*(x,x — 1) — F'(z,2 — 1)

and F'(z—1,z) — F?(z — 1,z) are non-negative. Therefore, if (x,z) ¢ K'UK?, it follows from (33)
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that

E[F(Qui1) = F(Qn) | Qn=(w,2)]

= )\-1-12ﬂ (/2\ (Fl(l‘-i-l,l‘)—F(x,x))—F%(F2(x7x_|_1)_F(x7x))

4+ (F*(x—1,2) — F(z,z)) +u(F1(x,x—1)—F(x,x)))

B m <>\p (Fl(x+17x) 7F1(I’x)) +A(1=p) (Fl(IJrLCC)*FQ(x,x))

+ A1 =p) (F*(z,x+1) = F'(z,2)) + \p (F*(z,2 + 1) — F*(z,z))
+p(F*(z—1,2)— F'(z,2)) +p(F*(z — 1,2) — F*(2,2))

+p(FH(z,z—1) — F'(z,2)) + p (F' (2,2 — 1)—F2(x,x))>

= M(Aﬁ (F(z+1,2) — F'(z,2)) + M1 - p) (F (2,2 +1) — F'(z,2))

Jru(Fl(as1,x)F1(x,x))+/L(F1(:c,:cl)Fl(x,:c))>

+2<)\i2u)<>\(1 —p) (F2(z+1,2) — F*(z,2)) + Ap (F2(z, 2+ 1) — F2(x, 7))

+M(F2(’Il,x)FQ(QC,QL‘))+/L(F2(:E,’1‘1)FQ(CC,:E)))
= SE[FU(@) - PN Q= (o) + SB[ (@)~ FH(@2) | @2 = ()
< —€,

which, by virtue of the Lyapunov-Foster Theorem, implies the result. ]
B.2. Proof of Proposition 3

We use the same notation as in the proof of Proposition 2. Without the non-idling assumption,

the chain {Q,} has mostly the same transitions as in (28), except for

) A(L— *

z-axis: Pz0),:-1,00 = 7450 P2,0),21) = (AT:)’ Pla.0).(a+1,0) = %’ TEeL,
. Ad—

y-axis: Py 0,y-1) = ﬁa Py, = e

_Ap *
s Plow. ot = 55 TEZL.

The transitions of the three chains {Q,}, {QL} and {Q2} are then represented in Figure 4.

Then the interior drifts A}, A}, A2 and A2 <0 are all strictly negative, and the equalities in

(30-31) become

ALAY ZATAY = A2A CA2AY = H Ap— 4
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A(1—p)

N
e A2p
A(1—p)
At
© B Ap
Ap A2p AF2p
_n
A2p
AA—p)

Atp
1/2

H Ap

1/2 1/2

Figure 4 Transitions of the Planar chains {Q,} (left) {QL} (middle) and {Q2} (right) for the J2SQ(p) system.

ALAY ZATAY Z A2AY CA2AY = " Ap— 1)

If p< i, then the quantities in (34) are strictly negative; as in Case 1 in the proof of Proposition
2, this implies that the queue process is positive recurrent. If p > i, then we are in case (a-ii) in
[18, Theorem 3.3.1], implying that the DTMC {Qn} cannot be positive recurrent. Specifically, by
[18, Theorem 3.3.2], if p= ﬁ (respectively, if p > i), then the embedded DTMC is null recurrent
(respectively, transient), and so is the queue process Q ]
B.3. Proof of Lemma 3

For m € [2,s] let 7, ,, denote the loss probability of a M/M/m —1/0 queue (a loss system with

m — 1 servers), having traffic intensity sp = A/u; then

(sp)" " f(m—1)!
S (o) /il

pm -

Observe that p € 4(m), for 4(m) in (16), is equivalent to spm,, < (s —m+1). Also, we clearly have

that

1
1+ =2, s 1. (36)

)
Tp,m+1 SPTp,m

First, V..(1,2) =sup¥(2) < 1 from (10). We then proceed by induction. Suppose that sup¥(m) < 1

for some m € [2,s]. Let pe 9 (m+1). If p> %, then we have that
s—m+1

$PTpmi1 < (8 —m) S sp———
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which, after an immediate computation using (36), is equivalent to spm, ,, <s—m+1,1.e. p € Y (m).

By the induction assumption, this implies that

sup¥(m+1) < (Sup%(m) v m> <1,

which concludes the proof. O

C. Auxiliary results

Let Ly :={L(t):t >0} denote the queue process in an M/M/1/0 queue (one-server loss system)
having a Poisson arrival process with rate A and service rate p. The proof of the following lemma

is a simple application of a standard coupling argument which we bring here for completeness.

LEMMA 5. Consider the process Ly, and let Ty denote the time of the first event after time 0 (arrival
or departure). Then Ly is stationary for all t > 1; in particular, P(L,(t)) =0)=1— P(Ly(t) =

0)=p/(A+p), t =7

Proof. Let L. :={L.(t) :t> 0} denote a stationary version of the process L, namely, P(L.(0) =
0)=1—P(L:(0)=1)=pu/(A+p). Let T denote the first time L, and L. are equal; T :=inf{t > 0:

L(t)=L.(t)}, and define the process

Li(t) t<T,
Lo(t) := (37)

L.(t)t>T.

Since T' is a stopping time that is finite w.p.1, the strong Markov property implies that L, < L.

The coupling inequality (e.g., [1, VII 2a] gives
[1P(La(t) € ) =7(:)lrv < P(T">1).

Clearly, Ly and L. are equal when the first event (arrival or departure) in either of the two processes
occurs, and in particular, when the first event in Ly occurs. ]

Similarly to the proof of Lemma 5 we can prove the following result. Recall that L, : —{L,,(t) :
t > 0} denotes the number-in-system process in an M /M /(m—1)/0 queue-a loss system with m —1
servers and no buffer. Let 7, :=inf{t > 0: L,,(t) = m — 1}, namely, 7, is the first time instant in

which all servers are busy. Note that 7, is a proper random variable, i.e., P(7,, < c0)=1.
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LEmMA 6. If L,,(0) =0, then L,, is stationary for all t > T,,; in particular, for all t >,

P(L(t)=k)=a""" :—ﬂ ke[l,m—1].

S /i

Proof. Let L., denote the stationary version of L,,, namely, L., (0) < m™, for ™ in the state-

ment of the lemma. We couple L,, and L., on the same probability space and allow them to evolve

independently of each other until they couple, after which the two processes follow the path of L.,

(similarly to the construction of Ly in the proof of Lemma 5). Since L,,(0) =0, the two processes

must have coupled by 7,, and so the result follows from the strong Markov property. O
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