DESCRIPTIVE COMPLEXITY IN CANTOR SERIES

DYLAN AIREY, STEVE JACKSON, AND BILL MANCE

ABSTRACT. A Cantor series expansion for a real number = with respect to a
basic sequence Q = (q1,qz2, ... ), where ¢; > 2, is a generalization of the base b
expansion to an infinite sequence of bases. Ki and Linton in 1994 showed that
for ordinary base b expansions the set of normal numbers is a Hg—complete
set, establishing the exact complexity of this set. In the case of Cantor series
there are three natural notions of normality: normality, ratio normality, and
distribution normality. These notions are equivalent for base b expansions,
but not for more general Cantor series expansions. We show that for any
basic sequence the set of distribution normal numbers is Hg—complete, and if
Q@ is 1-divergent then the sets of normal and ratio normal numbers are Hg—
complete. We further show that all five non-trivial differences of these sets are
Dz(Hg)—complete if lim; ¢; = oo and @ is 1-divergent. This shows that except
for the trivial containment that every normal number is ratio normal, these
three notions are as independent as possible.

1. INTRODUCTION

1.1. Review of Definability Notions. In any topological space X, the collection
of Borel sets B(X) is the smallest o-algebra containing the open sets. They are
stratified into levels, the Borel hierarchy, by defining 2(1) = the open sets, H? =
-3¢ = {X — A: A € =0} =the closed sets, and for o < w; we let X be the
collection of countable unions A = J,, A, where each A,, € Hgn for some a,, < a.
We also let TI0 = -X2. Alternatively, A € II0 if A = (), A, where A, € Egn
where each a,, < a. We also set A = X2 NTIY | in particular A{ is the collection
of clopen sets. For any topological space, B(X) = U,,, 20 = Ua<o, . All of
the collections Ag, 23, Hg are pointclasses, that is, they are closed under inverse
images of continuous functions. A basic fact (see [12]) is that for any uncountable
Polish space X, there is no collapse in the levels of the Borel hierarchy, that is,
all the various pointclasses Ag, Zg, Hg, for o < wy, are all distinct. Thus, these
levels of the Borel hierarchy can be used to calibrate the descriptive complexity of
a set. We say a set A C X is % (vesp. IT%) hard if A ¢ TI, (resp. A ¢ X£°). This
says A is “no simpler” than a X° set. We say A is X0-complete if A € X2\ TI2,
that is, A € Eg and A is 22 hard. This says A is exactly at the complexity level
3%, Likewise, A is II2-complete if A € TI2 \ 9.

A set D C X is in the class DQ(Hg) if D= A\ B where A,B € Hg. A set D is
Dy (T13)-hard if X \ D ¢ Dy(I13), and D is Dy(TI3)-complete if it is in Dy(T19) and
is Dy(TI9)-hard. As with the classes 30, TIY, the class Dy (TI3) has a universal set
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and so is non-selfdual, that is, it is not closed under complements (we will define a
particular complete set for Do(IT3) in §3.2).

H. Ki and T. Linton [13] proved that the set A(b) of base-b normal numbers
(Definition 1 below) is IT3(R)-complete. Further work was done by V. Becher, P. A.
Heiber, and T. A. Slaman [5] who settled a conjecture of A. S. Kechris by showing
that the set of absolutely normal numbers is TI5(R)-complete. Furthermore, V.
Becher and T. A. Slaman [6] proved that the set of numbers normal in at least one
base is X}(R)-complete. In another direction, D. Airey, S. Jackson, D. Kwietniak,
and B. Mance [1], [2] showed that for any dynamical system with a weak form of
the specification property, the set of generic points for the system is Hg—complete.
This result generalizes the Ki-Linton result to many numeration systems other than
the standard base b one.

1.2. Normal Numbers. We recall the definition of a normal number.

Definition 1. A real number x is normal of order k in base b if all blocks of digits
of length k in base b occur with relative frequency b=* in the b-ary expansion of
x. We denote this set by Ny (b). Moreover,  is normal in base b if it is normal of
order k in base b for all natural numbers k. We denote the set of normal numbers
in base b by

N(b) := [ Ni(b).

kew

We also wish to mention one of the most fundamental and important results
relating to normal numbers in base b. The following is due to D. D. Wall in his
Ph.D. dissertation [23].

Theorem 2 (D. D. Wall). A real number x is normal in base b if and only if the
sequence (b™x) is uniformly distributed mod 1.

While it is not difficult to prove Theorem 2, its importance in the theory of
normal numbers can not be understated. Large portions of the theory of normal
numbers in base b make use of Theorem 2. We provide an example of a theorem
that provides motivation for the main problem studied in this paper.

Theorem 3 (D. D. Wall). ' For all rational numbers q (for the second inclusion
we assume also q # 0) and integers b > 2, we have

q+ N(b) € N(b);
gN(b) C N(b).
That is, normality in base b is preserved by rational addition and multiplication.

Moreover, Theorem 2 suggests a dynamical interpretation of normality which al-
lows the definition of normality to be extended to other expansions such as the regu-
lar continued fraction expansion, the Liiroth series expansion, and the S-expansions.
See [8] for a basic treatment and introduction to this idea.

In this paper, we are interested in a class of expansions known as the @-Cantor
series expansions that includes the b-ary expansions as a special case, but do not ad-
mit an extension of Theorem 2. The study of normal numbers and other statistical
properties of real numbers with respect to large classes of Cantor series expansions

LA full characterization of r € R such that 7 4+ N(b) C N(b) is given in [17].
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was first done by P. Erdés and A. Rényi in [9] and [10] and by A. Rényi in [18§],
[19], and [20] and by P. Turan in [21].

The Q-Cantor series expansions, first studied by G. Cantor in [7], are a natural
generalization of the b-ary expansions. G. Cantor’s motivation to study the Cantor
series expansions was to extend the well-known proof of the irrationality of the
number e = Y 1/n! to a larger class of numbers. Results along these lines may be
found in the monograph of J. Galambos [11]. If @ = (¢;)$2, is a sequence of integers
with each ¢; > 2, then we say that @) is a basic sequence. Given a basic sequence
Q = (¢:)2,, the Q-Cantor series expansion of a real number z is the (unique) 2
expansion of the form

o0
a;

@) ! ao+;91¢h'“(h
where ap = |z] and a; is in {0,1,...,¢; — 1} for ¢ > 1 with a; # ¢; — 1 infinitely
often. We abbreviate (1) with the notation x = ag.ajaza3 ... w.r.t. Q. If I = [i, ]
is an interval in N and the basic sequence @ is understood, we let, with a slight
abuse of notation, x | I denote the sequence of digits a;, ..., a;.

For a basic sequence Q = (g;), a block B = (e, ea,--- ,ex) € w<%, and a natural
number j, define

T (B): 1 if61<qj762<qj+17“'uek<qj‘+k71
07 0 otherwise

and let

2) Qu(B) = Z04(5)

o1 GG+ k-t

Let

n

QP =y ———

= 99541 " Gj+k—1

n
and Tg () := H g; | x mod 1.
j=1
Qn(B) gives the expected number of occurrences of the block B in the Cantor
series expansion of x with a starting position in [1,n]. We say B has infinite

expectation if lim, .o Qn(B) = oo. lek) is the expected number of occurrences
of 0y (the length k block of 0s) with a start in [1,n] (which is also the expected

number of occurrences of 1;). We also let Q. (B) = >_7_,, %, which
343 J+k—1

is expected number of occurrences of B with a start in [m,n].

A basic sequence @ is k-divergent if lim,,_, Qg,k) = 00, fully divergent if Q is
k-divergent for all k, and k-convergent if it is not k-divergent. A basic sequence @
is infinite in limit if ¢; — oo.

For a block B = (e, ..., e) as above we let |B| = k denote the length of B, and
let |B| =(e1 +1)+ -+ (ex +1). For 1 <t <k we let B(t) = e; denote the tth
element of the block B.

For x a real with Q-Cantor series expansion ag.ajas - - -, we let N2(B,x) be the
number of ¢ with 1 <4 < n such that « | [i,i 4+ |[B] — 1] = B. We let N2 (B, )
be the number of ¢ € [m,n] with « | [i,4 + |B| — 1] = B. This counts the number
of occurrences of the block B with a start in the interval [m, n].

2Uniqueness can be proved in the same way as for the b-ary expansions.



4 D. AIREY, S. JACKSON, AND B. MANCE

FIGURE 1

@ RN(@)NDN(Q)

N(@)NDN(Q)

Motivated by Theorem 2, we make the following definitions of normality for
Cantor series expansions.

Definition 4. A real number x is Q-normal of order k if for all blocks B of length
k such that lim,, o @, (B) = oo,

. N2(B,z)
3) A0 B
We let N (Q) be the set of numbers that are Q-normal of order k. The real number
z is Q-normal if z € N(Q) := Npey Ni(Q).

Definition 5. A real number z is Q-ratio normal of order k (here we write x €
RNk(Q)) if for all blocks By and By of length k such that
lim,, -y oo min(@Qp (B1), Qn(B2)) = 0o, we have

N2 (Bi,2)/Qn(B1)

lim =
(4) n— 00 N,’?(BQ’J})/Q”(BQ) !

We say that z is Q-ratio normal if z € RN(Q) = ey RNL(Q).

=1.

Definition 6. A real number z is Q-distribution normal if the sequence (T » ()52,

is uniformly distributed mod 1. Let DN(Q) be the set of @Q-distribution normal
numbers.

We note that by Theorem 2, the analogous versions of the above definitions are
equivalent for the b-ary expansions. The situation is far more interesting in the
case that @ is infinite in limit and fully divergent.

It was proved in [16] that the directed graph in Figure 1 gives the complete
containment relationships between these notions when @ is infinite in limit and
fully divergent. The vertices are labeled with all possible intersections of one,
two, or three choices of the sets N(Q), RN(Q), and DN(Q), where we know that
N(Q) = N(Q) N RN(Q) and N(Q) N DN(Q) = N(Q) N DN(Q) N RN(Q). The set
labeled on vertex A is a subset of the set labeled on vertex B if and only if there is a
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directed path from A to B. For example, N(Q) N DN(Q) C RN(Q), so all numbers
that are -normal and @Q-distribution normal are also Q-ratio normal.

We remark that all inclusions suggested from Figure 1 are either easily proved
(N(Q) € RN(Q)) or are trivial. The difficulty comes in showing a lack of inclusion.
The most challenging of these is to prove that there is a basic sequence ) where
RN(Q) N DN(Q\N(Q) # 0.

As the equivalence of these definitions is so key to the study of normality in
base b, it is natural to ask how “independent” these sets are. There have been two
approaches to measure this. First, it is natural to ask if, for example, there is a
simple condition P(x) where if x is Q-normal and P(z) also holds, we will have the x
is Q-distribution normal (or any other permutation of definitions of normality). One
example of such an attempt to find a condition P(z) is motivated by Theorem 3.
This theorem strongly fails when @ is infinite in limit and fully divergent: Q-
distribution normality is preserved only by non-zero integer multiplication while Q-
normality and Q-ratio normality aren’t even preserved by integer multiplication. In
fact, the easiest ways to construct members of N(Q)\DN(Q) is to use the techniques
presented in [16] to construct members of the (surprisingly) non-empty set

{zx e N(Q) : Vn > 2 nx ¢ N(Q)}.

This motivated Samuel Roth to ask the third author if it is true that nx € N(Q)
for all natural numbers n implies that x € DN(Q) at the 2012 RTG conference:
Logic, Dynamics and Their Interactions, with a Celebration of the Work of Dan
Mauldin in Denton, Texas. This question was later strongly shown to be false in
[4] as it was shown that there exist basic sequences @ such that

dimpg ({z € R:rz 45 € N(Q)\DN(Q)vr € Q\{0},s € Q}) = 1.

Any other attempt to find such an additional condition that would allow one to get
from one form of normality to another has thus far failed.

The second method has been to attempt to find the “size” of the difference sets
suggested by Figure 1. All of these difference sets are meager and have zero measure.
The Hausdorff dimension of most of these difference sets has been calculated in [3].
In particular, when @ is infinite in limit and fully divergent, all non-empty difference
sets except for N(Q)\DN(Q) are known to have full Hausdorff dimension. The
Hausdorff dimension of N(Q)\DN(Q) is known to have full Hausdorff dimension
only for a small class of infinite in limit and fully divergent basic sequences Q.

Another approach to measuring the difference sets is to determine the exact
descriptive complexity of these sets. If we show that for two of these classes (for a
given Q) the difference set is D (IT3)-complete, then the difference has maximum
logical complexity. One of the main results of this paper, Theorem 15, is to establish
this fact for the five non-trivial difference sets. As we mention in some examples
below, this can be used to rule out potential theorems connecting the different
classes.

Remark 7. When (@ is infinite in limit and k-divergent, conditions (3) and (4) can
be replaced by

N9 (B N9 (B
lim 7”( ) =1and lim 7"( 1,7) =1,
n—oo g") n—o0 ]\/'TCL2 (B2’ JT)

respectively. This class of expansions will be important for us throughout this
paper. Moreover, Ni(Q) = RN (Q) = R if and only if @ is k-convergent.
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Remark 8. Assuming @ = (g¢;) is infinite in limit, we have the following easy facts
about distribution normality. A real x with Q-Cantor series expansion ag.aias - - -
is in DN(Q) iff the sequence (£*) is uniformly distributed mod 1. If y = bg.b1bz - - -

and lim;_, ‘“;bi = 0, then z € DN(Q) iff y € DN(Q). Also, if {i: a; # b;} has
density 0, then x € DN(Q) iff y € DN(Q).

We will need the following theorem of [15].

Theorem 9. The sets N(Q), RN(Q), and DN(Q) are sets of full measure for all
basic sequences Q.

1.3. Statement of Results. We will prove the following theorems. First we ad-
dress the complexity of the various normality classes themselves. Theorems 10 and
11 can be seen as generalizations of the Ki-Linton result as N(Q), RN(Q), and
DN(Q) all coincide when @ is the constant b sequence. The proofs, particularly
that of Theorem 11, have however significant extra complications.

Theorem 10. For all basic sequences @, the set DN(Q) is Hg—complete.

Theorem 11. The sets N(Q) and RN(Q) are TIg-complete if Q is 1-divergent, and
clopen if Q is 1-convergent. Moreover, Ni.(Q) and RN(Q) are TI3-complete if Q
is k-divergent and clopen if Q is k-convergent.

We can extend Theorem 11 to show the following.

Theorem 12. Let C be a collection of blocks. Then the set

_ gy NE(B. @)
Ne(Q) = {x eR: nh—{roloWB)

18 Hg-complete if there exists B € C such that lim, . Qn(B) = oo and clopen
otherwise. Similarly, the set

=1VB € C such that li_>m Qn(B) = oo}

. Nycf?(Bhl')/Qn(Bl)
RN =< : lim
Q) { S NGB, 2)/Qu(Ba)

=1VBy, By € C such that

|B1| = |Bs| and nlergomin(Qn(Bl),Qn(Bg)) = oo}

18 Hg—complete if there exist By, Bs € C such that lim,,_, min(Q,(B1), Qn(B2)) =
oo and C satisfies the following hypothesis:

(x) For every B € € with infinite expectation there is a block B’ € € of infinite
expectation with |B’| = |B| and an integer 1 <t < |B| such that |B(t) — B'(t')| > 1
forall1 <t < |B'|.

If there do not exist By, Ba € C such that lim,, o, min(Q,(B1), Q. (B2)) = oo,
then RNe(Q) is clopen.

Remark 13. The Hg—completeness of Ne holds for general € (and all @), but the
Hg—completeness of RN¢ requires the extra hypothesis (x) on €. We do not know
if this extra hypothesis is necessary. For base b expansions, normality and ratio
normality coincide so the extra assumption is not needed, but we do not know for
general Q.

3The definitions of @Q-normality and @Q-ratio normality that were used were less general, but
the general result holds with only small modification for our more general definition.
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Remark 14. The proof of Theorem 12 will also show the IT3-completeness for
a variation of ratio normality which we call strong ratio normality. Here we re-
move the restriction that |By| = |Bz| in the above definition of RNe(Q). We can
accordingly relax the (x) assumption by removing the requirement that |B’| = |B|.

The next theorem addresses the complexity of the difference sets. We note that
the hypotheses on Q) are necessary as the various normality classes coincide for base
b expansions (where @ is not infinite in limit) and when @ is not 1-divergent then
N(Q) and RN(Q) are clopen.

Theorem 15. Assume that Q is infinite in limit and 1-divergent. Then the sets

DN(Q)\N(Q), DN(QN\RN(Q), N(@)\DN(Q), RN(Q)\DN(Q), and RN(Q)\N(Q)
are all Dy(T13)-complete.

Theorem 15 imposes limitations on the relationships between the classes N(Q),
RN(Q), and DN(Q). For example, consider the sets N(Q) and RN(Q). Since
RN(Q) \ N(Q) is Dy(TI3)-complete, there cannot be a X3 set A such that A N
RN(Q) = N(Q) (as otherwise we would have RN(Q) \ N(Q) = RN(Q) \ A €
II3, a contradiction). Thus, no X3 condition can be added to the assumption of
ratio normality to give the set of normal numbers. Equivalently, anytime a Eg set
contains N(Q) (or DN(Q)), then it must contain elements of RN(Q) \ N(Q) and
DN(Q)\N(Q) (resp. N(Q)\ DN(Q), and so RN(Q) \ DN(Q)). For example, though
N(Q) has Lebesgue measure one, any IIJ set of measure one which contains N(Q)
must contain an element of RN(Q)\N(Q), as well as DN(Q)\N(Q). Many naturally
occurring sets of reals A are defined by conditions which result in them being Eg
sets. Examples include countable sets, co-countable sets, the class BA of badly
approzimable numbers (which is a X9 set), the Liouville numbers (which is a II9
set), and the set of x € [0, 1] where a particular continuous function f: [0,1] — R
is not differentiable. In all these cases the theorem implies that either the set omits
some normal number, or else contains a number which is ratio normal but not
normal (and likewise for DN(Q)). Of course, many of these statements are easy
to see directly, but the point is that they all follow immediately from the general
complexity result, Theorem 15.

Previous work of Mance [14] had shown that all of the non-trivial difference sets
(all except N(Q) \ RN(Q), which is trivially empty) are non-empty assuming @ is
infinite in limit k-divergent for all k. Thus, Theorem 15 strengthens this in two
ways: we relax the hypothesis to @ being 1-divergent, and we show the difference
sets are actually Dy(TI3)-complete.

To mention another application of Theorem 15, consider (relative to a fixed basic
sequence ) which is infinite in limit and 1-divergent) the following weakening of
distribution normality. Say a real x is e-weakly distribution normal (for € > 0) if
there is an ¢ such that for all N > ¢ and all intervals (a,b) C (0,1)

1
N#{n<N: 4o gn—1xz mod 1l € [a,b]} — (b—a)| <e

The set WDN(Q). of e-weakly distributional normal numbers is easily a 9 set. It
therefore follows from Theorem 15 that N(Q) N WDN(Q), \ DN(Q) is non-empty.

For one more example, let R(Q) denote the set of rich numbers. These are the x
such that every block B € w<“ occurs in the Q-ary expansion of z. The set R(Q)
is easily a IT) set, and contains the ratio normal numbers (and so also the normal
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numbers). From Theorem 15 it therefore follows that DN(Q) N R(Q) \ N(Q) is
non-empty, in other words, distribution normal and rich does not imply normal (if
this failed, then DN(Q) \ N(Q) would be equal to DN(Q) \ R(Q) which a II3 set,
contradicting Theorem 15).

2. Hg—COMPLETENESS OF THE NORMALITY CLASSES

Throughout, @ = (¢;)52; will denote a basic sequence, that is, a sequence of
integers ¢; with ¢; > 2 for all i.

Note that the TT9-completeness of the set N(Q)N[0, 1] (and likewise for RN(Q)N
0,1] and DN(Q) N [0,1]) immediately implies the TI3-completeness of N(Q), since
if N(Q) were in X3, then so would be N(Q) N[0, 1]. Similarly, the IT3-completeness
of the difference sets restricted to [0,1] (for example RN(Q) \ N(Q) N[0, 1]) implies
the TI3-completeness of the difference set (e.g. RN(Q) \ N(Q)). So, for the rest of
the paper we will restrict our attention to reals in [0, 1], that is, when we write
N(Q) etc., we will henceforth mean N(Q) N [0, 1].

The basic sequence @ forms the set of bases for the expansion of an real z € [0, 1]

into a Cantor series
oo

%
r=3

?
o d1 4

where 0 < a; < g;. Recall we abbreviate the above equation by writing x = .ajas - - -
when @ is understood. Let X be the set of all sequences (a;)52; with 0 < a; < g;.
X¢ is a compact Polish space with the product of the discrete topologies on the
sets {0,1,...,¢,—1}. Welet ¢o: Xg — [0, 1] be the map p2((a;)) = .a1az2.... Our
reduction maps will always be of the form ¢(x) = @2 o @1, where ¢1: w¥ — Xg
will vary from proof to proof.

We first prove the completeness result for distribution normality, Theorem 10.

Proof of Theorem 10. Let P = {z € w¥: lim, z(n) = co}. It is well-known that P
is TI3-complete. We define a continuous ¢: w® — [0,1] which will be a reduction
of P to DN(Q), that is, such that P = o~ 1(DN(Q)). This suffices to show that
DN(Q) is TI3-complete. Again, ¢ will be of the form ¢ = @5 0 ¢ where s is as
above.

Let 0 = by < b1 < bs < --- be a sufficiently fast-growing sequence from N, so
that in particular lim,, 227t — 0. Let I,, = [b,_1,b,), which we call the nth
block of N. !

Fix a z = (2)52, € Xg such that ¢s(z) = .z129--- € DN(Q). We will use z
as a “reference point” from which we make certain modifications depending on the
point x € w*.

Fix 2 € w* and we describe the construction for ¢ (z). Let ' (n) = min{xz(n),n}.
Clearly z € P iff 2/ € P. Consider the nth block I,,. We may assume the b,, grow
fast enough so that for all n and all k£ < n + 2, for all b > b,,_1 we have that

1 . 1 1 1
For ¢ € I, we define a; = (¢1(x))(i) as follows. For i € I,, if Tp,;(z) ¢

[0, m), then we set a; = z;. If T ; (2) € [0 then we set a; to be the

least integer in [z, g;) such that o>

1
7W)7

1
z/(n)+2"
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This defines the map 1, and it is clear that ¢, and thus ¢, is continuous. We
show ¢ is a reduction of P to DN(Q).

First suppose that ¢ P. Then there is an iy such that for infinitely many n we
have 2/(n) = io. For such n we have that for all i € I, that Tg ; (p(z)) € [0, -5 ),

z’/(n)+2
and thus Tq ; (p(z)) ¢ [0 ). This follows from the facts that

Tq.i(p(x) > Tg:(2),

and if T ; (2) € [0, m) then by definition of a; we have that Tg; (p(x)) >

o> m,(s)”. Since b“‘*‘”i)‘:b"’l tends to 0, it follows that p(z) ¢ DN(Q).

Assume now z € P, and we show that ¢(x) € DN(Q). From Remark 8 it suffices
to show that {i: a; # z;} has density 0. Fix e > 0. Since z € P, lim,,_, 2'(n) = co.
Fix ng large enough so that m < § for all n > ng. If n > ng, then for all
k € I,, we have that

(6)1 1 1 1 1
€
Sudi<k:Tos 0, - L SEL S
’k#{2< Qi (2) € [ x’(no)+2)} x’(n0)+2’<2n x’(no)+2<2
For n > ng, the i € I,, for which a; # z; are the i for which T ; () € [0, —25),

z'(n)+2
which is a subset of the ¢ € I,, for which Ty ; (2) € [0, m), for n large enough.
From Equation (6) it follows that for all large enough n and k > b,, that

1
Y i0+2

1
%H{z <k:a;#z}| <e
Thus, {i: a; # z;} has density 0. O

We next prove the completeness result, Theorem 11, for the classes N(Q) and

RN(Q).

Proof of Theorem 11. Suppose @ is 1-divergent and we first show that N(Q) and
RN(Q) are TI9-complete. Let P C w® be the II3-complete set as before. Fix
z = (2)72, € Xg such that @o(z) = 2122, -- € N(Q).
We say a block B € w¥ is good if lim,, Q,(B) = oo, that is, the block B has an
infinite expectation. Recall that if B = (e1,...,ex), then |B|| = >, ,<.(e; +1).
We let 0 = by < by < --- be a sufficiently fast-growing sequence so that the
following hold:
(1) bp —bp_1 > 2"b,_1.
(2) m|N2(B7z) — Qm(B)| < L for any good B with ||B|| < n, and any

m > bn—1~
(3) QI:)"‘(}B) < 4 for any good B with [|B|| < n.

We define the map ¢; : w* — X, and our final reduction map will be ¢ = pa0¢;
where 5 is as in the proof of Theorem 10. Let I, = [b,—1,b,). For z € w®, let
2'(n) = max{27, min{x(n),n}}. We define 1 (z) | I, as follows.

Let By, By, . .. B, enumerate the good blocks which occur among the first | {/2/(n) |
many blocks, where we order the blocks first by ||B|| and then lexicographically.
Note that this ordering of the blocks has order-type w and the ith block in this
ordering has length < i. So, for j < p we have |B;| < {/z/(n) < ¢/n.

For each 0 < ¢ < p let m(i) € [by—1,b,) be the least m so that Ny, p, (B;, z) <

2 3 N
WQb" (B;). Note that Ny, )5, (Bi, z) > WQb" (B;). Let m = max{m(i): 0 <
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i < p}. Let ip be such that m(ig) = m. We note that ig = ig(n) depends on n, but
as n is fixed for the rest of the definition of ¢ () [ I, we will just write 4.
Consider the block B;,. We say a block B; is sparse relative to B, if Qs, (B;) <
1 _ ) e
WQb" (Biy)- Let A C I, be the set of i € [m,by] such that z [ [i,i +

|Bi,|—1] = B;,. Let r be the digit altering function defined as follows. If B;, (1) = 0,
then r maps 0 to 1 and leaves all other values fixed. If B; (1) # 0 then r maps
B, (1) to B;,(1) — 1 and leaves all other values fixed. Since the block B;, is fixed
for the rest of the definition, the function r is also. Note that r applied to a valid
@ expansion results in a valid @) expansion. Also, 7 is at most 2-to-1, so each block
B has most 2/Z] many preimages under r (we apply 7 to a block by applying it to
each digit).

Let A" C A be those ¢ € A such that for all j < p such that B; is sparse
relative to B;,, and all ¢ < |Bj|, z [ [i —¢,...,i —q+ |Bj| — 1] # B; and z |
i—q,...,i—q+|Bj|—1] ¢ BJS, where S C |B;| and BJS is the set of blocks B such
that 7(B) = Bj (here r(B) means apply 7 to all of the digits of B).

Note that if 2’ is obtained by applying r to the digits z; for i in a subset of A’,
then z [ I,, and 2’ | I, have the same number of occurrences of the block B; for
ji=1...,p.

Note that

)2 =B =Y S S BN, (5.2

j<p SC|Bj|rs(B)=B;

where the first sum ranges over the j such that B; is sparse relative to B;,, and the
third sum ranges over blocks B with rg(B) = Bj, where rg applies r to the digits
in the set S. Since 7 either lowers a digit or changes a 0 to a 1, it follows that if
rs(B) = B, then Q(B) < Q(By) for any k.
Thus,
| AL > > |B;[4IBINS (B;)

% (Biy) —
23 ’ Ji<p

L ol 141851 _
— 93 SC/(n)an(Bm) (1+n)jz<;)|Bj|4 an(BJ)

L Y l 14lBs] 1 .

> 5 O (B <1+n>j§p|3g|4 <4|Bj4|3,- WQ%(BZOO
3 1\/7

ZWQb (Bz'o)—z\/—an io)

ﬁ B~ s

an(Bio)

>

3 ‘,L.I(n)
for all large enough n. Let A” be the last ﬁan (B;,) elements of A’.

For ¢ € I, let
. r(z;) ifie A’
mx)(z):{ ) )

Zi otherwise
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Note that ¢1(x) [ I, is obtained from z | I,, by changing certain digits, the number
of such changes being |A”| = ﬁ@bn(Bio) Note that the least element ¢ of A” is

at least the number m from above (since A” C A C [m, b,]) and
Ny (Biy, 2) > Ny, (Biy, 2) — Ny, (Bi

2
Wan(Bio)

1 2
><(1_n)_ o )>Qb( o)

since m = m(ig) and using the definition of m(ig). Since 2’'(n) > 27, N, (B;,, 2) >
£Qs, (By,) and in particular m > £Qs, (B;,). From property (3) of the b, it follows

z

> Nb (Bzoa )

that the first element of A” is at least %bn,l > 27~ 1p,,_4, for all large enough n.

Suppose first that ¢ P. There is a least ¢, which we call £y, such that for
infinitely many n we have that x’(n) = £5. At such a stage n in the construction,
we consider the first /£y many blocks. So, for infinitely many such n we may
assume that the block B;, is fixed, that is, the value of iy does not depend on n
along this subsequence. Then for large enough such n we have:

N2 (Buy 01(2)) < bus + N2 (Byy. 2) — %%(Bm)
< buy + Qv (Bu) (1 + 1) - inn (B.,)
(7)
< (41n+1+1—)Qb (Bio)

(1 - ) Qv, (Biy)

This shows ¢(z) ¢ N(Q) when x ¢ P. Consider the block B;, which is fixed
along the subsequence. If B; (1) > 1, then we obtain ¢1(z) | I, from z | I, by
lowering certain occurrences of the digit B;,(1) to B;,(1) —1. This Will not decrease
the number of occurrences of the block 0y, where k = |B;,|. So, N, (Ok7 v1(z)) >

an(O;€7 z) > @, (05)(1 — €), for small € (say € < i) and all large enough n.
This, along with Equation 7, shows ¢;(x) ¢ RN(Q). If B;,(1) = 0, then r maps
0 to 1 and leaves all other digits unchanged This cannot decrease the number of
occurrences of of the block 1. So, N, (lk,cpl( ) > N;i(lk,z) > Qp, (1x)(1 —¢)
which again shows ¢1(x) ¢ RN(Q).

Suppose now that € P so that lim, 2'(n) = co. Let B be a good block, and
fix € > 0. Let ng > |B] be such that for all n > ng, 2/(n) is large enough that B
is one of the first ¢/2/(n) many blocks. Consider now n > ngy and corresponding
interval I,,. Let § > 0 and assume n is sufficiently large and inductively that we
have shown |N;* (B, z) — Nﬁ (B,p1(2))| <6Qu,_,(B).

Consider first the case B is sparse at stage n relative to B;,. Let p be as before,
so p < {/2'(n). Then B = B, for some j < p. So, for any ¢ € I,, we have that if

I'[i,i+|B] —1] = B or ¢1(x) | [i,i+ |B| — 1] = B then [i,i + |B]| — 1] N A, = 0.
Since = | I, is obtained from z [ I, by changing the value only at points of
Al C Al it follows that for any k € [b,_1,b,] that \N,?(B,z) - N,?(B,cpl(x)) =

\leiil(B, z) — NQ (B, ¢1(x))|. So we have for k € [b,—1,b,] and large enough n:

bn—1
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(8)
INZ(Byg1(x) — Qu(B)| < INZ(B,2) = Qu(B)| + N2 (B, () = N2 (B, 2)]

< INQ(B, 2) — Qr(B)| + Qs, ,(B)
< - Qu(B) +3Qu(B)

<uB) (57 +9).

which verifies normality for the block B. Since |Nan (B,z) — N “(B,pi(x))] =
\Nan_l (B, z) —Nan_ (B, ¢1(x))|, the inductive hypothesis at b, follows immediately.

1
Consider next the case that B = B; is not sparse at stage n relative to B;,.

From the definition of 7o and m we have that

A

2

(9) Qm(B) > Qm, (Bj) > (1 - > Qv (B;).
a'(n)

From the definition of being sparse relative to B;, we have that

1
(10) @b, (B) = WQb (B
Recall that ¢;(x) [ I, and z [ I,, only differ on A”, and min(A”) >m.

Now let k € [by—1,by], and we estimate |N (B, p1(x)) — Qr(B)|. If k < m then
NG (B, 01(2)) = Qu(B)| < INZ(B,2) = Qu(B)|+N;}_(B,2) =Ny (B,o1(2))] <
(3= +6) Qx(B), which verifies normality for B.

So, assume k > m. We have

INE (B, @1(2)) = Qu(B)| < b1 + @b, (Big) + IN{ (B, z) — Qu(B))|

L
a'(n)

1 1
< 500, (B) & 00, (Bu) + 3 0u(B)
1 1 1 1

= ﬁﬁQm(B) + Wan(Bm) + 27Qk(B)
< L Qu(B) + Q. (Biy) + —Qu(B)
= 9n—2 m J;/(n) bn 20 on k

1 1
< Sas@n(B) + 2 (n) 4|B|4‘B|\/~’WQ%(B
< Q,L%SQ;C( ) T Qm(B)

m
1 12|B|4l 5]

Since x'(n) — oo, this shows normality for the block B. Similarly, letting k =
by we have [Ny (B, ¢1(2)) = N2 (B, 2)| < boo1 + 3@, (Big) < Q0. (B) +
8417 IQ (B) < 6Qy, (B), which verifies the inductive hypothesis at b,,.

NI
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This completes the proof that N(Q) and RN(Q) are Hg—complete assuming Q
is 1-divergent. If @ is l-convergent, then every z is in N(Q) and RN(Q), so the
conclusion of Theorem 11 holds trivially. O

The second part of Theorem 11 concerning Ny (Q) and RN (Q) and the proof
of Theorem 12 are slight generalizations of the proof of Theorem 11 given above.
Since the proofs are similar we just sketch the differences.

Proof of Theorem 12. We use the notation and terminology of the proof of Theo-
rem 11. We may assume that all of the blocks B € € have infinite expectation, that
is, lim @,(B) = oco. At stage n of the construction we again let p = | V/z'(n)],

n—0o0

and let By, ..., B, enumerate the first p many blocks of C. We define the block
B, as before, maximizing the value of m(i) for 1 < ¢ < p. For the first part
of Theorem 12 we may use the same digit changing function r as in the proof of
Theorem 11. If x € P, then the proof of Theorem 11 shows that p(z) € Ne(Q).
If © ¢ P, then for infinitely many n the value of iy will be constant, and B;, is a
block in €. As in Equation 7, this gives an € > 0 such that for infinitely many n
we have |Nan (Big, 01(2)) — Qp,, (Bi,)| > €Qp, (Bi,). Thus, p(x) ¢ Ne(Q). For the
second statement of Theorem 12 we modify the argument as the blocks 0; and 1k
used in the proof of Theorem 11 may not be in €. The additional hypothesis of
Theorem 12, however, guarantees the existence of a block B; € C and an integer
t such that |B;,(t) — B;(t')] > 1 for all . As in the argument after Equation 7,
we modify the definition of ¢1(z) | I, to change by 1 all occurrences of B;,(t) in
z | I, which correspond to a possible occurrence of B;, (that is, the integers i € I,
where z [ i —t+ 1,1+ |B;,|] = Bi,)- This will not affect the number of occurrences
of the block B; in I,,. This gives that p(z) ¢ RNe(Q).

O

3. PROOF OF THEOREM 15

We will show the Ds(IT3)-completeness of the non-trivial combinations of the
form A\ B where A, B are one of N(Q), DN(Q), RN(Q). There are 5 non-trivial
combinations, as N(Q) € RN(Q). Section 3.1 handles four of these cases, which are
essentially done by the same proof. The fifth case, RN(Q) \ N(Q), is more compli-
cated and will be handled in Section 3.2. We note that the D5 (Hg)—completeness
of the sets A\ B implies that the sets of the form A N B or of the form AU B (for
A, B € N(Q), DN(Q), RN(Q)) are TI3-complete by the following simple lemma.

Lemma 16. If A, B are TI3 and A\ B is Dy(TI3)-complete, then AU B and AN B
are TI9-complete.

Proof. Suppose that AU B were 3. Then A\ B = (AU B)\ B would be X9, a
contradiction. Likewise, if AN B were X9 then A\ B = A\ (AN B) would be II3,
a contradiction. O

Lastly, we note that since N(Q), RN(Q), and DN(Q) are sets of full measure by
Theorem 9, their intersections are nonempty. We will freely use this fact without
mentioning it.
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3.1. Completeness of DN(Q) \ N(Q), DN(Q) \ RN(Q), N(Q) \ DN(Q), and
RN(Q) \ DN(Q)-

Theorem 17. Let Q be infinite in limit and 1-divergent. Then the sets DN(Q) \
N(Q), DN(Q) \ RN(Q), N(Q) \ DN(Q), and RN(Q) \ DN(Q) are all Dy(IT)-

complete.

Proof. Let C = {x € w¥: x(2n) » oo}, D ={z € w*: z(2n 4+ 1) — oo}. It is easy
to see that C'\ D is Dy(TT3)-complete.

Fix a fast growing sequence {b,}, so in particular (2", b;)/b, — 0. Recall
0 denotes the sequence of length k consisting of all 0s. We introduce two basic
operations which can be performed on an interval I € NI* of digits:

Op: Let A C [a,b] be the set of j which start an occurrence of 0y, that is,
(I(3)y...,1(j +k—1)) = 0. Let A’ C A be the last Lllilj many elements of A.
For each j € A’, change the digit I(j) from a 0 to a 1.

Ej: For every j € [a,b] with I(j) € [kihqj,qj], change the digit from I(j) to
Qj — 1.

For the difference hierarchy results we will use both operations, exploiting the
fact that, roughly speaking, they allow us to modify normality /ratio normality and
distribution normality independently.

Let z € DN(Q) N RN(Q), and let (2;)72, € X be the digits of the Q-Cantor
series expansion of z.

We suppose the b,, are chosen so that for all k¥ < 2n such that @ is k-divergent
we have Q)" > 2"b,_1 and Ym > b, [N (0k, 2) — QW] < Q.

Suppose first that lim,, lek) = oo for all k, that is, @ is fully divergent. Given = €
w*, we define ¢1(z) € X¢ as follows. Let 2’(n) = max{2, min{x(n),n}}. Consider
the interval of digits z | I, where I,, = [bn_1,b,). We let p1(x) | [bn_1,bn) be
given by starting with 2 | I,, and applying the operation ©,/(2y) /(2n) and then the
operation g/ (2,41) to it.

Recall @o: Xg — [0,1] is the continuous map

oo

802(d17d2-~-):z

i=1

d;
Geai

We show that ¢ = s 0 ¢y is a reduction from C'\ D to N(Q) \ DN(Q). In fact,
we show that x € C iff p(z) € N(Q) and = € D iff p(z) € DN(Q).

Since q; — oo, the © operation does not affect distribution normality as it
involves changing each digit in the ¢ Cantor series expansion by at most 1 (see
Remark 8). Also, as ¢; — oo we have that the = operation does not effect normality,
since for any block of digits B we have that |[N2 (B, z) — N¥(B,y)| is bounded with
n (regardless of x), where y is the result of applying the = operation in all of the
I,.

First suppose x € C, so x(2n) — oo. Let w be the result of applying just the first
operation ©,/(2y).4(2n) t0 2z in each of the intervals I,,. We claim that w € N(Q).
Consider a block B of digits, and let k = |B| denote its length. First note that for
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any € > 0 all large enough n we have

INE(Bw) = N (B9 < bos + S0 N Oz
< bp- 2lB|) ( >Qb (027 (2n))
< e, (B )-

Since z € N(Q), for large enough n we have |Nb€ (B,w) — @Qp, (B)] < 2eQs, (B).
Fix € > 0, and consider now n large enough and k € [b,,—1,b,). Let m be the first
element of A’ in I,,. Note that |A| > 2"b,,_1, and so m > 2""1b,,_; as 2/(2n) > 2.
If £k < m then we have
ING(B,w) = Qr(B)| < [N _ (B,w) = Qu,_,(B)| + N2 _, 1(B,w) — Qb,_, x(B)]

< 26an71( + |N bp_1, k( 7Z) - anfhk(B)'

< 26Qu, ,(B) +|INZ(B,2) = Qe(B)| +N;?_(B,2) = Qb ,(B)]

<?€+ )Qk( )-

If £ > m, then for large enough n first note that we have

1

Qu(B) 2 Qr(0w(2n) = (1= 5 )NZ (O 2n) 2)
> (1= 500 = SV O )
> (1= 55 (1= 5500 Osra)
>% n (0zr(20))
> 2",y

So we have
INZ(B,0) = Qu(B)| < by + o5 N O 2) + INE(B,2) — Qu(B)
- < 7 QuB) + o NE a1, + 5 Qu(E)
< 3 QuB) + QD)

< eQr(B).

This shows that w € N(Q).



16 D. ATREY, S. JACKSON, AND B. MANCE
If x ¢ C, say x(2n) = ¢ for infinitely many n, then for infinitely many n we have

N2 (0, w) < Ni2 (0, 2

~

+b 71_7 lgiil,b (Ocvz)

/\
_|_

+ an 1 — *N (0672)
(12)
( ¥

( - 2n> Qs,,(0c)
(-2

On the other hand, the block 1 occurs in w | [0,b,) at least as many times as
it does in z [ [0,b,). So, Ny (le,w) > N2 (1e,2) > (1 — 3)Qs,(1c). Since
Qsb,, (0:) = Qs, (1¢), it follows that w ¢ RN(Q) (and also w ¢ N(Q)).

If x € D, so z(2n + 1) — o0, then p(zx) € DN(Q). We use the fact that if
u = .ugug--- € DN(Q) and v = .vjvy... is such that |(u; — v;)/q;| — 0, then
v € DN(Q) (see Remark 8). If z ¢ D, then p(z) ¢ DN(Q) since for inﬁnitely many
intervals [b,_1,b,) we have that (p1(x))(i)/q; ¢ [1 —€,1 — 5], where € = ? and
x(2n + 1) = ¢ for infinitely many n.

So we have that if € C then p(z) € N(Q), and if ¢ C then p(z) ¢ RN(Q).
Also, x € D iff p(x) € DN(Q). Thus, in the last two cases of the theorem, ¢ is
a reduction of C'\ D to the desired difference set. For the first two cases of the
theorem, ¢ is a reduction of D\ C to the desired difference set. This completes the
proof of Theorem 17 in the case where @ is fully divergent.

Assume now that that there is a largest integer ko such that @ is kg-divergent.
We again obtain ¢ (x) | [bn—1,bs) by applying two operations. One of these is
Ez/(2n+1), Where the operation E is as before. For the other, we use operation

M‘H 02| co [\3‘)_.

\/\_/\_/

Qv,, (0c).

@ko,m’(Qn)'
If © ¢ C, then p(z) ¢ RN(Q) as before. If x € C, that is, x(2n) — oo, then

INZ (B.w)—Qi(B)]
Qu(B)
B of length < ky. Since this accounts for all of the blocks of infinite expectation,

we have that w € N(Q). Since the second operation does not affect normality, it
follows that ¢(z) € N(Q).

As before, we have that « € D iff p(z) € DN(Q). So we again have that z € C
implies p(z) € N(Q), = ¢ C implies p(z) ¢ RN(Q), and = € D iff p(x) € DN(Q).
Thus, as in the previous case ¢ gives the desired reductions.

the argument of Equation 11 shows that limyg = 0 for any block

O

3.2. Completeness of RN(Q) \ N(Q). We will need to define a class of functions
¥pg in order to prove the last case of Theorem 15. Let P = (p;) and Q = (g;) be

basic sequences. If x = ag.aias -+ w.r.t. P, then put
o0 .
min(a;,¢; — 1)
vpqle) =)  — =",
qi---4q;

i=1
We will need the following theorem of [16].

Theorem 18. Suppose that P and @ are basic sequences which are infinite in limit.
If x = ag.arag - -+ w.r.t. P satisfies a; < q; — 1 for infinitely many i, then for every
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block B
NE (B, ¥po(z)) = N (B,z) + O(1).

While Theorem 18 is not difficult to prove, it has been an essential tool in proving
some of the more difficult theorems about (J-normal numbers.

Recall that for a basic sequence @ and block B that Q,(B) (see Equation 2)
denotes the expected number of occurrences of B with a starting position in [1,n]
with respect to the basic sequence (). Since we will be dealing with several basic
sequences in this section, we extend this notation in a natural manner. Namely, if
P (or R) are basic sequences, then we let P,(B) (or R, (B)) denote the expected
number of occurrences of B with a starting position in [1,n] with respect to P (or
R). We similarly use the notation N (B, z) to denote the number of occurrences
of B in the P-Cantor series for z with starting position in [1,n].

We will use the following lemma about concatenating intervals of normal se-
quences for different basic sequences.

Lemma 19. Let P, @ be basic sequences which are infinite in limit and assume
that limsup; 2 is finite. Let uw € N(P), and v € N(Q). Let B € w<* have infinite
expectation with respect to P and @, and let € > 0. Then there is an iy such that if
i’ > i > ig then [N (B,w)— Ry (B)| < €Ry(B) where w | [0,i) = u, w | [i,00) = v,
R|[0,i) =P,and R | [i,00) = Q.

Proof. Fix C such that % < C for all . Since 5—1 < C, and B has infinite expecta-

tion with respect to P and Q, for large enough i we have that Q;(B) < 2C!5IP;(B).
Let io be such that for all i > 4o we have that |[N2 (B, v) — Q;(B)| < €Qi(B) and
INF(B,u) — Pi(B)| < €Pi(B) where ¢ = sracrer- Let i’ > i >1do. We then have

[N/ (B,w) = Ri(B)| < INJ(B,u) = Pi(B)| + [N, (B,v) = Qi (B)|

< €P/(B)+|N?(B,v) — Qi(B)| + IN? (B,v) — Qv(B)|
< €P(B) +€Qi(B) + €Qi(B)

< €R;(B) +2€'Qi(B)

< €Ri(B) +2€(Qi(B) + Qi (B))

< €Ry(B) + 2¢ (2C'PIPy(B) + Qi+ (B))

< €Ry(B) +2¢(1+2C'BH Ry (B)

< €(3+4C'""R;/(B) < Ry (B).
U

We now prove the following theorem which gives the last case of Theorem 15.

Theorem 20. Let QQ be a basic sequence which is infinite in limit and 1-divergent.
Then the set RN(Q) \ N(Q) is Do(II3)-complete.

Proof. Let C, D C w* be as in Section 3.1. For k,n € N| recall that Q%k) denotes

(k) _ 1
the sum Q Zl 1 qiqiv1iQivr—1"

For each m, let P,, = (max(2, inéqzj))fil Recall (P,,);(B) denotes the ex-

pectation of B in the first ¢ digits of P,,, as in Equation 2, and (Pm)l(k) denote
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the expectation of Of in the first ¢ digits of P,,. We fix for the rest of the proof
Wy, € N(P,,), which we identify with a P,,-Cantor series expansion.
Given a strictly increasing sequence {b,} (which we will choose below) and an

x € w¥ we define a new basic sequence P, = P(z,{b,},Q) = (p?) as follows.
Let 2'(n) = min{z(n),n}. Let pf = P (2,41)(i) = max(2, L%%J) for
i € [bp—1,bn). Note that p; < ¢; for all 7, and if z(2n + 1) — oo then lim; Pzi =

Also QY < < (P m)%) for all k,n.

Claim 21. Suppose @ is k-divergent. If x(2n 4+ 1) — oo then lim;

(k)
If 2(2n + 1) does not tend to oo and lim,, 2=~ = 0, there is a subsequence of
bn—1,bn

Q;
(mﬁ’ﬁl'

)
% which is bounded away from 1.

Proof. If (2n + 1) — oo, then £, ;Z%Bi; — 1 and so p¥/¢; tends to 1. Note
that ( ! )/( 1 ) = (6u)* for all j € [bn,bpyy). We then

4 dj+1" " dj+k—1 PjPj4+1Pj+k—1
have that for all k& that Ql(-k)/( )(k) — 1 using the simple fact that if ¢;,d; > 0,
>.j¢j =00, > ;d; =00, and ¢;/d; — 1, then (ZJ 103) / (ijl dj> — 1L
If £(2n + 1) does not tend to oo, then Ju < 1 such that ¢, < u for infinitely
many n. So, for infinitely many n we have that ngi)_l’bn < uk(Pw)éi)_l’bn. Thus,
for infinitely many n

k k k
QL@ e, @ Qe QL+,
k) k k — k k — k k
(P (P () Tl B, éj_l (2w

k k k
R 60 Lo/ N (- 310

- () (k)
bn—l + (UT) bn717b7l

(k)
i _ 1) bn 1;bn
k k
v by + (2005

k
1 1 l(7n)717bn -1 1 1 u”
w ) 2hp® T \wk ) 2
(F) bn—1,bn

(1—u®)

n— 17

IN
—_
|
1\3\'—‘ A/~ /‘\

O

First assume that @ is k-divergent for all k. Using Lemma 19 we then inductively
pick the b,, satisfying the following:

(1) For all my,my < n+1and all i > b,_1, let P = P(my, ma,i) be defined
by: P [ [0,bn—1) = Pm, | [0,b,—1) and P | [bp—1,7) = P, | [bn—1,%). Let
w [ [0,bp—1) = Wy, and w | [bp—1,%) = Wy, | [bp—1,7). Then for any B
with || B|| < n+1 we have [N (B,w) — Pi(B)| < 5= P;(B).

(2) (Pm)bn_1,6n(025) > 27by, 4 for all m < n.
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Given = € w*, we define ¢1(x) as follows. Suppose ¢1(z) | b,—1 has been
defined. Let y | [bn—1,bn) = Wa(2n+1) | [bn—1,bn). Then we perform the operation
O/ (2n),2’(2n) Of Section 3.1 on y [ [b,_1,b,) to produce ¢i(x) | [by—1,b,). This
defines ¢ () [ [bn—1,bn). Doing this for all blocks [b,—_1, by,) produces o1 (x).

If z ¢ C, that is x(2n) does not tend to oo, then p(z) ¢ RN(Q). This is because
if & = liminf z(2n), then there will be infinitely many n for which 05 occurs in
[0,b,) at most

(13)
Piion 1 1 1
an (2 +1)(Ok,w$/(2n+1))(1 — %) =+ bn—l < ( '(2n+1))( )(1 _ E)(l + o )+ bn 1
k 1 1
< (Poarn)hy, (1= 2+ 5oy)
k 1
< (Ponsn)hy (1= 37)
many times while 1; occurs at least
Pi o 1
an @ +1)(1kvwz’(2n+1)) - bnfl Z (Pz’(2n+1))( )(1 - 27) - bn 1
(14) ® 1
> (Pur2ny1))y, (1— W)

many times.

If 2(2n) — oo but z(2n+1) does not tend to infinity, then p(z) € RN(Q)\N(Q).
To see this, first note that the point y as above is in RN(Q). Recall P, is defined
by Py [ [bn—1,bn) = Pr2nt1) | [bn—1,bn). We show that y € N(P,), which implies
y € RN(Q). For any B and for large enough n and for any b,_1 < i < b, we have
from property (1) of the by,:

(15) NS (B,y') - PU(B)| < 5 PL(B),

where 3’ and P’ are defined by:

[0 bn 1) Wy (2n—1) T[O,bn—ﬁ
[ 1,%) = Way(2n41) |1
[[0,bp-1) = Pm (2n—1)
P [n 1,? ) z(2n+1) r[bn—hi)'
Also, from property (2) of the b, we have:
, 1 1
(16) N (B,y') = N (B,y)| < bz < on (Pa)o, 1 (B) < o0 (Po)i(B)
Finally,
1
(17) IPU(B) ~ (PL(B)] < bos < o= (Po)u(B).
From Equations 15, 16 and 17 we have |N/”(B,y) — (P.)i(B)| < o1 (Py)i(B).

This shows that y € RN(Q). Since z(2n + ) does not tend to infinity, then from

k
Claim 21 there is a subsequence on which (P )(k) is bounded away from 1. Since y

is Py-normal, we have that y is not Q-normal.
The operation applied to y to produce ¢;(x) does not affect normality or ratio
normality if (2n) — oo (this is just as in Section 3.1). So, p(z) € RN(Q) \ N(Q).
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Finally, if z(n) — oo, then as above y € N(P,). As z(2n+1) — oo, we have from
Claim 21 that lim, % — 1 and it follows that y € N(Q). Since z(2n) — oo as
well, from the argument in Section 3.1 we also have that y = o(z) € N(Q).

So, in all cases we have that x € C'\ D iff p(z) € RN(Q) \ N(Q).

Suppose now that there is a largest integer ko such that @ is ko-divergent. The
proof is essentially identical to that above. We let P,, be as before, and now let
Wy, be < kg normal with respect to P,,, that is, for all B of length < kg we have
lim; % = 1. We define ¢;(z) by first defining y exactly as before (using
the values z(2n + 1)). We then modify y to ¢1(x), (using x(2n)) but in a slightly
different manner. Namely, we get ©1(z) | [bp-1,bpn) from y [ [bn—1,by) as follows.
Let A C [b,—1,by) be the integers 7 in this interval such that y | [¢,i+ko—1) = Op,.
Let A’ C A be the last Lxl(gll)J many elements of A. For each i € A’ we change y(i)
from a 0 to a 1, and for all other ¢ in this interval we set ¢1(x)(7) = y(7).

PI .
If 2(2n) does not tend to infinity, then easily ¢(z) ¢ RN(Q) as ~p ko £1(2))
N; % (0kq 1 (%))

does not tend to 1. If 2(2n) tends to infinity, then we easily have that ¢(z) is in
N(Q) (or RN(Q)) iff y is in N(Q) (resp. RN(Q)). In this case, as above, we have
that if (2n + 1) — oo then y € N(Q), and if z(2n + 1) does not tend to infinity
then y € RN(Q)\N(Q). So, in all cases we have x € C\ D iff p(z) € RN(Q)\N(Q).

(]

3.3. Further Discussion. Theorem 17 can be extended further. First, the hy-
pothesis that @ = (g;) in infinite in limit can be weakened to the following condition
studied by T. Saldt [22]: limy_oc & Zfil % = 0. This condition is equivalent to
saying that there is a set D C N of density 0 such that (g;);¢p tends to infinity (see
Theorem 1.20 of [24]). Since changing a sequence on a set of density 0 may affect
normality and ratio normality, we must now use the argument of Theorem 11. At
stage n of the construction of ¢y (x) [ I,,, we again use two operations @;,(%) and
B (2n1)-
proof of Theorem 11. That is, we define the block B;, exactly as in that proof, and
define the sets A, A’, A” C I,, as in that proof. We then eliminate the occurrences
of the block B;, at the points of A” by applying the digit changing function r as
in Theorem 11. Let w be the result of applying this first operation to z (so w is
the 1 (x) of Theorem 11). The proof of Theorem 11 did not require that @ be in-
finite in limit, and so we have that z(2n) — oo implies w € N(Q) and z(2n) - oo
implies w ¢ RN(Q). The function r changes digits by at most 1, and does not
affect distribution normality using Remark 8 and the fact that D has density 0
(changing a sequence on a set of density 0 does not affect distribution normality).
So, w € DN(Q). The second operation E;’(2n+1) is the operation Z,/(2,41) of The-
orem 17 except we only apply the operation to digits not in D. We let ¢;(x) be
the result of applying these operations to w. The operations =/, ‘(2n41) do not affect
normality or distribution normality as ¢; — oo off of D, and so for every block B,
INQ(B,¢1(x)) — N2(B,w)| is bounded with m. As in Theorem 17 we have that
v1(z) € DN(Q) iff 2(2n 4+ 1) — o0. So, ¢ = 2 0 ¢y is a reduction of C'\ D (or
D\ C depending on the case) to the desired set.

Second, we can prove the version of Theorem 17 with N(Q) and RN(Q) replaced
with N (Q) and RN, (Q), provided we assume that @ is k-divergent (and infinite

The first operation ©’, /(2n) is the operation implicitly described in the
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in limit, or more generally limy_. 7 Zf\; q% = 0). We proceed as above except

in defining the block B;, used in the first operation, we only consider the first
v/#'(2n) many good blocks By, ..., B, of length k. This makes sense since there
is some block of length k, namely 0y, which has infinite expectation. If w again
denotes the result of applying the first operation in all of the I,,, then the proof of
Theorem 11 shows that if #(2n) — oo then |N2(B,w) — N2(B,2)|/Qm(B) — 0
for all blocks B of length k. It follows that if (2n) — oo then w € Ny (Q) and if
x(2n) -» 0o then w ¢ RN(Q). Also, w € DN(Q) as above. The second operation
works exactly as in the above argument, so ¢1(x) € DN(Q) iff z(2n+1) — co. So,
© = @9 0 1 again gives the desired reduction.
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