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Discriminative Self-Paced Group-Metric
Adaptation for Online Visual Identification

Jiahuan Zhou™, Bing Su

, and Ying Wu, Fellow, IEEE

Abstract—Existing solutions to instance-level visual identification usually aim to learn faithful and discriminative feature extractors from
offline training data and directly use them for the unseen online testing data. However, their performance is largely limited due to the
severe distribution shifting issue between training and testing samples. Therefore, we propose a novel online group-metric adaptation
model to adapt the offline learned identification models for the online data by learning a series of metrics for all sharing-subsets. Each
sharing-subset is obtained from the proposed novel frequent sharing-subset mining module and contains a group of testing samples that
share strong visual similarity relationships to each other. Furthermore, to handle potentially large-scale testing samples, we introduce
self-paced learning (SPL) to gradually include samples into adaptation from easy to difficult which elaborately simulates the learning
principle of humans. Unlike existing online visual identification methods, our model simultaneously takes both the sample-specific
discriminant and the set-based visual similarity among testing samples into consideration. Our method is generally suitable to any off-
the-shelf offline learned visual identification baselines for online performance improvement which can be verified by extensive

experiments on several widely-used visual identification benchmarks.

Index Terms—Learning from sharing, frequent pattern mining, online adaptation, person re-identification, self-paced learning

1 INTRODUCTION

HE goal of visual identification is to retrieve the same

identity images of a query probe from a gallery set. As
an attractive research task in the computer vision commu-
nity, visual identification has attracted increasing attention
owing to its importance as a critical link to practical public
camera surveillance applications. Over the past years, a
popular solution to visual identification is performing
supervised discriminative feature learning [1], [2], [3], [4],
[5], [6], [7] from the given offline training data, then directly
applying the learned models to the online unlabeled testing
data for evaluation. However, due to the severe training-
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testing data distribution shifting (testing data are drawn
from totally different classes against the training data as
shown in Fig. 1) caused by large variations in visual appear-
ance, object pose, camera viewpoint, illumination change,
and background clutter, the performance of offline learned
models is indeed limited. Moreover, this performance deg-
radation is even more critical when an instance-level visual
identification problem (e.g., person re-identification (P-
RID), vehicle re-identification (V-RID), instance discrimina-
tion learning, etc) is considered. Since different instances
from the same category in the training and testing sets are
considered as different individual classes, extreme diver-
gences between training and testing data caused by large
intra-instance variations may result in a significant perfor-
mance drop of the offline learned models. As demonstrated
by Fig. 1, regardless of which visual identification bench-
marks or state-of-the-art methods are selected, the critical
training-testing distribution shifting issue always exists.

To narrow such a distribution gap between training and
testing samples, a straightforward solution is adapting the off-
line learned models to fit the online testing data. Recently, var-
ious online visual identification methods are proposed which
can be roughly categorized into two branches. The set-centric
re-ranking approaches [9], [10], [11], [12], [13] focus on opti-
mizing the ranking list of queries based on the similarity rela-
tionships among testing samples. Their performance relies on
the offline models learned from training data, and treating dif-
ferent testing samples equally largely ignores the individual
characteristics, hence the improvement is neither significant
nor stable. The other category is query-specific feature adapta-
tion [8], [14], [15] which aims to enhance the feature discrimi-
nant of each query individually that the generic offline
learned feature is adapted to an instance-specific local feature
for each query. Compared with the set-centric ones, the indi-
vidual discriminant of each query is enhanced while the
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Fig. 1. Taking P-RID task as an example, the normalized pair-wise distance distributions of both training and testing samples based on the well-
trained state-of-the-art HA-CNN and MLFN networks on the Market1501 and DukeMTMC-relD datasets are presented. The results demonstrate the
severe training-testing data distribution shifting issue, where the extremely challenging hard negative distractors (in blue box) will significantly influ-
ence the retrieval accuracy (the Original top-10 retrieval results). Even using the state-of-the-art online re-ranking method [8] (RR), the ground-truth (in
red box) still has a lower rank than the distractors. Our method succeeds in handling the distractors so that the true-match is successfully re-ranked

to the top position in the list (Ours).

visual similarity relationships among given testing samples
are ignored. Moreover, existing query-specific models [8],
[14], [15] completely ignore the counterpart gallery data dur-
ing adaptation. Even a discriminative probe-specific metric
can be learned, the “hard” gallery samples with large intra-
class and small inter-class variances will tremendously
degrade its performance since they are still indistinguishable
under the learned query-specific metric. From the efficiency
perspective, existing query-specific adaptation methods suf-
fer from heavy online computation costs since they have to
repeatedly and individually handle each testing sample for
adaptation, and such computational burden is even severe
when a large-scale testing set is given.

To mitigate the aforementioned issues, we propose a
novel online self-paced group-metric adaptation (SPGMA) algo-
rithm which not only takes individual characteristics of test-
ing samples into consideration but also fully explores the
visual similarity relationships among all query and gallery
samples. As illustrated by Fig. 2, at the online identification
stage, the redundant intrinsic visual similarity relationships
among the unlabeled query (gallery) set are utilized by the
proposed frequent sharing-subset (SSSet) mining algorithm to
automatically mine concise and salient visual sharing associ-
ations of samples. Since a sharing-subset contains a group of
testing samples that share strong visual similarities, their
local distributions can be jointly adjusted by efficient metric
adaptations for all of them. Furthermore, to readily handle
large-scale testing samples (especially hundreds of thou-
sands of gallery instances), we introduce a self-paced learn-
ing strategy [16], [17], [18] to gradually include testing
samples into adaptation from easy to difficult. Thus, by iter-
ating between our proposed unsupervised frequent sharing
subset mining and online self-paced SSSet selection algo-
rithms, much fewer group-metric adaptations will be
learned and the online optimization could be more efficient
since fewer testing samples are used in each learning itera-
Once a series of such kinds of SSSet-based metrics are

learned, for each query (gallery), its instance-specific local
metric is obtained via a multi-metric late fusion of all the
group-metrics.

Therefore, our proposed online SPGMA model can sig-
nificantly refine the ranking performance, and the success
of learning from sharing relies on discovering the latent
sharing relationships among samples, which cannot be
found by treating each instance independently [19]. Learn-
ing from sharing is good at handling such conditions that
only a limited number of positive learning data are available
by taking the sharing relationships as data augmentation.
Therefore the sharing strategy is particularly suitable for the
learning of online instance-level visual identification in
where each testing sample itself is the only positive sample
available for learning. To sum up, our contributions are as
follows: 1) To handle the severe shifted training-testing data
distribution issue in visual identification, we leap from off-
line global learning to online instance-specific adaptation. 2)
By automatically mining various frequent sharing-subsets,
the intrinsic visual similarity relationships among testing
samples can be fully explored via a self-paced SSSet selec-
tion strategy to gradually adapt sharing-subsets to fit the
learned group-metrics. Therefore, both superior online re-
ranking performance and efficient learning from sharing
merits can be achieved. 3) Our proposed model can be read-
ily applied to any existing offline visual identification base-
lines for online performance improvement. Therefore, our
appealing efficiency-and-effectiveness superiority is not
only verified by extensive experiments on various P-RID
and image retrieval benchmarks based on various state-of-
the-art visual identification models but also guaranteed by
several theoretically sound justifications.

This manuscript is an extension of our previous conference

paper [20], while we have made a lot of extensions including

1) To facilitate the online computation cost and further

improve identification performance, a classic self-paced tion.
learning algorithm is explored to gradually include testing
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until all SSSets are used

Fig. 2. The online testing query and gallery samples are first fed into the offline learned network to extract feature descriptors. The proposed frequent
sharing-subset (SSSet) mining algorithm is performed to generate multiple sharing-subsets which are further utilized by the self-paced SSSet selec-tion
algorithm to iteratively determine which SSSets will be involved for each learning round. The “easy” SSSets will be processed first so that the model
can be accordingly trained from scratch. When the model can handle these “easy” SSSets well, the “harder” ones will be gradually involved to further
improve the effectiveness of the model. Within each learning round, the selected SSSets will be fed into the proposed online group-metric adaptation
model for local discriminant enhancement (The same sample can be contained by multiple SSSets since it may share different visual sim-ilarity
relationships with different samples). Such learning continues until all the obtained SSSets are processed. Finally, by fusing the learned group-metrics
for each query and gallery sample, our final ranking list is obtained by a bi-directional retrieval matching.

samples into adaptation from easy to difficult which elabo-
rately simulates the learning principle of humans. 2) Thor-
ough theoretical analyses are provided, and the solution to
special testing sample conditions is discussed to complete the
proposed method. 3) Compared with [20] which only con-
ducts experiments under the P-RID setting, we further evalu-
ate our method on a completely different but challenging
visual identification task, image retrieval. Extensive experi-
ments are conducted on four widely-used image retrieval
benchmarks and promising improvement is obtained com-
pared with the state-of-the-art baselines. 4) More ablation
experiments (e.g., affinity matrix refinement visualization, re-
ranking improvement results, online computation cost com-
parison, etc) are conducted to further investigate our pro-
posed method.

2 RELATED WORK
2.1

To facilitate visual identification, several discriminative
local metric learning methods are proposed. To tackle the
multi-modal distributions of identity appearances, Zhang
et al. [21] utilized the local distance comparison in P-RID to
obtain an accurate retrieval. A regularized local metric
learning (RLML) method was proposed by Liong et al. [22]
handle the common over-fitting issue in visual identifica-

tion via exploring the merits of both the global and local
metrics. A sample-specific SVM classifier is learned in
Zhang et al. [15] for each training sample, then the weight
parameters of a testing sample can be inferred. In order to
relax the requirement of a large-number labeled images for
learning, a novel one-shot learning approach is proposed by
Bak et al. [1] which only requires a single image from each
camera for training, thus the learning result is specific to the

Local Metric Learning

only sample. However, these local metric learning methods
still perform an offline global-learning procedure that
heavily relies on labeled training data. Their performance is
indeed limited if testing data are from different distribu-
tions. Instead, our method adopts an online local adaptation
manner to adapt the offline learned baselines to each testing
sample specifically.

2.2 CNN-Based Feature Extraction

CNN-based feature extraction has achieved state-of-the-art
performance in visual identification. A novel Harmonious
Attention CNN (HA-CNN) proposed by Li et al. [3] tries to
jointly learn attention selection and feature representation in
a CNN by maximizing the complementary information of
different levels of visual attention (soft attention and hard
attention). Wang et al. [4] proposed a novel deeply super-
vised fully attentional block that can be plugged into any
CNNis to solve visual identification, and a novel deep net-
work called Mancs is designed to learn stable features. Chen
et al. [5] proposed an Attentive but Diverse Network (ABD-
Net) which integrates attention modules and diversity regu-
larization throughout the entire network to learn features
that are representative, robust, and more discriminative for
P-RID. Zheng et al. [6] aimed at improving the learned fea-to
tures by better leveraging the generated data by designing a
joint learning framework that couples feature learning and
data generation end-to-end. Li et al. [23] proposed a Feature-
Fusing Graph Neural Network (FFGNN) to utilize the rela-
tionships among the nearest neighbors of the given training
images for feature learning. A self-critical attention learning
(SCAL) method is proposed by Chen et al. [24] to generate
both spatial-wise and channel-wise attention for discrimina-
tive identification. To strengthen discriminative features and
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suppressing irrelevant ones in visual identification, Zhang
etfal. [25] designed an effective Relation-Aware Global Atten-
tign (RGA) module to capture the global structural informa-
tign for better attention learning.

Almost all the aforementioned instance identification
mEthods focus on learning discriminative metrics or features
from the offline training data to facilitate the matching. When
their models are well trained offline, they will not modify the
mpdel any more and directly use them for the unseen testing
ddta. However, the data distribution shifting between train-
ing and testing samples largely limits the performance of
these models. To tackle this issue, our proposed method is
suiitable for any CNNs for sample-specific local metric adap-
tation at the inference stage aiming to well handle the data
shiifting issue and gain further performance improvement.

=

2.3 Online Re-Ranking

In fecent years, increasing efforts have been paid to online re-
ramking in visual identification. Ye et al. [9] revised the ranking
list by considering the nearest neighbors of both the global and
local features. An unsupervised re-ranking model proposed by

Garcia et al. [10] takes advantage of the content and context
information in the ranking list. Zhong et al. [11] proposed a

k-reciprocal encoding approach for re-ranking, which relies on
ahYpOthesis thatifa gallery image is simjlar t0 the probein the
Notations

k-reciprocal nearest neighbors, it is more likely to be a true-
m,tch zhoy et 4. (8] Pro,0sed 10 Jea™ a™ Instance sPeci
Mahalanobis metric for each query sample by using extra nega-
tive learning samples at the online stage. Barman et al. [12]
focused on how to make a consensus-based decision for
retrieval by aggregating the ranking results from multiple algo-
rithms, only the matching scores are needed. Fan et al. [26] pro-
posed a progressive unsupervised learning method to transfer
pre-trained deep representations to unseen domains for unsu-
pervised P-RID. Bai et al. [13] concentrated on re-ranking with
the capacity of metric fusion for retrieval by proposing a uni-
fied ensemble diffusion framework. However, the aforemen-
tioned online re-ranking methods either simply treat different
testing samples equally without considering the instance-spe-
cific characteristics or completely ignore the intrinsic visual
similarity relationships among testing samples. Therefore, their
performance improvement is neither stable nor significant.

2.4 Self-Paced Learning

Self-paced learning (SPL), designed through simulating the
learning principle of humans/animals, becomes a popular
research topic in recent years. To alleviate the heuristic easi-
ness measure requirement, Kumar et al. [16] proposed to
re-formulate the key principle of Curriculum Learning as a
concise SPL model. Jiang et al. [17] extended SPL by consider-
ing the diversity of samples selected in the training steps.
Kamran et al. [18] proposed a balanced SPL model in the
designed generative adversarial clustering network by con-
sidering an unsupervised loss based on the adjacency matrix.
Recently, studies [27], [28] focusing on adopting SPL in the
interested tasks to avoid getting stuck in bad local minima
and improving the generalization of their models are pro-
posed and attracted increasing attention. In recent years, sev-
eral self-paced learning-based works are studied in the
person re-identification area. Xin et al. [29] proposed a semi-

fic
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supervised P-RID method by utilizing a small portion of
labeled training samples to fine-tune a CNN model, and then
propagating the labels to the unlabeled portion for further
fine-tuning the overall system in a self-paced manner. Zhou
etal. [30] proposed a self-paced constraint and symmetric reg-
ularization to help the relative distance metric training the
deep neural network, so as to learn the stable and discrimina-
tive features for identification. Ge et al. [31] proposed a novel
self-paced contrastive learning framework with hybrid mem-
ory which can generate different level of supervision signals
for different domains to facilitate identification.

Although the aforementioned methods explore SPL to
facilitate offline learning, the requirement of labeled data
prevents their usage in the online testing phase. Also, the
pseudo-label noise propagation and training-testing distri-
bution gap may still result in severe performance degrada-
tion of these SPL-based methods. In this work, to tackle the
potential large-scale testing data, we introduce SPL to grad-
ually involve samples into adaptation from easy to difficult.
Hence the testing samples can be better adapted to the
learned group-metrics.

3 ONLINE SELF-PACED GROUP-METRIC
ADAPTATION FROM S HARING

3.1 Problem Settings and

At the online testing stage of visual identification, two dis-
joint datasets, a query set Q and a gallery set G are given as:

Ng

Nq 1
G inl

Q% ll gi; I
that gi;g 2 R 4 are the extracted feature representations
from an offline baseline model, either handcraft designed or
learned deep features. I7; 1% 2 f1;2;::;; cg are the labels from
c classes which are totally different from the training sample
classes. We aim to rank G for a query g based on the pair-
wise similarity distance to a gallery g, ddg;gb % kq gk = and
our goal is to re-rank G for q by refining ddg; gb to improve

the rank of true-matches for q.

3.2 Unsupervised Frequent Sharing-Subset Mining

Although the identity labels I?, Iig are unknown during
online testing, the visual similarity relationships of Q and G
are intrinsic and verified to be effective in investigating the
undeflYing similarity Structule of Sampl€S by previouS re-

ranking methods [10], [11]. However, due to the large-scale
testing sample size (especially for G), the redundancy and
repeatability of visual similarity relationships significantly
limit the performance of previous online re-ranking meth-
ods. Inspired by the well-established frequent itemset min-
ing technique [32], we propose an unsupervised frequent
sharing-subset (SSSet) mining algorithm to automatically
mine various SSSets fSigri‘; , from Q and G, that all the sam-
ples in S; share a Strong Association Rule on visual similarity
[32]. Therefore, the mined SSSets not only keep the strong
and reliable visual similarity sharing information but also
significantly alleviate the redundancy issue. Compared
with the originally combinatorial problem suffering from
exponential complexity 0382"p, the time complexity of our
proposed algorithm is Odn?p which is much more efficient
when large-scale testing samples are given. It is worth
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Fig. 3. The pipeline of our proposed unsupervised frequent sharing-subset mining algorithm. Given the extracted features of testing samples, the
affinity matrix A can be computed. To keep only the most reliable sharing relationships, a threshold Q is used for filtering so that a binary index map B is
obtained. Then each non-zero row Bj of B can be considered as an element t; in the set T. Moreover, T is utilized to build a CFI-Tree that is the input
for the off-the-shelf FP-Close mining algorithm to mine all the frequent SSSets.

mentioning that [32] is a classic method that utilizes fre-
quent itemset mining to handle the classification tasks but it
only focuses on mining the low-level local textural features
from the patches in one image. Thus [32] is difficult to han-
dle the higher-level visual similarity relationships between
different images. Our proposed method focuses on mining
the frequent SSSets based on the reliable and strong visual
relationships obtained from the whole image globally.

Algorithm 1. Building CFI-Tree from T

Require: The given query set Q and obtained set T

Ensure: A CFl-tree

1: For all the given n, testing samples in Q, we firstly index
them from 1 to ng;

2: Count how many times the given n, testing samples are con-
tained by the elements in T and sort all the samples in
decreasing order of their count;

3: Create the root node (null);

4: Scan the set T, get the elements of length 1 (e.g., the length of
B; is 1 if there is only one non-zero element in the), and sort
these elements in decreasing support count;

5: Load an element in T at a time. Sort the samples in this ele-
ment according to the last step;

6: For each element in T, insert its samples to the constructed
Tree from the root node and increment occurrence record at
every inserted node;

7. Create a new child node if reaching the leaf node before the
insertion completes;

8: If a new child node is created, link it from the last node con-
sisting of the same item,;

9: Return the constructed tree as the final CFI-Tree

The overall pipeline of our proposed unsupervised fre-
quent SSSet mining algorithyy, is illustrateq in Fig. 3. Taking

the query set Q as an example, we first prepare a set T %
ft,g:, from Q where each t; is a subset of Q. The affinity
matrix A 2 R™" of Q is defined as:

8
< d0q;;q;P P d@q;;q;P
A Y . exp 7s = [ EeXp 7s

P VA
RN 1)
0, jhi

where s is the variance parameter of distance matrix from Q
so that A;;; represents the soft-max normalized visualsimi-
larity between q; and g;. The i-th Tow of A represen s the
similarity distribution between ¢; and the other samples in
Q. To keep only the most reliable sharing relationships, a
threshold Q defined as the alyerage affinity of Q is used for

outlier filtering Q% | A N J"/“ 1 Ay;=ng n, Therefore, a
binary index map B is obtained by:
1; Ai;j Q
B, 2
! 0, Ai;j < Q

The non-zero B ;;; implies the strong similarity sharing rela-
tionship between ¢; and g;. Therefore each non-zero row B;
of B can be considered as an element t; inset T :

T % ft,g% fB g 8kBk > 0 3)

Once set T is obtained, we propose to mine the frequent
SSSets from T that each sharing-subset is represented by a
mined frequent pattern from a classical FP-Close mining
algorithm [33]. To do so, a Closed Frequent Itemset Tree
(CFI-Tree) as shown in Fig. 4 is firstly constructed following
the Algorithm 1 under a minimum support 5. Finally, the
obtained CFI-tree will be fed into the off-the-shelf FP-Close
mining algorithm [33] to mine all the closed frequent pat-
terns fS,g7°, as demonstrated by Algorithm 2.

Authorized licensed use limited to: Northwestern University. Downloaded on September 22, 20/23 at 04:19:17 UTC from IEEE Xplore. Restrictions apply.
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Header Table

Fig. 4. A CFl-Tree is constructed based on T . The same identity may be
contained by multiple t; so that there may be multiple nodes for the
same identity.

Algorithm 2. Frequent Sharing-Subset Mining

Require: The given query set Q

Ensure: ng sharing-subsets fS;g"* .

1: Compute the affinity matrix A of Q by Eq. (1);

2: Compute the threshold Q;

3: Compute the binary index map B by Eq. (2);

4: Obtain the transaction set T by Eq. (3);

5: Build the CFI-Tree following Algorithm 1;

6: Frequent sharing-subset mining via the FP-Close mining
algorithm in [33] based on the obtained CFI-Tree;

7: Return fS;g5;

3.3 Efficient Group-Metric Adaptation

Once all the SSSets fS;g"s i are obtained, our goal is to jointly
learn ns SSSets-based local Mahalanobis metrics for fSig,y;
by optimizing Eq. (4) aiming to collapse the same-SSSet
samples together meanwhile push the different-SSSet sam-
ples far away:

S

arg min}w kMikzw:r:t M, 0

Mig 2 9
s, s, MipbM; s' ¢ 2;8s" 25825
"™, s' s %0;8 2Si;s' 25, 4)
u v u v u v

The learned metric M; from Eq. (4) is shared by all the sam-
ples in S;. Suppose we have ng SSSets and O8nP samples in
each Sj, there are totally Oénznzb inequality constraints and
0dnsn2p equality constraints in Eq. (4) which are too many
to deal with. Thus we aim to reduce the constraint size in
Eq. (4) by revealing that Eq. (4) has an exactly equivalent
form by only keeping the constraints related to one anchor
sample s' in S; (s' can be any samples in S;). The equivalent
form is shown by Eq. (5):

qu

kM, k*w:r:t : M; 0
i1
sisi ' M b M st s
learn ng of

.1
argmin=
fM,gZ

2; 8'2S5;s1 25
v 1 v

ss ' Mis s i, % 0; 8 255,28 (%)

Eq. (7) is exactly in the same form of a multi-kernel SVM
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Revisit Eq. (4), its equality constraints propose to collapse all
SL 2 S; together. Therefore keeping only the equality con-
straints related to the anchor sample s' achieves the same
collapsing performance. So as to the inequality constraints
in Eq. (4). Finally, we can reduce the constraint size by only
keeping the constraints related to s’ as in Eq. (5). The re-
formed objective Eq. (5) has only Odn2nP and O8nsnp
inequality and equality constraints respectively. An impor-
tant merit of Eq. (5) is that it can be efficiently optimized:

Theorem 1. All thg vectors s' s' in Eq. (5) form a spanning
space H% spand  §s' s' Ph. Eq. (5) is equivalent to
replace s' s/ by h?, the projection of s' s/ in H”, that H? is the
orthogonal space of H.

Proof. Since M, is positive semi-definite, we could have:
ds' iIDI\/lési ib%O , Mds! iIDAO , Mih %
0;8h 2 H. PI‘O_]eCtll’lg s' sl to H and H’ generates two
orthogonal bases h, and h respectively, so s' s %
h, b h Replacing 1nequa11ty constraints in Eq. (5) by
h\,b h’ glves s’ siPTMids' sib % 6h, b h’p" Midh, b h, b
%h, M h, . Now Eq. (5) has an equlvalent form as:

o1 X
argmin= kM k*w:r:t : M, 0
fMig 2 %1
h?" Mip M; h? 2; 8572 Si;8 2'S;
Mh% 0; 8h2 H (6)
i}

Finally, we prove that Eq. (6) has the same solution to
Eq. (4) by eliminating its PSD and equality constraints.

Theorem 2. The solution to Eq. (4) is exactly the same as solving
the Eq. (6) by relaxing its equality and PSD constraints since
they are indeed off-the-shelf.

Proof. If we get rid of the PSD and equality constraints in
Eq. (6), the new form is:

10 2
argmin_ kMk
fM,gz i1
wirt:h2T Mip Mj h? 2; 8 2 Si;s, 2 Sr (7
st s

problem so that it can be efficiently solved. Thus the posi-
Hve semi-defifliteneSs d. M; is gha d#nt ed since M; %
av'ah? b Y% a\,h? h? 0. For the equality con-
straints in Eq. (6), given 4 member s of S, we have:

X ? 2T X ? 2T
Mih % a\,hv hv hu ashv 6hv hp% 0 (8)
which proves that the solution to Eq. (7) satisfies the
equality constraints as well. ]

Therefore, following the above optimization analyses, we
could efficiently and jointly perform online group-metric
adaptation for all the mined SSSets fSig,y; .

3.4 Self-Paced Group-Metric Adaptation

Al hou h we 3 ready Slgnlﬁca ntly simplify the
GMA via Eq. (7), simultaneously adapting all the testing sam-v
ples still results in a sub-optimal solution since the learning
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objectives of all fM;g; may conflict with each other which
causes unstable loss optimization. Especially for these “hard”
samples that belong to different SSSets but are visual indistin-
guishable to each other. Besides, the optimization cost of
Eq. (7) is quadratic to the number of involved learning sam-
ples so that directly handling all the testing samples at once
will result in extreme optimization difficulty. Therefore, we
propose to incorporate a self-paced learning strategy [16],
[17], [18] into the adaptation to gradually tackle the testing
samples in a from-easy-to-difficult manner as Eq. (9):

% X Ng
min vi‘i v vis:tivi 2 %0;1™ 9)
Viiin i%1

P,. P T L .
where ‘i % Y 1 gmaxd0;2 8s, §,p Mids, 5,pb is) the hinge
loss related to the 1“th SSSet S, v; is the self-paced learning
parameter and , is the weighting hyper-parame-ter for
controlling the learning pace. Once the mined SSSets

are determined, the closed-form solution to Eq. (9) of all

fvigi;, can be readily obtained as Eq. (10):

L;if < "
v o P% 0;if “ (10)
If vi % 1, the obtained SSSet S; will be used in this adapta-
tion learning round and v; % 0 represents S; will not be
involved in the current learning round. By gradually
increasing v throughout the learning, more “hard” SSSets
will be included into the training process. Finally, by con-
ducting an alternative learning between the optimization of
self-paced SSSet selection in Eq. (9) and our group-metric
adaptation in Eq. (4), our discriminative group-metrics for
all fSig}, can be readily obtained. Therefore, the overall
algorithm of our self-paced group-metric adaptation
method (SPGMA) is shown in Algorithm 3.

Algorithm 3. SPGMA: Self-Paced Group-Metric Adaptation

Require: The mined SSSets fSig?;l via Algorithm 2

Ensure: ny adapted group-metrics fM;gls,

. Initialize all the M; as identical matrix;

. for the number of involved SSSets < ns do

. Initialize all the v; in Eq. (9) by ranking all computed ‘;;

: Optimize all the v; via closed-from solutions in Eq. (10);
Based on the obtained fvigy;, optimize Eq. (4) using the
selected SSSets;

: end for

7: Return the computed fM;g/;;

DN wh =

[*))

3.5 Multi-Metric Late Fusion for Bi-Directional
Discriminant Enhancement

As we mentioned, for a query g, it may be contained by mul-
tiple SSSets so that there will be multiple learned metrics M;
associated to q. The final metric My for q is obtained via a
boosting-form multi-metric late fusion [35], [36]:

X
M, %

ns - X
g M; g
il

(11)

1 and Pdejxp is the terpart of query set Q, also plays an important role at the

whereg % 1ifq2 S .In practice, the gallery set G, the coun-
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online testing stage. As shown by Fig. 1, the re-ranking per-
formance by using only the query-centric metric adaptation
may suffer from ambiguous gallery distractors. The similar
gallery images from different identities will significantly
degrade the discriminant of M, since these gallery distrac-
tors are still indistinguishable under M. Therefore, we aim
to handle these indistinguishable gallery samples by per-
forming a gallery-centric local discriminant enhancement
method using Algorithms 2 and 3. For a gallery sample g, a
similar fused metric Mg can be obtained likewise. Therefore
the refined distance between q and g is defined as Eq. (12)
based on which the re-ranking list of g; is obtained.

ddq; g % dq gb' Mg b Mdq gb (12)

3.6 Handle Special Conditions of Testing Samples
Recall our proposed SPGMA algorithm, the visual similar-
ity sharing conveyed by the mined SSSets is the key-point.
However, there may exist some special testing sample con-
ditions that we need to specifically deal with: (1) For some
testing samples that are not visually similar to all the other
samples, they are excluded by all the mined SSSets. There-
fore, these testing samples will not be covered by the learn-
ing of SPGMA. On the other hand, these special testing
samples also indicate that they are originally separable
from the other samples which motivates us to tackle them
in a straightforward and simple way. For these special test-
ing samples, by considering each of them as an individual
SSSet, they can be readily involved in our SPGMA by opti-
mizing the same Eq. (4). (2) Another critical condition is that
not enough testing samples (only very few or even only one
testing sample) are given at once. Under this condition, it is
difficult to utilize our proposed unsupervised frequent
SSSet mining algorithm to explore visual similarity relation-
ships among testing samples. Fortunately, our SPGMA can
still well handle this situation. Similarly, each of these lim-
ited testing samples will be considered as an individual
SSSet and our proposed group-metric adaptation will
degenerate to the form as in [8] which could also be effi-
ciently and effectively optimized via our simplified objec-
tive Eq. (7).

4 THEORETICAL ANALYSES AND JUSTIFICATIONS

As demonstrated by Theorem 2, the solution to our SPGMA
can be readily transformed into an equivalent form as [8].
Therefore, the appealing theoretical properties in [8] can be
inherited by our learned M; as presented in Theorem 3.
Moreover, our late multi-kernel fusion metric Eq. (11) will
guarantee a further reduction of generalization error bound
as shown in Theorem 4.

Theorem 3. (The reduction of both asymptotic and practical
error bound by the learned M, ): As demonstrated by the
Theorem 2 in [8], for an input x, its asymptotic error P?dejxp
by using extra negative data D? is:

02 gbPPdejxb

P?dejxb % -
2 2qPdoejxp

Pdejxp (13)

where q is a probability scalar that 0

q
Bayesian error. Moreover, the asymptotic

error P?dejxb can be

Authorized licensed use limited to: Northwestern University. Downloaded on September 22,2023 at 04:19:17 UTC from IEEE Xplore. Restrictions apply.



ZHOU ET AL.: DISCRIMINATIVE SELF-PACED GROUP-METRIC ADAPTATION FOR ONLINE VISUAL IDENTIFICATION

best approximated by the practical error rate P,dejxp (n is
finite) by finding a local metric My which turns out to be the
one for our Eq. (4).

Theorem 4. (The reduction of generalization error bound by
using M- in Eq. (11)): Our fused multi-kernel metric M, %

ép s, giMib= P g;is a linear combinations of several base ker-
nelg M, from the family of finite Gaussian kernels: K¢ :% K, :

OxpXaP 1 e P MBxx b 2 N2 RY ;M 0g whch s

126,441 bounded by Bk. Therefore, for a fixed d 2 80;1b, ns < n is the

training/query/gallery ids.
number of metrics (kernels) involved in our final SPGMA learn-
ing solution. With probability at least 1 d over the choice of a

n
5

random training set X % fx % . of size n we have:

RIP b B
kK k

EestdMipP’ O n (14)
| B 2

EetdM;p’ O lognkp B kp 2ns (15)

n

In our work, we have ng n , that the selected number of

kernels is mumn the total kernel Qﬁﬂaﬁwo that

EetMgp’ O  PEMPEe E 5Mib’ O ULLLU

The generalization error by using M, is much smaller than
using only any M . The same conclusion can be obtained for
Mg likewise.

Proof. The classification rule of our learned M, can be

defined as z;0¢" M;g; 1b 1 so that the margin is 1. Moti-

vated by [37], the generalizagiofggiror EestdMip of using
kernel M; is bounded by O % . While by using M,
which is a linear combinat;on of all M; from the family of
finite Gaussian kernel K4 eralization error Ees:0Mgp
log nkbBih2ns

is bounded by O n

the Theorem.2 in [38]. For the kernel family K 4, ny’

08d?p and in our work, d 103 so that nx 10°. The

selected kernels for combination is about 20 in average so
that ns ng which means E¢st0MgbP EestOM;P. i

which is guaranteed by

5 EXPERIMENTS

5.1 Experiments on P-RID
5.1.1 Settings
Datasets. We evaljate our proposed SPGMA algorith,, on
CUHKO3 [14], Market1501 [58], DukeMTMC-reID [55], and
MSMT17 [59] benchmarks. The statistic getails of the above
datagets are summarized in Table 1. For CUHKO3 ', the new
splitting protocol proposed by [11] is adopted in our experi-
ments so that 767 identities are used for training as well as
the left 700 identities are used for testing. As for the other
three benchmarks, the pre-determined query and gallery
sets are gire tly utilized with no ,04ifiation.
Baselines. Our proposed SPGMA method refers to the

alternative optimization between the self-paced SSSet selec-

tion in Eq. (9) and our group-metric adaptation in Eq. (4). If
we only utilize the group-metric adaptation in Eq. (4) to
simultaneously optimize all the given testing samples, the

1. In our experiment, the CUHKO3 detected dataset is utilized.

4375
TABLE 1
The Statistics of P-RID Benchmarks

Dataset cuhk03 market duke msmtl7
#T-IDs 767 751 702 1040
#Q-1Ds 700 750 702 3060
#G-IDs 700 751 1110 3060
#cam 2 6 8 15
#images 28,192 32,668 36,411

#T/Q/G-1Ds denote the number of

obtained GMA method is our original version in [20]. In

this work, our proposed GMA/SPGMA method is evalu-
ated based on severgl sty te-of-the-grt CNN-bgyseq P-

models: ResNet50 [39], DenseNetl21 [34], HA-CNN [3],
MLFN [40] and ABDNet [5]. The general CNN models,
ResNet50 and DenseNetl21, are well trained on each bench-
mark for feature extraction. HA-CNN, MLFN and ABDNet
are re-identification specific networks so that the original
works are directly utilized in our experiments. Besides,
other state-of-the-art P-RID methods [5], [6], [40], [41], [42],
[43], [44], [45], [50], [60] are fyrther compared. Moreover,
related online P-RID methogs including OL [8] and RR [11]
are compared with our SPGMA.

Evaluation. We follow the same official evaluation proto-i
cols in [55], [58], the single-shot evaluation setting is

adopted and all the results are shown in the form of Cumu-
lative Matching Characteristic (CMC) at several selected

ranks and mean Average Precision (mAP).

5.1.2 Comparison With State-of-the-Arts

Evaluation on CUHKO3: The comparison results on CUHKO03
(767/700 splitting protocol) are preSented in Table 2. Our
proposed GMA model significantly boosts the baseline
Rank@! (mAP) performance of ResNet50, DenseNet12, HA-
CNN and MLFN to 66.9% (60.7%), 61.6% (54.4%), 69.8%
(63.5%) and 73.4% (71.2%) with a 40.0 %(29.7%), 50.2
%(35.7%), 454 %((33.4%) and 34.2 %(44.7%) relative

improvement respectively. Even compared with the state-of-

the-art method MGN [56], our results outperform it by
50, at Rank@]. The reason for such a large imyrovement is

that the “hard” gallery distractors which are still indistin-
guishable under M, are well handled by our method, so the
ranking of true-match gallery targets is significantly
improved. Moreover, by taking advantage of self-paced
learning, the obtain®d SPGMA can furth®r imprOve the
state-of-the-art performance on all the datasets based on all
baselines. The adaptation is performed from easily-handled
sampl®s to hard sampl€s so that the obtained adaptation
metrics can be 8radually optimized which reSults in more
discriMinative identification pefforMance.
Evaluation on Market1501: The Sup€Tiority of our method
is further verified by the experiments on Market1501. Table 2
demonstrates that although the state-of-the-art approach
ABDNet [5] has achieved a pretty high performance (
94%) on Market1501, the improvement of our SPGMA is
still over 4% (10%) on Rank@l (mAP) based on ABDNet
(visudlization r€Sults are shown in Fig. 5).
Evaluation on DukeMTMC-reID: DukeMTMC-relD is a
recent benchmark proposed for P-RID, but the latest methods
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TABLE 2
Compared with the State-of-the-Art P-RID Methods on CUHKO3, Market1501, and DukeMTMC-relD Datasets

CUHK03(767/700) Market1501 DukeMTMC-relD
Method R®@1 mAP Method R@1 mAP Method R@1 mAP
ResNetd0 [39] 47.9 46.8 ResNet50 [39] 88.5 71.3 ResNet50 [39] 777 58.8
DenselNet121 [34] 41.0 40.1 DenseNet121 [34] 88.2 69.2 DenseNet121 [34] 786 58.5
HA-CNN [3] 48.0 47.6 HA-CNN [3] 90.6 75.3 HA-CNN [3] 807 64.4
MLFN [40] 54.7 492 MLFN [40] 50,1 74.3 MLEN [40] 81.0 62.8
ABDNct [5] N/A N/A ABDNect [5] 93.7 855 ABDNet [5] 8.1 67.7
OSNet [41] N/A N/A OSNet [41] 94,2 82.6 OSNet [41] 87.0 70.2
PCB [42] 63.7 67.5 PCB [42] §3.3 69.2 PCB [42] 83.3 69.2
SV DNt [43] 41.5 37.3 SVDNer [43] 82.3 62.1 SVDNet [43] 76.7 56.8
MobileNetv2 [44] 410 40,3 MobileNetv2 [44] 84.2 65.8 MobileNetv?2 [44) 73.2 52.5
SullleNet [45] 319 31.7 SulleNet [45] 80.0 58.4 SullleNet [45] 69.3 46.8
DPFL [46] 40,7 37.0 DNSL [47)] 61.0 35.6 DuATM [48] 818 64.6
PAN [49] 363 34.0 Part-aligned [50] 917 79.6 Part-aligned [50] 84.4 69.3
ResNeXt [51] 43.8 387 PN-GAN [52] 771 63.6 PAN |49] 71.6 51.5
DaRe [53] 35.1 51.3 DeepCC [54] 89.5 737 GAN [55] 67.7 47.1
MGN [56] 68.0 67.4 Mancs [4] 93.1 823 SPrelD [57] 859 733
GMA-+ResNetS( 66.9 60.7 GMA+ResNet50 95.4 82.6 GMA+ResNet50 84,7 68.5
GMA+DenseNet121 61.6 54.4 GMA +DenseNet121 95.3 81.2 GMA +DenseNet121 84.9 68.0
GMA+HA-CNN 69.8 63.5 GMA+HA-CNN 96.5 85.2 GMA+HA-CNN 87.1 72.2
GMA+MLFN 734 71,2 GMA+MLFN 96.4 85.0 GMA+MLFN 86.5 7.5
GMA+ABDNet N/A N/A GMA+ABDNet 97.9 92.6 GMA+ABDNet 87.5 73.3
SPGMA-+ResNet3) 67.3 61.0 SPGMA +ResNet50 95.8 82,9 SPGMA+ResNet>0 852 69.0
SPGMA-+DenseNet121  62.2 54.9 SPGMA+DenseNetl2l 958 81.9 SPGMA+DenseNet12l  85.6 68.7
SPGMA-+HA-CNN 70.5 64.1 SPGMA+HA-CNN 97.1 85.5 SPGMA+HA-CNN 87.8 72,7
SPGMA+MLFN 73.9 71.8 SPGMA+MIFN 96.9 854 SPGMA+MLFN 86.8 71.9
SPGMA-+ABDNet N/A N/A SPGMA+ABDNet 98.2 92.8 SPGMA+ABDNet 837.8 737
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(b) Rank Improvement on DukeMTMC-relD

Fig. 5. The visualization of rank improvement on Market1501 (a) and DukeMTMC-relD (b) based on the baseline [34]. For each case, its top-5 (left to

right) matches are presented and the true-match is labeled by the red box.

have obtained promising performance. As shown in Table 2,
the recently published OSNet [41] has raised the state-of-the-
art to 87.0% (70.2%). Our ABDNet+SPGMA improves the
Rank@1(mAP) result to 87.8%(73.7%), which beats OSNet by
alarge margin on mAP.

Evaluation on MSMT17: MSMT17 is the latest and largest
benchmark so far which is pretty challenging due to the
extreme large-scale identities and distractors. We evaluate
the performance of selected baselines (a self-paced learning-
based baseline Self [31] is also compared) on the MSMT17
dataset with(w/) and without(w/o) our GMA/SPGMA
models in Table 3. For all the baselines, both of our models
significantly improve their Rank@1 (mAP) performance. The
performance of ABDNet is boosted from 82.3%(60.8%) to
a state-of-the-art level of 86.0%(64.5%). Table 3 verifies
the scalability of our proposed GMA/SPGMA models,

even for the extremely large-scale query/gallery sets,
our methods are still able to consistently improve the
baseline performance.

TABLE 3
Compared with the State-of-the-Arts on MSMT17
MSMT17 Baseline GMA SPGMA
R@l mAP R@l mAP R@l mAP
Self[31] 423 19.1 547 251 554 257
ResNet50[39] 634 342 728 550 734 555
DenseNetl21[34] 66.0 346 755 43.1 76.2 439
HA-CNNJ3] 64.7 372 743 438 749 445
MLFN[40] 664 372 728 434 733 441
ABDNet[5] 823 60.8 857 642 86.0 645

*Self is learned in an unsupervised manner.
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TABLE 4
The Influence of Each Component in Our Algorithm
Method CUHKO03 Market1501 DukeMTMC-rell} MSMTI7
R@1 R®20  mAP R@1 R@20 mAP R@1 R@20  mAP R@1 R®20  mAP
HA-CNN [3] 48.0 854 A7.6 90.6 98.3 753 80.7 943 64.4 647 87.1 37.2
GMA only w/ M, | 63.4 87.6 63.5 93.8 98.8 81.2 83.9 95.3 69.0 68.7 88.7 40.6
GMA only w/ M, | 654 86.2 57.3 94,2 98.4 79.1 83.6 94.4 65.7 66.3 6.4 37.5
GMA-Full 69.8 83.8 63.5 %6.5 98.9 85.2 871 958 72.2 743 9.0 43.8

5.2 Experiments on Image Retrieval
5.2.1 Settings

Our proposed SPGMA method is a general online adapta-
tion algorithm which can be readily used for any visual
identification tasks (e.g., person re-identification, vehicle re-

The Influence of Weighting Parameter
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Fig. 6. The influence of on (top) CUHKO3, (mid) Market1501 and (bot-
tom) DukeMTMC-relD based on HA-CNN.

identification, image retrieval, face recognition, etc.). As we
all know, vehicle re-identification shares the same protocol
with P-RID as well as face recognition shares the same per-
son object with P-RID. Therefore, we selected a challenging
but general image retrieval task as our additional experi-
ment application. The general image retrieval contains vari-
ous scene images which are taken from different
viewpoints. Compared with P-RID, there are more object
categories in image retrieval tasks, and the variations within
the same category and across different categories are more
severe. Therefore, to thoroughly evaluate our proposed
SPGMA method, we further conduct extensive experiments
on this general image retrieval task.

Data. We evaluate our proposed SPGMA method on four
widely-used image retrieval benchmarks: the original
Oxford [61], Paris [62] and their corresponding revisited
datasets ROxford and RParis from [63]. The annotation
mistakes in the original two datasets are corrected, new
query images and new evaluation protocols are added.
There are 5063 and 6392 images in the Oxford and Paris
datasets which are collected from Flickr associated with
Oxford and Paris landmarks respectively. There are 55
queries coming from 11 landmarks for each dataset. As for
the revisited ROxford and RPari datasets, another 15
queries from 5 out of the original 11 landmarks are along
with the original 55 queries for evaluation.

Evaluation. For all the datasets, the mean average preci-
sion (mAP) results over all the query images are reported
for evaluation. For ROxford and RPari, two new evaluation
difficulties, Medium(M) and Hard(H), are both evaluated.

Baseline. A CNN-based image retrieval model, GeM [64]
is utilized as the baseline in our experiments to implement
our proposed SPGMA on. Two different CNN backbones,
VGG16 [65] and ResNet101 [39], are utilized. Besides, whit-
ening is adopted as post-processing for GeM. Therefore,
four different baselines, GeM-VGG16, GeM-VGG16-Whiten,
GeM-Resl101, and GeM-Res101-Whiten, are examined in our
experiments. The pre-trained model from a PyTorch imple-
mentation ? is adopted.

5.2.2 Comparison With State-of-the-Arts

As demonstrated by the comparison results reported in
Table 7, our proposed SPGMA can improve the mAP per-
formance of the GeM-VGG16 baseline model from (82.5%,
82.2%, 55.5%, 26.6%, 63.0%, 37.2%) to (84.1%, 83.6%, 56.3%,
27.5%, 64.2%, 37.9%) on (Oxford, Paris, ROxford-M,
ROxford-H, RParis-M, RParis-H) respectively. A similar
improvement is also observed for the GeM-VGG16-Whiten
baseline. As for another more powerful GeM-Resl01

2. https://github.com/filipradenovic/cnnimageretrieval-pytorch
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TABLE 5
Compared with State-of-the-Art Online P-RID Re-Ranking
Methods
Method CUHKO3 Market Duke
HA-CNN [3] A8.0K47.6) O0L6(75.3) 80.7(04.4)
HA-CNN+RR [11] 54.8(55.7) 91.4(79.0) 82.5(69.9)
HA-CNN+OL [8] 62.3(56.5) 92.7(78.9) 83.7(67.8)
HA-CNN+GMA 69.8(63.5) 96.5(83.2) 87.1(72.2)
HA-CNN+SPGMA T0.5(64.1) 97.1(83.5) 87.8(72.7)
Densel2] [34] 41.0040.1) 88.2(69.2) 78.6(58.9)
Densel21+RER [11] 48.1(51.5) 90.2(85.0) 83.7(76.9)
Denscl21+0L [8) 53.1(49.3) 00.4(74.0) 80.2(p4.1)
Densel21+GMA 61.6(54.4) 95.3(81.2) 84.9(63.0)
Densel21+SPGMA 62.2(54.9) 95.8(81.9) 85.6(68.7)

baseline, our SPGMA method further boosts the mAP per-
formance from (81.0%, 87.7%, 55.5%, 27.5%, 70.0%, 44.7%)
to (82.2%, 88.6%, 56.8%, 28.4%, 71.0%, 45.7%) on (Oxford,
Paris, ROxford-M, ROxford-H, RParis-M, RParis-H)
respectively. Compared with another state-of-the-art online
re-ranking method, OL [66], the performance improvement
by our SPGMA is much larger since our SPGMA can fully
explore all the query and gallery samples and the fused
local adaptation metrics are more discriminative as demon-
strated by Theorem 4.

5.3 Ablation Study
5.3.1 The Effectiveness Influence of Model
Components

The final retrieval performance of Eq. (12) relies on a bi-
directional retrieval matching, so the influence of each com-
ponent is shown in Table 4. As we can see, by only keeping
the query-specific metric adaptation M, or the gallery-cen-
tric one Mg, we still can achieve a significant improvement.
While performing a full-model bi-directional matching, the
performance is further boosted by a large margin which
demonstrates the necessity of bi-directional local discrimi-
nant enhancement.

5.3.2 The Effectiveness Influence of in Eq. (12)

The weighting parameter in Eq. (12) aims to balance the
importance of My and Mg. The full CMC curves w.r.t of
HA-CNN on CUHKO03, Market1501 and DukeMTMC-relD
are plotted in Fig. 6 respectively. As demonstrated, setting
% 1 gives the best performance since we perform amax-
normalization to both My, and Mg, over-weighting either
side is prone to suppress the other side’s impact.
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TABLE 7

Comparison Results on Oxford, Paris, ROxford and RParis
Method Ox Paris ROx RParis

M H M H
MAC [15] 364 723 378 146 592 359
SPoC [47] 681 782 380 114 3598 324
Crow [67] 70.8 797 414 139 629 369
R-MAC [68] 66.0 83.0 425 120 662 409
NectVILAD [69] 676 749 371 138 598 350
GeM-VGG16 [64] 825 822 555 2066 630 372
GeM-VGG16-Whilen [64] | 87.2 878 605 324 693 443
GeM-Res101 [64] 81.0 877 555 275 700 447
GeM-Res101-Whiten [64] 88.2 925 653 400 766 552
OL+VGG16 [66] 835 829 559 268 635 373
OL+VGG16-Whilen [66] 88.1 879 607 326 697 445
OL+Res101 [66] 81.7 87.6 561 27.8 703 449
OL+Res101-Whiten [66] 893 926 637 404 769 554
SPGMA+VGG106 84.1 836 563 275 o642 379
SPGMA+VGG16-Whiten | 89.6 8Y.1 612 338 706 453
SPGMA+Res101 82.2 886 568 284 710 457
SPGMA+Res101-Whiten 90.3 933 668 41.2 775 56.2

The mAP results are reported.

5.3.3 The Effectiveness Comparison Against Online
Re-Ranking Methods

Two state-of-the-art online P-RID re-ranking methods, OL
[8] and RR [11], are compared with our GMA and SPGMA
methods. All these methods can be readily utilized at the
online testing stage for further performance improvement.
The comparison results in Table 5 show that the query-spe-
cific method OL [8] works better on improving Rank@1 per-
formance but has little improvement on mAP due to the lack
of gallery-specific local discriminant enhancement. In con-
trast, since RR [11] considers the k-reciprocal nearest neigh-
bors of both query and gallery data, it achieves a large
improvement on mAP but with limited improvement on
Rank@l owing to the lack of instance-specific local adapta-
tion. Our methods outperform the other two approaches sig-
nificantly at both Rank@1 and mAP due to the full utilization
of both the group-level visual similarity sharing information
and instance-specific local discriminant enhancement.

5.3.4 The Computation Cost Comparison Against
Online Re-Ranking Methods

To thoroughly evaluate the performance of online re-ranking
methods, besides the effectiveness comparison, the compu-
tation cost is another important factor. Therefore, we have
accordingly compared the online inference cost of our pro-
posed methods with the other state-of-the-art re-ranking

TABLE 6
Cross-Dataset Validation Results with Our Model on Market1501 and DukeMTMC-relD

Method Marketl501 — DukeMTMC DukeMTMC — Marketl501

R@1 R@5 R@10 R@Z0 mAP R@1 R@5 R@10 R@20 mAP
MLFN [40] 45.8 63.9 716 78.1 203 304 47.5 53.9 39.5 17.1
MLFN+GMA 67.6 78.8 83.0 86.6 327 43.7 57.0 62.6 68.2 24.7
MLEFN+SPGMA 68.2 79.3 83.5 87.0 333 44.1 574 630 68.7 25.1
DenseNet121 [34] 41.0 56.6 62.8 68.5 232 55.0 71.3 78.5 843 253
DenseNet121+GMA 53.1 67.1 721 75.7 32,7 76,9 85.6 89.1 91.9 40.4
DenseNet121+8PGMA | 53.6 67.5 72.5 76.1 332 774 86.1 89.6 92.4 40.8
HA-CNN [3] 43.3 59.7 66.7 74.6 139 24.0 39.0 45.1 il6 135
HA-CNN+GMA 61.6 73.6 78.7 829 258 Ry 3 519 56.8 62.8 2.5
HA-CNN+SPGMA 62.2 74.0 79.3 83.5 264 35.0 525 573 63.4 20.9

Market1501 — DukeMTMC mean using the model trained on Market1501 to evaluate DukeMTMC-relD.
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methods. Based on a 1024-dimension CNN feature extractor,
the overall online inference time for RR [11] and OL [8],
GMA and SPGMA on Marketl1501 dataset is 78.5s, 242.5s,
107.7s, and 96.8s respectively. Compared with RR [11], our
inference time is comparable to it (our running time is a little
slower than RR [11] but still acceptable for online evaluation,
our running time includes the SSSet mining time and self-
paced learning time), while our improvement on Rank@l
and mAP is much more stable and significant than RR [11] as
shown in Table 5. It is worth noting that RR [11] just learns a
single global matching metric for online re-ranking, while
our proposed GMA/SPGMA will learn multiple group-met-
rics instead for instance-level online adaptation.

Compared with another state-of-the-art instance-level
online adaptation method OL [8], our proposed methods
could obtain both better re-ranking performance and faster
online inference speed. If n query samples are given, OL [8]
has to learn n separate local metrics for all the samples so
the learning complexity is O8nb. For our method, we pro-
pose to learn only one metric for one SSSet, instead of for
one sample. So the number of mined SSSets is much smaller
than n which makes our overall inference time is much
shorter than OL [8]. The conclusion is also verified by the
online efficiency comparison experiments in Fig. 7. As we
can see, the total number of learned online adaptation met-
rics of OL [8] and our SPGMA method on the Market1501,
DukeMTMC, and MSMT17 datasets based on HA-CNN,
MLFN and DenseNetl21 are demonstrated. For all the fea-
ture extractors and benchmarks, the number of learned met-
rics of our proposed SPGMA is the only 40% of OL’s so that
our online computation cost (96.8s) if largely reduced com-
pared with OL [8] (242.5s).

Finally, we compare the online learning time of our pro-
posed GMA and the extended version of SPGMA. Although
there is an extra iterative self-paced SSSet selection compo-
nent in SPGMA, the overall online adaptation time is indeed
shorter than GMA. The reasons are three-fold: (1) The extra
time cost of SPGMA comes from the computation of the
hinge loss of the obtained SSSets. Usually, the mined SSSets
only contain several highly similar samples (less than 10)
thus the hinge loss computation is pretty efficient. (2) The
closed-form solution to Eq. (9) can be easily obtained via
Eq. (10). Therefore, the overall time cost of the self-paced
learning strategy is pretty low which could be ignored dur-
ing our group-metric adaptation algorithm. (3) SPGMA
proposes to gradually involve the obtained SSSets into
adaptation learning. Thus, for the learning of one group-
metric, the involved testing samples of SPGMA are much
fewer than GMA which results in a much faster optimiza-
tion processing. Although the number of adapted group-
metrics is the same for both GMA and SPGMA methods,

the overall online adaptation time of SPGMA is shorter than
GMA.

5.3.5 Cross-Set Generalization Ability Validation

For instance-level identification tasks (e.g., person re-identifi-
cation), data from non-overlapping identities are provided for
training and testing. However, due to large visual appearance
variations among training and testing data, there is always a
significant performance drop of existing learning-based
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Fig. 7. The comparison of computational cost of OL and our SPGMA
method on the Market1501, DukeMTMC-relD, and MSMT17 datasets
based on the HA-CNN, MLFN and DenseNetl121 baselines. The total
number of learned online adaptation metrics are demonstrated.

methods: although identification models are already well-
trained on the training dataset, its factual performance on
unseen testing data is limited. Such a phenomenon can be
observed and verified through our conducted cross-dataset
validation experiments in Table 6. Even the state-of-the-art P-
RID networks have already been well-trained on the source
training dataset (appealing performance can be obtained on
the source testing dataset as reported in Table 2), when an
unseen target testing dataset from another benchmark is given,
their factual identification performance degrades badly. This
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Fig. 8. The affinity matrix refinement by our SPGMA method on the Market1501 dataset based on the HA-CNN, MLFN and DenseNet121 baselines.

result demonstrates these networks are highly over-fitted to
the used source training data and their generalization ability to
unseen target testing data is pretty poor.

Therefore, we explore the generalization ability of our pro-
posed GMA and SPGMA methods. We claim our improve-
ment is achieved from the testing sample itself which is
independent of how the baseline models are trained. Thus
we conduct a cross-set generalization ability validation
experiment as shown in Table 6. Following the setting in [70],
the baseline model trained on Market1501 with our method
is evaluated on DukeMTMC-reID and vice versa. The results
show our models can consistently and significantly improve
the baseline performance regardless of whether the baseline
is trained by the same-source data or not.

5.3.6 The Visualization of Affinity Matrix Refinement
The core idea of our proposed SPGMA method is to adapt
the local similarity of each online testing sample to better fit

its inherent affinity relationships. Therefore, to further ver-
ify that our method is able to refine the local similarity of
samples and largely alleviate the data shifting problem, we
visualize the affinity matrix of testing samples with/with-
out our SPGMA and compare them with the ground-truth
results. Extensive experimental results on Marketl1501
(Fig. 8) and on DukeMTMC-reID (Fig. 9) demonstrate the
effectiveness of our method to refine the affinity matrix of
samples. As shown in Figs. 8 and 9, without our proposed
SPGMA model, the offline learned SOTA baselines can not
obtain the correct affinity matrix of the testing samples (the
middle column) compared with the ground-truth results
(the left column), their affinity matrix is indistinguishable
due to the severe data shifting variations. Our SPGMA
model can successfully address the data shift problem by
adjusting the original affinity matrix to be more coherent
with the ground-truth. This is the main reason why our pro-
posed method can significantly improve the identification
performance.
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Fig. 9. The affinity matrix refinement by our SPGM A method on the DukeMTMC-

6 CONCLUSION

Unlike previous online re-ranking works for visual identifi-
cation, in this article, we propose a novel online self-paced
group-metric adaptation algorithm which not only takes
individual characteristics of testing samples into consider-
ation but also fully utilizes the visual similarity relationships
among both query and gallery samples. To handle a large
number of testing samples, we introduce self-paced learning
to gradually include samples into adaptation from easy to
difficult which elaborately simulates the learning principle
of humans. Our proposed SPGMA method can be readily
applied to any existing visual identification baselines with
the guarantee of performance improvement, and a theoreti-
cally sound optimization solution to SPGMA keeps a low
online computational burden. Compared with the other
state-of-the-art online rank refinement approaches, the pro-
posed SPGMA model achieves a significant improvement on
Rank@!l (mAP) performance. Moreover, by implementing
our SPGMA method to the state-of-the-art baselines, their

Sample Number

20 40 60 80 100 120
Sample Number

{i) SPGMA+DenseNet Affinity Matrix

Affinity Matrix

relD datasets based on the HA-CNN, MLFN and DenseNet121 baselines.

performance is further boosted by a large margin on both the
person re-identification and image retrieval tasks.
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