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Discriminative Self-Paced Group-Metric
Adaptation for Online Visual Identification

Jiahuan Zhou , Bing S u , and Ying Wu, Fellow, I E E E

Abstract—Existing solutions to instance-level visual identification usually aim to learn faithful and discriminative feature extractors from
offline training data and directly use them for the unseen online testing data. However, their performance is largely limited due to the
severe distribution shifting issue between training and testing samples. Therefore, we propose a novel online group-metric adaptation
model to adapt the offline learned identification models for the online data by learning a series of metrics for all sharing-subsets. Each
sharing-subset is obtained from the proposed novel frequent sharing-subset mining module and contains a group of testing samples that
share strong visual similarity relationships to each other. Furthermore, to handle potentially large-scale testing samples, we introduce
self-paced learning (SPL)  to gradually include samples into adaptation from easy to difficult which elaborately simulates the learning
principle of humans. Unlike existing online visual identification methods, our model simultaneously takes both the sample-specific
discriminant and the set-based visual similarity among testing samples into consideration. Our method is generally suitable to any off-
the-shelf offline learned visual identification baselines for online performance improvement which can be verified by extensive
experiments on several widely-used visual identification benchmarks.

Index Terms—Learning from sharing, frequent pattern mining, online adaptation, person re-identification, self-paced learning
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1 INTRODUCTION

HE goal of visual identification is to retrieve the same
identity images of a query probe from a gallery set. As

an attractive research task in the computer vision commu-
nity, visual identification has attracted increasing attention
owing to its importance as a critical link to practical public
camera surveillance applications. Over the past years, a
popular solution to visual identification is performing
supervised discriminative feature learning [1], [2], [3], [4],
[5], [6], [7] from the given offline training data, then directly
applying the learned models to the online unlabeled testing
data for evaluation. However, due to the severe training-
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testing data distribution shifting (testing data are drawn
from totally different classes against the training data as
shown in Fig. 1) caused by large variations in visual appear-
ance, object pose, camera viewpoint, illumination change,
and background clutter, the performance of offline learned
models is indeed limited. Moreover, this performance deg-
radation is even more critical when an instance-level visual
identification problem (e.g., person re-identification (P-
RID), vehicle re-identification (V-RID), instance discrimina-
tion learning, etc) is considered. Since different instances
from the same category in the training and testing sets are
considered as different individual classes, extreme diver-
gences between training and testing data caused by large
intra-instance variations may result in a significant perfor-
mance drop of the offline learned models. As demonstrated
by Fig. 1, regardless of which visual identification bench-
marks or state-of-the-art methods are selected, the critical
training-testing distribution shifting issue always exists.

To narrow such a distribution gap between training and
testing samples, a straightforward solution is adapting the off-
line learned models tofit the online testing data. Recently, var-
ious online visual identification methods are proposed which
can be roughly categorized into two branches. The set-centric
re-ranking approaches [9], [10], [11], [12], [13] focus on opti-
mizing the ranking list of queries based on the similarity rela-
tionships among testing samples. Their performance relies on
the offline models learned from training data, and treating dif-
ferent testing samples equally largely ignores the individual
characteristics, hence the improvement is neither significant
nor stable. The other category is query-specific feature adapta-
tion [8], [14], [15] which aims to enhance the feature discrimi-
nant of each query individually that the generic offline
learned feature is adapted to an instance-specific local feature
for each query. Compared with the set-centric ones, the indi-
vidual discriminant of each query is enhanced while the
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Fig. 1. Taking P-RID task as an example, the normalized pair-wise distance distributions of both training and testing samples based on the well-
trained state-of-the-art HA-CNN and MLFN networks on the Market1501 and DukeMTMC-reID datasets are presented. The results demonstrate the
severe training-testing data distribution shifting issue, where the extremely challenging hard negative distractors (in blue box) will significantly influ-
ence the retrieval accuracy (the Original top-10 retrieval results). Even using the state-of-the-art online re-ranking method [8] (RR), the ground-truth (in
red box) still has a lower rank than the distractors. Our method succeeds in handling the distractors so that the true-match is successfully re-ranked
to the top position in the list (Ours).

visual similarity relationships among given testing samples learned, for each query (gallery), its instance-specific local
are ignored. Moreover, existing query-specific models [8], metric is obtained via a multi-metric late fusion of all the
[14], [15] completely ignore the counterpart gallery data dur- group-metrics.
ing adaptation. Even a discriminative probe-specific metric           Therefore, our proposed online SPGMA model can sig-
can be learned, the “hard” gallery samples with large intra-      nificantly refine the ranking performance, and the success
class and small inter-class variances will tremendously      of learning from sharing relies on discovering the latent
degrade its performance since they are still indistinguishable      sharing relationships among samples, which cannot be
under the learned query-specific metric. From the efficiency      found by treating each instance independently [19]. Learn-
perspective, existing query-specific adaptation methods suf-      ing from sharing is good at handling such conditions that
fer from heavy online computation costs since they have to      only a limited number of positive learning data are available
repeatedly and individually handle each testing sample for      by taking the sharing relationships as data augmentation.
adaptation, and such computational burden is even severe      Therefore the sharing strategy is particularly suitable for the
when a large-scale testing set is given.                                               learning of online instance-level visual identification in

To mitigate the aforementioned issues, we propose a      where each testing sample itself is the only positive sample
novel online self-paced group-metric adaptation (SPGMA) algo-      available for learning. To sum up, our contributions are as
rithm which not only takes individual characteristics of test-      follows: 1) To handle the severe shifted training-testing data
ing samples into consideration but also fully explores the      distribution issue in visual identification, we leap from off-
visual similarity relationships among all query and gallery      line global learning to online instance-specific adaptation. 2)
samples. As illustrated by Fig. 2, at the online identification      By automatically mining various frequent sharing-subsets,
stage, the redundant intrinsic visual similarity relationships      the intrinsic visual similarity relationships among testing
among the unlabeled query (gallery) set are utilized by the      samples can be fully explored via a self-paced SSSet selec-
proposed frequent sharing-subset (SSSet) mining algorithm to      tion strategy to gradually adapt sharing-subsets to fit the
automatically mine concise and salient visual sharing associ-      learned group-metrics. Therefore, both superior online re-
ations of samples. Since a sharing-subset contains a group of      ranking performance and efficient learning from sharing
testing samples that share strong visual similarities, their      merits can be achieved. 3) Our proposed model can be read-
local distributions can be jointly adjusted by efficient metric      ily applied to any existing offline visual identification base-
adaptations for all of them. Furthermore, to readily handle      lines for online performance improvement. Therefore, our
large-scale testing samples (especially hundreds of thou-      appealing efficiency-and-effectiveness superiority is not
sands of gallery instances), we introduce a self-paced learn-      only verified by extensive experiments on various P-RID
ing strategy [16], [17], [18] to gradually include testing      and image retrieval benchmarks based on various state-of-
samples into adaptation from easy to difficult. Thus, by iter-      the-art visual identification models but also guaranteed by

ating between our proposed unsupervised frequent sharing several theoretically sound justifications.
subset mining and online self-paced SSSet selection algo- This manuscript is an extension of our previous conference
rithms, much fewer group-metric adaptations will be      paper [20], while we have made a lot of extensions including
learned and the online optimization could be more efficient      1) To facilitate the online computation cost and further
since fewer testing samples are used in each learning itera-      improve identification performance, a classic self-paced tion.
Once a series of such kinds of SSSet-based metrics are      learning algorithm is explored to gradually include testing
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Fig. 2. The online testing query and gallery samples are first fed into the offline learned network to extract feature descriptors. The proposed frequent
sharing-subset (SSSet) mining algorithm is performed to generate multiple sharing-subsets which are further utilized by the self-paced S S S e t  selec-tion
algorithm to iteratively determine which S S S e t s  will be involved for each learning round. The “easy” S S S e t s  will be processed first so that the model
can be accordingly trained from scratch. When the model can handle these “easy” S S S e t s  well, the “harder” ones will be gradually involved to further
improve the effectiveness of the model. Within each learning round, the selected S S S e t s  will be fed into the proposed online group-metric adaptation
model for local discriminant enhancement (The same sample can be contained by multiple SSSe t s  since it may share different visual sim-ilarity
relationships with different samples). Such learning continues until all the obtained S S S e t s  are processed. Finally, by fusing the learned group-metrics
for each query and gallery sample, our final ranking list is obtained by a bi-directional retrieval matching.

samples into adaptation from easy to difficult which elabo- only sample. However, these local metric learning methods
rately simulates the learning principle of humans. 2) Thor- still perform an offline global-learning procedure that
ough theoretical analyses are provided, and the solution to heavily relies on labeled training data. Their performance is
special testing sample conditions is discussed to complete the indeed limited if testing data are from different distribu-
proposed method. 3) Compared with [20] which only con- tions. Instead, our method adopts an online local adaptation
ducts experiments under the P-RID setting, we further evalu- manner to adapt the offline learned baselines to each testing
ate our method on a completely different but challenging sample specifically.
visual identification task, image retrieval. Extensive experi-
ments are conducted on four widely-used image retrieval
benchmarks and promising improvement is obtained com- 2.2     CNN-Based Feature Extraction
pared with the state-of-the-art baselines. 4) More ablation      CNN-based feature extraction has achieved state-of-the-art
experiments (e.g., affinity matrix refinement visualization, re-      performance in visual identification. A novel Harmonious
ranking improvement results, online computation cost com-      Attention CNN (HA-CNN) proposed by Li et al. [3] tries to
parison, etc) are conducted to further investigate our pro-      jointly learn attention selection and feature representation in
posed method.                                                                                      a CNN by maximizing the complementary information of

different levels of visual attention (soft attention and hard
attention). Wang et al. [4] proposed a novel deeply super-
vised fully attentional block that can be plugged into any

2.1 Local Metric Learning CNNs to solve visual identification, and a novel deep net-
To facilitate visual identification, several discriminative work called Mancs is designed to learn stable features. Chen
local metric learning methods are proposed. To tackle the et al. [5] proposed an Attentive but Diverse Network (ABD-
multi-modal distributions of identity appearances, Zhang Net) which integrates attention modules and diversity regu-
et al. [21] utilized the local distance comparison in P-RID to larization throughout the entire network to learn features
obtain an accurate retrieval. A regularized local metric that are representative, robust, and more discriminative for
learning (RLML) method was proposed by Liong et al. [22] P-RID. Zheng et al. [6] aimed at improving the learned fea-to
handle the common over-fitting issue in visual identifica- tures by better leveraging the generated data by designing a
tion via exploring the merits of both the global and local joint learning framework that couples feature learning and
metrics. A sample-specific SVM classifier is learned in data generation end-to-end. Li et al. [23] proposed a Feature-
Zhang et al. [15] for each training sample, then the weight Fusing Graph Neural Network (FFGNN) to utilize the rela-
parameters of a testing sample can be inferred. In order to tionships among the nearest neighbors of the given training
relax the requirement of a large-number labeled images for images for feature learning. A self-critical attention learning
learning, a novel one-shot learning approach is proposed by (SCAL) method is proposed by Chen et al. [24] to generate
Bak et al. [1] which only requires a single image from each both spatial-wise and channel-wise attention for discrimina-
camera for training, thus the learning result is specific to the tive identification. To strengthen discriminative features and
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pre-trained deep representations to unseen domains for unsu-

ually involve samples into adaptation from easy to difficult.
Hence the testing samples can be better adapted to the
learned group-metrics.

3 ONLINE
A

S E L F -PA C E D G R OU P-ME T R I C
F S

Q  ¼ qi i; l G ¼ g ; l

i        ithat q ; g 2  R      are the extracted feature representations
from an offline baseline model, either handcraft designed or

i i

classes. We aim to rank G for a query q based on the pair-
wise similarity distance to a gallery g, dðq;gÞ ¼  kq  gk and
our goal is to re-rank G for q by refining dðq; gÞ to improve
the rank of true-matches for q.

3.2     Unsupervised Frequent Sharing-Subset Mining
i iAlthough the identity labels l , l     are unknown during

i¼1

2.3 Online Re-Ranking
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suppressing irrelevant ones in visual identification, Zhang      supervised P-RID method by utilizing a small portion of
et al. [25] designed an effective Relation-Aware Global Atten-      labeled training samples to fine-tune a CNN model, and then
tion (RGA) module to capture the global structural informa-      propagating the labels to the unlabeled portion for further
tion for better attention learning.                                                       fine-tuning the overall system in a self-paced manner. Zhou

Almost all the aforementioned instance identification      et al. [30] proposed a self-paced constraint and symmetric reg-
methods focus on learning discriminative metrics or features      ularization to help the relative distance metric training the
from the offline training data to facilitate the matching. When      deep neural network, so as to learn the stable and discrimina-
their models are well trained offline, they will not modify the      tive features for identification. Ge et al. [31] proposed a novel
model any more and directly use them for the unseen testing      self-paced contrastive learning framework with hybrid mem-
data. However, the data distribution shifting between train-      ory which can generate different level of supervision signals

ing and testing samples largely limits the performance of for different domains to facilitate identification.
these models. To tackle this issue, our proposed method is           Although the aforementioned methods explore SPL to
suitable for any CNNs for sample-specific local metric adap-      facilitate offline learning, the requirement of labeled data
tation at the inference stage aiming to well handle the data      prevents their usage in the online testing phase. Also, the
shifting issue and gain further performance improvement.           pseudo-label noise propagation and training-testing distri-

bution gap may still result in severe performance degrada-
tion of these SPL-based methods. In this work, to tackle the

In recent years, increasing efforts have been paid to online re-
potential large-scale testing data, we introduce SPL to grad-

ranking in visual identification. Ye et al. [9] revised the ranking
list by considering the nearest neighbors of both the global and
local features. An unsupervised re-ranking model proposed by
Garcia et al. [10] takes advantage of the content and context
information in the ranking list. Zhong et al. [11] proposed a
k-reciprocal encoding approach for re-ranking, which relies on DAPTATION     ROM HARING

a hypothesis that if a gallery image is similar to the probe in the      3.1     Problem Settings and
Notations
k-reciprocal nearest neighbors, it is more likely to be a true- At the online testing stage of visual identification, two dis-
match. Zhou  et al. [8] proposed  to learn an instance-specific joint datasets, a query set Q  and a gallery set G are given as:
Mahalanobis metric for each query sample by using extra nega-
tive learning samples at the online stage. Barman et al. [12] q nq g ng

focused on how to make a consensus-based decision for i i¼1 i i¼1

retrieval by aggregating the ranking results from multiple algo- d

rithms, only the matching scores are needed. Fan et al. [26] pro-
posed a progressive unsupervised learning method to transfer learned deep features. lq ; lg 2  f1; 2; :::; cg are the labels from

pervised P-RID. Bai et al. [13] concentrated on re-ranking with
c classes which are totally different from the training sample

the capacity of metric fusion for retrieval by proposing a uni-                                                                                                      2
fied ensemble diffusion framework. However, the aforemen-
tioned online re-ranking methods either simply treat different
testing samples equally without considering the instance-spe-
cific characteristics or completely ignore the intrinsic visual
similarity relationships among testing samples. Therefore, their q g

performance improvement is neither stable nor significant.             
online testing, the visual similarity relationships of Q  and G
are intrinsic and verified to be effective in investigating the

2.4 Self-Paced Learning underlying similarity structure of samples by previous re-
Self-paced learning (SPL), designed through simulating the ranking methods [10], [11]. However, due to the large-scale
learning principle of humans/animals, becomes a popular testing sample size (especially for G), the redundancy and
research topic in recent years. To alleviate the heuristic easi- repeatability of visual similarity relationships significantly
ness measure requirement, Kumar et al. [16] proposed to limit the performance of previous online re-ranking meth-
re-formulate the key principle of Curriculum Learning as a ods. Inspired by the well-established frequent itemset min-
concise SPL model. Jiang et al. [17] extended SPL by consider- ing technique [32], we propose an unsupervised frequent
ing the diversity of samples selected in the training steps. sharing-subset (SSSet) mining algorithm to automatically
Kamran et al. [18] proposed a balanced SPL model in the mine various SSSets fS i gn s       from Q  and G, that all the sam-
designed generative adversarial clustering network by con- ples in S i  share a Strong Association Rule on visual similarity
sidering an unsupervised loss based on the adjacency matrix. [32]. Therefore, the mined SSSets not only keep the strong
Recently, studies [27], [28] focusing on adopting SPL in the and reliable visual similarity sharing information but also
interested tasks to avoid getting stuck in bad local minima significantly alleviate the redundancy issue. Compared
and improving the generalization of their models are pro- with the originally combinatorial problem suffering from
posed and attracted increasing attention. In recent years, sev- exponential complexity Oð2nÞ, the time complexity of our
eral self-paced learning-based works are studied in the proposed algorithm is Oðn2Þ which is much more efficient
person re-identification area. Xin et al. [29] proposed a semi- when large-scale testing samples are given. It is worth
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Fig. 3. The pipeline of our proposed unsupervised frequent sharing-subset mining algorithm. Given the extracted features of testing samples, the
affinity matrix A can be computed. To keep only the most reliable sharing relationships, a threshold Q is used for filtering so that a binary index map B is
obtained. Then each non-zero row B j  of B can be considered as an element ti in the set T . Moreover, T is utilized to build a CFI-Tree that is the input
for the off-the-shelf FP-Close mining algorithm to mine all the frequent SSSets.

mentioning that [32] is a classic method that utilizes fre- the query set Q  as an example, we first prepare a set T ¼
quent itemset mining to handle the classification tasks but it ft  gnt        from Q  where each t is a subset of Q. The affinity
only focuses on mining the low-level local textural features matrix A 2  Rnq nq of Q  is defined as:
from the patches in one image. Thus [32] is difficult to han-
dle the higher-level visual similarity relationships between < dðqi;qjÞ dðqi;qjÞ
different images. Our proposed method focuses on mining Ai ; j  ¼ 2s j 2s (1)
the frequent SSSets based on the reliable and strong visual 0; j  ¼  i
relationships obtained from the whole image globally.

where s  is the variance parameter of distance matrix from Q

Algorithm 1. Building CFI-Tree from T larity betw
 represents the soft-max

r
normalized visualtsimi-

Require: The given query set Q  and obtained set T similarity distribution between qi and the other samples in
Ensure: A CFI-tree Q. To keep only the most reliable sharing relationships, a
1: For all the given nq testing samples in Q, we firstly index threshold Q defined as the average affinity of Q  is used for

them from 1 to nq; outlier filtering Q ¼ q q      A  =n  n . Therefore, a
2: 

tained by the elements in T
v 

and sort all
s
the

p
samples

o
in

binary index map B is obtained by:

decreasing order of their count; 1; Ai; j   Q
3: Create the root node (null); i ; j

4: Scan the set T , get the elements of length 1 (e.g., the length of
B i  is 1 if there is only one non-zero element in the), and sort The non-zero B      implies the strong similarity sharing rela-
these elements in decreasing support count;

5: Load an element in T at a time. Sort the samples in this ele- of B can be considered as an element ti in set T :

6: For each element in T , insert its samples to the constructed T ¼  ft  g ¼  fB g; 8kB k >  0 (3)
Tree from the root node and increment occurrence record at
every inserted node; Once set T is obtained, we propose to mine the frequent

7: Create a new child node if reaching the leaf node before the SSSets from T that each sharing-subset is represented by a
insertion completes; mined frequent pattern from a classical FP-Close mining

8: If a new child node is created, link it from the last node con- algorithm [33]. To do so, a Closed Frequent Itemset Tree
sisting of the same item; (CFI-Tree) as shown in Fig. 4 is firstly constructed following

9: Return the constructed tree as the final CFI-Tree the Algorithm 1 under a minimum support 5. Finally, the
obtained CFI-tree will be fed into the off-the-shelf FP-Close

The overall pipeline of our proposed unsupervised fre- mining algorithm [33] to mine all the closed frequent pat-
quent SSSet mining algorithm is illustrated in Fig. 3. Taking terns f S  gns      as demonstrated by Algorithm 2.
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Fig. 4. A CFI-Tree is constructed based on T . The same identity may be
contained by multiple ti so that there may be multiple nodes for the
same identity.

Algorithm 2. Frequent Sharing-Subset Mining

Require: The given query set Q
Ensure: ns sharing-subsets fS i gn s

1: Compute the affinity matrix A of Q  by Eq. (1);
2: Compute the threshold Q;
3: Compute the binary index map B by Eq. (2);
4: Obtain the transaction set T by Eq. (3);
5: Build the CFI-Tree following Algorithm 1;
6: Frequent sharing-subset mining via the FP-Close mining

algorithm in [33] based on the obtained CFI-Tree;
7: Return fS i g i ¼ 1

Revisit Eq. (4), its equality constraints propose to collapse all
si 2  S i  together. Therefore keeping only the equality con-
straints related to the anchor sample si achieves the same
collapsing performance. So as to the inequality constraints
in Eq. (4). Finally, we can reduce the constraint size by only
keeping the constraints related to si as in Eq. (5). The re-
formed objective Eq. (5) has only OðnsnÞ and OðnsnÞ
inequality and equality constraints respectively. An impor-
tant merit of Eq. (5) is that it can be efficiently optimized:

Theorem 1. All the vectors si  si in Eq. (5) form a spanning
space H ¼  spanð  ðsi  si ÞÞ. Eq. (5) is equivalent to
replace si  sj by h? , the projection of si  sj in H? , that H ?  is the
orthogonal space of H.

Proof. Since M is positive semi-definite, we could have:
ðsi  si ÞT Miðsi  si Þ ¼  0 ,  Miðsi  si Þ ¼  0 ,  Mih ¼
0; 8h 2  H. Projecting si  sj to H and H ?  generates two
orthogonal bases hv     and h ?      respectively, so si  sj ¼
h þ  h? . Replacing inequality constraints in Eq. (5) by
hv þ  h ?      gives ðsi  sj ÞT Miðsi  sjÞ ¼  ðhv þ  h?ÞT Miðhv þ  hv Þ
¼  hv      Mihv . Now Eq. (5) has an equivalent form as:

ns

arg min kM k w:r:t : M  0
fM i g       i¼1

h? T  
Mi þ  M j  h ?   2; 8si 2  S i ; sj  2  S j

M h ¼  0; 8h 2  H (6)
tu

Finally, we prove that Eq. (6) has the same solution to
Eq. (4) by eliminating its PSD and equality constraints.

Theorem 2. The solution to Eq. (4) is exactly the same as solving

3.3 Efficient Group-Metric Adaptation the Eq. (6) by relaxing its equality and PSD constraints since

Once all the SSSets fS i gn s       are obtained, our goal is to jointly
learn ns SSSets-based local Mahalanobis metrics for fS i g i ¼ 1 Proof. If we get rid of the PSD and equality constraints in
by optimizing Eq. (4) aiming to collapse the same-SSSet Eq. (6), the new form is:
samples together meanwhile push the different-SSSet sam-
ples far away:

arg min
1 X

kM k2

arg min
s     

kM k2w:r:t : M  0
fM i g       i¼1

fM i g       i¼1 w:r:t : hv Mi þ  M j  hv  2; 8s 2  S i ; sv 2  S j r (7)

si  sj T  
Mi þ  M j        si  sj       2; 8si 2  S i ; sj  2  S j                                Eq. (7) is exactly in the same form of a multi-kernel SVM s

i  si

Mi si  si      ¼  0; 8si 2  S i ; si 2  S i                              (4)           problem so that it can be efficiently solved. Thus the posi-

The learned metric Mi from Eq. (4) is shared by all the sam-
tive

v’ðh 
i
Þ ¼

fini
avh 

s
 h 

f
T  0. For 

r
the

e 
equality con-

each S i ,  there are totally Oðn2n2Þ inequality constraints and
straints in Eq. (6), given a member s of S, we have:

Oðnsn2Þ equality constraints in Eq. (4) which are too many                                    ? ? T ? ? T

to deal with. Thus we aim to reduce the constraint size in v v v v

Eq. (4) by revealing that Eq. (4) has an exactly equivalent
form by only keeping the constraints related to one anchor
sample si in S i  (si can be any samples in S i ). The equivalent
form is shown by Eq. (5):                                                                        Therefore, following the above optimization analyses, we

could efficiently and jointly perform online group-metric
ns adaptation for all the mined SSSets fS i gi¼1 .

arg min kM k w:r:t : M  0
fM i g       i¼1 3.4     Self-Paced Group-Metric Adaptation

si  sj T  
M þ  M si  sj       2; 8si 2  S  ; sj 2  S Althou gh we a lrea d y significa ntly simplify the

lea rning of
             T                                                                                                 GMA via Eq. (7), simultaneously adapting all the testing sam-v

i                    v                                          i        v             i                                              ples still results in a sub-optimal solution since the learning
Authorized licensed use limited to: Northwestern University. Downloaded on September 22,2023 at 04:19:17 UTC from IEEE Xplore. Restrictions apply.



v

n ns s

j ¼ i vs ;su

i j i j

ns

v ð‘;  Þ ¼ (10)

ns

i¼1
ns

ns

ns

ns

i

2  2qPðejxÞ

i i

4374 I E E E  TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 4, APRIL 2023

objectives of all fM i gi  may conflict with each other which
causes unstable loss optimization. Especially for these “hard”
samples that belong to different SSSets but are visual indistin-
guishable to each other. Besides, the optimization cost of
Eq. (7) is quadratic to the number of involved learning sam-
ples so that directly handling all the testing samples at once
will result in extreme optimization difficulty. Therefore, we
propose to incorporate a self-paced learning strategy [16],
[17], [18] into the adaptation to gradually tackle the testing
samples in a from-easy-to-difficult manner as Eq. (9):

m i n
X

v i ‘ i   v 
X

v i s : t : v i  2  ½0;1ns (9)
i        i¼1 i¼1

where ‘ i  ¼  
P n s      P  

j      i  maxð0; 2  ðsu  svÞT Miðsu  svÞÞ is the hinge
loss related to the i-th SSSet S i ,  vi is the self-paced learning
parameter and v is the weighting hyper-parame-ter for
controlling the learning pace. Once the mined SSSets
are determined, the closed-form solution to Eq. (9) of all
fvi gi¼1 can be readily obtained as Eq. (10):

1; if ‘  <  v 
v

0; if ‘   v

If vi ¼  1, the obtained SSSet S i  will be used in this adapta-
tion learning round and vi ¼  0 represents S i  will not be
involved in the current learning round. By gradually
increasing v throughout the learning, more “hard” SSSets
will be included into the training process. Finally, by con-
ducting an alternative learning between the optimization of
self-paced SSSet selection in Eq. (9) and our group-metric
adaptation in Eq. (4), our discriminative group-metrics for
all fS i g i ¼ 1  can be readily obtained. Therefore, the overall
algorithm of our self-paced group-metric adaptation
method (SPGMA) is shown in Algorithm 3.

Algorithm 3. SPGMA: Self-Paced Group-Metric Adaptation

Require: The mined SSSets fS i gn s       via Algorithm 2
Ensure: ns adapted group-metrics fM i gi¼1

1: Initialize all the Mi as identical matrix;
2: for the number of involved SSSets <  ns do
3: Initialize all the vi in Eq. (9) by ranking all computed ‘ i ;
4: Optimize all the vi via closed-from solutions in Eq. (10);
5: Based on the obtained fvi gi¼1 , optimize Eq. (4) using the

selected SSSets;
6: end for
7: Return the computed fM i gi¼1

3.5  Multi-Metric Late Fusion for Bi-Directional
Discriminant Enhancement

As we mentioned, for a query q, it may be contained by mul-
tiple SSSets so that there will be multiple learned metrics Mi

associated to q. The final metric Mq for q is obtained via a
boosting-form multi-metric late fusion [35], [36]:

Mq ¼  
X

g i M i

. X
g i (11)

i¼1

online testing stage. As shown by Fig. 1, the re-ranking per-
formance by using only the query-centric metric adaptation
may suffer from ambiguous gallery distractors. The similar
gallery images from different identities will significantly
degrade the discriminant of Mq since these gallery distrac-
tors are still indistinguishable under Mq. Therefore, we aim
to handle these indistinguishable gallery samples by per-
forming a gallery-centric local discriminant enhancement
method using Algorithms 2 and 3. For a gallery sample g, a
similar fused metric Mg can be obtained likewise. Therefore
the refined distance between q and g is defined as Eq. (12)
based on which the re-ranking list of qi is obtained.

dðq; gÞ ¼  ðq  gÞT Mq þ  Mgðq  gÞ (12)

3.6     Handle Special Conditions of Testing Samples
Recall our proposed SPGMA algorithm, the visual similar-
ity sharing conveyed by the mined SSSets is the key-point.
However, there may exist some special testing sample con-
ditions that we need to specifically deal with: (1) For some
testing samples that are not visually similar to all the other
samples, they are excluded by all the mined SSSets. There-
fore, these testing samples will not be covered by the learn-
ing of SPGMA. On the other hand, these special testing
samples also indicate that they are originally separable
from the other samples which motivates us to tackle them
in a straightforward and simple way. For these special test-
ing samples, by considering each of them as an individual
SSSet, they can be readily involved in our SPGMA by opti-
mizing the same Eq. (4). (2) Another critical condition is that
not enough testing samples (only very few or even only one
testing sample) are given at once. Under this condition, it is
difficult to utilize our proposed unsupervised frequent
SSSet mining algorithm to explore visual similarity relation-
ships among testing samples. Fortunately, our SPGMA can
still well handle this situation. Similarly, each of these lim-
ited testing samples will be considered as an individual
SSSet and our proposed group-metric adaptation will
degenerate to the form as in [8] which could also be effi-
ciently and effectively optimized via our simplified objec-
tive Eq. (7).

4 T H E O R E T I C A L  A N A L Y S E S  AND JUS T IF IC A T I ON S

As demonstrated by Theorem 2, the solution to our SPGMA
can be readily transformed into an equivalent form as [8].
Therefore, the appealing theoretical properties in [8] can be
inherited by our learned Mi as presented in Theorem 3.
Moreover, our late multi-kernel fusion metric Eq. (11) will
guarantee a further reduction of generalization error bound
as shown in Theorem 4.

Theorem 3. (The reduction of both asymptotic and practical
error bound by the learned M ): As demonstrated by the
Theorem 2 in [8], for an input x, its asymptotic error PaðejxÞ
by using extra negative data Da is:

PaðejxÞ ¼  
ð2  qÞPðejxÞ

 PðejxÞ (13)

where g ¼  1 if q 2  S  . In practice, the gallery set G, the coun-           where q is a probability scalar that 0
 q

 1 and PðejxÞ is the terpart of query set Q, also plays an important role at the           Bayesian error. Moreover, the asymptotic
error PaðejxÞ can be
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random training set X  ¼  f x i i¼1g of size n we have:

E ðM Þ ’  O

n þ  B

(14)

Eest qðM Þ ’  O
log n þ  B  þ  2n

(15)

In our work, we have n  n , that the selected number of
kernels is much fewer than the total kernel number, so that

n n

using only any M . The same conclusion can be obtained for
M likewise.

i

~ x

n

ffiffiffiffiffiffi ffiffiffiffiq

G

is bounded by O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

which is guaranteed by

d
G

5.1 Experiments on P-RID
5.1.1 Settings

e compared with our SPGMA.

#cam 2 6 8 15
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best approximated by the practical error rate PnðejxÞ (n is
finite) by finding a local metric Mx which turns out to be the
one for our Eq. (4).

Dataset

TABLE 1
The Statistics of P-RID Benchmarks

cuhk03 market duke msmt17
Theorem 4. (The reduction of generalization error bound by #T-IDs 767 751 702 1040

using Mq=g in Eq. (11)): Our fused multi-kernel metric Mq ¼ #Q-IDs 700 750 702 3060

ð     i¼1 giMiÞ= g i
 is a linear combinations of several base ker- #G-IDs 700 751                1110 3060

nel
; x2Þ

from the family of finite Gaussian kernels: KG : ¼
i
f K  

i
: #images            28,192             32,668            36,411

126,441 bounded by Bk . Therefore, for a fixed d 2  ð0; 1Þ, ns <  nk is the #T/Q/G-IDs denote the number of

training/query/gallery ids.
number of metrics (kernels) involved in our final SPGMA learn-
ing solution. With probability at least 1  d over the choice of a obtained GMA method is our original version in [20]. In

n this work, our proposed GMA/SPGMA method is evalu-
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ! a ted  ba sed  on severa l sta te-of-the-a rt CNN-ba sed  P-
RID

k k models: ResNet50 [39], DenseNet121 [34], HA-CNN [3],
est i n MLFN [40] and ABDNet [5]. The general CNN models,

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ! ResNet50 and DenseNet121, are well trained on each bench-
k             k                s                                             mark for feature extraction. HA-CNN, MLFN and ABDNet

n                                              are re-identification specific networks so that the original
works are directly utilized in our experiments. Besides,

s k other state-of-the-art P-RID methods [5], [6], [40], [41], [42],
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi [43], [44], [45], [50], [60] are further compared. Moreover,

EestðMqÞ ’  O log nk þBk  EestðMiÞ ’  O nk þBk      . related online P-RID methods including OL [8] and RR [11]

The generalization error by using Mq is much smaller than      
ar 

Evaluation. We follow the same official evaluation proto-i

cols in [55], [58], the single-shot evaluation setting is
g adopted and all the results are shown in the form of Cumu-

Proof. The classification rule of our learned M can be lative Matching Characteristic (CMC) at several selected

defined as zjðqT Mi ~j  1Þ  1 so that the margin is 1. Moti- ranks and mean Average Precision (mAP).

vated by [37], the generalizationffierror EestðMiÞ of using

kernel Mi is bounded by O nk þBk      . While by using Mq, 5.1.2 Comparison With State-of-the-Arts
which is a linear combination of all Mi from the family of Evaluation on CUHK03: The comparison results on CUHK03
finite Gaussian kernel K d  , its generalization error EestðMqÞ (767/700 splitting protocol) are presented in Table 2. Our

log nk þBk þ2ns                                                                                                  proposed GMA model significantly boosts the baseline
n                                                                                                 Rank@1 (mAP) performance of ResNet50, DenseNet12, HA-

the Theorem.2 in [38]. For the kernel family K  , nk ’ CNN and MLFN to 66.9% (60.7%), 61.6% (54.4%), 69.8%
Oðd2Þ and in our work, d  103 so that nk  106. The (63.5%) and 73.4% (71.2%) with a 40.0 %(29.7%), 50.2
selected kernels for combination is about 20 in average so %(35.7%), 45.4 %(33.4%) and 34.2 %(44.7%) relative

that ns  nk which means EestðMqÞ  EestðMiÞ.                 tu       improvement respectively. Even compared with the state-of-
the-art method MGN [56], our results outperform it by

5     E X P E R I M E N T S                                                                                         5% at Rank@1. The reason for such a large improvement is
that the “hard” gallery distractors which are still indistin-
guishable under Mq are well handled by our method, so the
ranking of true-match gallery targets is significantly

Datasets. We evaluate our proposed SPGMA algorithm on      improved. Moreover, by taking advantage of self-paced
CUHK03 [14], Market1501 [58], DukeMTMC-reID [55], and      learning, the obtained SPGMA can further improve the

MSMT17 [59] benchmarks. The statistic details of the above state-of-the-art performance on all the datasets based on all
datasets are summarized in Table 1. For CUHK03 

1, the new baselines. The adaptation is performed from easily-handled
splitting protocol proposed by [11] is adopted in our experi- samples to hard samples so that the obtained adaptation
ments so that 767 identities are used for training as well as metrics can be gradually optimized which results in more
the left 700 identities are used for testing. As for the other discriminative identification performance.
three benchmarks, the pre-determined query and gallery           Evaluation on Market1501: The superiority of our method
sets are directly utilized with no modification.                              is further verified by the experiments on Market1501. Table 2

Baselines. Our proposed SPGMA method refers to the      demonstrates that although the state-of-the-art approach
alternative optimization between the self-paced SSSet selec-      ABDNet [5] has achieved a pretty high performance (

tion in Eq. (9) and our group-metric adaptation in Eq. (4). If      94%) on Market1501, the improvement of our SPGMA is
we only utilize the group-metric adaptation in Eq. (4) to      still over 4% (10%) on Rank@1 (mAP) based on ABDNet

simultaneously optimize all the given testing samples, the (visualization results are shown in Fig. 5).
Evaluation on DukeMTMC-reID: DukeMTMC-reID is a

1. In our experiment, the CUHK03 detected dataset is utilized. recent benchmark proposed for P-RID, but the latest methods
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arge margin on mAP. TABLE 3

MSMT17 Baseline GMA SPGMA

R@1 mAP R@1 mAP R@1 mAP

DenseNet121[34] 66.0 34.6 75.5 43.1 76.2 43.9
HA-CNN[3] 64.7 37.2 74.3 43.8 74.9 44.5
MLFN[40] 66.4 37.2 72.8 43.4 73.3 44.1
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TABLE 2
Compared with the State-of-the-Art P-RID Methods on CUHK03, Market1501, and DukeMTMC-reID Datasets

Fig. 5. The visualization of rank improvement on Market1501 (a) and DukeMTMC-reID (b) based on the baseline [34]. For each case, its top-5 (left to
right) matches are presented and the true-match is labeled by the red box.

have obtained promising performance. As shown in Table 2, even for the extremely large-scale query/gallery sets,
the recently published OSNet [41] has raised the state-of-the- our methods are still able to consistently improve the
art to 87.0% (70.2%). Our ABDNet+SPGMA improves the baseline performance.
Rank@1(mAP) result to 87.8%(73.7%), which beats OSNet by
a l 

Evaluation on MSMT17: MSMT17 is the latest and largest Compared with the State-of-the-Arts on MSMT17

benchmark so far which is pretty challenging due to the
extreme large-scale identities and distractors. We evaluate
the performance of selected baselines (a self-paced learning-
based baseline Self [31] is also compared) on the MSMT17 Self[31] 42.3 19.1 54.7 25.1 55.4 25.7

dataset with(w/) and without(w/o) our GMA/SPGMA ResNet50[39] 63.4 34.2 72.8 55.0 73.4 55.5

models in Table 3. For all the baselines, both of our models
significantly improve their Rank@1 (mAP) performance. The
performance of ABDNet is boosted from 82.3%(60.8%) to ABDNet[5] 82.3 60.8 85.7 64.2 86.0 64.5
a state-of-the-art level of 86.0%(64.5%). Table 3 verifies
the scalability of our proposed GMA/SPGMA models, *Self is learned in an unsupervised manner.
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TABLE 4
The Influence of Each Component in Our Algorithm

5.2 Experiments on Image Retrieval
5.2.1      Settings
Our proposed SPGMA method is a general online adapta-
tion algorithm which can be readily used for any visual
identification tasks (e.g., person re-identification, vehicle re-

identification, image retrieval, face recognition, etc.). As we
all know, vehicle re-identification shares the same protocol
with P-RID as well as face recognition shares the same per-
son object with P-RID. Therefore, we selected a challenging
but general image retrieval task as our additional experi-
ment application. The general image retrieval contains vari-
ous scene images which are taken from different
viewpoints. Compared with P-RID, there are more object
categories in image retrieval tasks, and the variations within
the same category and across different categories are more
severe. Therefore, to thoroughly evaluate our proposed
SPGMA method, we further conduct extensive experiments
on this general image retrieval task.

Data. We evaluate our proposed SPGMA method on four
widely-used image retrieval benchmarks: the original
Oxford [61], Paris [62] and their corresponding revisited
datasets ROxford and RParis from [63]. The annotation
mistakes in the original two datasets are corrected, new
query images and new evaluation protocols are added.
There are 5063 and 6392 images in the Oxford and Paris
datasets which are collected from Flickr associated with
Oxford and Paris landmarks respectively. There are 55
queries coming from 11 landmarks for each dataset. As for
the revisited ROxford and RPari datasets, another 15
queries from 5 out of the original 11 landmarks are along
with the original 55 queries for evaluation.

Evaluation. For all the datasets, the mean average preci-
sion (mAP) results over all the query images are reported
for evaluation. For ROxford and RPari, two new evaluation
difficulties, Medium(M) and Hard(H), are both evaluated.

Baseline. A CNN-based image retrieval model, GeM [64]
is utilized as the baseline in our experiments to implement
our proposed SPGMA on. Two different CNN backbones,
VGG16 [65] and ResNet101 [39], are utilized. Besides, whit-
ening is adopted as post-processing for GeM. Therefore,
four different baselines, GeM-VGG16, GeM-VGG16-Whiten,
GeM-Res101, and GeM-Res101-Whiten, are examined in our
experiments. The pre-trained model from a PyTorch imple-
mentation 2 is adopted.

5.2.2 Comparison With State-of-the-Arts
As demonstrated by the comparison results reported in
Table 7, our proposed SPGMA can improve the mAP per-
formance of the GeM-VGG16 baseline model from (82.5%,
82.2%, 55.5%, 26.6%, 63.0%, 37.2%) to (84.1%, 83.6%, 56.3%,
27.5%, 64.2%, 37.9%) on (Oxford, Paris, ROxford-M,
ROxford-H, RParis-M, RParis-H) respectively. A similar
improvement is also observed for the GeM-VGG16-Whiten
baseline. As for another more powerful GeM-Res101

Fig. 6. The influence of  on (top) CUHK03, (mid) Market1501 and (bot-
tom) DukeMTMC-reID based on HA-CNN. 2. https://github.com/filipradenovic/cnnimageretrieval-pytorch
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TABLE 5
Compared with State-of-the-Art Online P-RID Re-Ranking

Methods

baseline, our SPGMA method further boosts the mAP per-
formance from (81.0%, 87.7%, 55.5%, 27.5%, 70.0%, 44.7%)
to (82.2%, 88.6%, 56.8%, 28.4%, 71.0%, 45.7%) on (Oxford,
Paris, ROxford-M, ROxford-H, RParis-M, RParis-H)
respectively. Compared with another state-of-the-art online
re-ranking method, OL [66], the performance improvement
by our SPGMA is much larger since our SPGMA can fully
explore all the query and gallery samples and the fused
local adaptation metrics are more discriminative as demon-
strated by Theorem 4.

5.3 Ablation Study
5.3.1 The Effectiveness Influence of Model

Components
The final retrieval performance of Eq. (12) relies on a bi-
directional retrieval matching, so the influence of each com-
ponent is shown in Table 4. As we can see, by only keeping
the query-specific metric adaptation Mq or the gallery-cen-
tric one Mg, we still can achieve a significant improvement.
While performing a full-model bi-directional matching, the
performance is further boosted by a large margin which
demonstrates the necessity of bi-directional local discrimi-
nant enhancement.

5.3.2 The Effectiveness Influence of  in Eq. (12)
The weighting parameter  in Eq. (12) aims to balance the
importance of Mq and Mg. The full CMC curves w.r.t  of
HA-CNN on CUHK03, Market1501 and DukeMTMC-reID
are plotted in Fig. 6 respectively. As demonstrated, setting
¼  1 gives the best performance since we perform a max-
normalization to both Mq     and Mg, over-weighting either
side is prone to suppress the other side’s impact.

TABLE 7
Comparison Results on Oxford, Paris, ROxford and RParis

5.3.3  The Effectiveness Comparison Against Online
Re-Ranking Methods

Two state-of-the-art online P-RID re-ranking methods, OL
[8] and RR [11], are compared with our GMA and SPGMA
methods. All these methods can be readily utilized at the
online testing stage for further performance improvement.
The comparison results in Table 5 show that the query-spe-
cific method OL [8] works better on improving Rank@1 per-
formance but has little improvement on mAP due to the lack
of gallery-specific local discriminant enhancement. In con-
trast, since RR [11] considers the k-reciprocal nearest neigh-
bors of both query and gallery data, it achieves a large
improvement on mAP but with limited improvement on
Rank@1 owing to the lack of instance-specific local adapta-
tion. Our methods outperform the other two approaches sig-
nificantly at both Rank@1 and mAP due to the full utilization
of both the group-level visual similarity sharing information
and instance-specific local discriminant enhancement.

5.3.4  The Computation Cost Comparison Against
Online Re-Ranking Methods

To thoroughly evaluate the performance of online re-ranking
methods, besides the effectiveness comparison, the compu-
tation cost is another important factor. Therefore, we have
accordingly compared the online inference cost of our pro-
posed methods with the other state-of-the-art re-ranking

TABLE 6
Cross-Dataset Validation Results with Our Model on Market1501 and DukeMTMC-reID
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metric, the involved testing samples of SPGMA are much
fewer than GMA which results in a much faster optimiza-
tion processing. Although the number of adapted group-

5.3.5 Cross-Set Generalization Ability Validation
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methods. Based on a 1024-dimension CNN feature extractor,
the overall online inference time for RR [11] and OL [8],
GMA and SPGMA on Market1501 dataset is 78.5s, 242.5s,
107.7s, and 96.8s respectively. Compared with RR [11], our
inference time is comparable to it (our running time is a little
slower than RR [11] but still acceptable for online evaluation,
our running time includes the SSSet mining time and self-
paced learning time), while our improvement on Rank@1
and mAP is much more stable and significant than RR [11] as
shown in Table 5. It is worth noting that RR [11] just learns a
single global matching metric for online re-ranking, while
our proposed GMA/SPGMA will learn multiple group-met-
rics instead for instance-level online adaptation.

Compared with another state-of-the-art instance-level
online adaptation method OL [8], our proposed methods
could obtain both better re-ranking performance and faster
online inference speed. If n query samples are given, OL [8]
has to learn n separate local metrics for all the samples so
the learning complexity is OðnÞ. For our method, we pro-
pose to learn only one metric for one SSSet, instead of for
one sample. So the number of mined SSSets is much smaller
than n which makes our overall inference time is much
shorter than OL [8]. The conclusion is also verified by the
online efficiency comparison experiments in Fig. 7. As we
can see, the total number of learned online adaptation met-
rics of OL [8] and our SPGMA method on the Market1501,
DukeMTMC, and MSMT17 datasets based on HA-CNN,
MLFN and DenseNet121 are demonstrated. For all the fea-
ture extractors and benchmarks, the number of learned met-
rics of our proposed SPGMA is the only 40% of OL’s so that
our online computation cost (96.8s) if largely reduced com-
pared with OL [8] (242.5s).

Finally, we compare the online learning time of our pro-
posed GMA and the extended version of SPGMA. Although
there is an extra iterative self-paced SSSet selection compo-
nent in SPGMA, the overall online adaptation time is indeed
shorter than GMA. The reasons are three-fold: (1) The extra
time cost of SPGMA comes from the computation of the
hinge loss of the obtained SSSets. Usually, the mined SSSets
only contain several highly similar samples (less than 10)
thus the hinge loss computation is pretty efficient. (2) The
closed-form solution to Eq. (9) can be easily obtained via
Eq. (10). Therefore, the overall time cost of the self-paced
learning strategy is pretty low which could be ignored dur-
ing our group-metric adaptation algorithm. (3) SPGMA
proposes to gradually involve the obtained SSSets into
adaptation learning. Thus, for the learning of one group-

Fig. 7. The comparison of computational cost of OL and our SPGMA
method on the Market1501, DukeMTMC-reID, and MSMT17 datasets
based on the HA-CNN, MLFN and DenseNet121 baselines. The total
number of learned online adaptation metrics are demonstrated.

metrics is the same for both GMA and SPGMA methods,
the overall online adaptation time of SPGMA is shorter than      methods: although identification models are already well-
GMA.                                                                                                    trained on the training dataset, its factual performance on

unseen testing data is limited. Such a phenomenon can be
observed and verified through our conducted cross-dataset
validation experiments in Table 6. Even the state-of-the-art P-

For instance-level identification tasks (e.g., person re-identifi- RID networks have already been well-trained on the source
cation), data from non-overlapping identities are provided for training dataset (appealing performance can be obtained on
training and testing. However, due to large visual appearance the source testing dataset as reported in Table 2), when an
variations among training and testing data, there is always a unseen target testing dataset from another benchmark is given,
significant performance drop of existing learning-based their factual identification performance degrades badly. This
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Fig. 8. The affinity matrix refinement by our SPGMA method on the Market1501 dataset based on the HA-CNN, MLFN and DenseNet121 baselines.

result demonstrates these networks are highly over-fitted to
the used source training data and their generalization ability to
unseen target testing data is pretty poor.

Therefore, we explore the generalization ability of our pro-
posed GMA and SPGMA methods. We claim our improve-
ment is achieved from the testing sample itself which is
independent of how the baseline models are trained. Thus
we conduct a cross-set generalization ability validation
experiment as shown in Table 6. Following the setting in [70],
the baseline model trained on Market1501 with our method
is evaluated on DukeMTMC-reID and vice versa. The results
show our models can consistently and significantly improve
the baseline performance regardless of whether the baseline
is trained by the same-source data or not.

5.3.6 The Visualization of Affinity Matrix Refinement
The core idea of our proposed SPGMA method is to adapt
the local similarity of each online testing sample to better fit

its inherent affinity relationships. Therefore, to further ver-
ify that our method is able to refine the local similarity of
samples and largely alleviate the data shifting problem, we
visualize the affinity matrix of testing samples with/with-
out our SPGMA and compare them with the ground-truth
results. Extensive experimental results on Market1501
(Fig. 8) and on DukeMTMC-reID (Fig. 9) demonstrate the
effectiveness of our method to refine the affinity matrix of
samples. As shown in Figs. 8 and 9, without our proposed
SPGMA model, the offline learned SOTA baselines can not
obtain the correct affinity matrix of the testing samples (the
middle column) compared with the ground-truth results
(the left column), their affinity matrix is indistinguishable
due to the severe data shifting variations. Our SPGMA
model can successfully address the data shift problem by
adjusting the original affinity matrix to be more coherent
with the ground-truth. This is the main reason why our pro-
posed method can significantly improve the identification
performance.
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Fig. 9. The affinity matrix refinement by our SPGMA method on the DukeMTMC-reID datasets based on the HA-CNN, MLFN and DenseNet121 baselines.

6 CONC LUSION

Unlike previous online re-ranking works for visual identifi-
cation, in this article, we propose a novel online self-paced
group-metric adaptation algorithm which not only takes
individual characteristics of testing samples into consider-
ation but also fully utilizes the visual similarity relationships
among both query and gallery samples. To handle a large
number of testing samples, we introduce self-paced learning
to gradually include samples into adaptation from easy to
difficult which elaborately simulates the learning principle
of humans. Our proposed SPGMA method can be readily
applied to any existing visual identification baselines with
the guarantee of performance improvement, and a theoreti-
cally sound optimization solution to SPGMA keeps a low
online computational burden. Compared with the other
state-of-the-art online rank refinement approaches, the pro-
posed SPGMA model achieves a significant improvement on
Rank@1 (mAP) performance. Moreover, by implementing
our SPGMA method to the state-of-the-art baselines, their

performance is further boosted by a large margin on both the
person re-identification and image retrieval tasks.
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