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Abstract

This paper considers the active recognition scenario,
where the agent is empowered to intelligently acquire ob-
servations for better recognition. The agents usually com-
pose two modules, i.e., the policy and the recognizer, to se-
lect actions and predict the category. While using ground-
truth class labels to supervise the recognizer, the policy is
typically updated with rewards determined by the current
in-training recognizer, like whether achieving correct pre-
dictions. However, this joint learning process could lead to
unintended solutions, like a collapsed policy that only vis-
its views that the recognizer is already sufficiently trained
to obtain rewards, which harms the generalization ability.
We call this phenomenon lingering to depict the agent be-
ing reluctant to explore challenging views during training.
Existing approaches to tackle the exploration-exploitation
trade-off could be ineffective as they usually assume reli-
able feedback during exploration to update the estimate of
rarely-visited states. This assumption is invalid here as the
reward from the recognizer could be insufficiently trained.

To this end, our approach integrates another adversar-
ial policy to constantly disturb the recognition agent during
training, forming a competing game to promote active ex-
plorations and avoid lingering. The reinforced adversary,
rewarded when the recognition fails, contests the recogni-
tion agent by turning the camera to challenging observa-
tions. Extensive experiments across two datasets validate
the effectiveness of the proposed approach regarding its
recognition performances, learning efficiencies, and espe-
cially robustness in managing environmental noises.

1. Introduction

Passive visual recognition, relying on human-taken im-
ages or videos, has achieved dramatic successes in recent
decades. On the contrary, in robotic scenarios, active recog-
nition systems are expected to involve intelligent control
strategies in the recognition process. The primary motiva-
tion behind active recognition is to circumvent undesired

viewing conditions while obtaining unambiguous and dis-
criminative information.

Several learning-based active recognition methods [4,
23, 18, 17, 6, 25, 7, 33] have been proposed over the years.
Commonly, these approaches recurrently deliver two out-
puts, i.e., the action to execute from the policy and the cat-
egory probabilities from the recognizer. As two modules
collaborate, multiple possible combinations exist to achieve
the same final class prediction. An intuitive explanation is
that various camera trajectories exist to classify the same
object if different recognizers are proficient with different
views. However, we observe that the policy of active recog-
nition agents could collapse to a repetitious mode during
training because of incorrect rewards from the recognizer.
Reversely, the collapse of policy further exacerbates the
overfitting of the recognizer. This phenomenon is named
lingering in this paper (shown in Figure 1), consisting of the
unwillingness to explore and the meaningless roll-out expe-
rience collecting. In Figure 2, we visualize the lingering by
showing the view-specific visiting frequencies during train-
ing and their corresponding testing accuracy. We observe
that the lingering jeopardizes the generalization ability of
agents by overfitting to only limited views.

As escaping lingering is imperative to the realistic de-
ployment of agents, the problem is still under-explored in
the active recognition literature. Among several avail-able
remedies, approaches to address the exploration-
exploitation trade-off [33, 3, 13] are related while not suit-
able for active recognition scenarios. Considering classical
methods (ϵ-greedy, Thompson sampling, etc.) to tackle the
trade-off, these methods assume reliable rewards during ex-
ploration to update the estimate of rarely-visited states. Un-
fortunately, the assumption does not hold for training the
active recognition agent because the reward depends on the
recognizer’s current performance. In other words, the feed-
back could be negative not because this view is not infor-
mative but because the training of the recognizer is yet in-
adequate.

Staged training and using pre-trained recognizers [43,
13, 12, 46] serve as another strategy. Human interventions,
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Training samples Testing sample

Policy
Take a action
{left, up, right, ...}

apple #1
all red

apple #2
half red

half yellow

apple #3
half red

half green

apple
all green

Recognizer

Agent

Predict the category
{apple, banana, ...}

time t

Converged to a specific solution
Trained Actor
Turn camera to the red side.

Trained Recognizer
Recognize the red side as apple.

The green side is
not sufficiently
trained.

Figure 1. A  conceptual overview of the lingering issue in active recognition systems. Embodied agents could interact with the environment by
obtaining observations and making movements (in the left). The two modules, i.e., the policy and the recognizer, could converge to an
undesired solution because the recognizer only provides rewards to views it could already correctly classify, leading to a collapsed policy. We
call this phenomenon as lingering. The right gives a straightforward example of drawbacks if not resolving the lingering issue.

Azimuth

A sample from Table-class

Azimuth

View visiting heatmaps (train) and ac-
curacies (testing) with lingering issue.

Azimuth

Our view visiting heatmaps (train) and
accuracies (testing) without lingering.

The comparison on the final active
recognition performance.

Figure 2. A  comparison between ours and the baseline on their view visiting frequencies during training and their corresponding accuracy
during testing. The ratios between the highest and the lowest visiting frequencies in each heatmap are 193.80 and 2.31, respectively.

like deficient offline data collecting, become inevitable.
Overall, learning from interactions [19, 14] is considered
the same noteworthy as actively performing in the environ-
ment, especially for active recognition agents.

In this paper, we first explain the inherent multiple-
solution nature of active recognition by formulating it into a
multiplication form. Then, by modeling its iterative train-ing
procedure, we explain the reason behind lingering, i.e.,
converging to a specific solution lacking generalization abil-
ity. To address lingering, we propose to disturb the active
recognition policy with an adversary during training. The
adversarial policy is rewarded as providing action distur-
bances leading to recognition failures. Therefore, the recog-
nition and adversarial policies establish a zero-sum compet-
ing game. The final optimum of the two policies is achieved
by iteratively solving the min-max equilibrium.

To summarize, the contribution and insights are about
examining the lingering issue of active recognition agents
and addressing it by involving disturbances from the adver-
sarial policy. We validate the proposed approach in both
active object [10] and scene recognition scenarios [42]. The
advantages of our method are demonstrated from three as-
pects. (1) With the presence of an adversary, the proposed
method achieves better active recognition performance re-

garding avoiding the lingering issue. (2) The robustness of
our method is shown by conducting experiments on intro-
ducing additional environmental noises, including view oc-
clusions and movement failures. (3) Compared to uniform
and Gaussian-distributed exploratory actions, the proposed
adversarial policy could more effectively mine challenging
views to improve overall performance.

2. Related Work

Active vision. Active vision, as a long-standing field pi-
oneered by [2, 1, 8, 38], has been explored in several
branches, like recognition [5, 6], exploration [33, 14, 24,
34, 12], localization [3], and navigation [15, 13, 16, 11, 41].
The common motivation is to allow the agent to observe
from its own intentions, i.e., letting the agent actively select
observations to accomplish different tasks.

Specifically, the motivations for active recognition are
generally elaborated from three directions: reducing ambi-
guities [23, 34, 24], avoiding undesired viewing conditions,
and maximizing information gains [36, 6, 4]. These motiva-
tions are inherently connected under the ultimate objective
of better recognition performance. Based on their imple-
mentations, prior works could be mainly identified into two
groups based on whether they represent the Markov Deci-

4602

Authorized licensed use limited to: Northwestern University. Downloaded on September 22,2023 at 04:29:05 UTC from IEEE Xplore. Restrictions apply.



sion Process (MDP) with a reinforcement learning model.
[5, 6] propose an active object hypothesis validation method
balancing the movement cost and the chance to correct iden-
tification. In [36], a saliency module indicating potential
information profits is inserted into the observation module
of partially observable-MDP [26]. These methods focus on
different ways of defining view-specific benefits and then
planning trajectories.

In this paper, we compare the proposed method mostly
with other reinforcement-learning approaches. In [23, 34],
the author proposes an active recognition agent that is end-
to-end trainable with reinforced policy descent. Three mod-
ules targeting view evidence aggregation, classification, and
next-view prediction cooperate to guide action selection.
[18] aims at placing active recognition in a more challeng-
ing but practical scenario, which considers continuously
emerging novel categories. However, most existing active
recognition works directly train their agents from scratch
and deliver inadequate attention to the lingering issue.

Among other general approaches related to alleviating
lingering, offline methods, like pre-training and staged
training, are adopted in different active vision tasks [43, 35,
37]. To circumvent unstable joint training, in [43], they re-
sort to an iteratively training strategy to train the perception
and the policy modules, in which visual observations are
required to be collected from the environment with prede-
fined trajectories. [13, 12] includes pre-trained visual en-
coders into their active exploration agents to relieve the bur-
den caused by joint training. For active recognition, collect-
ing static image datasets and training the recognizer offline
are laborious and might be infeasible, especially for em-
bodied agents operating in the real world. Online methods
to avoid policy exploitation, like random exploratory behav-
iors [23], are beneficial but inefficient, considering the relia-
bility of rewards. Our approach, on the other hand, focuses
on addressing lingering by adversarial disturbance, allow-
ing more diversified online explorations.
Adversarial learning. Adversarial learning [29, 28, 39],
which attempts more robust training by giving rise to mal-
functions in machine learning models, has been widely ap-
plied to generative models [21, 32], transfer learning [9, 44]
and active learning [45].

Recently, there have been a bunch of works [31, 30, 20,
27] showing interest in building robust reinforced agents by
adversarial attacking. In [31], they treat the environment
as an adversary, which imitates potential noises leading to
failed generalization. [20] chooses to introduce perturba-
tions to the agent’s observations with an additional adver-
sarial agent, which could uncover more unexpected failure
cases than regular opponents. Our work shares a similar
motivation with adversarial reinforcement learning, i.e., the
adversarial disturbance generated by the antagonistic agent
could prevent overfitting during policy learning.

3. Approach

Our goal is to identify and address the lingering issue
in active recognition. We first introduce the setup and no-
tations used in this paper. Then, we formulate the agent
with two parts, i.e., the recognizer and the recognition pol-
icy, to convey its nature of multiple combinations under the
same evaluation metric. From the perspective of the itera-
tive training process, we explain how the combination could
lead to lingering. The proposed method, adding adversar-
ial disturbances to prevent lingering, together with model
architecture, is described in the final.

3.1. Task settings and notations

The task setup is described by applying the agent to an
object recognition scenario.

The agent for active recognition could be generally de-
noted as a single function f  → R,  which is provided with an
object instance x  and then predicts its category label as ŷ  =
f (x) .  During each recognition episode, the agent is
allowed to take a total of T timesteps to achieve the final
class prediction. An addition action a � A r e c  for recogni-
tion, e.g., to rotate up the object, is taken at each timestep t
=  1, 2, . . . T −  1. By taking movements, the agent is then
able to obtain another observation of the target instance x.
The total movement steps are fixed in this paper to compare
the recognition performance better. Note that early termina-
tions are allowed by adding the ”stop” action to the action
space during training.
To be more specific, we evenly discretize potential cam-era

positions on the sphere around the target object into a
view grid with the size of M azimuths ×  N  elevations. The
action is therefore defined as the difference of viewpoint
coordinates around the target object by taking a movement,
i.e., at =  ∆ct−1 , t ,  where ct is the corresponding camera
viewpoint at time t. With the projection function P (·)  from
3D to 2D, the observed visual input at time t is vt =  Px (ct ).

Besides the category prediction, the active recognition
agent is also required to select actions during exploration.
The objective is, thus, three-fold, including evidence aggre-
gation during exploration, efficient movements, and classi-
fication based on the collected information.

3.2. Active recognition formulation

We comprehend active recognition as a procedure in
which the agent continuously reaches more informative
views and performs classification. Recalling the motiva-
tion behind active recognition, the agent moves as the sin-
gle static image does not contain enough information for an
unambiguous classification. On the other hand, the desire
to make movements is dramatically lessened if the recog-
nizer is perfect, as it can recognize the object from every
viewpoint, which is unlikely, especially in an unconstrained

4603

Authorized licensed use limited to: Northwestern University. Downloaded on September 22,2023 at 04:29:05 UTC from IEEE Xplore. Restrictions apply.



ˆ

ˆ

y

x

θ , ϕ

aP
i

y

y

a 1

ϕ       1      0π (a v )

θ t r a i n t r a i n

ϕ ϕ

environment. We also discuss the policy degeneration when
a strong recognizer is presented in Sec. 4.6.

Our basic active recognition system is modeled with two
groups of parameters, i.e., θ and ϕ, to denote the recognizer
module and the recognition policy module. The recognizer
module, defined as qθ, is a non-linear mapping function that
takes in aggregated information ht and predicts the label as
ŷ =  arg max qθ(y|ht). In the proposed approach, we
combine a visual encoder and a recurrent neural network
to fuse observations to a hidden vector h recurrently. Dur-
ing training, the recognizer is granted to predict an addi-
tional output, the next hidden vector ht+1 , to encode view
correlations and object structure knowledge into the recog-
nizer. The recognizer during training is then formulated as
qθ (ŷ, ht+1|ht).

The second module, i.e., the recognition policy, is treated
as a partially observable-MDP, which attempts to maximize
the cumulative discounted reward. The pdf of the stochastic
policy is defined as πϕ(at+1|ht). In other words, the pol-
icy iteratively predicts action distributions with the previous
aggregated information, i.e., the hidden vector.

Given the i-th object instance x i ,  the category prediction
of active recognition agent to timestep t is formulated as:

ŷ i  =  fθ ,ϕ (x i )  =  arg max qθ(y|v0, . . . , vt), (1)

where vt =  P  i  (c t−1  +  arg max πϕ(at|ht−1)). The over-all
training objective is L f = |yi −  fθ ,ϕ (xi )|, where
| · | is the distance measurement.

With no loss of generality, we consider a two-step active
recognition process on the object instance x i .  We have its
specific loss as:

l i  =  |yi −  fθ ,ϕ (xi )| =  |yi −  arg max qθ(y|v0, v1)|

=  |yi −  arg max 
qθ (y, v̂ 

| 
|v0)

|,
(2)

where we use v0 to represent the hidden vector h0 as it is
the only observation obtained. The detailed derivation pro-
cess is included in the supplementary. Note that the loss
term could not be directly optimized as the action selection
process is non-differentiable. As the recognizer and the pol-
icy parts form a multiplication in Equation 2, multiple solu-
tion combinations exist to achieve the same loss. However,
overfitting to a specific solution should always be avoided
during training, which hurts the robustness of the agent to
deal with unexpected environmental changes.

3.3. Lingering in learning active recognition

After introducing the multi-solution nature of active
recognition, we formulate the training into an iterative up-
dating process to explain the happening of lingering.

As policy learning contains non-differentiable
maximum-selecting operations,     it is purely updated
by rewards from rolling-out experiences. On the contrary,
the recognizer is directly back-propagated by training
signals, like the measure between class predictions with
ground truth labels. Specifically, at the training step τ , we
have:

• Recognizer updating:
θτ� =  arg max log IP(θ|Dτ −1 ), where D τ − 1      is the
collected observations by policy πτ −1  from the previ-
ous training step.

• Recognition policy updating:
ϕτ� =  arg max E π  [R], where R  is the cumulative
reward determined by the recognizer with parameters
of θτ −1 . That is to say, the reward R  reflects the rec-
ognizer’s capabilities at the previous training step.

Accordingly, the recognizer inclines to correctly predict
views trained in former steps and then offers rewards to
drive the police to converge to the same viewpoints. Es-
caping from such specific solutions is unfortunately difficult
as updating the reward function, i.e., the recognizer, is also
data-demanding. We call this phenomenon during training
the active recognition as lingering.

3.4. Disturbance with adversarial policy

Let us simplify the active recognition system into a sym-
bolic multiplicative representation of two modules accord-
ing to Equation 2, which is fθ ,ϕ  =  qθ ×  πϕ. Our intuition to
avoid lingering during training is to introduce a perturba-tion
term ϵ into the policy part, i.e., fθ ,ϕ  =  qθ × (πϕ + ϵ) .  As the
disturbance varies during training, we prevent the active
recognition agent from falling into a specific combination,
i.e., improve the generalization ability by confronting more
diverse situations during training. The disturbance could
also be regarded as a momentum that progressively moti-
vates the agent to explore other informative views.

Instead of modeling the disturbance with predefined
noise distributions, like Gaussian noises, we express the
disturbance ϵ with an adversarial policy πψ , which plays a
competitive zero-sum game with the protagonist, i.e., the
recognition policy πϕ. While the recognition policy finds
familiar views to improve the recognition performance dur-
ing training, the adversary tends to pilot the camera to more
challenging or out-of-distribution views leading to failures.
The competence between the two policies is demonstrated
in Figure 3. By continuously digging for deficiencies in the
active recognition agent during training, the agent would
substantially improve its robustness over the same training
object collections, which, in other words, avoids lingering.

Formally, the adversarial policy is defined as another par-
tially observable-MDP with πψ (ϵt+1|gt), where gt is an-
other temporally aggregated hidden vector. The recognition
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Figure 3. An overview of the proposed approach towards lingering. The left shows an example of the adversarial policy that disturbs the
original policy to reach challenging while informative views. On the right, we demonstrate the architecture of the proposed approach,
which is mainly composed of three modules, i.e., the recognizer, the recognition policy, and the adversarial policy.

policy’s hidden vector ht and the recognizer prediction ŷ ,
together with other proprioceptions, including the timestep t
and the relative position change ∆c t −1 , t  are regarded as the
observations for the adversary. In other words, the fea-ture
gt contains the conditions of recognition policy and
predictions over time, making the adversary able to track
inconsistencies and uncertainties in the recognition agent.

The action space for the adversary is denoted as Aadv ,
which is set to a smaller or same-sized space with A r e c  in
our approach. During training, we sample both the
agent action and the disturbance at timestep t as at +1  �
πϕ(at+1|ht) and ϵ t +1  � πψ (ϵt+1|gt), respectively. The ac-
tual disturbed action to be taken by the agent is a� =
at +1  +  ϵt+1 . We assure the disturbed action still satisfies
a� � A r e c  by masking unsatisfactory disturbances from the
adversarial policy updating.

We design the rewards for two policies with exactly the
opposite motivation. According to the motivation of active
recognition, which is to select more discriminative views,
we define the reward rr ec,t (ŷ  )  =  1 for the recognition pol-
icy when the category prediction is correct. On the contrary,
the reward for the adversary is radv ,t (ŷ  )  =  1 when the pre-
diction is wrong. That is, the adversarial policy focuses on
finding failure cases of the agent.

3.5. Architecture and training

Our active recognition system is modeled on the base-
line architecture proposed in [23] with an additional adver-
sarial policy to provide disturbances. An overview of our
approach is demonstrated in Figure 3.

As demonstrated in Figure 3, we choose the combination
of a visual encoder, i.e., multi-convolutional layers, and a
recurrent neural network (LSTM), which performs a non-
linear mapping from the visual observation sequence to the
hidden vector h. Instead, the adversarial policy recurrently
takes in the hidden vector h and the category prediction,
which are not updated in the training of adversarial policy.
We choose to input the category activation instead of one-
hot labels to the adversarial policy. By incorporating the in-

Algorithm 1: Training the agent with the adversar-
ial policy

Input: E =  { ( x i , y i ) } n         Environment containing n  3D objects
Initialize: Model parameters θ0, ϕ0, ψ0 and α0 =  1
while Training iterations i  =  1, . . . reaches maximum do

ϕ i  ← ϕ i − 1
for j  =  1, . . . , N do

Generate active recognition experiences
{(a, ϵ, r r ec , ra d v , ŷ)}

a =  a +  ϵ at the chance of α i − 1  or a =  a
θ i  ← arg min |y −  ŷ  |
ϕ i  ← REINFORCE with { (a  , r r e c ) }

end
ψ i  ← ψ i − 1
for j  =  1, . . . , N do

Generate active recognition experiences
{(a, ϵ, r r ec , ra d v , ŷ)}

ψ i  ← REINFORCE with { (ϵ , r a d v ) }
α i  ← The ratio between actual and maximum rewards

of the adversary
end

end

formation, the adversary, supervised by the reward radv , is
expected to understand the deficiencies of the current recog-
nition agent. At each timestep t, the agent is supposed to se-
lect an action and a disturbance, both with the highest prob-
abilities. The classifier in the recognizer, as a combination
of linear layers, is then applied to produce class predictions.

The recognition policy and the adversarial policy are op-
timized in an alternating procedure [31]. In each rotation,
we alternatively hold one policy while updating the other
one. The training procedure is terminated until the con-
vergence of the active recognition agent. We outline the
proposed method in Algorithm 1. Both rewards rr ec  and
radv are utilized in a batch policy updating algorithm, i.e.,
REINFORCE [40], which allows back-propagation to non-
stochastic units. We define the loss for our recognition pol-
icy learning as:

T − 1

L r e c  = log πϕ(at |ht−1 )rrec (ŷi ), (3)
i       t = 1
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where the superscript i  denotes the corresponding training
sample. Similarly, the loss for the adversarial policy is:

T − 1

L a d v  = log πψ (et |gt−1)radv (ŷi ). (4)
i       t = 1

To stabilize the training of the active recognition policy,
we reduce the influence of disturbances after the adversary
cannot bring about failures. The disturbance chance is con-
trolled with α, the ratio between the actual obtained and
maximum rewards while optimizing the adversary.

The category prediction loss is defined as Lc a teg or y  =
− Fs o f t m a x ( ŷ i , y i ) .  Besides, there are two other losses
included during the training. The Le n t r opy  is calculated
both on the action and disturbance distribution, which also
promotes producing more diversified outputs. Another term
Lf o r e c a s t  plays the role of encoding view correlations into
our recognizer [23]. This term is formally defined as
L f o r e c a s t  = i t = 2  D(hi , hi ), where the prediction of
hi is by a separate module in the recognizer with the input
of hi         and the previous action a�       . D  denotes the cosine
distance, which works as a similarity measure.

To sum up, the proposed method is trained with the loss:

L  =  Lc a teg or y  + L r e c  + L a d v  + L e n t r o p y  + L f o r e c a s t ,  (5)

where each loss term is accompanied by a balance weight
that is ignored here. The gradients back-propagated to each
part could be tracked in Figure 3 where we use double
slashes to indicate the detachment of variables. During the
testing phase, the agent performs active recognition with
only the recognition policy πϕ.

4. Experiments

We have three primary objectives in our experiments.

• Active Recognition Results. We compare the pro-
posed approach with passive recognition, naive policy-
based, and reinforced policy-based methods [23, 18].
We demonstrate, with the presence of the adversarial
policy, our method could effectively avoid the linger-
ing issue during training and achieves significant im-
provements, especially over other end-to-end trainable
methods [23, 18].

• Robustness of agent. As the real-world environment
is essentially noisy, robustness is critical for active
recognition agents. We, therefore, introduce environ-
mental noises to active recognition across two groups,
i.e., the visual observation and the action executions.

• Adversarial policy. We examine the proposed adver-
sarial policy by further ablation studies and compar-
isons with other predefined disturbance distributions.

4.1. Datasets and experimental setups

We evaluate the proposed method on two dataset datasets
for active object [10] and scene[42] recognition.
ShapeNet Our experiments of active object recognition are
conducted on the ShapeNet [10] dataset with 55 categories.
The agent is given a 3D object instance for each episode and
then manipulates the object with predicted movements. The
class label is also predicted at every timestep until reach-
ing the maximum steps. We discretize the viewing sphere
around the target object by 30 degrees resulting in a view-
ing grid with M =  12 azimuths and N  =  12 elevations.
We set the action space of the agent to a 5 × 5 grid centered at
the current camera location. We randomly sample 8340,
1075 and 1012 instances from the ShapeNetCore [10] for
training, validation and testing, respectively.
SUN360 The SUN360 [42] is designated for our active
scene recognition experiments, which has 26 diverse in-
door and outdoor scene categories. The datasets contain
6174 training, 1013 validation, and 1805 testing spherical
panoramas. Each panorama covering a 360 ×  180 degrees
field-of-view is then evenly separated into 32 grids with
M =  8 azimuths and N  =  4 elevations. For this dataset,
we use the same pre-trained 1024-dim features to replace
our visual encoder for fair comparisons with [23, 18]. Note
that the agent could take up to T =  5 steps for both datasets.

4.2. Implementation details

The visual encoder is a simple 3-layer convolutional net-
work. For the recognition policy, we use an LSTM to fuse
temporal visual observations and other proprioceptions. We
implement our adversarial policy as a single-layer Gated
Recurrent Unit (GRU). During experience gathering in rein-
forcement learning, the starting camera viewpoint is given
randomly. The training epochs Nr e c  and Na d v  are set to
20 and 10 in our experiments. Moreover, we use the same-
sized Aa d v  with Ar ec ,  i.e., 5 ×  5. The balance weights in
Equation 5 are set to 1, 1, 1, 0.01, and 1.5, respectively, over
all datasets. We report the each-step performance consider-
ing all possible starting locations during testing.

4.3. Active recognition results

We extensively evaluate the proposed method against the
other 5 baselines with two purposes, i.e., to show the im-
provements of including intelligent policies in visual recog-
nition and the effectiveness of adversarial policy in avoiding
lingering. We first introduce each baseline.
S i n g l e  v i e w :  To this baseline, it consists of the same
visual encoder and the classifier with our method, which
only takes a random view as input. We choose this method
to show the performance of single-view passive recognition.
Random v i e w s :  This method shares the same visual en-
coder and the classifier while replacing the recognition pol-
icy with random action selections.
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Method t=1 acc.
w/ c t w/o c t

ShapeNet Dataset
t=3 acc.

w/ c t w/o c t

t=5 acc.
w/ c t w/o c t

t=1 acc.
w/ c t w/o c t

SUN360 Dataset
t=3 acc.

w/ c t w/o c t

t=5 acc.
w/ c t w/o c t

Single view - 37.9 - - - - - 51.6 - - - -
Random views - 37.9 -                  38.6 -                  39.5 - 52.1 -                  62.8 -                  65.9

Largest step - 37.9 - 38.2 - 39.0 - 51.1 - 57.0 - 58.3
Look-Ahead[23]        46.1±.2        44.9±.2        60.9±.3        58.0±.2        63.4±.3        60.3±.3         51.9±.2         51.8±.1        66.8±.1        66.4±.1        70.0±.2        69.5±.2

FLAR[18]              45.9±.2        45.6±.2        59.7±.3        56.8±.2        58.9±.2        59.3±.2        52.15±.1        51.7±.1        65.6±.1        64.6±.2        68.3±.2        67.6±.2
Ours                   61.9±.1        62.0±.2        74.8±.1        74.0±.2        76.9±.3        76.4±.3         53.6±.1         54.6±.1        68.0±.2        67.4±.2        71.5±.2        69.6±.2

Table 1. Active recognition accuracy on both the ShapeNet dataset [10] and the SUN360 dataset [42]. The results are the average over 5
runs with different initializations. ct denotes the camera viewpoint.

t = 1
Top guesses: lawn, old building,

plaza courtyard (wrong)

t = 1
Top guesses: restaurant, museum,

shop (wrong)

t = 3
Top guesses: forest, mountain,

lawn (wrong)

t = 3
Top guesses: expo showroom,

shop, museum (correct)

t = 5
Top guesses: coast, forest,

lawn (correct)

t = 5
Top guesses: expo showroom,

shop, restaurant(correct)

Ground truth: coast

Ground truth: expo showroom

Figure 4. Our method performs active scene recognition. Each row contains results at 3 steps, i.e., t =  1, 3, 5. The current view is marked
with a green box, while the next available movement is the light yellow area.

Method t=1 acc. t=3 acc. t=5 acc.
Ours+Uniform 51.9±.1 67.3±.1 70.1±.2
Ours+Gaussian 51.9±.1 67.2±.1 70.0±.2
Ours+Adversary 53.6±.1 68.0±.2 71.5±.2

Table 2. Results on the SUN360 [42] with different disturbances.

Method t=1 acc. t=3 acc. t=5 acc.
Single view - during training 99.8 - -

Random views 67.6               78.6               80.9
Ours 67.6±.2 78.6±.2 80.9±.3

Table 3. Results on the ShapeNet [10] dataset by replacing the
visual encoder with ResNet-18 [22].

L a r g e s t  s t e p :  It takes the farthest movement from the
current viewpoint based on the assumption that neighboring
views usually share similar information.
Look-Ahead:  This baseline [23] shares the most struc-
ture with ours without the adversarial policy during train-
ing. Therefore, the improvement over this method could be
considered as the benefit brought by the proposed adversary.
F L A R :  The method [18] focuses on few-sample and life-
long learning challenges. We block its mechanism on in-
cremental learning, leaving the agent for active recognition
on fixed categories. Besides coming without the adversary,
another significant difference with ours is utilizing a pro-
gressive reward function that measures the discrimination
ability of each view in the embedding space.

The comparisons on both the ShapeNet [10] and the
SUN360 [42] datasets are reported in Table 1. We demon-
strate the recognition accuracy on timesteps t =  1, 3, 5.
Since the camera viewpoint ct at each step could be un-

available in real-world scenarios, we both show the result
with or without it by whether to include it as the propri-
oception input. All reinforcement learning-based policies,
i.e., [23, 18] and ours, could already outperform both pas-
sive and naive policy-based approaches, including Random
v i e w s  and L a r g e s t  s tep ,  denoting the advantages of
involving intelligent control strategies during recognition.

Particularly, compared to other reinforced policy-based
methods, including Look-Ahead [23] and FLAR [18],
which share similar network architecture without the pro-
posed adversary, the significant improvements in our recog-
nition accuracy on both datasets are attributed to avoid-
ing the lingering problem during learning. In other words,
the compared methods [23, 18] repetitively visit limited
views and then offer positive rewards to their policies which
further converges to these limited views during training.
Thinking of the heatmaps in Figure 2, without the proposed
adversarial policy, the policy is reluctant to visit views that
the recognizer fails, making the recognition accuracy drop
due to insufficient training. On the contrary, the adversar-
ial policy in the proposed method could constantly annoy
the recognition policy by mining failures, which avoids lin-
gering and achieves significant improvements on both the
policy and the recognizer. On the SUN360 dataset, the
overfitting issue is alleviated because of using pre-trained
features instead of direct visual inputs, which also testifies
to the jeopardy of lingering. The recognition process of
our method is also demonstrated in Figure 4. As shown in
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(a) The motor could not always successfully execute actions with random stopping and uncontrolled movements.

(b) The views of objects are randomly occluded.

Figure 5. We show the robustness comparison on the ShapeNet dataset [10] by modifying two groups of environmental setups.

the second row, our approach could disambiguate its predic-
tions by moving to more informative observations.

From another perspective, the advantages of our method
could be understood as it actively learns during training.
Generally, the policy to learn and the policy to perform
should be different. The agent should not only learn the
skills to improve recognition (the recognition policy) but
also make up for its deficiencies (the adversarial policy).

4.4. Robustness of agent

We evaluate the robustness of active recognition agents
by introducing various environmental noises during testing.
The comparisons between ours with Look-Ahead [23]
that comes without mechanisms addressing lingering are
shown in Figure 5 with two different groups of noises. As
one of our insights is by constantly disturbing the policy
such that the agent could confront different situations, the
result confirmed our agent is more robust than other policy-
based methods. Another interesting finding in Figure 5 (b)
is that the performance of [23] even drops when views are
heavily occluded with chances of 30% to 50% while ours
remains increasing. The reason could be that the policy of
[23] is fragile when the observation does not appear as
expected, which leads to a worse temporal evidence fusion.

4.5. Adversarial policy

We study how different modelings of adversarial distur-
bances influence the performances. We choose two other
disturbances with predefined distributions: the uniform and
Gaussian distributions centered at no disturbance. For each
movement of the training episode, the action is accordingly
added with the disturbance sampled from these two distri-

butions. We constrain the disturbance within the 5 × 5 view
grid. The results are demonstrated in Table 2. By imitat-
ing the disturbance with an adversarial policy, it could more
efficiently explore the deficiencies during training.

4.6. Discussion and future works

In our experiments, we find that the intelligent policy for
active recognition vanishes by replacing our visual encoder
(3 convolutional layers) with the ResNet-18 [22] of higher
learning capacities. We show the results in Table 3. As
we can observe, the ResNet-18 overfits all possible views
during training which, in other words, consistently provides
rewards to policy no matter what actions the agent takes.
Namely, the agent has the incentive to observe other views
only when the recognizer is imperfect, which leads to our
future work on studying the necessity of active recognition.

5. Conclusions

In this paper, we study and then propose a novel ap-
proach with adversarial disturbances to address the lin-
gering problem that happened in training active recogni-
tion. The conditions of lingering, including the multiple
solution nature of joint training two modules of the agent,
are explained by formulating the active recognition system
and modeling the training process. To alleviate this issue,
we incorporate perturbations from a reinforced agent by
continuously mining undiscovered deficiencies. In other
words, the adversary intelligently varies recognition ex-
periences to prevent the agent from suffering overfitting
and a monotonous policy. Experiments on two challeng-
ing datasets, along with robustness evaluation and ablation
studies, confirm the effectiveness of the proposed method.
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