? frontiers ‘ Frontiers in Computer Science

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Ruben Vazquez-Medina,
Instituto Politécnico Nacional (IPN), Mexico

REVIEWED BY

Aleksandra Mileva,

Goce Delcev University, North Macedonia

Jinjing Shi,

Central South University, China

*CORRESPONDENCE

Shantanu Chakrabartty
shantanu@wustl.edu

SPECIALTY SECTION

This article was submitted to
Computer Security,

a section of the journal
Frontiers in Computer Science

RECEIVED 02 February 2023
AccepPTED 03 March 2023
PUBLISHED 20 March 2023

CITATION
Rahman M and Chakrabartty S (2023) GPS-free
synchronized pseudo-random number
generators for internet-of-things.

Front. Comput. Sci. 5:1157629.

doi: 10.3389/fcomp.2023.1157629

COPYRIGHT
© 2023 Rahman and Chakrabartty. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Frontiersin Computer Science

TvpE Original Research
PUBLISHED 20 March 2023
pol 10.3389/fcomp.2023.1157629

GPS-free synchronized
pseudo-random number
generators for internet-of-things

Mustafizur Rahman and Shantanu Chakrabartty*

Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO,
United States

Introduction: Securing wireless communications in internet-of-things (loT)
requires both generation and synchronization of random numbers in real-time.
However, resource constraints on an loT device limit the use of computationally
intensive random number generators and the use of global positioning
systems (GPS) for synchronization. In this paper, we propose a synchronized
pseudo-random number generator (SPRNG) that uses a combination of a fast,
low-complexity linear-feedback-shift-register (LFSR) based PRNG and a slow but
secure, synchronized seed generator based on self-powered timers.

Methods: A prototype synchronized self-powered timer (SSPT) array was
fabricated in a standard silicon process and was used to generate dynamic random
seeds for the LFSR. The SSPTs use quantum-mechanical tunneling of electrons to
operate without any external power and are practically secure against tampering,
snooping, and side-channel attacks (both power and electromagnetic).

Results: In this work, we explore protocols to periodically and securely generate
random bits using the self-powered timers for seeding the LFSR. We also show
that the time-varying random seeds extend and break the LFSR periodic cycles,
thus making it difficult for an attacker to predict the random output or the random
seed. Using the National Institute of Standards and Technology (NIST) test suite
we verify the randomness of the measured seeds from the fabricated ensemble of
SSPTs together with the random bit sequences generated by a software-seeded
LFSR.

Discussions: In this modality, the proposed SPRNG could be used as a trusted
platform module (TPM) on loTs and used for verifying and authenticating
secure transactions (e.g., software upgrades). Since the SPRNG system does not
require access to GPS for synchronization, therefore it could be used in many
resource-constrained and adversarial environments.

KEYWORDS

PRNG, self-powered, quantum-tunneling, LFSR, loTs, synchronized-PRNG

1. Introduction

Random-number-generators (RNGs) play an important role in many applications
ranging from optimization, game-theory, and simulations (Kroese and Rubinstein, 2012; Ma
and Vandenbosch, 2012; Alimomeni et al., 2013). However, one of the most important uses of
RNGs is in the area of secure communications (Schindler and Kog, 2009). Traditionally, this
is achieved by encrypting the data using a sequence of random numbers i.e., cryptographic
keys produced by an RNG. These keys are then synchronized using a timing reference
extracted from a global-positioning-system (GPS) which also facilitates the exchange of
encryption keys (Golino, 2014; Wilber, 2017). However, for battery-powered or passive
internet-of-things (IoTs) devices where computational and energy resources are severely
constrained this paradigm of secure communication using traditional RNGs is not practical.
In this paper, we propose a novel RNG architecture that can be used for securing
communications in IoTs.

01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1157629
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1157629&domain=pdf&date_stamp=2023-03-20
mailto:shantanu@wustl.edu
https://doi.org/10.3389/fcomp.2023.1157629
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1157629/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Rahman and Chakrabartty

RNGs fall into two major categories, namely, the true-RNGs
(TRNG) and the pseudo-RNGs (PRNG). TRNGs generate random
numbers based on non-deterministic physical processes such as
thermal noise and entropy of natural phenomena (Sunar and
Kog, 2009). Even though TRNGs are preferred for cryptographic
applications, they are generally expensive and might not produce
random numbers fast enough to be suitable for use in resource-
constrained IoTs (Hsueh and Chen, 2019). On the other hand, a
PRNG algorithm generates a sequence of numbers that is not truly
random but whose statistical properties match that of a random
number. In literature, there are many different types of PRNG
that have been proposed (Bhattacharjee and Das, 2022). However,
for resource-constrained IoTs the preferable PRNG is the one that
is computationally inexpensive, fast, and can be easily fabricated
and integrated into a System-on-Chip (SoC). In this regard, a
Linear-Feedback-Shift-Register (LFSR) architecture is an optimal
choice (Klein, 2013). It can be efficiently implemented using only
flip-flops and XOR gates. An LFSR takes an initial value called seed
as an input and generates each output bit with only a single shift
operation, which satisfies both the low resource and the fast output
requirement. However, one of the biggest challenges for an LFSR-
based PRNG is the fact that the period is fixed and there is a need
for reseeding to break the periodicity. While using a longer length
LFSR or multiple LESR would increase this periodicity, the problem
still remains where once the period is reached the LFSR would start
to repeat the random sequence. Furthermore, if the LFSR is seeded
with a pre-stored static seed on boot-up, then it produces the same
sequence of random numbers over and over again. One method to
mitigate this issue would be to generate a dynamic seed. However,
a resource-constrained IoT may not have access to a continuously
running system clock or the GPS signal.

In addition to using a random number as a secure token, for
secure communications there is also a need for synchronization of
the tokens between the communicating parties. While asymmetric
key encryption could be used to avoid this challenge, they are
computationally too expensive to be universally implemented on
these resource-constrained devices. On the other hand, a symmetric
key encryption scheme can be customized for IoT platforms but
requires a shared secret key (Henriques and Vernekar, 2017). Any
static information stored on the IoT, such as a SecurelD, used as
the shared secret will be vulnerable to a machine learning type
of attack (Maghrebi et al., 2016). Therefore, there is a need for a
piece of dynamic information embedded into these IoT devices that
can be synchronized in real-time. One such method for achieving
this could be using a combination of a timing reference extracted
from a global-positioning-system (GPS) and a timing reference
generated locally using phased-locked oscillators. Unfortunately,
in many IoT applications, this framework is impractical due to
resource constraints together with the fact that many IoT devices
may not have access to a GPS signal.

In this paper, we describe an architecture of a synchronized-
PRNG (SPRNG) that can be used for generating synchronized
pseudo-random binary sequences without the need for any
GPS reference signal. The SPRNG uses a combination of a
fast, low-complexity LFSR based PRNG and a slow but secure,
synchronized seed generator based on our previously reported
self-powered timers (Zhou and Chakrabartty, 2017; Mehta et al.,

Frontiersin Computer Science

10.3389/fcomp.2023.1157629

Synchronized

- —
- S

“hy
Random Tokens

GPS-Less

X Y
01001010 01001010
N %= __nrn

FIGURE 1

The concept of GPS-free secure Communication in spatially
separated loTs with SPRNGs: The |oTs generate random tokens using
the SPRNG for use as cryptographic keys. The tokens are generated
using a combination of a fast, low-complexity LFSR seeded by the
Secure self-powered timers (SSPT). The synchronization of SSPT
across both /oT4 and loTg ensures that the random tokens X and Y
exhibit a perfect cross-correlation, oxy = 1.

2022; Rahman et al.,, 2023). The self-powered timers use quantum-
mechanical tunneling of electrons to operate without any external
power and are practically secure against tampering, snooping,
and side-channel attacks (both power and electromagnetic). In
this work, we explore different protocols to periodically and
securely generate synchronized random bits by seeding the
LFSR using an array of self-powered timers. The concept is
illustrated in Figure I in the context of IoT communications.
The spatially separated IoT devices, IoT4 and IoTy integrate a
copy of the SPRNG for generating random tokens. The self-
powered timers in these SPRNG form a clone where their
temporal dynamics remain synchronized for long-period of time.
When these synchronized-self-powered timers (SSPT) are used
to dynamically seed the LFSR the random tokens generated by
the LFSRs X and Y are precisely correlated. Therefore, these
tokens can then be used as a shared secret key for facilitating
secure communications between the IoTs. Furthermore, between
power-ups, cold reboots, brown-outs, and system black-outs, the
random keys generated using the approach shown in Figure 1
remain unique and aperiodic, which obviates the possibility of
replay attacks.

2. Results

2.1. Secure self-powered timers and spatial
synchronization

Figure 2A shows the micrograph of an array of self-powered
timers along with the programming and readout circuit fabricated

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Rahman and Chakrabartty

10.3389/fcomp.2023.1157629

I Cione-2

I Clone-1

|
1]
i
i
i
A

: . 50 : ; : : : ,
(C) 3 ====Timer 1| | (D) -215
s Timer 2
e Timer 1 0 S -220 1
= Timer 2 g 225
2.5 | & 50 >g |
S S
2 Synchronized Region = < -230
g ~i;4li;\7\¥7__]_74_1‘ >o'1°0 o
” e~ | - —
‘ L 32 34
~ 150 " :
. ~ '," = Timer 1 er(days) 1
| m— Timer 2 ~
\ ‘ -200 - |~ =Timer1 \r f— -I
7\ J] = =Timer 2
1.5 . F FE EF ¥ ¥ ¥ §F N ¥ ¥ _j -250 1 1 1 1 1 | S
0 10 20 30 40 0 5 10 15 20 25 30 35
Time(days) Time(days)
FIGURE 2

Measured dynamics and synchronization results using fabricated SSPT array: (A) Micrograph of an array of self-powered timers along with
programming and readout circuit fabricated in a standard silicon process and (B) shows the micrograph of a single FN-timer in that array along with
the equivalent circuit which is the building block of the SSPT. (C) The temporal response of the timers with different form factors on two different
clones enters into the synchronized region after an initial settling stage. (D) Timers with the same form factors in the synchronized region have the
same change in the output voltage over a long period of time across multiple clones.

Frontiersin Computer Science

03

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Rahman and Chakrabartty

in a standard silicon process. A simplified equivalent circuit
model for each of the timers on the fabricated prototype is
shown in Figure 2B. The operating principle of the timers
involves injecting charge on an electrically isolated floating-gate
capacitor Cg. This is achieved by using a combination of hot-
electron injection or quantum mechanical tunneling which are
described in the Method Section 3.1. After the initial programming,
the charge on Cp is allowed to leak through the dielectric
barrier, and is governed by the physics of Fowler-Nordheim
(FN) quantum tunneling. Here the leakage current is denoted
as Jey. Note that the leakage process is thermodynamically
and quantum-mechanically driven and hence does not require
any external powering. This self-powered operation makes the
timers immune to any power side-channel attack. Furthermore,
Jen is typically below attoamperes (or 107!8A) which does
not produce any measurable electromagnetic (EM) trace or
fingerprint. Thus, the timers are practically immune to EM
side-channel attacks. Furthermore, once the dynamics of the
timers reach an equilibrium condition, any external probing
using an EM source or using physical delamination disturbs
the equilibrium and hence destroys the state of the timers.
This implies that the self-powered timers are not only tamper-
resistant but can only be copied through well-defined read-out
mechanisms. Thus, we can assume that an array of FN-timers
forms a secure dynamical system whose internal states could
provide a secure mechanism for generating dynamic seeds for
an LFSR.

In addition to its security features, FN-timers exhibit a
unique synchronization feature where a pair of timers can be
synchronized with each other, even if the devices are integrated
on two different, spatially separated chipsets. A ‘pair’ of timers
is defined as two timers designed with similar form factors.
The synchronization feature is demonstrated by the experimental
results in Figures 2C, D where we show the dynamics of two pairs of
timers integrated on different chipsets that are spatially separated.
Initially, the timers discharge quickly and the synchronization
between different temporal dynamics is determined by device
mismatch. However, as shown in Figure 2C, after a period of 5
days the temporal responses become “practically” independent of
device mismatch and hence become synchronized to each other.
This is shown in Figure 2D where after entering the equilibrium
region, the dynamics of timer pairs remain synchronized. In
our previous work (Zhou et al, 2019) we have shown that
the timer pairs can maintain synchronization for a duration
greater than a year. This implies that if we can derive the
LFSR seed from the temporal response of the timers, then all
IoT devices integrated with the SSPT can securely generate
synchronized random numbers.

2.2. Secure seed exchange protocol

In order to wuse the synchronized random numbers
as a cryptographic key for secure communication,
the two IoT devices followed a simple protocol to

synchronize their seeds. The seed generation protocol is
described below:

Frontiersin Computer Science

10.3389/fcomp.2023.1157629

1: IoTp: Selects a set of ’'N’ timers to be sampled for
generating the seed.

2: IoT4: Measures the output of these timers to
generate seed Sy = {v;'m}N, where 1 < i < Nr is the
index of the timer, Nr is the total number of
timer on the chip and V,,; is the digitized output
of the timers.

3: JoTy — IoTg : Sends the indexes of the timer I = {i}V
along with the order of sampling.

4: IoTp: Measures the output of all the timers in I in
the specified order to generate Sp = {V{W}N, where

j€I and Vo is the digitized output of the timers.

5: IoTs,l0oTg: Generate random numbers based on the seed
PRNG(S4) and Kg = PRNG(Sp).
Here PRNG() denotes the output of an LFSR seeded

from the timers, Ky =

by S4,Sp. K4 and K can then be used to encrypt and
decrypt further communication.

Since the same set of timers I, which are
synchronized, is used for generating both S4 and
Sp, therefore IoT4 and IoTp have a common encryption

key Kg =Ky =Kjp.

SSPT Seed Exchange Protocol . Steps that IoT, and loTp follows to obtain
common encryption key K¢

IoT}, initiates the exchange protocol and generates a seed based
on the digitized output of a set of timers. Information regarding the
set of timers used by IoT}, is sent over an insecure public channel
to IoTp. On receiving this information IoTp also generates a seed
on its own. Once both seeds are generated the two IoTs can begin
generating random numbers at higher-speed using an LFSR and
start communicating using the synchronized random numbers as
the encryption key.

Only Step 3 in the seed exchange protocol is assumed to be
vulnerable as the communication is performed over a presumably
insecure channel where an adversary can eavesdrop and learn this
information. However, note that in order to derive the encryption
key K, the adversary needs to have access to one of the timer clones
at the time of communication. However, by construction, only
Ioty and IoTg have access to one of the clones and the adversary
cannot clone or copy the timers (one of the security properties of
the FN-timers). This means that the adversary cannot sample the
hardware timers to generate a seed. In addition to this, we have
also discussed in the previous Section 2.1 how the hardware timers
are immune to any side-channel and snooping attacks. Thereby,
it is also not possible for an adversary to deduce any information
about the timers’ output and generate the seed without actually
sampling a clone. Note here that the actual output of the timers
is also not accessible, only the random numbers from the LFSR are
made attainable. This protects the seed exchange protocol from any
kind of regression or Machine learning attack for predicting the
output of the timers. In our previous work (Rahman et al., 2022)
we show that the parameters determining the temporal response
of the timers cannot be determined by an adversary without the
knowledge of the initialization condition. Furthermore, since the
seed is derived from a dynamic process, it will change with time

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Rahman and Chakrabartty

10.3389/fcomp.2023.1157629

A | * Clone-1 O Clone-2
1 T T T ®‘ J T
% ® ® @)@ ® ®
-008’®® @®o® @ *O® ® @ J
H @® © o ® ®§@ e
) ®, . % ® ® LA
8 ®®®®® ©S
804-@)@ ® g . ®
5 ® @ ® o
z ® & ® &
02*@@ ® ® ® o -
® o®
vo2” 86 o

5 10 15 20 25 30 35 40
Time(days)

FIGURE 3

Random Seed Generation and Synchronization from fabricated prototypes: (A) The normalized seed generated from the SSPT at different times are
spread evenly across the domain. (B) The percentage of False-Negative in the synchronization of two valid seeds due to readout and quantization

error.

B

—J— without Error Detection
—J—With Error Detection

< 15+

o

2

=

S

@ 10 -

-

1)

0

©

w

5 -

ADC (bits)

thereby breaking the period of the LFSR. In this regard, the
output of the LFSR will appear to be a ’true’ random number for
any adversary.

2.3. Noise robustness of seed exchange
protocol

In the next set of experiments, we quantified the noise
robustness of the protocol using a fabricated FN-timer array. We
generated seeds from two fabricated prototypes of SSPT using the
same set of timers. The details of the experiment are provided
in the Method Section 3.2. Figure 3A shows the normalized seeds
generated from both clones sampled at different time instances.
We can observe that the seeds derived from the temporal response
of the timers are uniformly distributed across the whole dynamic
range with time. This implies that the seeds are unpredictable
without knowledge of the underlying principle, timers’ output.
However, we do observe that there are a few mismatches among
the seeds from the two clones. This is due to the readout and
quantization noise of the analog-to-digital converter (ADC). To
mitigate this issue a lower-resolution ADC can be used. In order to
find out the expected number of mismatches at different resolutions
of ADC we performed a Monte Carlo study where we generated
seeds at random time instances with 5, 6, 7, and 8 bits ADC (details
in Method |Section 3.2). Figure 3B shows that as we decrease the
resolution of the ADC, the percentage of mismatches between valid
seeds i.e., False-Negatives, also decreases. However, this comes at
a cost of the security of the protocol. This is because using lower-
resolution ADC would result in less frequent changes in the value of
the seed and might not be enough to break the period of the LFSR.
Therefore, a tradeoff exists between the security and robustness of
the protocol. Another method that could be used to reduce the
possibility of False-negatives is by using error correcting code such
as Cyclic-Redundancy-Check (CRC). Even with a simple CRC code
of size 3 bits detecting at least 2 bits hamming distance between

Frontiersin Computer Science

the two seeds the percentage of False-Negatives can be reduced at
all resolutions of ADC as shown in Figure 3B. The details of this
experiment are provided in the Method-Section 3.2. Note that, this
improvement in accuracy comes at a cost of more computational
resources required for the protocol. Thereby the usage of such
methods would depend on the application and resource availability
of the IoT device in question and the demand for accuracy.

2.4. Statistical test for SPRNG

In order to evaluate the randomness of the numbers generated
by SPRNG we performed benchmark tests using the Statistical
Randomness Test Suite (SP800-22 Rev la) made available by the
National Institute of Standards and Technology (NIST) (Bassham
et al., 2010). The suite consists of 15 statistical tests the results of
which are represented in a form of P-values in the range [0, 1]. A
binary string is tested to be random if the P-value exceeds a certain
threshold value in all 15 tests. This threshold value was chosen to
be 0.01, as reccommended by the NIST specification, which suggests
that the string is random with a probability of 99%. The details of
the experiment are provided in the Method-Section 3.3 and the
results of all 15 tests are tabulated in Table 1.

The first experiment was done with a single LFSR as the
random number generator seeded with the digitized output of the
timers. We observe that the minimum pass rate is approximately
91 for a sample of 100 binary strings, in the case of the Linear
Complexity Test and Random Excursion Test. These results could
be further improved by using two independent LESRs of different
sizes, randomly seeded by the SSPT, and then XORing the output
of them to generate the random binary strings. In this case, the
minimum pass rate is 96 out of a sample of 100 binary strings.
Note here that this technique not only improves the quality of
random numbers generated but also increases the periodicity of
the overall sequences. This would ultimately increase the lifetime
of the SSPT as discussed in the following section. However, this

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Rahman and Chakrabartty

10.3389/fcomp.2023.1157629

TABLE 1 Results showing the randomness of the numbers generated by SPRNG when tested with NIST test suites for both cases, a single LFSR and when
two LFSR are XORed.

Single LFSR XORed LFSRs
NIST TESTs Average P-value Pass ratio Average P-value Pass ratio
Monobit test 0.46 100/100 0.556 100/100
Frequency within block test 0.4137 98/100 0.521 98/100
Runs test 0.4492 100/100 0.5427 100/100
Longest run ones in a block test 0.5499 100/100 0.3685 100/100
Binary matrix rank test 0.5407 100/100 0.4759 100/100
DFT test 0.5122 100/100 0.4938 100/100
Non-overlapping template matching test 1.000 100/100 1.000 100/100
Overlapping template matching test 0.5296 100/100 0.4872 100/100
Maurers universal test 0.4919 100/100 0.5518 100/100
Linear complexity test 0.2757 91/100 0.4736 100/100
Serial test 0.3459 97/100 0.4394 100/100
Approximate entropy test 0.4212 100/100 0.5553 100/100
Cumulative sums test 0.3898 100/100 0.4046 100/100
Random Excursion Test 0.0995 91/100 0.1581 96/100
Random excursion variant test 0.1318 93/100 0.1251 96/100

comes at a cost of efficiency of the SPRNG as more measurements
and computation are needed to be done. Therefore, a tradeoff exists
between efficiency and lifetime and security. Depending on the
application (how long the IoT will be in use) and specification
(how secure the communication needs to be) of the IoT device
either single-LFSR or double-LFSR implementation of SPRNG can
be used. Nevertheless, from the results in Table 1, we can definitely
conclude that the bit strings generated by the SPRNG, both with
single and double LFSRs implementation, are statistically random
in nature.

2.5. SSPT lifetime analysis

In our previous work (Zhou and Chakrabartty, 2017; Zhou
et al., 2019) we have shown that the temporal response of the
fabricated timers can be modeled as

— k2
Vou) = ot)

Where ki, k, are device specific and fabrication specific
parameters, kg = exp (%), Vo refers to the initial voltage at the
floating-gate, and t refers to the time elapsed after initialization.
The detailed derivation is excluded here for the sake of brevity
and can be found in Zhou and Chakrabartty (2017) and Zhou
etal. (2019). In Figure 4A we can observe that this analytical model
can accurately track the output of the fabricated timers once the
parameters are regressed from the measured data. The details of
the regression process are provided in the Method Section 3.4. We
use the analytical model to determine the lifetime of the SSPT. Note
that since the timers are initialized with a fixed amount of charge,

Frontiersin Computer Science

the dynamics of timers will slow down to single-electron tunneling
events. The question being analyzed here is whether an ensemble of
FN-timers can still exhibit state-change that is faster than the period
of the LFSR. Figure 4B, i shows the state of the LSB of the digitized
output for a single timer. Note here that in order for the dynamic
seed to change only a single-bit flip of the digitized output would
suffice. Therefore, the change in the LSB state represents the change
in the dynamic seed. Since, the dynamical system slows down non-
linearly as time passes the rate of change of the dynamic seed will
also decrease over time, as evident from Figure 4B, i. However, to
break the periodicity of the LFSR the dynamic seed needs to change
before we generate the maximum length of a random number. For
example, let an LFSR generate random numbers with a clock speed
of 1 GHz. Then the LFSR with seed length of 49 bits will generate
the maximum length of a random number in %s, which is &~ 6.5
days. Now, if a single timer was used to generate the seed in this
case, then from Figure 4B, i we can derive that after a period of ~ 60
days, the dynamic seed no longer breaks the periodicity of the LESR.
We denote this period as the ’lifetime’ of the SPRNG, as after this
period the random sequence will start to repeat itself. The lifetime
of the SPRNG can be increased by increasing the resolution of the
ADC used for digitizing the output since this would change the seed
more frequently. However, as shown previously, this would come
at the cost of the seed exchange accuracy of the protocol. Another
method to increase the lifetime would be to use multiple timers
for generating the dynamic seed. This is because as the number of
timers used for generating the seed increases, the probability that
at least one of the timer’s digitized output changes also increases.
This can be observed from Figure 4B, ii where three timers were
used to generate the dynamic seed which subsequently increases
the lifetime of SPRNG. Furthermore, while using multiple timers,
the order in which the digitized output of the timers is sequenced

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Rahman and Chakrabartty

10.3389/fcomp.2023.1157629

A B Measured I Modeled

. 1 . .
(i)
S
»
m
)
-l
0 L 1
50 100 150 200 250 300 350
Time(days)
(i) 4 _
S
)
»n
m
)
i
0 25 1
50 100 150 200 250 300 350
Time(days)

I Auto-correlation

S
‘5 H
o
>
g
\ «
1471 G
10 1072 10° 102
Time(days)
I Cross-correlation
C 1000F T ' 7
800 | 1
3
S 600 - 1
(]
T
=
‘= 400 1
o
©
=
200 f 1
L)
()}
-1000 -500 0 500 1000
Lags(a.u.)
FIGURE 4

Correlation between the outputs of LFSR for shifted seed: (A) Accurate representation of the fabricated timers by its analytical modeled counterpart.
(B) The state of the LSB for the digitized output of the fabricated (i) Timer-1 in (A) and (ii) Timer-1, 2, and 3 in (A) XORed. (C) Autocorrelation for the
output of LFSR for a particular seed along with the cross-correlation with another output generated at the same time instance with the order of seed
generation changed. (D) The results when the procedure in (C) is repeated across multiple different time instances.

1000 -
800 ~
600 ~
400 ~

200

Magnitude(a.u.)

0 -

1000 500

0
500 4000 O

Lags(a.u.)

can also be changed to break the periodicity of the LESR. This can
be observed in Figure 4C which shows the correlation between two
random numbers generated with the same set of timers sampled at
the same instance, but only the order of sequencing their digitized
output to generate the seed is changed. In order to obtain a
reference for the noise floor we also calculated the autocorrelation
of one of the random numbers. Figure 4C shows that when the lag
in the case of autocorrelation is zero, the correlation is at maximum.
For any other lag, the autocorrelation is 5 times less than that of the
maximum magnitude meaning that there is hardly any similarity
or periodicity in the random number itself. This is trivial for a
random number as there should not be any correlation between two
blocks of sequences within the same number. Next, we observe that
the magnitude of the cross-correlation between the two random
numbers is also within this range. Therefore, we can conclude that
changing the order of the timers’ sequence while generating the

Frontiersin Computer Science

dynamic seed will also break the periodicity of the LFSR. Figure 4D
shows that this is true across all time instances.

3. Methods
3.1. Programming the SSPT

The programming of the SSPT requires injecting charges on
the electrically isolated floating gates such that the floating-gate
potential (Vg in Figure 2B) can be set to a level at which FN-
tunneling is measurable. This is accomplished by setting Vpoq
to a high-potential of 22V using an internal (on-chip) charge-
pump. After the initial programming, the floating-gate is allowed
to discharge while the potential V,,; is measured periodically.
The measurement is performed using a capacitive voltage divider

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Rahman and Chakrabartty

formed by C; and C, such that the attenuated voltage can be
measured using standard readout buffers. Furthermore, since the
tunneling nodes are electrically isolated we use a readout MOSFET
M, configured as a source-follower using a constant current-source
I, to read the voltage Vj, at Cy. The voltage of the source follower is
buffered using A to avoid any coupling to the tunneling junction.
The readout voltage was programmed to around 3V during the
initialization of the tunneling node. For the results shown in
Figures 2C, D, each individual timer cell, shown in Figure 2A,
on two separate timer pairs having the same configuration was
initialized independently to a high FN-tunneling region. After
the one-time programming, V., was set to 0V and the timers
discharged naturally. In this mode of operation, no external power
is required. The readout voltages of each timer cell on both the
clones were measured every 180s for a duration of over 40 days.

3.2. Seed generation

The measured outputs from the two hardware clones were used
to generate the seed at each time instance. The analog readout
voltages Vi, for each timer cell were quantized using an ADC to
generate a binary string. These binary strings of multiple timers
were concatenated to generate seeds of variable length depending
on the size of the LFSR used. For the results shown in Figure 3A
7 timers were used from each clone to generate the seed with
their outputs quantized to 7 bits precision. This resulted in a seed
of length 49 bits. The measured outputs were sampled randomly
at 100 different time instances and the generated seeds were
normalized for visual comparison.

For results shown in Figure 3B we generated 1,000 seeds at
random time instances using the same procedure as discussed
above where measured outputs were quantized with 5,6,7, and 8
bits precision. Each instance of sampling where the seeds from both
hardware clones did not match perfectly was counted as a False-
negative. The experiment was repeated 1,000 times, each time the
sampling and seed generation was performed on a different set of
random time instances. This represented the case where no error
detection was used. In the case of error detection, the digitized seeds
are represented as the coefficients of a message polynomial which is
then divided by a pre-determined generator polynomial to calculate
the CRC bits i.e., the coeflicient of the remainder polynomial. In the
seed exchange protocol at Step-3 IoT,4 sends the CRC bits along
with the other information. IoTg can use these CRC bits to check
whether the seed that it generated, Sp, matches with that of IoT4.
For a generator polynomial of size 3-bits, IoTp can detect at least
2-bits of error (Koopman, 2015). Therefore, in Figure 3B, seeds
from two clones with a hamming distance of 2 or less were not
counted as False-negative. The mean and variance of the percentage
of False-negative were calculated across all experiments.

3.3. Randomness test

The seeds for the LFSR were generated using the measured
output from the hardware clones as described in the previous
sections. These seeds were then fed into an LFSR which was

Frontiersin Computer Science

10.3389/fcomp.2023.1157629

simulated in MATLAB. In the case of the Single LFSR, shown
in Table 1, the length of the LFSR chosen was 49 bits, which
means 7 timers output was used each quantized with an ADC
of 7 bit precision. The seeds were generated across 100 random
time instances and corresponding to each seed 1 MiB (2%°bits)
were simulated from the LFSR. These bit strings were then tested
with the NIST SP800-22 Rev la PRNG test suite using the Python
implementation by David Johnston (Johnston, 2021). This process
was repeated for the XORed LFSR, however this time two sets of
seeds were generated at each time instance. The length of one of
the LFSRs used in this case was 49 bits, the same as before, and the
other one was 42 bits. To generate the seeds 7 and 6 timers” outputs
were used respectively with a 7 bit precision ADC. The individual
outputs of the LFSRs, 1 MiB, were then XORed with each other
for producing the random bits which was then tested in a similar
manner as before.

3.4. Extending SSPT lifetime through
shifted seed generation

The measured output shown in Figure 2C was used to regress
the parameters ko, k;, and k;, as shown in equation 1 for each timer
in the fabricated prototype. Even though each timer’s output was
measured for a period of &~ 40 days, only the data for the first 5
days were used to regress the parameter. In this manner, we could
verify that the regressed parameters, when used to represent the
measured results, accurately predicted the temporal response of
each timer against the measured result for the rest of the 35 days.
This is validated in Figure 4A.

Each of the timer cells in the fabricated prototype can be
selected for reading out the output values using a serial shift-
register. However, depending on the order of read-out of these
timer cells the seed that is generated from the quantization of their
output is different for every permutation. This means that with the
same set of timers multiple seeds can be generated. For the results
shown in Figure 4C, two sets of seeds were generated at the same
time instance using the same set of 7 timers with only the order of
the timers shifted by one in a cyclic manner. For example, if one of
the seeds was generated using the order [19, 45, 54, 61, 89, 119, 120],
then the order for the other seed was [120, 19, 45, 54, 61, 89, 119].
These seeds were then used by the same LFSR (length 49 bits)
and 1 KiB of random binary strings were generated. The auto-
correlation of one of the binary strings was calculated along with
the cross-correlation with the other binary strings. Note here that
for these calculations the binary states were represented as [—1, 1]
instead of [0, 1]. This process was repeated across 1,000 random
time instances, the result for which is shown in Figure 4D.

4. Discussion

In this paper, we described an architecture of a light-weight
synchronized-pseudo-random-number generator (SPRNG) that
can be used for securing wireless communications in IoTs. The
solution does not require access to GPS and therefore could be used
in many resource-constrained and adversarial environments. Some
of the applications include personal IoTs used in health-care (Baker

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Rahman and Chakrabartty

et al., 2017), key-fobs (Eddy, 2022) to military-grade IoTs that
need to operate in RF-jamming environments (Staniec and Kowal,
2020). The combination of ultra-secure slow-dynamics exhibited
by the FN-timers and fast-dynamics exhibited by standard LESR
provides an ultra-fast and yet secure mechanism to generate
secure tokens that could potentially be used for high-speed
transactions (Yukonhiatou et al., 2020). However, note that for
this application, clock-frequency and clock-phase synchronization
between the communicating devices are required and have not
been addressed in the paper. The inherent security of the proposed
approach lies in the no-cloning property of the FN-timers, therefore,
only the communicating IoTs will have access to the secure random
tokens. During each communication session, and even after a cold
reboot the tokens are randomly generated and hence an adversary
cannot initiate a replay attack.

A potential limitation of SPRNG proposed in this work in
cryptographic applications arises due to the usage of an LFSR as
the PRNG. If an adversary manages to extract 2L bits of the LFSR
output, where L is the length of the dynamic seed, then by using
Berlekamp-Massey algorithm (Massey, 1969) they can represent the
LFSR in an analytic form. This significantly reduces the lifetime of
SPRNG since the LFSR are now needed to be seeded much more
frequently. One method to achieve this would be to use a different
set of timers to dynamically seed the LFSR every 2L bits. Another
method to mitigate this issue would be to use an Alternating Step
Generator (ASG) proposed by Giinther (1988) where three LFSRs
are used in conjunction to produce the random sequences. Note
that in this implementation all three LESRs would be dynamically
seeded by three different sets of timers and the synchronization
between the two random tokens on spatially separated devices can
still be achieved. The best possible attack in this scenario that
can be mounted will require 0(2%) bits (Khazaei et al., 2007).
This practically ensures that the lifetime analysis in the Results—
Section 2.5 remains valid.

One consideration that has not been discussed before in
the paper is the effect of environmental variations (for example
temperature) on the synchronization of the FN-timers. In Zhou
et al. (2019) we reported that the dynamics of FN-timers exhibit a
temperature dependence, however, when the temperature remains
static, the dynamics of the FN-timer still remain synchronized with
respect to each other. Therefore, one of the key requirements for
the proposed SPRNG-based secure communication is to ensure
proper temperature controls. However, this feature could also be
used to further enhance security where the operating temperature
could be treated as private information that is only known to the
communicating parties.

References

Alimomeni, M., Safavi-Naini, R., and Sharifian, S. (2013). “A true random generator
using human gameplay,” in Decision and Game Theory for Security, eds S. K. Das, C.
Nita-Rotaru, and M. Kantarcioglu (Cham: Springer International Publishing), 10-28.

Baker, S. B., Xiang, W., and Atkinson, I. (2017). Internet of things for smart
healthcare: technologies, challenges, and opportunities. IEEE Access 5, 26521-26544.
doi: 10.1109/ACCESS.2017.2775180

Bassham, L. E., Rukhin, A. L., Soto, J., Nechvatal, J. R., Smid, M. E., Barker, E. B.,
et al. (2010). Sp 800-22 rev. la. a statistical test suite for random and pseudorandom

Frontiersin Computer Science

10.3389/fcomp.2023.1157629

Future work in this area would require developing a complete
system-on-chip solution where the SPRNG acts as a core trusted-
platform-module (TPM) that like the commercial AES core in
secure processors can generate tokens for use by the rest of the
SoC modules.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

SC and MR came up with the concept of Synchronized-
PRNG and designed the hardware and
experiments. MR designed the 128-timer
conducted the simulation and hardware experiments. SC

simulation
chipset and

provided supervision on all tasks. All authors contributed
toward writing and proof-reading the manuscript. All
contributed to the

submitted version.

authors article and approved the

Funding

This work was supported in part by the National Science
Foundation grant EAGER-2237004.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their those of the publisher,
the editors and the reviewers. Any product that may be

affiliated organizations, or

evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

number generators for cryptographic applications. Technical report, Gaithersburg, MD,
USA.

Bhattacharjee, K., and Das, S. (2022). A search for good
pseudo-random number generators: Survey and empirical
studies. Comput. Sci. ~ Rev. 45, 100471. doi: 10.1016/j.cosrev.2022.
100471

Eddy, M. (2022). Is Your Car Key Fob Vulnerable to This Simple Replay Attack? New
York, NY: PCmag.

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://doi.org/10.1109/ACCESS.2017.2775180
https://doi.org/10.1016/j.cosrev.2022.100471
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Rahman and Chakrabartty

Golino, M. J. (2014). System and Method of Secure Remote Authentication of
Acquired Data. Geneva: World Intellectual Property Organizations.

Gunther, C. G. (1988). “Alternating step generators controlled by de bruijn
sequences,” in Advances in Cryptology-EUROCRYPT’ 87, eds D. Chaum and W. L. Price
(Berlin; Heidelberg: Springer Berlin Heidelberg), 5-14.

Henriques, M. S., and Vernekar, N. K. (2017). “Using symmetric and asymmetric
cryptography to secure communication between devices in iot,” in 2017 International
Conference on IoT and Application (ICIOT) (Nagapattinam), 1-4.

Hsueh, J.-C., and Chen, V. H.-C. (2019). An ultra-low voltage chaos-based
true random number generator for iot applications. Microelectronics J. 87, 55-64.
doi: 10.1016/j.mejo0.2019.03.013

Johnston, D. (2021). sp800_22_tests. San Francisco, CA: Github.

Khazaei, S., Fischer, S., and Meier, W. (2007). “Reduced complexity attacks
on the alternating step generator; in Selected Areas in Cryptography, eds C.
Adams, A. Miri, and M. Wiener (Berlin; Heidelberg: Springer Berlin Heidelberg),
1-16.

Klein, A. (2013). Linear Feedback Shift Registers. London: Springer London.

Koopman, P. (2015). Best crc Polynomials. Pennsylvania: Carnegie Mellon
university.

Kroese, D. P., and Rubinstein, R. Y. (2012). Monte carlo methods. WIREs Comput.
Stat. 4, 48-58. doi: 10.1002/wics.194

Ma, Z., and Vandenbosch, G. A. E. (2012). “Impact of random number
generators on the performance of particle swarm optimization in antenna design,”
in 2012 6th European Conference on Antennas and Propagation (EUCAP) (Prague),
925-929.

Maghrebi, H., Portigliatti, T., and Prouff, E. (2016). “Breaking cryptographic
implementations using deep learning techniques,” in International Conference
on Security, Privacy, and Applied Cryptography Engineering (Cham: Springer),
3-26.

Frontiersin Computer Science

10

10.3389/fcomp.2023.1157629

Massey, J. (1969). Shift-register synthesis and bch decoding. IEEE Trans. Inf. Theory
15, 122-127. doi: 10.1109/TIT.1969.1054260

Mehta, D., Rahman, M., Aono, K., and Chakrabartty, S. (2022). An adaptive
synaptic array using fowler-nordheim dynamic analog memory. Nat. Commun. 13,
1670. doi: 10.1038/s41467-022-29320-6

Rahman, M., Bose, S., and Chakrabartty, S. (2023). On-device synaptic memory
consolidation using fowler-nordheim quantum-tunneling. Front. Neurosci. 16,
1050585. doi: 10.3389/fnins.2022.1050585

Rahman, M. Zhou, L., and Chakrabartty, S.
for symmetric key distribution over public channels
timekeeping devices. IEEE Trans. Inf. Forensics Security
doi: 10.1109/TTFS.2022.3158089

Schindler, W., and Kog, C. K. (2009). Random Number Generators for Cryptographic
Applications. Boston, MA: Springer U.S.

(2022). Spotkd: a protocol
using self-powered
17, 1159-1171.

Staniec, K., and Kowal, M. (2020). On vulnerability of selected iot systems to radio
jamming-a proposal of deployment practices. Sensors 20, 152. doi: 10.3390/520216152

Sunar, B., and Kog, C. K. (2009). True Random Number Generators for Cryptography.
Boston, MA: Springer U.S.

Wilber, S. A. (2017).
US20180039485A1.

Yukonhiatou, C., Yoshihisa, T., Kawakami, T., Teranishi, Y., and Shimojo, S. (2020).
A fast stream transaction system for real-time iot applications. Internet Things 11,
100182. doi: 10.1016/j.i0t.2020.100182

Zhou, L., and Chakrabartty, S. (2017). “Self-powered timekeeping and
synchronization using fowler-nordheim tunneling-based floating-gate integrators,”
IEEE Transactions on Electron Devices (IEEE), 1-7.

Zhou, L., Kondapalli S. H., Aono, K, and Chakrabartty, S. (2019).
Desynchronization of self-powered fn tunneling timers for trust verification of iot
supply chain. IEEE Internet Things J. 6, 6537-6547. doi: 10.1109/JI0T.2019.2907930

Synchronized True Random Number Generator.

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://doi.org/10.1016/j.mejo.2019.03.013
https://doi.org/10.1002/wics.194
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1038/s41467-022-29320-6
https://doi.org/10.3389/fnins.2022.1050585
https://doi.org/10.1109/TIFS.2022.3158089
https://doi.org/10.3390/s20216152
https://doi.org/10.1016/j.iot.2020.100182
https://doi.org/10.1109/JIOT.2019.2907930
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	GPS-free synchronized pseudo-random number generators for internet-of-things
	1. Introduction
	2. Results
	2.1. Secure self-powered timers and spatial synchronization
	2.2. Secure seed exchange protocol
	2.3. Noise robustness of seed exchange protocol
	2.4. Statistical test for SPRNG
	2.5. SSPT lifetime analysis

	3. Methods
	3.1. Programming the SSPT
	3.2. Seed generation
	3.3. Randomness test
	3.4. Extending SSPT lifetime through shifted seed generation

	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

