
TYPE Original Research

PUBLISHED 20 March 2023

DOI 10.3389/fcomp.2023.1157629

OPEN ACCESS

EDITED BY

Ruben Vazquez-Medina,

Instituto Politécnico Nacional (IPN), Mexico

REVIEWED BY

Aleksandra Mileva,

Goce Delcev University, North Macedonia

Jinjing Shi,

Central South University, China

*CORRESPONDENCE

Shantanu Chakrabartty

shantanu@wustl.edu

SPECIALTY SECTION

This article was submitted to

Computer Security,

a section of the journal

Frontiers in Computer Science

RECEIVED 02 February 2023

ACCEPTED 03 March 2023

PUBLISHED 20 March 2023

CITATION

Rahman M and Chakrabartty S (2023) GPS-free

synchronized pseudo-random number

generators for internet-of-things.

Front. Comput. Sci. 5:1157629.

doi: 10.3389/fcomp.2023.1157629

COPYRIGHT

© 2023 Rahman and Chakrabartty. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

GPS-free synchronized
pseudo-random number
generators for internet-of-things

Mustafizur Rahman and Shantanu Chakrabartty*

Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO,

United States

Introduction: Securing wireless communications in internet-of-things (IoT)

requires both generation and synchronization of random numbers in real-time.

However, resource constraints on an IoT device limit the use of computationally

intensive random number generators and the use of global positioning

systems (GPS) for synchronization. In this paper, we propose a synchronized

pseudo-random number generator (SPRNG) that uses a combination of a fast,

low-complexity linear-feedback-shift-register (LFSR) based PRNG and a slow but

secure, synchronized seed generator based on self-powered timers.

Methods: A prototype synchronized self-powered timer (SSPT) array was

fabricated in a standard silicon process andwas used to generate dynamic random

seeds for the LFSR. The SSPTs use quantum-mechanical tunneling of electrons to

operate without any external power and are practically secure against tampering,

snooping, and side-channel attacks (both power and electromagnetic).

Results: In this work, we explore protocols to periodically and securely generate

random bits using the self-powered timers for seeding the LFSR. We also show

that the time-varying random seeds extend and break the LFSR periodic cycles,

thus making it difficult for an attacker to predict the random output or the random

seed. Using the National Institute of Standards and Technology (NIST) test suite

we verify the randomness of the measured seeds from the fabricated ensemble of

SSPTs together with the random bit sequences generated by a software-seeded

LFSR.

Discussions: In this modality, the proposed SPRNG could be used as a trusted

platform module (TPM) on IoTs and used for verifying and authenticating

secure transactions (e.g., software upgrades). Since the SPRNG system does not

require access to GPS for synchronization, therefore it could be used in many

resource-constrained and adversarial environments.

KEYWORDS

PRNG, self-powered, quantum-tunneling, LFSR, IoTs, synchronized-PRNG

1. Introduction

Random-number-generators (RNGs) play an important role in many applications

ranging from optimization, game-theory, and simulations (Kroese and Rubinstein, 2012; Ma

andVandenbosch, 2012; Alimomeni et al., 2013). However, one of themost important uses of

RNGs is in the area of secure communications (Schindler and Koç, 2009). Traditionally, this

is achieved by encrypting the data using a sequence of random numbers i.e., cryptographic

keys produced by an RNG. These keys are then synchronized using a timing reference

extracted from a global-positioning-system (GPS) which also facilitates the exchange of

encryption keys (Golino, 2014; Wilber, 2017). However, for battery-powered or passive

internet-of-things (IoTs) devices where computational and energy resources are severely

constrained this paradigm of secure communication using traditional RNGs is not practical.

In this paper, we propose a novel RNG architecture that can be used for securing

communications in IoTs.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1157629
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1157629&domain=pdf&date_stamp=2023-03-20
mailto:shantanu@wustl.edu
https://doi.org/10.3389/fcomp.2023.1157629
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1157629/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Rahman and Chakrabartty 10.3389/fcomp.2023.1157629

RNGs fall into two major categories, namely, the true-RNGs

(TRNG) and the pseudo-RNGs (PRNG). TRNGs generate random

numbers based on non-deterministic physical processes such as

thermal noise and entropy of natural phenomena (Sunar and

Koç, 2009). Even though TRNGs are preferred for cryptographic

applications, they are generally expensive and might not produce

random numbers fast enough to be suitable for use in resource-

constrained IoTs (Hsueh and Chen, 2019). On the other hand, a

PRNG algorithm generates a sequence of numbers that is not truly

random but whose statistical properties match that of a random

number. In literature, there are many different types of PRNG

that have been proposed (Bhattacharjee and Das, 2022). However,

for resource-constrained IoTs the preferable PRNG is the one that

is computationally inexpensive, fast, and can be easily fabricated

and integrated into a System-on-Chip (SoC). In this regard, a

Linear-Feedback-Shift-Register (LFSR) architecture is an optimal

choice (Klein, 2013). It can be efficiently implemented using only

flip-flops and XOR gates. An LFSR takes an initial value called seed

as an input and generates each output bit with only a single shift

operation, which satisfies both the low resource and the fast output

requirement. However, one of the biggest challenges for an LFSR-

based PRNG is the fact that the period is fixed and there is a need

for reseeding to break the periodicity. While using a longer length

LFSR ormultiple LFSR would increase this periodicity, the problem

still remains where once the period is reached the LFSR would start

to repeat the random sequence. Furthermore, if the LFSR is seeded

with a pre-stored static seed on boot-up, then it produces the same

sequence of random numbers over and over again. One method to

mitigate this issue would be to generate a dynamic seed. However,

a resource-constrained IoT may not have access to a continuously

running system clock or the GPS signal.

In addition to using a random number as a secure token, for

secure communications there is also a need for synchronization of

the tokens between the communicating parties. While asymmetric

key encryption could be used to avoid this challenge, they are

computationally too expensive to be universally implemented on

these resource-constrained devices. On the other hand, a symmetric

key encryption scheme can be customized for IoT platforms but

requires a shared secret key (Henriques and Vernekar, 2017). Any

static information stored on the IoT, such as a SecureID, used as

the shared secret will be vulnerable to a machine learning type

of attack (Maghrebi et al., 2016). Therefore, there is a need for a

piece of dynamic information embedded into these IoT devices that

can be synchronized in real-time. One such method for achieving

this could be using a combination of a timing reference extracted

from a global-positioning-system (GPS) and a timing reference

generated locally using phased-locked oscillators. Unfortunately,

in many IoT applications, this framework is impractical due to

resource constraints together with the fact that many IoT devices

may not have access to a GPS signal.

In this paper, we describe an architecture of a synchronized-

PRNG (SPRNG) that can be used for generating synchronized

pseudo-random binary sequences without the need for any

GPS reference signal. The SPRNG uses a combination of a

fast, low-complexity LFSR based PRNG and a slow but secure,

synchronized seed generator based on our previously reported

self-powered timers (Zhou and Chakrabartty, 2017; Mehta et al.,

FIGURE 1

The concept of GPS-free secure Communication in spatially

separated IoTs with SPRNGs: The IoTs generate random tokens using

the SPRNG for use as cryptographic keys. The tokens are generated

using a combination of a fast, low-complexity LFSR seeded by the

Secure self-powered timers (SSPT). The synchronization of SSPT

across both IoTA and IoTB ensures that the random tokens X and Y

exhibit a perfect cross-correlation, σXY = 1.

2022; Rahman et al., 2023). The self-powered timers use quantum-

mechanical tunneling of electrons to operate without any external

power and are practically secure against tampering, snooping,

and side-channel attacks (both power and electromagnetic). In

this work, we explore different protocols to periodically and

securely generate synchronized random bits by seeding the

LFSR using an array of self-powered timers. The concept is

illustrated in Figure 1 in the context of IoT communications.

The spatially separated IoT devices, IoTA and IoTB integrate a

copy of the SPRNG for generating random tokens. The self-

powered timers in these SPRNG form a clone where their

temporal dynamics remain synchronized for long-period of time.

When these synchronized-self-powered timers (SSPT) are used

to dynamically seed the LFSR the random tokens generated by

the LFSRs X and Y are precisely correlated. Therefore, these

tokens can then be used as a shared secret key for facilitating

secure communications between the IoTs. Furthermore, between

power-ups, cold reboots, brown-outs, and system black-outs, the

random keys generated using the approach shown in Figure 1

remain unique and aperiodic, which obviates the possibility of

replay attacks.

2. Results

2.1. Secure self-powered timers and spatial
synchronization

Figure 2A shows the micrograph of an array of self-powered

timers along with the programming and readout circuit fabricated

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Rahman and Chakrabartty 10.3389/fcomp.2023.1157629

FIGURE 2

Measured dynamics and synchronization results using fabricated SSPT array: (A) Micrograph of an array of self-powered timers along with

programming and readout circuit fabricated in a standard silicon process and (B) shows the micrograph of a single FN-timer in that array along with

the equivalent circuit which is the building block of the SSPT. (C) The temporal response of the timers with different form factors on two different

clones enters into the synchronized region after an initial settling stage. (D) Timers with the same form factors in the synchronized region have the

same change in the output voltage over a long period of time across multiple clones.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Rahman and Chakrabartty 10.3389/fcomp.2023.1157629

in a standard silicon process. A simplified equivalent circuit

model for each of the timers on the fabricated prototype is

shown in Figure 2B. The operating principle of the timers

involves injecting charge on an electrically isolated floating-gate

capacitor Cfg . This is achieved by using a combination of hot-

electron injection or quantum mechanical tunneling which are

described in theMethod Section 3.1. After the initial programming,

the charge on Cfg is allowed to leak through the dielectric

barrier, and is governed by the physics of Fowler-Nordheim

(FN) quantum tunneling. Here the leakage current is denoted

as JFN . Note that the leakage process is thermodynamically

and quantum-mechanically driven and hence does not require

any external powering. This self-powered operation makes the

timers immune to any power side-channel attack. Furthermore,

JFN is typically below attoamperes (or 10−18A) which does

not produce any measurable electromagnetic (EM) trace or

fingerprint. Thus, the timers are practically immune to EM

side-channel attacks. Furthermore, once the dynamics of the

timers reach an equilibrium condition, any external probing

using an EM source or using physical delamination disturbs

the equilibrium and hence destroys the state of the timers.

This implies that the self-powered timers are not only tamper-

resistant but can only be copied through well-defined read-out

mechanisms. Thus, we can assume that an array of FN-timers

forms a secure dynamical system whose internal states could

provide a secure mechanism for generating dynamic seeds for

an LFSR.

In addition to its security features, FN-timers exhibit a

unique synchronization feature where a pair of timers can be

synchronized with each other, even if the devices are integrated

on two different, spatially separated chipsets. A ‘pair’ of timers

is defined as two timers designed with similar form factors.

The synchronization feature is demonstrated by the experimental

results in Figures 2C, Dwhere we show the dynamics of two pairs of

timers integrated on different chipsets that are spatially separated.

Initially, the timers discharge quickly and the synchronization

between different temporal dynamics is determined by device

mismatch. However, as shown in Figure 2C, after a period of 5

days the temporal responses become “practically” independent of

device mismatch and hence become synchronized to each other.

This is shown in Figure 2D where after entering the equilibrium

region, the dynamics of timer pairs remain synchronized. In

our previous work (Zhou et al., 2019) we have shown that

the timer pairs can maintain synchronization for a duration

greater than a year. This implies that if we can derive the

LFSR seed from the temporal response of the timers, then all

IoT devices integrated with the SSPT can securely generate

synchronized random numbers.

2.2. Secure seed exchange protocol

In order to use the synchronized random numbers

as a cryptographic key for secure communication,

the two IoT devices followed a simple protocol to

synchronize their seeds. The seed generation protocol is

described below:

1: IoTA: Selects a set of ’N’ timers to be sampled for

generating the seed.

2: IoTA: Measures the output of these timers to

generate seed SA = {V i
out}

N, where 1 < i < NT is the

index of the timer, NT is the total number of

timer on the chip and Vout is the digitized output

of the timers.

3: IoTA → IoTB : Sends the indexes of the timer I = {i}N

along with the order of sampling.

4: IoTB: Measures the output of all the timers in I in

the specified order to generate SB = {V
j
out}

N, where

j ∈ I and Vout is the digitized output of the timers.

5: IoTA, IoTB: Generate random numbers based on the seed

from the timers, KA = PRNG(SA) and KB = PRNG(SB).

Here PRNG() denotes the output of an LFSR seeded

by SA, SB. KA and KB can then be used to encrypt and

decrypt further communication.

Since the same set of timers I, which are

synchronized, is used for generating both SA and

SB, therefore IoTA and IoTB have a common encryption

key KE = KA = KB.

SSPT Seed Exchange Protocol . Steps that IoTA and IoTB follows to obtain

common encryption key KE

IoTA initiates the exchange protocol and generates a seed based

on the digitized output of a set of timers. Information regarding the

set of timers used by IoTA is sent over an insecure public channel

to IoTB. On receiving this information IoTB also generates a seed

on its own. Once both seeds are generated the two IoTs can begin

generating random numbers at higher-speed using an LFSR and

start communicating using the synchronized random numbers as

the encryption key.

Only Step 3 in the seed exchange protocol is assumed to be

vulnerable as the communication is performed over a presumably

insecure channel where an adversary can eavesdrop and learn this

information. However, note that in order to derive the encryption

key KE the adversary needs to have access to one of the timer clones

at the time of communication. However, by construction, only

IotA and IoTB have access to one of the clones and the adversary

cannot clone or copy the timers (one of the security properties of

the FN-timers). This means that the adversary cannot sample the

hardware timers to generate a seed. In addition to this, we have

also discussed in the previous Section 2.1 how the hardware timers

are immune to any side-channel and snooping attacks. Thereby,

it is also not possible for an adversary to deduce any information

about the timers’ output and generate the seed without actually

sampling a clone. Note here that the actual output of the timers

is also not accessible, only the random numbers from the LFSR are

made attainable. This protects the seed exchange protocol from any

kind of regression or Machine learning attack for predicting the

output of the timers. In our previous work (Rahman et al., 2022)

we show that the parameters determining the temporal response

of the timers cannot be determined by an adversary without the

knowledge of the initialization condition. Furthermore, since the

seed is derived from a dynamic process, it will change with time

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Rahman and Chakrabartty 10.3389/fcomp.2023.1157629

FIGURE 3

Random Seed Generation and Synchronization from fabricated prototypes: (A) The normalized seed generated from the SSPT at different times are

spread evenly across the domain. (B) The percentage of False-Negative in the synchronization of two valid seeds due to readout and quantization

error.

thereby breaking the period of the LFSR. In this regard, the

output of the LFSR will appear to be a ’true’ random number for

any adversary.

2.3. Noise robustness of seed exchange
protocol

In the next set of experiments, we quantified the noise

robustness of the protocol using a fabricated FN-timer array. We

generated seeds from two fabricated prototypes of SSPT using the

same set of timers. The details of the experiment are provided

in the Method Section 3.2. Figure 3A shows the normalized seeds

generated from both clones sampled at different time instances.

We can observe that the seeds derived from the temporal response

of the timers are uniformly distributed across the whole dynamic

range with time. This implies that the seeds are unpredictable

without knowledge of the underlying principle, timers’ output.

However, we do observe that there are a few mismatches among

the seeds from the two clones. This is due to the readout and

quantization noise of the analog-to-digital converter (ADC). To

mitigate this issue a lower-resolution ADC can be used. In order to

find out the expected number of mismatches at different resolutions

of ADC we performed a Monte Carlo study where we generated

seeds at random time instances with 5, 6, 7, and 8 bits ADC (details

in Method |Section 3.2). Figure 3B shows that as we decrease the

resolution of the ADC, the percentage of mismatches between valid

seeds i.e., False-Negatives, also decreases. However, this comes at

a cost of the security of the protocol. This is because using lower-

resolution ADCwould result in less frequent changes in the value of

the seed and might not be enough to break the period of the LFSR.

Therefore, a tradeoff exists between the security and robustness of

the protocol. Another method that could be used to reduce the

possibility of False-negatives is by using error correcting code such

as Cyclic-Redundancy-Check (CRC). Even with a simple CRC code

of size 3 bits detecting at least 2 bits hamming distance between

the two seeds the percentage of False-Negatives can be reduced at

all resolutions of ADC as shown in Figure 3B. The details of this

experiment are provided in the Method–Section 3.2. Note that, this

improvement in accuracy comes at a cost of more computational

resources required for the protocol. Thereby the usage of such

methods would depend on the application and resource availability

of the IoT device in question and the demand for accuracy.

2.4. Statistical test for SPRNG

In order to evaluate the randomness of the numbers generated

by SPRNG we performed benchmark tests using the Statistical

Randomness Test Suite (SP800-22 Rev 1a) made available by the

National Institute of Standards and Technology (NIST) (Bassham

et al., 2010). The suite consists of 15 statistical tests the results of

which are represented in a form of P-values in the range [0, 1]. A

binary string is tested to be random if the P-value exceeds a certain

threshold value in all 15 tests. This threshold value was chosen to

be 0.01, as recommended by the NIST specification, which suggests

that the string is random with a probability of 99%. The details of

the experiment are provided in the Method–Section 3.3 and the

results of all 15 tests are tabulated in Table 1.

The first experiment was done with a single LFSR as the

random number generator seeded with the digitized output of the

timers. We observe that the minimum pass rate is approximately

91 for a sample of 100 binary strings, in the case of the Linear

Complexity Test and Random Excursion Test. These results could

be further improved by using two independent LFSRs of different

sizes, randomly seeded by the SSPT, and then XORing the output

of them to generate the random binary strings. In this case, the

minimum pass rate is 96 out of a sample of 100 binary strings.

Note here that this technique not only improves the quality of

random numbers generated but also increases the periodicity of

the overall sequences. This would ultimately increase the lifetime

of the SSPT as discussed in the following section. However, this

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Rahman and Chakrabartty 10.3389/fcomp.2023.1157629

TABLE 1 Results showing the randomness of the numbers generated by SPRNG when tested with NIST test suites for both cases, a single LFSR and when

two LFSR are XORed.

Single LFSR XORed LFSRs

NIST TESTs Average P-value Pass ratio Average P-value Pass ratio

Monobit test 0.46 100/100 0.556 100/100

Frequency within block test 0.4137 98/100 0.521 98/100

Runs test 0.4492 100/100 0.5427 100/100

Longest run ones in a block test 0.5499 100/100 0.3685 100/100

Binary matrix rank test 0.5407 100/100 0.4759 100/100

DFT test 0.5122 100/100 0.4938 100/100

Non-overlapping template matching test 1.000 100/100 1.000 100/100

Overlapping template matching test 0.5296 100/100 0.4872 100/100

Maurers universal test 0.4919 100/100 0.5518 100/100

Linear complexity test 0.2757 91/100 0.4736 100/100

Serial test 0.3459 97/100 0.4394 100/100

Approximate entropy test 0.4212 100/100 0.5553 100/100

Cumulative sums test 0.3898 100/100 0.4046 100/100

Random Excursion Test 0.0995 91/100 0.1581 96/100

Random excursion variant test 0.1318 93/100 0.1251 96/100

comes at a cost of efficiency of the SPRNG as more measurements

and computation are needed to be done. Therefore, a tradeoff exists

between efficiency and lifetime and security. Depending on the

application (how long the IoT will be in use) and specification

(how secure the communication needs to be) of the IoT device

either single-LFSR or double-LFSR implementation of SPRNG can

be used. Nevertheless, from the results in Table 1, we can definitely

conclude that the bit strings generated by the SPRNG, both with

single and double LFSRs implementation, are statistically random

in nature.

2.5. SSPT lifetime analysis

In our previous work (Zhou and Chakrabartty, 2017; Zhou

et al., 2019) we have shown that the temporal response of the

fabricated timers can be modeled as

Vout(t) =
k2

log(k1t + k0)
(1)

Where k1, k2 are device specific and fabrication specific

parameters, k0 = exp
(

k2
V0

)

, V0 refers to the initial voltage at the

floating-gate, and t refers to the time elapsed after initialization.

The detailed derivation is excluded here for the sake of brevity

and can be found in Zhou and Chakrabartty (2017) and Zhou

et al. (2019). In Figure 4A we can observe that this analytical model

can accurately track the output of the fabricated timers once the

parameters are regressed from the measured data. The details of

the regression process are provided in the Method Section 3.4. We

use the analytical model to determine the lifetime of the SSPT. Note

that since the timers are initialized with a fixed amount of charge,

the dynamics of timers will slow down to single-electron tunneling

events. The question being analyzed here is whether an ensemble of

FN-timers can still exhibit state-change that is faster than the period

of the LFSR. Figure 4B, i shows the state of the LSB of the digitized

output for a single timer. Note here that in order for the dynamic

seed to change only a single-bit flip of the digitized output would

suffice. Therefore, the change in the LSB state represents the change

in the dynamic seed. Since, the dynamical system slows down non-

linearly as time passes the rate of change of the dynamic seed will

also decrease over time, as evident from Figure 4B, i. However, to

break the periodicity of the LFSR the dynamic seed needs to change

before we generate the maximum length of a random number. For

example, let an LFSR generate random numbers with a clock speed

of 1 GHz. Then the LFSR with seed length of 49 bits will generate

the maximum length of a random number in 249

109
s, which is ≈ 6.5

days. Now, if a single timer was used to generate the seed in this

case, then from Figure 4B, i we can derive that after a period of≈ 60

days, the dynamic seed no longer breaks the periodicity of the LFSR.

We denote this period as the ’lifetime’ of the SPRNG, as after this

period the random sequence will start to repeat itself. The lifetime

of the SPRNG can be increased by increasing the resolution of the

ADC used for digitizing the output since this would change the seed

more frequently. However, as shown previously, this would come

at the cost of the seed exchange accuracy of the protocol. Another

method to increase the lifetime would be to use multiple timers

for generating the dynamic seed. This is because as the number of

timers used for generating the seed increases, the probability that

at least one of the timer’s digitized output changes also increases.

This can be observed from Figure 4B, ii where three timers were

used to generate the dynamic seed which subsequently increases

the lifetime of SPRNG. Furthermore, while using multiple timers,

the order in which the digitized output of the timers is sequenced

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Rahman and Chakrabartty 10.3389/fcomp.2023.1157629

FIGURE 4

Correlation between the outputs of LFSR for shifted seed: (A) Accurate representation of the fabricated timers by its analytical modeled counterpart.

(B) The state of the LSB for the digitized output of the fabricated (i) Timer-1 in (A) and (ii) Timer-1, 2, and 3 in (A) XORed. (C) Autocorrelation for the

output of LFSR for a particular seed along with the cross-correlation with another output generated at the same time instance with the order of seed

generation changed. (D) The results when the procedure in (C) is repeated across multiple different time instances.

can also be changed to break the periodicity of the LFSR. This can

be observed in Figure 4C which shows the correlation between two

random numbers generated with the same set of timers sampled at

the same instance, but only the order of sequencing their digitized

output to generate the seed is changed. In order to obtain a

reference for the noise floor we also calculated the autocorrelation

of one of the random numbers. Figure 4C shows that when the lag

in the case of autocorrelation is zero, the correlation is at maximum.

For any other lag, the autocorrelation is 5 times less than that of the

maximum magnitude meaning that there is hardly any similarity

or periodicity in the random number itself. This is trivial for a

randomnumber as there should not be any correlation between two

blocks of sequences within the same number. Next, we observe that

the magnitude of the cross-correlation between the two random

numbers is also within this range. Therefore, we can conclude that

changing the order of the timers’ sequence while generating the

dynamic seed will also break the periodicity of the LFSR. Figure 4D

shows that this is true across all time instances.

3. Methods

3.1. Programming the SSPT

The programming of the SSPT requires injecting charges on

the electrically isolated floating gates such that the floating-gate

potential (Vfg in Figure 2B) can be set to a level at which FN-

tunneling is measurable. This is accomplished by setting Vprog

to a high-potential of 22V using an internal (on-chip) charge-

pump. After the initial programming, the floating-gate is allowed

to discharge while the potential Vout is measured periodically.

The measurement is performed using a capacitive voltage divider

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Rahman and Chakrabartty 10.3389/fcomp.2023.1157629

formed by C1 and C2 such that the attenuated voltage can be

measured using standard readout buffers. Furthermore, since the

tunneling nodes are electrically isolated we use a readout MOSFET

Mr configured as a source-follower using a constant current-source

Ir to read the voltage Vfg at C1. The voltage of the source follower is

buffered using A to avoid any coupling to the tunneling junction.

The readout voltage was programmed to around 3V during the

initialization of the tunneling node. For the results shown in

Figures 2C, D, each individual timer cell, shown in Figure 2A,

on two separate timer pairs having the same configuration was

initialized independently to a high FN-tunneling region. After

the one-time programming, Vprog was set to 0V and the timers

discharged naturally. In this mode of operation, no external power

is required. The readout voltages of each timer cell on both the

clones were measured every 180s for a duration of over 40 days.

3.2. Seed generation

The measured outputs from the two hardware clones were used

to generate the seed at each time instance. The analog readout

voltages Vout for each timer cell were quantized using an ADC to

generate a binary string. These binary strings of multiple timers

were concatenated to generate seeds of variable length depending

on the size of the LFSR used. For the results shown in Figure 3A

7 timers were used from each clone to generate the seed with

their outputs quantized to 7 bits precision. This resulted in a seed

of length 49 bits. The measured outputs were sampled randomly

at 100 different time instances and the generated seeds were

normalized for visual comparison.

For results shown in Figure 3B we generated 1,000 seeds at

random time instances using the same procedure as discussed

above where measured outputs were quantized with 5, 6, 7, and 8

bits precision. Each instance of sampling where the seeds from both

hardware clones did not match perfectly was counted as a False-

negative. The experiment was repeated 1,000 times, each time the

sampling and seed generation was performed on a different set of

random time instances. This represented the case where no error

detection was used. In the case of error detection, the digitized seeds

are represented as the coefficients of a message polynomial which is

then divided by a pre-determined generator polynomial to calculate

the CRC bits i.e., the coefficient of the remainder polynomial. In the

seed exchange protocol at Step-3 IoTA sends the CRC bits along

with the other information. IoTB can use these CRC bits to check

whether the seed that it generated, SB, matches with that of IoTA.

For a generator polynomial of size 3-bits, IoTB can detect at least

2-bits of error (Koopman, 2015). Therefore, in Figure 3B, seeds

from two clones with a hamming distance of 2 or less were not

counted as False-negative. Themean and variance of the percentage

of False-negative were calculated across all experiments.

3.3. Randomness test

The seeds for the LFSR were generated using the measured

output from the hardware clones as described in the previous

sections. These seeds were then fed into an LFSR which was

simulated in MATLAB. In the case of the Single LFSR, shown

in Table 1, the length of the LFSR chosen was 49 bits, which

means 7 timers’ output was used each quantized with an ADC

of 7 bit precision. The seeds were generated across 100 random

time instances and corresponding to each seed 1 MiB (220bits)

were simulated from the LFSR. These bit strings were then tested

with the NIST SP800-22 Rev 1a PRNG test suite using the Python

implementation by David Johnston (Johnston, 2021). This process

was repeated for the XORed LFSR, however this time two sets of

seeds were generated at each time instance. The length of one of

the LFSRs used in this case was 49 bits, the same as before, and the

other one was 42 bits. To generate the seeds 7 and 6 timers’ outputs

were used respectively with a 7 bit precision ADC. The individual

outputs of the LFSRs, 1 MiB, were then XORed with each other

for producing the random bits which was then tested in a similar

manner as before.

3.4. Extending SSPT lifetime through
shifted seed generation

The measured output shown in Figure 2C was used to regress

the parameters k0, k1, and k2 as shown in equation 1 for each timer

in the fabricated prototype. Even though each timer’s output was

measured for a period of ≈ 40 days, only the data for the first 5

days were used to regress the parameter. In this manner, we could

verify that the regressed parameters, when used to represent the

measured results, accurately predicted the temporal response of

each timer against the measured result for the rest of the 35 days.

This is validated in Figure 4A.

Each of the timer cells in the fabricated prototype can be

selected for reading out the output values using a serial shift-

register. However, depending on the order of read-out of these

timer cells the seed that is generated from the quantization of their

output is different for every permutation. This means that with the

same set of timers multiple seeds can be generated. For the results

shown in Figure 4C, two sets of seeds were generated at the same

time instance using the same set of 7 timers with only the order of

the timers shifted by one in a cyclic manner. For example, if one of

the seeds was generated using the order [19, 45, 54, 61, 89, 119, 120],

then the order for the other seed was [120, 19, 45, 54, 61, 89, 119].

These seeds were then used by the same LFSR (length 49 bits)

and 1 KiB of random binary strings were generated. The auto-

correlation of one of the binary strings was calculated along with

the cross-correlation with the other binary strings. Note here that

for these calculations the binary states were represented as [−1, 1]

instead of [0, 1]. This process was repeated across 1,000 random

time instances, the result for which is shown in Figure 4D.

4. Discussion

In this paper, we described an architecture of a light-weight

synchronized-pseudo-random-number generator (SPRNG) that

can be used for securing wireless communications in IoTs. The

solution does not require access to GPS and therefore could be used

in many resource-constrained and adversarial environments. Some

of the applications include personal IoTs used in health-care (Baker

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Rahman and Chakrabartty 10.3389/fcomp.2023.1157629

et al., 2017), key-fobs (Eddy, 2022) to military-grade IoTs that

need to operate in RF-jamming environments (Staniec and Kowal,

2020). The combination of ultra-secure slow-dynamics exhibited

by the FN-timers and fast-dynamics exhibited by standard LFSR

provides an ultra-fast and yet secure mechanism to generate

secure tokens that could potentially be used for high-speed

transactions (Yukonhiatou et al., 2020). However, note that for

this application, clock-frequency and clock-phase synchronization

between the communicating devices are required and have not

been addressed in the paper. The inherent security of the proposed

approach lies in the no-cloning property of the FN-timers, therefore,

only the communicating IoTs will have access to the secure random

tokens. During each communication session, and even after a cold

reboot the tokens are randomly generated and hence an adversary

cannot initiate a replay attack.

A potential limitation of SPRNG proposed in this work in

cryptographic applications arises due to the usage of an LFSR as

the PRNG. If an adversary manages to extract 2L bits of the LFSR

output, where L is the length of the dynamic seed, then by using

Berlekamp-Massey algorithm (Massey, 1969) they can represent the

LFSR in an analytic form. This significantly reduces the lifetime of

SPRNG since the LFSR are now needed to be seeded much more

frequently. One method to achieve this would be to use a different

set of timers to dynamically seed the LFSR every 2L bits. Another

method to mitigate this issue would be to use an Alternating Step

Generator (ASG) proposed by Günther (1988) where three LFSRs

are used in conjunction to produce the random sequences. Note

that in this implementation all three LFSRs would be dynamically

seeded by three different sets of timers and the synchronization

between the two random tokens on spatially separated devices can

still be achieved. The best possible attack in this scenario that

can be mounted will require O(2
2L
3 ) bits (Khazaei et al., 2007).

This practically ensures that the lifetime analysis in the Results–

Section 2.5 remains valid.

One consideration that has not been discussed before in

the paper is the effect of environmental variations (for example

temperature) on the synchronization of the FN-timers. In Zhou

et al. (2019) we reported that the dynamics of FN-timers exhibit a

temperature dependence, however, when the temperature remains

static, the dynamics of the FN-timer still remain synchronized with

respect to each other. Therefore, one of the key requirements for

the proposed SPRNG-based secure communication is to ensure

proper temperature controls. However, this feature could also be

used to further enhance security where the operating temperature

could be treated as private information that is only known to the

communicating parties.

Future work in this area would require developing a complete

system-on-chip solution where the SPRNG acts as a core trusted-

platform-module (TPM) that like the commercial AES core in

secure processors can generate tokens for use by the rest of the

SoC modules.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

SC and MR came up with the concept of Synchronized-

PRNG and designed the hardware and simulation

experiments. MR designed the 128-timer chipset and

conducted the simulation and hardware experiments. SC

provided supervision on all tasks. All authors contributed

toward writing and proof-reading the manuscript. All

authors contributed to the article and approved the

submitted version.

Funding

This work was supported in part by the National Science

Foundation grant EAGER-2237004.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Alimomeni, M., Safavi-Naini, R., and Sharifian, S. (2013). “A true random generator
using human gameplay,” in Decision and Game Theory for Security, eds S. K. Das, C.
Nita-Rotaru, and M. Kantarcioglu (Cham: Springer International Publishing), 10–28.

Baker, S. B., Xiang, W., and Atkinson, I. (2017). Internet of things for smart
healthcare: technologies, challenges, and opportunities. IEEE Access 5, 26521–26544.
doi: 10.1109/ACCESS.2017.2775180

Bassham, L. E., Rukhin, A. L., Soto, J., Nechvatal, J. R., Smid, M. E., Barker, E. B.,
et al. (2010). Sp 800-22 rev. 1a. a statistical test suite for random and pseudorandom

number generators for cryptographic applications. Technical report, Gaithersburg, MD,
USA.

Bhattacharjee, K., and Das, S. (2022). A search for good
pseudo-random number generators: Survey and empirical
studies. Comput. Sci. Rev. 45, 100471. doi: 10.1016/j.cosrev.2022.
100471

Eddy, M. (2022). Is Your Car Key Fob Vulnerable to This Simple Replay Attack? New
York, NY: PCmag.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://doi.org/10.1109/ACCESS.2017.2775180
https://doi.org/10.1016/j.cosrev.2022.100471
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Rahman and Chakrabartty 10.3389/fcomp.2023.1157629

Golino, M. J. (2014). System and Method of Secure Remote Authentication of
Acquired Data. Geneva: World Intellectual Property Organizations.

Günther, C. G. (1988). “Alternating step generators controlled by de bruijn
sequences,” inAdvances in Cryptology–EUROCRYPT’ 87, eds D. Chaum andW. L. Price
(Berlin; Heidelberg: Springer Berlin Heidelberg), 5–14.

Henriques, M. S., and Vernekar, N. K. (2017). “Using symmetric and asymmetric
cryptography to secure communication between devices in iot,” in 2017 International
Conference on IoT and Application (ICIOT) (Nagapattinam), 1–4.

Hsueh, J.-C., and Chen, V. H.-C. (2019). An ultra-low voltage chaos-based
true random number generator for iot applications. Microelectronics J. 87, 55–64.
doi: 10.1016/j.mejo.2019.03.013

Johnston, D. (2021). sp800_22_tests. San Francisco, CA: Github.

Khazaei, S., Fischer, S., and Meier, W. (2007). “Reduced complexity attacks
on the alternating step generator,” in Selected Areas in Cryptography, eds C.
Adams, A. Miri, and M. Wiener (Berlin; Heidelberg: Springer Berlin Heidelberg),
1–16.

Klein, A. (2013). Linear Feedback Shift Registers. London: Springer London.

Koopman, P. (2015). Best crc Polynomials. Pennsylvania: Carnegie Mellon
university.

Kroese, D. P., and Rubinstein, R. Y. (2012). Monte carlo methods.WIREs Comput.
Stat. 4, 48–58. doi: 10.1002/wics.194

Ma, Z., and Vandenbosch, G. A. E. (2012). “Impact of random number
generators on the performance of particle swarm optimization in antenna design,”
in 2012 6th European Conference on Antennas and Propagation (EUCAP) (Prague),
925–929.

Maghrebi, H., Portigliatti, T., and Prouff, E. (2016). “Breaking cryptographic
implementations using deep learning techniques,” in International Conference
on Security, Privacy, and Applied Cryptography Engineering (Cham: Springer),
3–26.

Massey, J. (1969). Shift-register synthesis and bch decoding. IEEE Trans. Inf. Theory
15, 122–127. doi: 10.1109/TIT.1969.1054260

Mehta, D., Rahman, M., Aono, K., and Chakrabartty, S. (2022). An adaptive
synaptic array using fowler-nordheim dynamic analog memory. Nat. Commun. 13,
1670. doi: 10.1038/s41467-022-29320-6

Rahman, M., Bose, S., and Chakrabartty, S. (2023). On-device synaptic memory
consolidation using fowler-nordheim quantum-tunneling. Front. Neurosci. 16,
1050585. doi: 10.3389/fnins.2022.1050585

Rahman, M., Zhou, L., and Chakrabartty, S. (2022). Spotkd: a protocol
for symmetric key distribution over public channels using self-powered
timekeeping devices. IEEE Trans. Inf. Forensics Security 17, 1159–1171.
doi: 10.1109/TIFS.2022.3158089

Schindler, W., and Koç, Ç. K. (2009). Random Number Generators for Cryptographic
Applications. Boston, MA: Springer U.S.

Staniec, K., and Kowal, M. (2020). On vulnerability of selected iot systems to radio
jamming–a proposal of deployment practices. Sensors 20, 152. doi: 10.3390/s20216152

Sunar, B., and Koç, Ç. K. (2009).True RandomNumber Generators for Cryptography.
Boston, MA: Springer U.S.

Wilber, S. A. (2017). Synchronized True Random Number Generator.
US20180039485A1.

Yukonhiatou, C., Yoshihisa, T., Kawakami, T., Teranishi, Y., and Shimojo, S. (2020).
A fast stream transaction system for real-time iot applications. Internet Things 11,
100182. doi: 10.1016/j.iot.2020.100182

Zhou, L., and Chakrabartty, S. (2017). “Self-powered timekeeping and
synchronization using fowler-nordheim tunneling-based floating-gate integrators,”
IEEE Transactions on Electron Devices (IEEE), 1–7.

Zhou, L., Kondapalli, S. H., Aono, K., and Chakrabartty, S. (2019).
Desynchronization of self-powered fn tunneling timers for trust verification of iot
supply chain. IEEE Internet Things J. 6, 6537–6547. doi: 10.1109/JIOT.2019.2907930

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1157629
https://doi.org/10.1016/j.mejo.2019.03.013
https://doi.org/10.1002/wics.194
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1038/s41467-022-29320-6
https://doi.org/10.3389/fnins.2022.1050585
https://doi.org/10.1109/TIFS.2022.3158089
https://doi.org/10.3390/s20216152
https://doi.org/10.1016/j.iot.2020.100182
https://doi.org/10.1109/JIOT.2019.2907930
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	GPS-free synchronized pseudo-random number generators for internet-of-things
	1. Introduction
	2. Results
	2.1. Secure self-powered timers and spatial synchronization
	2.2. Secure seed exchange protocol
	2.3. Noise robustness of seed exchange protocol
	2.4. Statistical test for SPRNG
	2.5. SSPT lifetime analysis

	3. Methods
	3.1. Programming the SSPT
	3.2. Seed generation
	3.3. Randomness test
	3.4. Extending SSPT lifetime through shifted seed generation

	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


