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Microbial communities are known as the primary decomposers of all the
carbon accumulated in the soil. However, how important soil structure and its
conventional or organic management, moisture content, and how different plant
species impact this process are less understood. To answer these questions, we
generated a soil microcosm with decomposing corn and soy leaves, as well
as soil adjacent to the leaves, and compared it to control samples. We then
used high-throughput amplicon sequencing of the ITS and 16S rDNA regions
to characterize these microbiomes. Leaf microbiomes were the least diverse
and the most even in terms of OTU richness and abundance compared to near
soil and far soil, especially in their bacterial component. Microbial composition
was significantly and primarily affected by niche (leaves vs. soil) but also by soil
management type and plant species in the fungal microbiome, while moisture
content and pore sizes were more important drivers for the bacterial communities.
The pore size effect was significantly dependent on moisture content, but only in
the organic management type. Overall, our results refine our understanding of
the decomposition of carbon residues in the soil and the factors that influence
it, which are key for environmental sustainability and for evaluating changes in
ecosystem functions.
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Introduction

Adding aboveground plant residues to the topsoil can increase soil fertility, improve
hydraulic properties, enhance carbon sequestration, and reduce erosion (Miguez and
Bollero, 2005; Scholberg et al., 2010). Sustainable agriculture management practices that
involve residue additions include cover cropping, green manure cropping, and crop residue
incorporation by tillage (Lal, 1997). Such practices are growing in popularity worldwide
and are particularly important in organically based agriculture and in agricultural systems
in developing countries. The benefits of incorporating plant residues stem from their
decomposition within the soil, which provides soil carbon and nutrient inputs and is driven
by microorganisms (Lehtinen et al., 2014; Liu et al., 2017).
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Micro-environmental conditions within the soil matrix
influence microbiome activity and composition (Chenu et al,
2001; Mummey and Stahl, 2004; Wolf et al., 2013). Soil pores are
known to play a major role in shaping soil micro-environments
(Kravchenko and Guber, 2017). They enable gas and liquid
transport, impact microbial colonization of the soil matrix
(Dechesne et al., 2003; Long and Or, 2009; Wang et al., 2013), and
create physical barriers between microbial communities (Treves
et al, 2003) that can either reduce or enhance accessibility to
predators (Wright et al., 1995) and other stress factors (Harvey
et al., 2021). Connectivity among the soil micro-environments,
facilitated through liquid bridges, is a major driver of the diversity
of microbial communities within the soil matrix (Tiedje et al,
2001; Long and Or, 2005; Carson et al., 2010). Accounting for
the characteristics of the soil pore space in numerical modeling
is necessary for understanding the mechanisms and drivers
of microbial dynamics and activity (Golparvar et al, 2021).
However, while significant attention has been given to the role
of pore characteristics in influencing microorganisms in bulk
soil, defined as the soil not affected by plant residues or live
plant roots (Bickel and Or, 2020; Nunan et al., 2020; Xia et al,
2022), relatively less is known about how such characteristics
contribute to microbiome dynamics around incorporated
plant residues.

The soil in the immediate vicinity of decomposing plant
residue is known as the detritusphere (Kogel-Knabner et al,
2023), and physical properties in this zone drive the rate of
residue decomposition and the fate of decomposition products
(Kravchenko et al., 2017; Kim et al., 2020). A greater abundance
of large pores in the detritusphere stimulates decomposition
and leads to greater quantities of residual carbon being fully
decomposed into CO, and emitted into the atmosphere (Toosi
etal, 2017). The prevalence of small pores stimulates the diffusion
of decomposition products into the surrounding soil matrix,
enriching it with new C inputs but also potentially stimulating
microbial activity, thus priming the loss of native soil organic
matter (Toosi et al., 2017).

In this study, we used microcosms to test the impact that soil
pore size, moisture, and plant tissue quality have on fungal and
bacterial dynamics and the incorporation of leaf litter residue into
soil across space and time. We hypothesized that the decomposing
residue itself would drive microbial community composition
changes in the soil and that environmental conditions within
the soil matrix, specifically the presence and size distribution
of soil pores and the level of soil moisture, would define
the composition of microbial communities on the decomposing
residue and in the surrounding detritusphere. Assessment of
the microbial community composition over a time course, i.e.,
at 7, 14, and 24 days, improves our ability to detect diversity
patterns that with only one sampling time would not be
possible to detect. It also provides insight into longer-term
trends and factors involved in microbial turnover. We explored
their role in microcosm systems from soils of contrasting long-
term agricultural management histories, namely, conventional
and organic row crop agriculture practices, and with residues
(leaves) of two plant species common in conventional row crop
agriculture, namely, corn [Zea mays (L.)] and soybean [Glycine
max (L.)].
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Materials and methods

Study design

A detailed description of the study site and the setup of
the microcosm experiment is provided by Toosi et al. (2017);
thus, here we only briefly highlight the key components of
the experiment. The soil for the microcosms was collected
from two contrasting agricultural management practices, namely,
conventionally fertilized corn-soybean-wheat rotation (Conv) and
biologically based corn-soybean-wheat rotation with winter cover
crops (Bio), implemented since 1989 at the Long-Term Ecological
Research site at Kellogg Biological Station, Michigan. During each
3-year rotation cycle (the Bio practice), the cover crop red clover
(Trifolium pratense L.) is frost-seeded into winter wheat and then
incorporated into the soil 10 months later prior to corn planting,
and the cereal rye (Secale cereale L.) is planted after corn harvest
and incorporated prior to soybean planting. The studied soil is
Kalamazoo loam (fine-loamy, mixed, and mesic Typic Hapludalf)
(Robertson and Hamilton, 2015).

The soil material dominated by large pores, referred to further
on as the large pore soil, consisted of a 1-2 mm aggregate fraction
obtained by sieving air-dried bulk soil. The soil material dominated
by small pores, referred to further on as small pore soil, was created
from a subset of the 1-2 mm fraction by crushing and sieving the
soil to a 0.05-0.1 mm size range. Creating small pore material from
the large-pore material in this study ensured maximum consistency
between the inherent chemical and biological properties of the
two materials; however, we are aware that the procedure could
have potentially affected soil microorganisms (Powlson, 1980). X-
ray-computed microtomography of the soil materials revealed that
the large pore material had a substantial presence of >30pum @
pores, which represented the pore space in-between the 1 and 2 mm
aggregates, and of <2pum @ pores from within the aggregates.
The pores space of the small pore material was dominated by 5-
10pum @ pores, with no >30um @ pores present (Toosi et al,
2017). The microcosms were constructed so as to maintain the
same bulk density of 1.1 g cm™>, so both materials had the same
58% total porosity.

The treatment design for the incubation experiment consisted
of the following factors: two agricultural management practices
(Conv and Bio), two soil materials with contrasting pore size
diameters (PSD: large and small pore materials), two soil moisture
levels (18 and 28% volumetric water contents), two plant residue
substrates (corn and soybean leaves), and no residue treatment
(control). Since the colonization of a new substrate by soil
microbiota is dynamic and therefore changes with time, we
sampled the microcosms at three time points (7, 14, and 24 days
after the start of the incubation). Three replicated microcosms
were prepared for each treatment combination, for a total of 216
microcosms. Samples were processed as three experimental blocks
in a randomized complete block design.

Each microcosm was 8 mm in diameter and 10 mm in length
(Supplementary Figure S1) and contained a @7 mm dry leaf disk
placed in-between two equal soil layers (0.45g above and 0.45g
below the leaf). Microcosms were incubated at 20°C in the dark.
At each sampling time, the microcosms were randomly assigned to
the specific sampling time point, taken out of the incubation, and

frontiersin.org


https://doi.org/10.3389/fmicb.2023.1172862
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Benucci et al.

10.3389/fmicb.2023.1172862

0.4 A

o
)
!

Axis.2 [13.6%]
o
o

—0.2 1

FIGURE 1

Principal Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarity matrices of fungal (A) and bacterial (B) communities. Incubated samples that
did not contain leaves are referred to as control (black), and dry samples of the soil materials used in the study (prior to incubation) are referred to as
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FIGURE 2

Principal Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarity matrices of fungal microbiomes. PCoA of all samples grouped by treatment
and niche: T1-leaf, T1-near soil, T1-far soil, and T1-control (A) and T4-leaf, T4-near soil, T4-far soil, and T4-control (B). Sample points are coded
according to plant (color), moisture (shape), and size (pore). Factors that explained the most variation in the data are reported, as are the R? and 75%

confidence level ellipses assuming a normal distribution.

prepared for microbial analyses. Each control microcosm (without

a plant leaf) was processed as a single sample. From each treatment

microcosm with plant leaf, we procured three samples for microbial

analysis, representing what we consider to be three ecological

niches differing in quantity and quality of the nutrient sources

available for the microorganisms. These consisted of the remains
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of the plant leaf itself, the soil layer at a 0-2 mm distance from

the leaf, and the soil layer at a 3-5mm distance from the leaf.

The latter two samples are referred to as soil adjacent (near soil)

to the leaf and soil non-adjacent (far soil) to the leaf, respectively.

The samples were placed on ice immediately after cutting and

then kept frozen at —80°C until further analysis. In addition,
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Principal Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarity matrices of bacterial microbiomes. PCoA of all samples grouped by treatment
and niche: T1-leaf, T1-near soil, T1-far soil, and T1-control (A) and T4-leaf, T4-near soil, T4-far soil, and T4-control (B). Sample points are coded
according to plant (color), moisture (shape), and size (Pore). Factors that explained the most variation in the data are reported, as are the R?, and 75%
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baseline microbial analyses were conducted in air-dry samples
of large- and small-pore starting materials from conventional
(T1) and organic (T4) managements that were not subjected
to incubation.

This experiment was a component of a larger study that
examined the effects of management practices, PSDs, soil
moisture level, and plant leaf source (corn vs. soybean) on leaf
decomposition, the emission of CO; and N,O during incubations,
the distribution of leaf decomposition products within the soil, and
soil priming effects. The findings on these other components of
the study have been published elsewhere (Kravchenko and Guber,
2017; Toosi et al., 2017) and thus provide auxiliary information for
analyzing the data from the experiment described here.

DNA extraction, library preparation, and
sequencing

DNA was extracted from soil samples with the MoBio
Power Soil kit according to the vendor’s protocol, with the
exception that a Biospec Mini-Beadbeater-16 was used for cell
disruption. Approximately 0.25-0.5g of soil was extracted for
each sample. Samples were shaken for 1.5min at 25°C. DNA
yield was quantitated with a Nanodrop Spectrophotometer. Total
soil DNA was amplified and sequenced at the Michigan State
University sequencing core facility. Briefly, to assess fungal
communities, the ITS region was amplified using the primer

Frontiers in Microbiology

sets ITSIF12 (5 -GAACCWGCGGARGGATCA) and ITS2 (5 -
GCTGCGTTCTTCATCGATGC).
run in the same manner as the V4 amplification products (below)

Amplification products were

but on a separate MiSeq v2 flow cell.

16S
rRNA gene V4 regions were amplified using primer sets
515F (5 -GTGCCAGCMGCCGCGGTAA-3) and 806R (5 -
GGACTACHVGGGTWTCTAAT-3)  following the method
described by Kozich et al. (2013). Amplicons of 16S rRNA gene
V4 regions were pooled and run on a standard MiSeq v2 flow cell

To assess prokaryote communities, the microbial

with a 500-cycle reagent kit (PE250). Base calling was done using
the Illumina Real-Time Analysis (RTA) version 1.18.54, and the
output of RTA was demultiplexed and converted to FastQ format
using the Illumina Bcl2fastq version 1.8.4.

Fungal and prokaryotic sequence
processing

Raw forward and reverse Illumina ITS reads were quality
evaluated with FastQC (Andrews, 2010) and merged with PEAR
(Zhang et al., 2014). Primers and adapters were removed with
Cutadapt (Martin, 2011).
and Flyvbjerg, 2015; Edgar, 2016), de-replicated, removed from

Reads were quality filtered (Edgar
singleton sequences, and clustered into operational taxonomic

units (OTUs) based on 97% similarity using the UPARSE
algorithm (Edgar, 2013). Taxonomy assignments were performed
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in CONSTAX2 (Liber et al, 2021) using the UNITE sequence
database (Koljalg et al., 2013).

Raw forward and reverse Illumina 16S reads were processed
as previously described (Ricke et al., 2018) with the following
modifications. Briefly, we used Ribosomal Database Project (RDP)
Paired-end Reads Assembler (Cole et al, 2014) to merge the
primer-trimmed pair-ended reads to 250-280 bases and a minimal
Q score of 25. Using BLAST, we confirmed that the assembled 16S
rRNA gene V4 sequences shorter than 250 bases or longer than
280 bases were non-microbial. Vsearch (2.4.3, 64-bit) (Rognes et al.,
2016) was used to remove chimeras de novo, followed by removing
chimeras by reference using RDP 16S rRNA gene training set
sequences (No. 15). High-quality and chimera-free sequences were
then clustered at 97% sequence similarity by CD-HIT (4.6.1) (Fu
et al., 2012). The taxonomy of each representative OTU sequence
was identified using the RDP Classifier (Wang et al., 2007; Fu
etal.,, 2012) with a confidence cutoff of 50% (-c 0.5). Finally, OTUs
detected fewer than five times across all samples were removed.

Statistical modeling

For each marker gene (i.e., ITS and 16S), otu_table (McDonald
et al, 2012), taxonomic classifications, representative OTU
sequences, and metadata files were imported into the R statistical
environment (R Core Team., 2023) and combined with the
phyloseq package (McMurdie and Holmes, 2014). To standardize
the sequencing depth across all samples, we rarefied all samples to
the minimum sample size (i.e., 1,010 sequences for the fungi and
13,377 sequences for the prokaryotes) in the phyloseq R package
(McMurdie and Holmes, 2013).

To explore differences in microbial community beta-diversity,
we analyzed two components, namely, (i) community structure,
defined as the difference in multivariate space between samples
and sample groups and (ii) community dispersion, defined as
multivariate variance within each sample group. Community
structure was investigated using principal coordinate analysis
(PCoA) of the Bray-Curtis distance matrix with the function
“ordinate” in phyloseq (McMurdie and Holmes, 2014). A
permutational multivariate analysis of variance (Permanova) was
used to test differences among a priori defined sample groups
(Anderson, 2001) with the function “adonis” in the vegan R package
(Oksanen et al., 2019). To assess the amount of multivariate
dispersions (Anderson et al., 2006) around centroids, we used the
“betadisper” function in vegan. Statistical differences in dispersion
were assessed through pairwise permutational ANOVA, using the
“anova’” function in the car R package, with 9,999 permutations. All
P-values were corrected based on the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995).

To explore which bacterial genera will follow the decomposing
residue vs. soil and the increasing vs. decreasing time trends,
we first conducted a 3-way factorial ANOVA for the abundances
of individual OTUs. To identify the leaf-dominating and soil-
dominating genera, the ANOVA was followed by contrasts
comparing the leaf with near soil and the leaf with far soil and a
non-incubated control, tested simultaneously (P < 0.01). Then, the
abundances of genera identified as either leaf- or soil-dominating
were subjected to linear regression with time as the independent
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variable to identify those that exhibited a clear positive or negative
linear trend (P < 0.05).

Alpha diversity, OTU richness, and Shannon diversity indexes
were calculated in vegan with the “specnumber” and “diversity”
functions of the vegan package (Oksanen et al, 2019). The
Shannon index was standardized to 0-1 to allow for easier
comparisons across groups, as previously explained (Benucci et al.,
2022). Significant differences (P < 0.05) in alpha diversity were
assessed by a Wilcoxon test, with P-values corrected with the
Benjamini-Hochberg method (Benjamini and Hochberg, 1995). All
graphs were plotted in the ggplot2 (Wickham, 2016) and ggpubr
(Kassambara, 2020) R packages. Minimal graphical adjustments to
improve the figures’ visibility were performed in Inkscape (Inkscape
Project, 2020).

Results

Sequencing results

This study resulted from community data from 252 samples
that yielded 2,193,913 (8,671.6 =+ 6,448.2 mean reads and standard
deviation per sample, respectively) ITS reads and 3,701,268
(14,629.52 + 7,687.7) 16S reads in the otu_table after quality
filtering. The data were rarefied at 1,010 reads per sample for ITS
and 13,377 for 16S.

Beta diversity

In the dry control samples (i.e., the soil materials used in
the study tested prior to incubation), the long-term history
of contrasting agricultural management practices (Tl =
conventional vs. T4 = organic) influenced both fungal and
microbiomes

bacterial However,

neither fungal nor bacterial communities differed between the

(Supplementary Table S1).

large- and small-pore soil materials (Supplementary Table S1). In
the study samples, the largest amount of variation in composition
was present across different niches (i.e., leaf, near soil, and far
soil), as hypothesized, which accounted for roughly 16% and
39% of the total variance in fungal and bacterial communities,
respectively (Supplementary Table S1). Differences across niches
and treatments are clear in the principal coordinate analysis
(PCoA) ordination plots based on the Bray-Curtis dissimilarity
of fungal (Figure 1A) and bacterial communities (Figure 1B),
with clear clustering of samples along the first and second
PCoA axes, respectively. Fungal communities were also more
clearly impacted by soil treatment (T1 = conventional vs. T4
= organic), which explains nearly 11% of the variance, and,
to a lesser extent, by plant species (i.e., corn or soy), pore size
(i.e., small or large), and moisture content (i.e., low or high).
Bacterial communities were also impacted by pore size (~2.5%),
moisture content (~2%), treatment (~2%), and plant species
(~1.5%), but these effects were hidden by the effect of niche.
Significant interactions (P < 0.05, after Benjamini-Hochberg
P-value correction), mainly involving niche and other factors, were
also present, but, in general, the amount of variation explained was
negligible (Supplementary Table S2).
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TABLE 1 Permanova (Permutational Multivariate Analysis of Variance Using Distance Matrices) and Betadisper (Multivariate Homogeneity of Groups
Dispersions) models on the subsetted fungal and bacterial datasets according to slice and treatment (leaf-T1, leaf-T4, near soil-T1, T1-control, near

soil-T4, far soil-T1, far soil-T4, and T4-control).

Permanova

Betadisper

T1-Leaf Plant 4.22612 14.90845 0.29459 0.00080 0.0132 0.5592 0.5743
T1-Leaf Pore 0.44086 3.11042 0.03073 0.01840 0.0883 13.6263 0.0004
T1-Nearsoil Plant 2.85516 11.13978 0.24329 0.00080 0.0233 1.7466 0.1824
T1-Nearsoil Pore 0.44797 3.49560 0.03817 0.00880 0.0425 14.7884 0.0003
T1-Farsoil Pore 0.74554 4.85338 0.07261 0.00080 0.3237 71.3412 0.0000
T1-Farsoil Moisture 0.42277 2.75218 0.04118 0.00800 0.0063 0.5691 0.4537
T1-Control Pore 0.32534 2.38360 0.10468 0.00040 0.0427 10.4906 0.0041
T4-Leaf Plant 4.03977 15.91940 0.28679 0.00080 0.0507 2.0021 0.1436
T4-Leaf Pore 0.92249 7.27047 0.06549 0.00080 0.0299 4.4552 0.0387
T4-Leaf Time 0.81393 3.20743 0.05778 0.00080 0.0202 1.2462 0.2946
T4-Leaf Moisture 0.55793 4.39724 0.03961 0.00160 0.0067 0.8304 0.3656
T4-Leaf Pore:Moisture 0.37736 2.97408 0.02679 0.02000 - - -
T4-Nearsoil Plant 1.60929 6.19018 0.15103 0.00080 0.0094 0.5129 0.6012
T4-Nearsoil Pore 0.40427 3.11009 0.03794 0.00160 0.2103 36.0006 0.0000
T4-Nearsoil Moisture 0.34383 2.64510 0.03227 0.01120 0.0066 0.7250 0.3976
T4-Farsoil Pore 0.35941 2.63748 0.04163 0.01440 0.3542 56.6875 0.0000
T4-Farsoil Plant:Pore:Moisture 0.40467 2.96966 0.04687 0.00480 - - -
T4-Control Pore 0.30512 2.49281 0.10162 0.01240 0.1199 18.9037 0.0003
Bacteria
Factor
T1-Leaf Plant 7.99222 33.13792 0.39641 0.00080 0.2459 32.4638 0.0000
T1-Leaf Moisture 1.69730 14.07491 0.08418 0.00080 0.0029 0.4915 0.4857
T1-Leaf Time 1.22462 5.07759 0.06074 0.00080 0.0127 1.4587 0.2398
T1-Leaf Pore 1.01912 8.45110 0.05055 0.00080 0.0002 0.0480 0.8273
T1-Nearsoil Plant 0.96853 5.43286 0.12532 0.00080 0.0010 0.6545 0.5231
T1-Nearsoil Time 0.53755 3.01534 0.06956 0.00080 0.0003 0.1776 0.8377
T1-Nearsoil Pore 0.45416 5.09507 0.05877 0.00080 0.0018 2.0833 0.1536
T1-Nearsoil Moisture 0.25621 2.87432 0.03315 0.00080 0.0012 1.7753 0.1873
T1-Farsoil Time 0.52353 2.90084 0.08460 0.00080 0.0000 0.0285 0.9719
T1-Farsoil Plant 0.40441 2.24080 0.06535 0.00080 0.0013 0.9940 0.3765
T1-Farsoil Pore 0.36626 4.05886 0.05919 0.00080 0.0032 5.2212 0.0261
T1-Control Time 0.36715 2.03374 0.16551 0.00040 0.0220 2.1863 0.1398
T1-Control Pore 0.19382 2.14727 0.08737 0.00960 0.0427 10.4906 0.0041
T4-Leaf Plant 7.65287 37.25758 0.40881 0.00080 0.2337 20.6704 0.0000
T4-Leaf Pore 1.67765 16.33514 0.08962 0.00080 0.0187 3.0142 0.0873
T4-Leaf Time 1.57711 7.67806 0.08425 0.00080 0.0400 5.0084 0.0095
T4-Leaf Moisture 0.98904 9.63021 0.05283 0.00080 0.0010 0.3096 0.5799
T4-Leaf Pore:Moisture 0.52480 5.10997 0.02803 0.00720 - - -
(Continued)
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TABLE 1 (Continued)

Permanova Betadisper

Sum.Sq P.adj Sum.Sq F
T4-Nearsoil Plant 2 0.88452 5.07130 0.12185 0.00080 0.0012 0.7689 0.4678
T4-Nearsoil Pore 1 0.39821 4.56619 0.05486 0.00080 0.0010 1.1113 0.2957
T4-Nearsoil Time 2 0.32738 1.87699 0.04510 0.00320 0.0003 0.2050 0.8152
T4-Nearsoil Moisture 1 0.25161 2.88516 0.03466 0.00080 0.0002 0.2241 0.6375
T4-Nearsoil Pore:Moisture 1 0.19160 2.19708 0.02639 0.00880 - - -
T4-Farsoil Time 2 0.34319 1.94229 0.05863 0.00080 0.0013 0.8474 0.4338
T4-Farsoil Pore 1 0.30714 3.47648 0.05247 0.00080 0.0010 1.1832 0.2812
T4-Farsoil Plant 2 0.29821 1.68774 0.05094 0.00080 0.0003 0.1571 0.8550
T4-Farsoil Moisture 1 0.15576 1.76304 0.02661 0.00960 0.0000 0.0122 0.9124
T4-Farsoil Plant:Pore:Moisture 1 0.14815 1.67689 0.02531 0.01440 - - -
T4-Control Time 2 0.25182 1.49254 0.11267 0.00240 0.1105 4.4663 0.0242
T4-Control Pore 1 0.19786 2.34541 0.08853 0.00040 0.1199 18.9037 0.0003
T4-Control Moisture 1 0.16089 1.90716 0.07199 0.00080 0.0039 0.3283 0.5724

Time was treated as a fixed effect and included as a factor variable in the models (Time + Plant * Pore * Moisture, and Time + Pore * Moisture for just the control samples). The order of
the factors was chosen to first remove variance from variables with the highest impact in the models and better investigate the remaining variables. Only factors with significant (P < 0.05)

Benjamini-Hochberg-corrected P-values are displayed. Factor explaining the highest R? for each model and significant adjusted p-values are reported in bold.

To better evaluate the impacts of all the variables, the datasets
were divided by niche and treatment into eight subsets composed
of leaf-T1, leaf-T4, near soil-T1, near soil-T4, far soil-T1, far soil-
T4, control-T1, and control-T4. The PCoA ordinations generated
for each subset showed significantly different clusters of samples
for both fungi (Figure 2) and bacteria (Figure 3), as supported by
the Permanova tests.

Overall, the Permanova [P <0.05, after Benjamini-Hochberg
(BH) correction] results showed that plant species and pore size
were the two main drivers of the communities in both T1 and T4
and for each studied niche. In particular, plant species were always
the major driver of variation in the leaf and the near soil niches
(and also in the far soil for the bacterial microbiome in T1), while
pore sizes impacted the far soil (i.e., soil further away from the
leaf) niches; control samples were impacted by pore sizes the most
(Table 1). Microbiome variance attributed to plant species ranged
from about 29% in the T1-leaf to 15% in the T4-near soil of the
fungal microbiome and from about 40% in the T1-leaf to 5.1% in
the T4-far soil of the bacterial microbiomes, with no substantial
difference between T1 and T4. Microbiome variance attributed to
pore sizes ranging from about 7.3% in T1-far soil (10.5% in the
T1-control samples) to 3.1% in T1-leaf of the fungal microbiome
and from about 8.9% in T4-leaf (8.8% in the T4-control samples)
to 5% in Tl-leaf of the bacterial microbiome, with, in general,
higher variance in T4 compared to T1 if we do not consider the
control samples. Moisture content was most important in shaping
the bacterial rather than fungal microbiome. Significant effects
were present in T1-far soil (4.1%), T4-leaf (3.9%), and T4-near soil
(3.2%) in the fungal microbiomes, and T1-leaf (8.4%), T1-near soil
(3.3%), T4-leaf (5.3%), T4-near soil (3.6%), T4-far soil (2.7%), and
T4-control samples (7.2%) in the bacterial microbiomes.

The effect of time was the most important for the bacterial
microbiome than the fungal microbiome, and significant
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pore:moisture and plant:pore:moisture interactions were also
present in both fungal and bacterial communities, but only in
T4 treatments, which represent the organic management type.
Microbiomes clustered mainly according to plant and pore, as
shown by the fungal (Figure2) and bacterial (Figure 3) PCoA
ordinations, as emphasized by 75% confidence ellipses.

Alpha diversity

Alpha diversity measurements were also impacted primarily
by niche, followed by other factors both in fungal (Figure 4) and
bacterial (Figure 5) microbiomes. The bar plots also showed that
there were no substantial alpha diversity differences between the
T1 and T4 treatments. In particular, OTU richness in the leaf
was considerably lower than that of the soils and controls, but
differences between near soil, far soil, and control soil were also
present. In the leaf niche, there was a significant (P < 0.05 after
BH correction) effect of pore size in the T1 sample of the fungal
microbiome and a significant effect of moisture in both the T1 and
T4 samples of the bacterial microbiomes. In the near soil niche, a
higher richness was present in the small pores of T1 and T4 in fungi,
but only in T1 in bacterial microbiomes. In the far soil niche, fungal
microbiomes were affected by pore sizes in T1 and T4, but only in
T1, a higher richness was detected for the bacterial microbiomes.
The effect of pore sizes and moisture content was also significant in
T1 and T4, respectively, but only in the fungal microbiome.

Regarding Shannon diversity, differences between niches were
mostly limited to the leaves being different from soils and control
samples. Additionally, Shannon diversity followed an opposite
trend to richness, being higher in leaves (a more evenly abundant
microbiome) and lower in soils, and this phenomenon was more
evident in the bacterial (Supplementary Figure S3) than fungal
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FIGURE 4
Bar plots showing significant differences (P < 0.05 after Benjamini-Hochberg correction) in mean observed species richness (+standard deviation) for
fungal microbiomes in (A) conventional (T1) and (B) organic (T4) managament samples. Samples were grouped according to treatment, and
statistical differences were calculated across niche factors (leaf, near soil, far soil, and control) using pairwise Wilcoxon tests.

(Supplementary Figure S4) microbiome. In particular, in the leaf
niche, there was a significant (P < 0.05 after BH correction) effect
of moisture in both T1 and T4 in the fungal microbiome, but
Shannon diversity was higher for the T4 bacterial microbiome
in soy, small, and low moisture samples. Shannon diversity was
significantly higher in the T1 near soil niche for the fungi but also
in soy, large pores, and low moisture for the bacterial microbiome
in T1 samples. No other significant differences were present. Large
pores and low moisture samples were more even in T1 and T4 far
soil samples of the bacterial microbiomes, respectively.

Most abundant, variable, and significantly
different OTUs across treatments

In Figure 6, the most abundant fungal (Figure6A) and
bacterial (Figure 6B) OTUs are reported, averaged across all
samples, and those that showed the highest variation and had
significantly different mean abundance (P < 0.05) after BH
correction across the treatments. Some of these selected taxa
showed different treatments. For example, FOTU85 (Xilariales)
was higher in abundance in soy leaves and small pores, while
present in small amounts in the control samples. FOTUS58
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(Apodus sp.) was instead significantly more abundant in corn
leaves, but its abundance was not relevantly affected by other
factors. Some OTUs were present and significantly different
between factors in the in T1 treatment (e.g., FOTU545-Mucor),
others only in the T4 treatment (e.g., FOTU100-Podospora).
In the bacterial dataset, POTU25222-Chitinophaga, POTU27262-
Flavobacterium, POTU24422-Bdellovibrio, and other unclassified
bacteria were higher in soy samples with large pores and
high moisture content in T1 samples. Other OTUs, such as
unclassified Gammaproteobacteria, POTU6175-Saccharibacillus,
and POTU12661-Aureimonas, were also higher in soy samples with
large pores and high moisture content, but only in T1.

In the near soil samples, FOTU272-Robillarda showed a higher
abundance in large pores, together with FOTU216-Pleosporales
and FOTU366-Ballistosporomyces  (Figure 7A).  Unclassified
Gammaproteobacteria were higher in abundance in soy, large
pores, and high moisture in T1, while an unclassified OTU in the
Alphaproteobacteria was higher in T4, in corn, large pores, and
high moisture samples. In T1, the most abundant and variable
OTUs were associated with soil, while in the T4 treatment,
they were associated with corn. POTU12661-Aureimonas and
POTU12354-Asticcacaulis were the only two prokaryotes with a
higher abundance in small soil pores (Figure 7B).
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FIGURE 5
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(£standard deviation) for bacterial microbiomes in (A) conventional (T1) and (B) organic (T4) managament samples. Samples were grouped according
to treatment, and statistical differences were calculated across niche factors (leaf, near soil, far soil, and control) using pairwise Wilcoxon tests.

In the far soil samples, some of the same OTUs present in the
near soil samples were abundant and variable across groups. For
example, FOTU545-Mucor (Figure 8A) was shown to be higher in
corn with large pores and high moisture content, while FOTU358-
Chaetothyriales (Figure 8B) was higher in soy with large pores
and high moisture content; both were higher in T1 compared to
T4, highlighting inherent differences between soil communities.
In general, in T4, the most abundant OTUs that vary across
factors were also present in the control samples, while in T1, they
were absent.

Discussion

In this study, we tested the impact of the prevalence of soil
pores of a certain size range, different soil moisture contents, and
decomposition of plant tissue of different qualities on fungal and
bacterial dynamics across space and time. We explored both the
tissue itself and the surrounding detritusphere. We found that soils
subjected to long-term differences in soil management practice, i.e.,
conventional vs. organic management, had the greatest influence
on microbial community structure, likely the result of differences
in plant diversity but also due to increases in soil organic matter
in the organic management in these field soils (Syswerda et al,
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2011). That is in agreement with observations by Epp Schmidt
et al. (2022) on the soils from similar management practices, also
after extended implementation. The microbial community in the
long-term biologically based treatment showed greater microbial
richness (Figure 3), consistent with a number of past reports (de
Graaff et al., 2019).

As expected, the greatest contrast in microbial community
composition was observed between the community on the
decomposing residue and the communities of the surrounding
soil. Leaf microbiomes were less species rich as compared to the
adjacent soil (Figure 3), likely reflecting the special environment
dominated by leaf decomposers, organisms that benefited from
their necromass, and predators. The decomposing leaves, providing
a carbon and nutrient supply, drive microbial functioning in the
soil microenvironment (Figure 3).

As we reported in a companion study, decomposition rates
and magnitudes substantially differed between microcosms with
incubated corn vs. soybean leaves (Kravchenko et al., 2017). While
>85% of the soybean residue was completely decomposed after
7 days of incubation, only 30-50% of the corn residue was
decomposed by that time. However, surprisingly, the effect of
plant species on the composition of the microbial community was
relatively minor, especially for bacteria. Mortierellomycetes, a clade
of fungi reportedly abundant in agricultural conventionally and
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FIGURE 6

Top abundant, variable, and significantly different (pairwise Wilcoxon tests, P < 0.05 after Benjamini-Hochberg correction method) OTUs across T1
and T4 treatments in the fungal (A) and bacterial (B) microbiomes of the leaf. Point sizes represent the mean abundance across samples at a
treatment level. Only significantly different OTUs among the top 25 were selected among the most variable (OTUs with a difference in abundance
between treatment levels > the 50 percentile of the coefficient of variation for that OTU across samples for the fungi and > the 75 percentile for the

bacteria) and are shown.

organically managed systems (Epp Schmidt et al., 2022; Benucci
et al., 2023) and known to include soil saprotrophs as well as
plant growth promoters (Polme et al., 2020; Vandepol et al., 2022),
had a greater abundance on soybean leaves than corn leaves.
Agaricomycetes and Sordariomycetes groups, known to include
large proportions of wood and litter saprotrophs (Polme et al,
2020), were more abundant in corn than in soybean leaves.

We hypothesized that micro-environments within small pore-
dominated soil, especially when accompanied by low soil moisture,
would stimulate greater diversity of microbial communities.
Smaller and less hydraulically connected pore spaces generate more
fragmented microhabitats, shielding inhabitants from predation
and competition (Tiedje et al., 2001; Wolf et al., 2013; Bickel and Or,
2020). This effect was expected to be more pronounced in bacteria
than in fungi since hyphal growth was assumed to enable fungi to
easily navigate and spread through the pore space, allowing them
greater resistance to fluctuations in local environmental conditions
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(Barnard et al, 2013; Nunan et al, 2020). Our findings only
partially supported this hypothesis (Figure 3). Greater bacterial
diversity was indeed observed in small pore treatments than in
large pore treatments, but it was statistically significant only in the
soil of conventional agriculture and was only a numeric trend in
organic management. However, a greater diversity of fungi was
consistently observed in the soils of both management practices.
The result suggests a greater than expected sensitivity of fungi to
micro-environmental conditions, even at a few-cm spatial scale.
However, the association between soil moisture and microbial
richness was either absent or the opposite of what we anticipated.
Moisture did not influence fungal richness, and on decomposing
residues and partially in the surrounding soil, greater richness was
associated with higher moisture (Figure 3). It is possible that the
lower moisture of the study limited many organisms and selected
for those tolerant of drier conditions, while the optimal (field
capacity) moisture of our high soil moisture treatment provided an
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FIGURE 7
Top abundant, variable, and significantly different (pairwise Wilcoxon tests, P < 0.05 after Benjamini-Hochberg correction method) OTUs across T1
and T4 treatments in the fungal (A) and bacterial (B) microbiomes of the Nearsoil. Point sizes represent the mean abundance across samples at a
treatment level. Only significantly different OTUs among the top 25 were selected among the most variable (OTUs with differences in abundance
between treatment levels > the 50 percentile of the coefficient of variation for that OTU across samples for the fungi and > the 75 percentile for the
bacteria) and are shown.

optimal growth environment. Indeed, the moisture corresponding
to field capacity was reported as beneficial to bacterial diversity
in both experimental works (Carson et al., 2010) and theoretical
considerations (Bickel and Or, 2020).

Nevertheless, for several bacterial groups, the associations with
pores were consistent with the associations with soil moisture
levels, suggesting the contribution of general micro-environmental
effects to the performance of these microorganisms during the
experiment. Betaproteobacteria and Bacteriodetes were in greater
abundance in both large-pore soils and at higher soil moisture
(Figure 5). Gammaproteobacteria and Shingobacteria were in
greater abundance in both small-pore soils and at lower soil
moisture. Actinobacteria, a phylum known to be resistant to
desiccation (Bardgett and Caruso, 2020), was also notably more
abundant in both small-pore soils and at lower soil moisture.
A number of Acidobacteria groups, which are usually described
as oligotrophs resistant to harsh environments, were also in
greater abundance in small pores, as were Anaerolinea. The higher
abundance of Acidobacteria in the small pore treatment, with its
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lower oxygen supply, was expected. Consistent with our findings,
Xia et al. (2022) reported a greater abundance of Actinobacteria
in smaller pores and drier conditions and a greater abundance of
Betaproteobacteria in large pores.

Conclusion

We reported here that decomposing leaves in the soil drive
microbial activity and turnover over time. As we hypothesized,
incubated fresh plant detritus was shown to harbor a reduced
diversity but a more even microbiome composition compared
to that of the adjacent communities in the soil and was the
most important factor explaining fungal and bacterial microbiomes
across space. We did not entirely expect to have such an important
effect of management type (organic vs. conventional), which was
also variable across the different niches, and impactful on the effect
of pore size on both bacterial microbiomes. Soil pores and moisture
content were influenced by both niche and management type and
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FIGURE 8
Top abundant, variable, and significantly different (pairwise Wilcoxon tests, P < 0.05 after Benjamini-Hochberg correction method) OTUs across T1
and T4 treatments in the fungal (A) and bacterial (B) microbiomes of the far soil. Point sizes represent the mean abundance across samples at a
treatment level. Only significantly different OTUs among the top 25 were selected among the most variable (OTUs with a difference in abundance
between treatment levels > the 50 percentile of the coefficient of variation for that OTU across samples for the fungi and > the 75 percentile for the
bacteria) and are shown.

were important in shaping bacterial communities, which are known
to rely on water films for dispersal and were more dynamic over
time compared to fungi. In contrast, and as hypothesized, plant
species had a greater effect on the fungal community composition
over time. Together, these results contribute to our understanding
of the decomposition of carbon residues in the soil and the factors
that regulate the microbes that drive soil C and nutrient cycling.
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