
SREP: Out-Of-Band Sync of Transaction Pools for
Large-Scale Blockchains

Novak Boškov, Sevval Simsek, Ari Trachtenberg, and David Starobinski
Department of Electrical and Computer Engineering

Boston University, Boston, Massachusetts, USA
{boskov,sevvals,trachten,staro}@bu.edu

Abstract—Synchronization of transaction pools (mempools)
has shown potential for improving the performance and block
propagation delay of state-of-the-art blockchains. Indeed, various
heuristics have been proposed in the literature to this end,
all of which incorporate exchanges of unconfirmed transactions
into their block propagation protocol. In this work, we take
a different approach, maintaining transaction synchronization
outside (and independently) of the block propagation channel.
In the process, we formalize the synchronization problem within
a graph theoretic framework and introduce a novel algorithm
(SREP - Set Reconciliation-Enhanced Propagation) with quan-
tifiable guarantees. We analyze the algorithm’s performance for
various realistic network topologies, and show that it converges
on any connected graph in a number of steps that is bounded
by the diameter of the graph. We confirm our analytical
findings through extensive simulations that include comparison
with MempoolSync, a recent approach from the literature. Our
simulations show that SREP incurs reasonable overall bandwidth
overhead and, unlike MempoolSync, scales gracefully with the size
of the network.

Index Terms—Blockchains, Overlay networks, Peer-to-peer
computing

I. INTRODUCTION AND RELATED WORK

Block propagation represents a fundamental aspect of many
blockchain networks in which blockchain nodes forward newly
created blocks to their neighbors. Historically, block prop-
agation has been performed by sending all the transactions
belonging to the block alongside the block’s metadata. Often,
a substantial number of the block’s transactions are present on
the receiving end, resulting in unnecessarily high bandwidth
overhead. To cope with such overhead, more advanced block
propagation protocols such as CompactBlock [1], Xtreme Thin
Blocks [2], Graphene [3], and Gauze [4] have been introduced.

Yet, it has recently been demonstrated through in-situ
measurements in live blockchains, including Bitcoin, that the
performance of these advanced block propagation protocols
can significantly degrade when transaction pools go out of
sync [5]–[8]. One approach to prevent such performance
degradation is to have neighboring nodes regularly synchro-
nize their pools of unconfirmed transactions. Toward this end,
the recent work in [6] proposes a heuristic, called Mempool-
Sync, that is shown to reduce the average block propagation
delay by 50% in the Bitcoin network. Yet, MempoolSync does

not provide any quantifiable guarantees on overall communi-
cation or delay performance.

In this work, we study the problem of transaction pool
synchronization (sync) from a fundamental, graph-theoretic
perspective, which allows us to analyze synchronization per-
formance metrics in various network topologies. Our main
contributions are as follows:
• We introduce a novel transaction pool sync algorithm,

called SREP, which functions in an assistive capacity
outside of the existing block propagation protocols.

• We analyze the performance of SREP in general network
topologies, including a more specialized model that cap-
tures topological properties of actual blockchains (e.g.,
the “small-world” property) as well as the statistics of
transaction pools.

• We develop a simulation approach based on realistic
transaction pool data from measurement campaigns, and
confirm our analytical findings through simulations.

• We show that SREP has significantly lower bandwidth
overhead than MempoolSync.

The rest of this paper is organized as follows. In Section II,
we overview the related work. In Section III, we introduce
SREP. In Section IV, we analyze the properties of SREP
and validate our findings through simulations in Section V.
We compare SREP with a transaction pool synchronization
approach from the literature in Section V-C. Finally, we give
a conclusion and propose future work in Section VI.

II. BACKGROUND

To the best of our knowledge, SREP is a unique distributed
algorithm that explicitly tackles the problem of network-wide
synchronization of unconfirmed transactions — transaction
pools [9]. To achieve its goals, SREP relies on communication-
efficient solutions to the set reconciliation problem [10], which
is defined as follows. Given two remote parties with their
corresponding data sets SA and SB , each party needs to
discover the elements local to the other. Communication-
efficient solutions to this problem exchange only messages of
size proportional to the number of mutual differences defined
as (SA \ SB) ∪ (SB \ SA) and often denoted as SA ⊕ SB .

In fact, there has been several communication-efficient set
reconciliation algorithms proposed in the literature includ-
ing Characteristic Polynomial Interpolation [11] (CPI), BCH979-8-3503-1019-1/23/$31.00 ©2023 IEEE

ar
X

iv
:2

30
3.

16
80

9v
1

 [c
s.D

C
]

29
 M

ar
 2

02
3

codes [12], and Invertible Bloom Lookup Tables (IBLT) [13]–
[15]. For instance, CPI incurs a communication cost equal
to the number of mutual differences plus a small constant,
which makes it nearly optimal in communication [11]. On
the other hand, IBLT-based solutions typically offer better
computational complexity at the cost of increasing their
communication cost by a constant factor. To further reduce
this communication overhead, Lázaro and Matuz [15] have
recently proposed an IBLT-based solution that brings the
communication cost closer to that of CPI while keeping the
computational complexity low.

On the other hand, when it comes to our analytical
model and simulations, we make use of the findings from
the blockchain topology-discovering literature. In particular,
Wang et al. [16] and Gao et al. [17] independently verified
that the Ethereum network exhibits “small-world” property.
Recently, Shahsavari et al. [18] used a random graph model
to simulate Bitcoin network and Ma et al. [19] proposed
a topology generation based on Watts-Strogatz [20] random
graph model to capture the Bitcoin network in their CBlockSim
simulator.

III. SREP ALGORITHM

We propose a novel distributed algorithm for network-
wide transaction pool synchronization called SREP (Set
Reconciliation-Enhanced Propagation). The core building
block of SREP is a concept that we denote as primal sync —
a set reconciliation protocol with communication complexity
linear in the number of symmetric differences (e.g., CPI [11]).
Given the local transaction pool as a set of globally unique
identifiers [21], SREP invokes one primal sync per each
neighbor in parallel.

One way to support many parallel invocations of primal
syncs is to create one transaction pool replica per each neigh-
bor. Then run primal syncs in parallel using the corresponding
replicas to avoid write collisions. Upon the completion of all
parallel tasks, we can reuse the primal sync to incorporate new
elements into the local transaction pool. We describe SREP in
Algorithm 1 using Sn to denote the transaction pool at node
n, din to denote the differences between Si and Sn that reside
in Si, and Sync to denote a primal sync. As an illustration, in
Fig. 1, we depict one iteration of SREP’s main loop (line 2),
assuming that each node n holds only one transaction whose
hash is also n.

Avoiding Full Replication

SREP from Algorithm 1 has a significant memory overhead
caused by transaction pool replication for each neighbor.
However, certain primal syncs allow us to implement SREP
without replication, thus mitigating this memory overhead. In
particular, multiple set reconciliation algorithms mentioned in
Section II use data set sketches to perform synchronization
and modify the underlying data sets only at the end of the
protocol.

For instance, CPI reads from the set only once, at the
beginning of the protocol, and writes to it only once at the

Algorithm 1: SREP Algorithm.
Input: Network G = (V,E) as adjacency list.

1 At each node n ∈ {0, |V | − 1}
2 Loop
3 for i in G[n] do // Neighbors of n
4 Si

n ← Sn ; // Replicate data set
5 Do in parallel

// Network sync
6 din ← Sync (Si

n, Si) ;
7 Si

n ← Si
n ∪ din ;

8 for i in G[n] do
// Local sync

9 Si
n \ Sn ← Sync (Sn, Si

n) ;
10 Sn ← Sn ∪ (Si

n \ Sn) ;

G = (V,E) Network of |E| edges and |V | nodes
Sn Transaction pool at node n ∈ {0..|V | − 1}

dij = Si \ Sj Differences between i and j that reside in i

deg Average node degree

tn
Time node n spends to synchronize with all
its neighbors once

Tx% Time until x% of G is synchronized
Σx% Number of primal sync invocations
Cx% Overall communication cost

TABLE I: Summary of notation.

end of the protocol. Suppose that we choose CPI as the primal
sync in SREP. Then we can construct the characteristic poly-
nomial [10] of Sn as the very first step in each iteration (after
line 2 in Algorithm 1). Instead of using the neighbor replicas,
we can now use the same characteristic polynomial in all
neighbor threads. As no thread will modify the polynomial, the
procedure is thread-safe and the threads can now write directly
to the underlying set. Although the write operation will need to
acquire the corresponding lock, since set union is commutative
and associative, the order in which the threads update the
set does not matter. As we now avoid replication, the local
synchronization step can be safely eliminated altogether.

Note that this implementation improvement does not change
the functional properties of SREP. That is, each thread still
operates on its own version of the sketch and will update
its sketch only at the beginning of the subsequent iteration.
Hence, a difference that arrives in iteration i via some neighbor
thread will only get acknowledged by other threads in iteration
i + 1. For that reason, we use the notion of “replicas” in the
subsequent analysis.

IV. SREP PERFORMANCE ANALYSIS

Several aspects affect the performance of SREP, including
the network topology and the statistics of transaction pools.
To aid our analysis, we first define an explicit network model,
and then analyze SREP in a step-by-step fashion. In each
stage of our analysis, we describe a SREP variant with the
corresponding set of simplifying assumptions and analyze

0

14

3 2

0

14

3 2

S0 = {0,2}
(1.) Create replicas for each neighbor
 (3.) Local Sync

S1 = {1,2,4}

S2 = {0,1,2,4}S3 = {3}

0

14

3 2

S0 = {0}

S1 = {1}

S2 = {2}

S4 = {1,2,3,4}

S3 = {3,4}

S0
2 = {0}

S4 = {4}

S4
1 = {4}

S4
2 = {4}

S4
3 = {4}

S1
2 = {1}

S1
4 = {1}

S3
4 = {3}

S2
0 = {2}

S2
1 = {2}

S2
4 = {2}

0

14

3 2

S0
2 = {0,2}

S4
3 = {4,3}

S1
2 = {1,2}

S1
4 = {1,4}

S3
4 = {3,4}

S2
0 = {2,0}

S2
1 = {2,1}

S2
4 = {2,4}

Initial state
 (2.) Exchange differences

S4
2 = {4,2}

S4
1 = {4,1}

Fig. 1: One iteration of SREP on a tractably small network.

its performance. By successively relaxing these assumptions,
we arrive at the final version of SREP. Table I summarizes
notation used throughout this work.
Definition 1: We use Tx%, Σx%, and Cx% to denote time, total
number of primal sync invocations, and total communication
cost until x% of transaction pools in the network are equal.
When x = 100, we say that full network synchronization is
achieved — the ultimate goal of SREP.

A. Network Model

Watts-Strogatz [20] random graphs allow us to describe a
wide range of realistic blockchain network topologies reason-
ably well [16], [17], [19], [22]. A typical set of parameters to
Watts-Strogats model are the number of nodes in the network
|V |, average node degree deg, and rewire probability p [20].

For instance, each Bitcoin node selects 8 random neighbors
upon joining the network [23]–[25], which has been shown to
yield an unstructured random graph [18]. We can capture this
in the Watts-Strogatz model by setting deg = 8 and p = 1.
Ethereum’s neighbor selection mechanism, on the other hand,
relies on a Kademlia distributed hash table (DHT) [26], and
yields a network with more structure [17]. Notwithstanding
this, multiple recent measurement results have independently
confirmed that the generated network exhibits the “small
world” property and fits the Watts-Strogatz model [16], [17],
[22]. That is, the average shortest path between any two nodes
can be reasonably approximated by O

(
logdeg|V |

)
, and the

diameter of the network is small [27].
Besides the graph topology, our network model also cap-

tures the states of transaction pools across the network. In
particular, we define the pool assignment A as a collection of
sets S0..S|V |−1 where set Si represents the transaction pool at
node i. We model the statistical properties of A through the
following pool parameters:

S: sizes distribution. A discrete random variable describing
the sizes of transaction pools Si for i ∈ {0...|V | − 1},

s: sizes vector. A |V |-size vector where elements are drawn
from S ,

P: differences distribution. A discrete random variable de-
scribing the sizes of mutual differences between the pairs
of transaction pools (i.e., |Si ⊕ Sj |),

M : mutual differences matrix. A |V | × |V | upper triangular
matrix of mutual differences. For the given topology G =
(V,E), the elements of the matrix are defined as:

mij =

{
|Si ⊕ Sj | when (i, j) ∈ E and i < j,

0 otherwise.

Non-zero elements are drawn from P .
U : universe. A discrete random variable from which we draw

transaction IDs. We choose U{0, u} to be a uniform
random variable for some u ≥ |V |.

B. Elementary SREP (E-SREP)

The starting point for our build up of SREP is called ele-
mentary SREP (Algorithm 2). We summarize its simplifying
assumptions as follows:

(A1) All nodes have global view of the network.
(A2) Initially, the transaction pools at each node contain only

one element (transaction) that is unique across all network
nodes (e.g., index of the node). Strictly speaking, we set
the pool parameters as: S = 1, P = 2 , and u� |V |.

(A3) No new transactions arrive to the network after the
initialization.

(A4) In one iteration of elementary SREP (line 1), nodes take
turns to perform their synchronization duties such that
no two nodes invoke primal sync at the same time. For
instance, nodes with smaller indices go first. An iteration
ends when all nodes have invoked synchronization once
for all their neighbors.

(A5) Nodes synchronize with their neighbors sequentially. For
instance, the neighbors with smaller indices get synchro-
nized first (line 3).

(A6) All synchronizations are two-way (lines 7 and 8), mean-
ing that the differences are exchanged in both directions.

(A7) All synchronizations take equally long.

In the context of E-SREP, the following special case is
particularly significant for the analysis.
Lemma 1: For E-SREP over a complete graph G = (V,E),
the communication cost to sync the entire network is

C100%(G) = |V | · (|V | − 1).

Algorithm 2: Elementary SREP.
Input: Network G = (V,E) as adjacency list.

1 while network is not fully synchronized do
2 for n← 0 to {0..|V | − 1} do
3 neighbors← sort (G[n]) ;
4 for i in neighbors do
5 din ← Sync (Sn, Si) ;
6 dni ← Sync (Si, Sn) ;
7 Sn ← Sn ∪ din ;
8 Si ← Si ∪ dni ;

C. Elementary Parallel SREP (EP-SREP)

The main aim of the elementary parallel SREP is to relax
(A1), (A4) and (A5). Instead of invoking synchronization in
order, EP-SREP invokes synchronization for all neighbors at
once (i.e., Algorithm 1). In addition to that, we also relax (A7).
The synchronization between nodes u and v now takes time
equal to the number of their mutual differences (i.e., |duv ∪
dvu|). As discussed earlier in Section II, this is a reasonable
assumption to make (e.g., CPI has such a property).
Theorem 1: In EP-SREP and for any connected network
G = (V,E), we have the following bounds on the overall
communication cost until the network is fully synchronized:

|V | · (|V | − 1) ≤ C100% < |V | · (|V |2 − 1).

Proof: The lower bound is obtained similarly as in
Lemma 1. The least amount of communication to achieve
full synchronization is equivalent to each node sending its
element to all the other nodes directly. On the other hand,
we get the upper bound by observing that there cannot be
more than |V |2 ·(|V |−1) redundant element transmissions on
top of the lower bound. Redundant transmissions happen when
a node receives an element via multiple replicas in the same
iteration. To count all redundant transmissions, we observe
that, in each iteration, each node either receives some new
elements or does not receive any. In the latter case, obviously,
no redundant transmissions happen. Otherwise, if there are
some new elements received, the following holds: (1) there
will be no more than |V | new elements arriving at the node
across all iterations, as there is only that much elements in the
network, and (2) for each element, there cannot be more than
|V |−1 redundant transmissions, as there cannot be more than
that much replicas at any node. Thus, there cannot be more
than |V |2 · (|V | − 1) redundant transmissions at all nodes in
all iterations. �

As in Watts-Strogatz networks we have deg replicas at each
node on average, the same counting argument from above
applies in the following form.
Corollary 1: For EP-SREP in Watts-Strogatz networks:

C100% < |V | · (|V | · deg + |V | − 1).

On the other hand, to infer the upper bound on the time that
EP-SREP needs to complete a full sync (T100%), we rely on

following definition.
Definition 2: Ix%(G) is the maximal number of EP-SREP
iterations (line 2 in Algorithm 1) at any node to achieve x%
network synchronization.
Theorem 2: In EP-SREP and for any connected network G =
(V,E), with the shortest path between nodes u and v denoted
as dist(u, v), the maximum number of iterations required for
a full network synchronization is equal to the diameter of the
network:

I100%(G) = max
u,v∈V

dist(u, v).

Proof: By the definition of full synchronization, all elements
need to reach every other node. Without a loss of generality,
suppose that we follow the propagation of some element
i ∈ V during the execution of EP-SREP. Since the graph
is connected, in each iteration of EP-SREP, i will progress
exactly one step further through the network. The number of
iterations required to synchronize the entire network is then
equivalent to the maximum distance between any two nodes
in the network (i.e., diameter). �
Lemma 2: In EP-SREP over complete graphs G = (E, V):

I100%(G) = 1 and C100% = |V | · (|V | − 1).

The former holds as the diameter of complete graphs is 1.
The latter is a consequence of the former; as no element
traverses more than one edge, there cannot be any redundant
transmissions.
Corollary 2: For EP-SREP and Watts-Strogatz networks,
the maximal number of iterations at any node to synchronize
the entire network (I100%) is logarithmic in the size of the
network.

Counting the number of nodes that have heard about an
element n ∈ V in iteration i of EP-SREP over a Watts-Strogatz
network, we get the following sum:

1 + deg + deg
2

+ . . .+ deg
i
.

By equating it to |V |, we can express i, the number of itera-
tions until all nodes have heard of n, as a logarithmic function
of |V | [27]. Practically speaking, EP-SREP will complete in
logarithmically small number of iterations (≈ 4 logdeg(10)))
for the blockchain networks of realistic sizes (e.g., Blockchain
and Ethereum [24], [25]).
Theorem 3: In general graphs G = (V,E), the following
holds for EP-SREP:

T100% ≤ I100%(G) ·max
i∈V

ti < I100%(G) · |V |,

Σ100% ≤ I100%(G) · |E|.

Proof: Since synchronizations happen in parallel, the overall
elapsed time is proportional to the number of iterations. Any
sync invocation at any node will take strictly less than |V |,
as no two data sets can differ in more than |V | − 1 elements
(each data set keeps exactly one element at the beginning).
Since in each iteration nodes sync with all their neighbors
and each sync is two-way by (A6), there will be no more than
|E| syncs in each iteration. �

2 10 20 30 40 50 60 70 80 90 10070
Average network degree (deg)

0

25

50

75

100

125
R

ed
un

da
nt

 T
ra

ns
m

is
si

on
s (

x
10

3)

Complete graph
(no redundant transmissions)

Lemma 2

Fig. 2: Amount of redundant transmissions in EP-SREP over
a network of 100 nodes (p = 0.24).

The deg Dilemma: Due to the counting argument from
Theorem 1, the upper bound on overall communication cost
is not tight; there must be at least some elements that will not
generate redundant transmissions in any connected network.
On top of that, the topology of the network plays a complex
role in generating redundant transmissions. Intuitively speak-
ing, the impact of deg in Watts-Strogatz networks is twofold,
and conflicting: (1) the larger deg, the larger the average
number of replicas per node, which may cause redundant
transmissions, and (2) the larger deg, the shorter the average
pair-wise shortest path among the nodes in the network, which
makes each element traverse less intermediate nodes to reach
the entire network, thus reducing the probability of redundant
transmissions. We plot this non-monotonic effect that deg has
on the amount of redundant transmissions in Fig. 2 for a
tractably small network. Up to a point, the first effect (replicas
count) prevails and drives the overall communication cost up.
After that point, the second effect (path shortening) prevails
and drives the overall communication cost down all the way
to the point when the network becomes a complete graph and
there is no redundant transmissions at all.

D. Multi-element SREP

The final stage in building SREP is multi-element SREP.
We build it by relaxing (A2) — transaction pools can now
initially contain multiple elements. In terms of our network
model, this means that our S (sizes distribution) and P
(differences distribution) are no more constant. Thus, SREP
is a generalization of EP-SREP.
Definition 3: Function f : (G,A) 7→ Z maps a pair of a
topology G and a pool assignment A to a non-negative integer
via first constructing the corresponding mutual differences
matrix M , then computing

∑
mij .

Definition 4: Function g : (G,A) 7→ (G,A(next)) maps a pair
of a topology G and a pool assignment A to the same topology
G and a transformed pool assignment A(next). We define the
transaction pools in the transformed pools assignment A(next)

as:
S(next)i = Si ∪ (

⋃
j∈G[i]

Sj).

We use
⋃

j∈G[i] Sj to denote the union of all transaction
pools Sj corresponding to the neighbors of node i in the
previous iteration.
Definition 5: For some function h, we write h(n)(x) to denote
the composition of function h with itself n times, starting with
argument x:

h(n)(x) = h ◦ h · · ·h︸ ︷︷ ︸
n

(x).

Definition 6: A(n) is the assignment resulting from n
compositions of g with itself starting with the initial pool
assignment that we denote as A = A(0).
Lemma 3: For a network model (G,A) where G is a
connected graph and A the initial pool assignment, the number
of SREP iterations to achieve the full network synchronization
I100%(G,A) is given as a solution to the following equation:

f(g(I100%(G,A))(G,A)) = 0.

Note that by Definition 4, g exactly corresponds to one
iteration of SREP. That is, the transformed pool assignment
A(next) reflects the state of the transaction pools after an
iteration of SREP at all nodes in the network. Composing
g with itself n times corresponds to repeating an iteration
of SREP at all nodes n times. By a similar argument as
in Theorem 2, all elements will reach all nodes after some
number of iterations. Since this implies that no two sets
have any differences, M will be an all-zeros matrix. That is,
(f ◦ g(n))(G,A) has at least one zero. Thus, the number of
times we need to compose g with itself until f(G,A(n)) = 0
gives us the maximal number of SREP iterations to achieve
full network synchronization.
Theorem 4: For a connected graph G = (V,E) and an initial
pool assignment A, the number of SREP iterations to achieve
the full network synchronization is bounded by the diameter
of the network:

I100%(G,A) ≤ max
u,v∈V

dist(u, v).

Proof: As SREP is a generalization of EP-SREP, the argu-
ment here is similar to that of Theorem 2. To achieve the full
network synchronization, elements need to traverse at most
the diameter of G. As opposed to EP-SREP, in SREP each
element may initially appear at more than one node, dictated
by the differences distribution P . Thus the diameter is an upper
bound on SREP iterations. �
Lemma 4: For a connected graph G = (V,E) and initial
pool assignment A with the corresponding mutual differences
matrix M , the communication cost of SREP is:

C100(G,A) =

I100%(G,A)∑
i=0

f(G,A(i))

< I100%(G,A) ·max{f(G,A), . . . , f(G,A(I100%(G,A)))}.

In ith iteration of SREP, we transmit exactly as much
elements as there are in the differences matrix that corresponds

to A(i). Given I100%(G,A) from Lemma 3, we get the overall
communication cost of SREP.
Lemma 5: In SREP over a connected network G = (V,E)
with the given initial pool assignment A and the largest order
statistics of differences distribution P denoted as P(n):

T100% ≤ I100%(G,A) ·max
i∈V

ti = I100%(G,A) · P(n),

Σ100% ≤ I100%(G,A) · |E|.

The argument is similar to that of Theorem 3.
Finally, note that the assumptions in our analysis such

as (A3) — no new transactions arrive after SREP starts, are
artificial in that they simplify our analysis, but they do not
constrain SREP in practice. The properties such as the overall
communication cost (C100%) and time (T100%) to sync the
entire network relate to the transactions that have arrived
before SREP begins.

V. SIMULATIONS

To validate our analytical findings about SREP, we construct
an event-based simulator called SREPSim [28] that shares
the topology generation procedure with CBlockSim of Ma et
al. [19] and adds the other parameters of our network model
described in Section IV-A.

In the rest of this section, we first describe a method to
parameterize our network model. Then, we use such param-
eterized model to validate the main analytical properties of
SREP. We then compare the overall communication cost of
SREP with a similar approach from the literature. At the end,
we present a SREPSim optimization that allows for easy SREP
communication cost calculation over large-scale networks.

A. Configuring Network Model Parameters

Unlike the simulation approaches from the literature (e.g.,
SimBlock [29]), our network model can seamlessly integrate
real-world transaction pool data. For instance, the empirical
distributions of S and P can be generated for some small
subset of all nodes in the network using the measurement
software such as log-to-file of Imtiaz et al. [30], [31]. This
software instruments adjacent Bitcoin nodes and periodically
serializes the snapshots of their transaction pools. From these
transaction pool snapshots, we can measure transaction pool
sizes and their mutual differences to construct the empirical
distributions for S and P .

For the purpose of this work, we have conducted a 3-
day long measurement campaign on two time-synchronized
Bitcoin nodes and requested the transaction pool snapshots
each minute. Fig. 3 depicts the results that we obtained.
Roughly speaking, the set sizes fit the Maxwell distribution
reasonably well, while the number of mutual differences
fits the Hyperbolic distribution. Next, given the empirical
distribution of S , we need to configure the rest of our network
model’s pool parameters1. Ultimately, we need to construct a
pool assignment A that conforms to the differences distribution
P .

1Direct usage of P is also possible but perhaps harder.

20000 30000 40000 50000 60000 70000 80000
Set sizes

0.0

0.2

0.4

0.6

0.8

1.0

Si
ze

s d
is

tri
bu

tio
n

(
)

Type
Measurements
Maxwell

0 2000 4000 6000 8000
Mutual Differences

0.0

0.2

0.4

0.6

0.8

1.0

D
iff

er
en

ce
s d

is
tri

bu
tio

n
(

)

Type
Measurements
Hyperbolic

Fig. 3: Empirical distributions of transaction pool sizes S for
two adjacent Bitcoin nodes (up) and their mutual differences
P (down). Best distribution fits in red (using Error Sum of
Squares).

In SREPSim, we construct such assignments through Pro-
cedure 1. For the given network topology G = (V,E) and
the sizes distribution S , we need to configure the parameter
ψ such that the resulting assignment A produces a differences
distribution that resembles P . As shown in Fig. 4, ψ = 0.35
works reasonably well with our empirical sizes distribution.
Note that by increasing ψ, we can decrease the average sim-
ilarity among the transaction pools (i.e., increase the number
of their mutual differences).

Procedure 1: Network parameterization in SREPSim.
Input: Network G = (V,E).
Input: Sizes distribution S.
Input: Parameter ψ.
Output: Pool assignment A.

1 u← d ψ E[S] e ;
2 U{0, u− 1} ; // Uniform distribution
3 sizes ← sample |V | elements from S ;
4 A ← [] ;
5 for i← 0 to |V | − 1 do
6 Si ← sample sizes[i] elements from U ;
7 A.append (Si) ;

B. SREP Properties Validation

The main analytical properties that we want to validate
through simulations are SREP’s communication cost to achieve
full network sync (C100%) and the time required to achieve this
state (T100%). In particular, we want to show how these two
quantities change as a function of the network topology and
the measure of difference among the transaction pools.

0 2000 4000 6000 8000 10000 12000
Mutual Differences

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Source
Measurements
Generated, = 0.35
Generated, = 0.50
Generated, = 0.60

Fig. 4: Empirical differences distribution for two adjacent
Bitcoin nodes versus the differences distribution generated by
Procedure 1 for various ψ. Watts-Strogatz network with 100
nodes (deg = 19 and p = 0.24).

2 4 6 8
Average Node Degree (deg)

1

2

3

4

5

A
ve

ra
ge

 M
ax

im
al

 It
er

at
io

ns
 (I

10
0%

)

I100%

0

50

100

150

Av
er

ag
e

N
et

w
or

k
D

ia
m

et
er

143.0

12.3 8.0 6.9

Diameter

Fig. 5: Maximal number of SREP iterations at any node
(I100%) bounded by the network diameter for Watts-Strogatz
graphs with 1000 nodes (p = 0.24). 95% confidence intervals.

In Fig. 5, we plot the maximal number of SREP iterations
I100% and the network diameter as functions of the average
network degree deg. In Fig. 6, we plot the communication
cost and time to full network sync as a function of deg. The
main observation is that the overall communication increases
with the average node degree as a consequence of using more
replicas per node, which increases the number of redundant
transmissions (see Fig. 2). On the other hand, the time to
achieve full network sync does not exhibit such a trend.
Since primal syncs run in parallel, it is the maximal number
of differences among any two nodes in the network that
dominates the total time to sync the network (see Lemma 5).

C. Comparison with MempoolSync

MempoolSync of Imtiaz et al. is a transaction pool syn-
chronization protocol that can improve the average transaction
propagation delay by 50% in the event of churn in the Bitcoin
network [6]. Here we describe this protocol and compare
its communication efficiency with our newly proposed SREP
through simulations.

As pointed out in [6], the main reason for slow block
propagation times is a large number of missing transactions
in the transaction pools of the block-receiving nodes. This
effect occurs in the legacy block propagation protocols such
as CompactBlock [1] and the more recent improvements such

2 4 6 8
0

1

2

3

4

C 1
00

%

2 4 6 8
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

T 1
00

%

Average Node Degree (deg)

Fig. 6: Relative communication cost (C100%) and time to fully
synchronize the network (T100%). Network with 1000 nodes
(p = 0.24).

100 200 300 400 500 600
Network Size (|V|)

0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
un

ic
at

io
n

C
os

t

SREP
MempoolSync (Y = 0.1)
MempoolSync (Y = 0.2)
MempoolSync (Y = 0.3)

Fig. 7: Normalized overall communication cost of SREP
(C100%) and MempoolSync as a function of network size.
Data from Section V-A. DefTXtoSync = 1000. Y is the
MempoolSync heuristic constant.

as Graphene [3], [5]. Thus, the goal of MempoolSync is to
supply the nodes with potentially missing transactions, and it
does so through an ancestor score-based heuristics [32]. The
protocol uses a small constant DefTXtoSync as the default
number of transaction hashes that the transmitting node will
select from its transaction pool in descending order of ancestor
score. The transmitting node will send exactly DefTXtoSync
selected transaction hashes unless one of the following holds:

1) Transmitting node’s transaction pool is much larger than
DefTXtoSync (e.g., 10 times). In this case, the node
will send Y × DefTXtoSync top rated transactions,
where Y is a constant between 0 and 1, or

2) Transmitting node’s transaction pool is smaller than
DefTXtoSync. In this case, the node will send its
entire transaction pool. Because DefTXtoSync is a
small constant, this is a quite rare event. It occurs only
when the node has just joined the Bitcoin network or has
just propagated a large block that triggered a massive
transaction pool cleanup [6].

In Fig. 7, we compare the overall communication costs of
MempoolSync and SREP. For SREP, we plot the communi-
cation cost to sync the entire network (C100%). For Mem-
poolSync, we plot the communication cost that MempoolSync
incurs until SREP would achieve a full sync.

deg ψ Diameter
average

I100%
average

C100% (GB)
average

4
0.355

16
2.5 1.214397

0.5 3.0 3.165879
0.6 3.1 4.801665

8
0.355

9
1.7 2.428649

0.5 2.0 6.317304
0.6 2.0 9.569259

12
0.355

7
1.0 3.642738

0.5 1.5 9.485572
0.6 2.0 14.347242

16
0.355

6
1.0 4.876714

0.5 1.0 12.649385
0.6 1.0 19.135943

20
0.355

5
1.0 6.065679

0.5 1.0 15.804836
0.6 1.0 23.886079

24
0.355

5
1.0 7.294909

0.5 1.0 18.966694
0.6 1.0 28.672272

28
0.355

5
1.0 8.465624

0.5 1.0 22.156316
0.6 1.0 33.446278

TABLE II: SREP over a 10,000 nodes network. p = 0.24.

Note that this kind of comparison gives an advantage to
MempoolSync. While SREP’s C100% implies that the network
is fully synced, MempoolSync’s communication cost does not.
In fact, MempoolSync has no guarantees about the commu-
nication (or time) needed to sync the entire network. Note
also that MempoolSync uses Bitcoin internals to calculate the
ancestor score of the transactions and later uses this score
to determine which transactions to transmit. As opposed to
MempoolSync, SREP is a general approach that does not rely
on any Bitcoin internals and can be seamlessly integrated into
other blockchains that keep transaction pools.

D. Communication Cost in Large-Scale Networks

Event-based simulators such as SREPSim may consume
prohibitive amounts of memory and take a long time to com-
plete simulations when the simulated network is large [19].
To address this issue, we designed a SREPSim module that
computes SREP’s performance metrics analytically. In partic-
ular, we implement the functions from Definitions 3 and 4,
and rely on the results from Lemma 4 to compute C100%

and I100%. We describe the SREPSim’s analytical module in
Procedure 2. Using this module, we can easily compute the
desired performance metrics for the networks of realistic sizes
(e.g., Bitcoin and Ethereum) [24], [25].

In Table II, we summarize the results for a 10,000 nodes
network with various average node degrees (deg) and the
measure of similarity among transaction pools (ψ). As we
report the communication cost, we assume that the transaction
pools represent each transaction as a 32-byte long globally
unique hash [21]. All simulations complete in tens of minutes.

Procedure 2: SREPSim’s analytical module.
Input: Network G = (V,E).
Input: Initial pool assignment A as S0..S|V |−1.
Output: Overall network communication cost C100%.
Output: Maximal number of iterations I100%.

1 function CalculateM(A):
2 M ← zeros(|V | × |V |) ; // Zero matrix
3 for i← 0 to |V | − 1 do
4 for j ← i+ 1 to |V | − 1 do
5 if i ∈ G[j] then // i neighbor of j
6 M [i][j]← |Si ⊕ Sj | ;

7 return M ;

8 C100% ← 0 ;
9 I100% ← 0 ;

10 M ← CalculateM (A) ;
11 while

∑
mij > 0 do

12 for i← 0 to |V | − 1 do
13 S′i ← Si ; // New assignment
14 for j ∈ G[i] do
15 S′i ← S′i ∪ Sj ;

16 C100% = C100% +
∑
mij ;

17 I100% ← I100% + 1 ;
18 A← A′ ;
19 M ← CalculateM (A) ;

VI. CONCLUSION

In this work, we have developed and analyzed SREP, an in-
dependent protocol that assists block propagation in large-scale
blockchains. This new protocol synchronizes transaction pools
of nodes in the blockchain network using communication-
efficient set reconciliation approaches from the literature.
However, rather than inserting itself directly into the block
propagation process, as previous works have done, SREP
operates in a distributed manner outside the block propagation
channels of the network. As a result, it is easier to formally
analyze its performance, and, indeed, we have shown that
it completes in time bounded by the network diameter (or
logarithmic in network size for the “small-world” networks
that reasonably model blockchain networks).

We have also validated our analytical findings against a
novel event-based simulator that we have developed. We run
the simulator on real-world transaction pool statistics drawn
from our own measurement campaign. In our simulations,
SREP incurs only tens of gigabytes of overall bandwidth
overhead to synchronize networks with ten thousand nodes,
which is several times better than the current approach in the
literature.

For future work, we propose to consider multi-party set
reconciliation [33], [34] in the context of transaction pool sync.
Though the main benefit may be further reduction in overall
communication cost, it is not clear whether an advantage
over pairwise approaches can be achieved when an average
pairwise intersection is large compared to the total intersection
(∩iSi) [33].

ACKNOWLEDGMENTS

The authors would like to thank Red Hat, the Boston
University Red Hat Collaboratory (award # 2022-01-RH03),
and the US National Science Foundation (award # CNS-
2210029) for their support.

REFERENCES

[1] Matt Corallo, “Compact block relay protocol,” https://github.com/
bitcoin/bips/blob/master/bip-0152.mediawiki, 2016, (Accessed 2022-12-
02).

[2] Peter Tschipper, “BUIP010 Xtreme Thinblocks,” https://bitco.in/forum/
threads/buip010-passed-xtreme-thinblocks.774/, 2016, (Accessed 2022-
12-02).

[3] A. P. Ozisik, G. Andresen, B. N. Levine, D. Tapp, G. Bissias, and
S. Katkuri, “Graphene: Efficient Interactive Set Reconciliation Applied
to Blockchain Propagation,” in Proceedings of the ACM Special Interest
Group on Data Communication, 2019, pp. 303–317.

[4] X. Ding, L. Zhao, L. Luo, J. Xie, D. Guo, and J. Li, “Gauze: Enabling
Communication-Friendly Block Synchronization with Cuckoo Filter,”
Frontiers of Computer Science, vol. 17, no. 3, p. 173403, Sep 2022.
[Online]. Available: https://doi.org/10.1007/s11704-022-1685-5

[5] M. A. Imtiaz, D. Starobinski, and A. Trachtenberg, “Empirical Com-
parison of Block Relay Protocols,” IEEE Transactions on Network and
Service Management, pp. 1–1, 2022.

[6] M. A. Imtiaz, D. Starobinski, A. Trachtenberg, and N. Younis, “Churn
in the bitcoin network,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1598–1615, 2021.

[7] ——, “Churn in the Bitcoin Network: Characterization and Impact,” in
2019 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), 2019, pp. 431–439.

[8] S. G. Motlagh, J. Mišić, and V. B. Mišić, “Impact of Node Churn
in the Bitcoin Network,” IEEE Transactions on Network Science and
Engineering, vol. 7, no. 3, pp. 2104–2113, 2020.

[9] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A Survey of Distributed
Consensus Protocols for Blockchain Networks,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[10] Y. Minsky and A. Trachtenberg, “Practical set reconciliation,” in
40th Annual Allerton Conference on Communication, Control, and
Computing, vol. 248, 2002. [Online]. Available: https://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.456.7200

[11] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation
with nearly optimal communication complexity,” in Proceed-
ings. 2001 IEEE International Symposium on Information
Theory (IEEE Cat. No.01CH37252), 2001, pp. 232–, doi:
https://doi.org/10.1109/ISIT.2001.936095.

[12] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data,” in Advances
in Cryptology - EUROCRYPT 2004, C. Cachin and J. L. Camenisch,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 523–
540, ISBN: 978-3-540-24676-3.

[13] M. T. Goodrich and M. Mitzenmacher, “Invertible bloom lookup
tables,” in 2011 49th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton), 2011, pp. 792–799, doi:
https://doi.org/10.1109/Allerton.2011.6120248.

[14] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s
the Difference? Efficient Set Reconciliation without Prior Context,” in
Proceedings of the ACM SIGCOMM 2011 Conference, ser. SIGCOMM
’11. New York, NY, USA: Association for Computing Machinery,
2011, p. 218–229, doi: https://doi.org/10.1145/2018436.2018462.

[15] F. Lázaro and B. Matuz, “A Rate-Compatible Solution to the Set
Reconciliation Problem,” 2022. [Online]. Available: https://arxiv.org/
abs/2211.05472

[16] T. Wang, C. Zhao, Q. Yang, S. Zhang, and S. C. Liew, “Ethna: Analyzing
the Underlying Peer-to-Peer Network of Ethereum Blockchain,” IEEE
Transactions on Network Science and Engineering, vol. 8, no. 3, pp.
2131–2146, 2021.

[17] Y. Gao, J. Shi, X. Wang, Q. Tan, C. Zhao, and Z. Yin, “Topology
Measurement and Analysis on Ethereum P2P Network,” in 2019 IEEE
Symposium on Computers and Communications (ISCC), 2019, pp. 1–7.

[18] Y. Shahsavari, K. Zhang, and C. Talhi, “A Theoretical Model for
Block Propagation Analysis in Bitcoin Network,” IEEE Transactions
on Engineering Management, vol. 69, no. 4, pp. 1459–1476, 2022.

[19] X. Ma, H. Wu, D. Xu, and K. Wolter, “CBlockSim: A Modular
High-Performance Blockchain Simulator,” in 2022 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), 2022, pp. 1–5.

[20] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun 1998. [Online].
Available: https://doi.org/10.1038/30918

[21] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, and J. Herrera-
Joancomartı́, “Analysis of the Bitcoin UTXO Set,” in Financial Cryp-
tography and Data Security, A. Zohar, I. Eyal, V. Teague, J. Clark,
A. Bracciali, F. Pintore, and M. Sala, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2019, pp. 78–91.

[22] L. Kiffer, A. Salman, D. Levin, A. Mislove, and C. Nita-Rotaru,
“Under the Hood of the Ethereum Gossip Protocol,” in Financial
Cryptography and Data Security: 25th International Conference, FC
2021, Virtual Event, March 1–5, 2021, Revised Selected Papers, Part
II. Berlin, Heidelberg: Springer-Verlag, 2021, p. 437–456. [Online].
Available: https://doi.org/10.1007/978-3-662-64331-0 23

[23] Bitcoin developers, “Bitcoin referential implementation,” https://github.
com/bitcoin/bitcoin, 2022, (Accessed 2022-12-02).

[24] S. Delgado-Segura, S. Bakshi, C. Pérez-Solà, J. Litton, A. Pachulski,
A. Miller, and B. Bhattacharjee, “TxProbe: Discovering Bitcoin’s Net-
work Topology Using Orphan Transactions,” in Financial Cryptography
and Data Security, I. Goldberg and T. Moore, Eds. Cham: Springer
International Publishing, 2019, pp. 550–566.

[25] M. Grundmann, M. Baumstark, and H. Hartenstein, “On the Peer Degree
Distribution of the Bitcoin P2P Network,” in 2022 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), 2022, pp. 1–5.

[26] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Infor-
mation System Based on the XOR Metric,” in Peer-to-Peer Systems,
P. Druschel, F. Kaashoek, and A. Rowstron, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 53–65.

[27] F. Chung and L. Lu, “The diameter of sparse random graphs,” Advances
in Applied Mathematics, vol. 26, no. 4, pp. 257–279, 2001.

[28] N. Boškov, “SREPSim,” http://www.github.com/nislab/SREPSim, (Ac-
cessed 2023-02-02).

[29] R. Banno and K. Shudo, “Simulating a Blockchain Network with
SimBlock,” in 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), 2019, pp. 3–4.

[30] M. A. Imtiaz, D. Starobinski, and A. Trachtenberg, “Characterizing Or-
phan Transactions in the Bitcoin Network,” in 2020 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), 2020, pp. 1–9.

[31] ——, “Investigating Orphan Transactions in the Bitcoin Network,” IEEE
Transactions on Network and Service Management, vol. 18, no. 2, pp.
1718–1731, 2021.

[32] Bitcoin developers, “Ancestor Score Sorting,” https://github.com/bitcoin/
bitcoin/blob/master/src/txmempool.h, 2022, (Accessed 2022-12-02).

[33] M. Mitzenmacher and R. Pagh, “Simple multi-party set reconciliation,”
Distributed Computing, vol. 31, no. 6, pp. 441–453, Nov 2018.
[Online]. Available: https://doi.org/10.1007/s00446-017-0316-0

[34] A. Boral and M. Mitzenmacher, “Multi-party set reconciliation using
characteristic polynomials,” in 2014 52nd Annual Allerton Conference
on Communication, Control, and Computing (Allerton), 2014, pp. 1182–
1187.

https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/
https://doi.org/10.1007/s11704-022-1685-5
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.7200
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.7200
https://arxiv.org/abs/2211.05472
https://arxiv.org/abs/2211.05472
https://doi.org/10.1038/30918
https://doi.org/10.1007/978-3-662-64331-0_23
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
http://www.github.com/nislab/SREPSim
https://github.com/bitcoin/bitcoin/blob/master/src/txmempool.h
https://github.com/bitcoin/bitcoin/blob/master/src/txmempool.h
https://doi.org/10.1007/s00446-017-0316-0

	I Introduction and Related Work
	II Background
	III SREP Algorithm
	IV SREP Performance Analysis
	IV-A Network Model
	IV-B Elementary SREP (E-SREP)
	IV-C Elementary Parallel SREP (EP-SREP)
	IV-D Multi-element SREP

	V Simulations
	V-A Configuring Network Model Parameters
	V-B SREP Properties Validation
	V-C Comparison with MempoolSync
	V-D Communication Cost in Large-Scale Networks

	VI Conclusion
	References

