Check for
Updates

Space-Time Tradeoffs for Conjunctive Queries with Access
Patterns

Hangdong Zhao
University of Wisconsin-Madison
Madison, WI, USA
hangdong@cs.wisc.edu

ABSTRACT

In this paper, we investigate space-time tradeoffs for answering
conjunctive queries with access patterns (CQAPs). The goal is to
create a space-efficient data structure in an initial preprocessing
phase and use it for answering (multiple) queries in an online
phase. Previous work has developed data structures that trades off
space usage for answering time for queries of practical interest,
such as the path and triangle query. However, these approaches
lack a comprehensive framework and are not generalizable. Our
main contribution is a general algorithmic framework for obtaining
space-time tradeoffs for any CQAP. Our framework builds upon the
PANDA algorithm and tree decomposition techniques. We demon-
strate that our framework captures all state-of-the-art tradeoffs that
were independently produced for various queries. Further, we show
surprising improvements over the state-of-the-art tradeoffs known
in the existing literature for reachability queries.

CCS CONCEPTS

« Theory of computation — Database query processing and
optimization (theory); « Information systems — Query plan-
ning; Query optimization; Join algorithms.

KEYWORDS

Tradeoffs, Access Patterns, Submodular Width, Tree Decomposi-
tions, Disjunctive Datalog, Shannon-type Inequalities

ACM Reference Format:

Hangdong Zhao, Shaleen Deep, and Paraschos Koutris. 2023. Space-Time
Tradeoffs for Conjunctive Queries with Access Patterns. In Proceedings of
the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS °23), June 18-23, 2023, Seattle, WA, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3584372.3588675

1 INTRODUCTION

We study a class of problems that splits an algorithmic task into two
phases: the preprocessing phase, which computes a space-efficient
data structure from the input, and the online phase, which uses the
data structure to answer requests of a specific form over the input
as fast as possible. Many important algorithmic tasks such as set

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS °23, June 18-23, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0127-6/23/06....$15.00
https://doi.org/10.1145/3584372.3588675

Shaleen Deep
Microsoft Gray Systems Lab
Madison, WI, USA
shaleen.deep@microsoft.com

59

Paraschos Koutris
University of Wisconsin-Madison
Madison, WI, USA
paris@cs.wisc.edu

intersection problems [8, 15], reachability in directed graphs [2, 3,
9], histogram indexing [7, 25], and problems related to document
retrieval [1, 26] can be expressed in this way. The fundamental
algorithmic question related to these problems is to find the tradeoff
between the space S necessary for storing the data structures and the
time T for answering a request.

Let us look at one of the simplest tasks in this setup. Consider
the 2-Set Disjointness problem: given a universe of elements U
and a collection of m sets Sy,...,S; € U, we want to create a
data structure such that for any pair of integers 1 < i,j < m,
we can efficiently decide whether S; N S; is empty or not. It is
well-known that the space-time tradeoff for 2-Set Disjointness is
captured by the equation S - T? = O(N?), where N is the total size
of all sets [8, 15]. Similar tradeoffs have also been established for
other data structure problems. In the k-Reachability problem [8, 15]
we are given as input a directed graph G = (V, E), an arbitrary pair
of vertices u, v, and the goal is to decide whether there exists a
path of length k between u and v. The data structure obtained was
conjectured to be optimal by [15], and the conjectured optimality
was used to develop conditional lower bounds for other problems,
such as approximate distance oracles [2, 3] where no progress has
been made in improving the upper bounds in the last decade. In
the edge triangle detection problem [15], we are given as input a
graph G = (V, E), and the goal is to develop a data structure that
can answer whether a given edge e € E participates in a triangle
or not. Each of these problems has been studied in isolation and
therefore, the algorithmic insights are not readily generalizable into
a comprehensive framework.

In this paper, we cast many of the above problems into answering
Conjunctive Queries with Access Patterns (CQAPs) over a relational
database. For example, by using the relation R(x, y) to encode that
element x belongs to set y, 2-Set Disjointness can be captured by the
following CQAP: ¢(| y1,y2) < R(x,y1) A R(x,y2). The expression
¢(] y1,y2) can be interpreted as follows: given values for y1, y2,
compute whether the query returns true or not. Different access
patterns capture different ways of accessing the result of the CQ
and result in different tradeoffs.

Tradeoffs for enumerating Conjunctive Query results under
static and dynamic settings have been a subject of previous re-
search [13, 17, 19-21, 30]. However, previous work either focuses
on the tradeoff between preprocessing time and answering time [19—
21], or the tradeoff between space and delay in enumeration [13, 30].
In this paper, we focus explicitly on the tradeoff between space and
answering time, without optimizing for preprocessing time. Most
closely related to our setting is the problem of answering Boolean
CQs [12]. In that work, the authors slightly improve upon the data
structure proposed in [13] and adapt it for Boolean CQ answer-
ing. Further, [12] identified that the conjectured tradeoff for the

https://doi.org/10.1145/3584372.3588675
https://doi.org/10.1145/3584372.3588675
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584372.3588675&domain=pdf&date_stamp=2023-06-18

PODS ’23, June 18-23, 2023, Seattle, WA, USA

k-reachability problem is suboptimal by showing slightly improved
tradeoffs for all k > 3. The techniques used in this paper are quite
different and a vast generalization of the techniques used in [12].
The proposed improvements in [12] for k-reachability are already
captured in this work and in many cases, surpass the ones from [12].

Our Contribution. Our key contribution is a general algorithmic
framework for obtaining space-time tradeoffs for any CQAP. Our
framework builds upon the PANDA algorithm [24] and tree de-
composition techniques [16, 28]. Given any CQAP, it calculates a
tradeoff that can find the best possible time for a given space budget.
To achieve this goal, we need two key technical contributions.

First, we introduce the novel notion of partially-materialized tree
decompositions (PMTDs) that allow us to capture different possible
materialization strategies on a given tree decomposition (Section 3).
At a high level, a PMTD augments a tree decomposition with in-
formation on which bags should be materialized and which should
be computed online. To use a PMTD, we propose a variant of the
Yannakakis algorithm (Subsection 3.1) such that during the online
phase we incur only the cost of visiting the non-materialized bags.

The second key ingredient is an extension of the PANDA al-
gorithm [24] that computes a disjunctive rule in two phases. The
computation of a disjunctive rule allows placing an answer to any
of the targets in the head of the rule. A key technical component
in the PANDA algorithm is the notion of a Shannon-flow inequal-
ity. For any Shannon-flow inequality, one can construct a proof
sequence that has a direct correspondence with relational opera-
tors. Consequently, a proof sequence can be transformed into a
join algorithm. The disjunctive rules we consider are computed
in two phases: in the first phase (preprocessing), we can place an
answer only to targets that will be materialized during the prepro-
cessing phase. In the second phase (online), we place an answer
to the remaining targets. We call these rules 2-phase disjunctive
rules (Subsection 4.1). To achieve this 2-phase computation, we
introduce a type of Shannon-flow inequalities, called joint Shannon-
flow inequalities (Section 5), such that each inequality gives rise
to a space-time tradeoff. The joint Shannon-flow inequality gen-
erates two parallel proof sequences, one proof sequence for the
preprocessing phase and another proof sequence for the answering
phase. This transformation allows us to use the PANDA algorithm
as a blackbox on each of the proof sequences independently and is
instrumental in achieving space-time tradeoffs.

We demonstrate the versatility of our framework by recover-
ing state-of-the-art space-time tradeoffs for Boolean CQAPs, 2-Set
Disjointness as well as its generalization k-Set Disjointness , and
k-Reachability (Section 6). We also apply our framework to the
previously unstudied setting of space-time tradeoffs (in the static
setting) for access patterns over a subset of hierarchical queries, a
fragment of acyclic CQs that is of great interest [5, 6, 10, 11, 18, 20].
Interestingly, we can recover strategies that are very similar to how
specialized enumeration algorithms with provable guarantees work
for this class of CQs [11, 20]. More importantly, we improve state-of-
the-art tradeoffs. Our most interesting finding is that we can obtain
complex tradeoffs for k-Reachability that exhibit different behavior
for different regimes of S. For the 3-Reachability problem, we show
how to improve the tradeoff for a significant part of the spectrum.
For the 4-Reachability problem, we are able to show (via a rather

60

Hangdong Zhao, Shaleen Deep, & Paraschos Koutris

involved analysis) that the space-time tradeoff can be improved
everywhere when compared to the conjectured optimal! These re-
sults falsify the proposed optimal tradeoff of S - T2/(k=1) = O(|E|?)
for k-Reachability for regimes that are even larger than what was
shown in [12].

Organization. We introduce the basic terminology and problem
definition in Section 2. In Section 3, we describe the augmented tree
decompositions that are necessary for our framework. Section 4
introduces the general framework while Section 5 presents the al-
gorithms used in our framework. We present the applications of the
framework in Section 6. The related work is described in Section 7
and we conclude with a list of open problems in Section 8.

2 BACKGROUND

Conjunctive Query. We associate a Conjunctive Query (CQ) ¢ with
a hypergraph H = ([n], &), where [n] = {1,...,n} and & C 2ln],
The body of the query has atoms Rp, where F € &. To each node
i € [n], we associate a variable x;. The CQ is then

o(xp) — /\ Rp(xF),
Fe&

where xj denotes the tuple (x;);es for any I C [n]. The variables in
xp are called the head variables of the CQ. The CQ is full if H = [n]
and Boolean if H = (. We use ¢ to denote the output of the CQ ¢.

Degree Constraints. A degree constraint is a triple (X, Y, Ny|x)
where X C Y C [n] and Ny|x is a natural number. A relation Rp
is said to guard the degree constraint (X,Y,Ny|x) if X C Y C F
and for every tuple tx (over X), maxt, degp(Y|tx) < Ny|x, where
degp(Y|ty) = |Hy(O'X=tXRF)|. We use DC to denote a set of degree
constraints and say that DC is guarded by a database instance D
if every (X,Y, Ny|x) € DC is guarded by some relation in D. A
degree constraint (X, Y, Ny|x) is a cardinality constraint if X = 0.
Throughout this work, we make the following assumptions on DC
guarded by a database instance D:

o (best constraints assumption) w.l.o.g, forany X C Y C [n],
there is at most one (X, Y, Ny|x) € DC. This assumption
can be maintained by only keeping the minimum Ny x if
there is more than one.

e for every relation Rr € D, there is a cardinality constraint

(0, F, |RF| def Npgjp) € DC. The size of the database D is
denoted as | D] def maxg,ep |RF|.

In this work, we use degree constraints to measure data complexity.
All logs are in base 2, unless otherwise stated.

2.1 CQs with Access Patterns
We define CQs with access patterns following the definition from [21]:

Definition 2.1 (CQ with access patterns). A Conjunctive Query
with Access Patterns (CQAP) is an expression of the form

o | xa) — /\ Re(xp),
Fe&
where A C [n] is called the access pattern of the query.

The access pattern tells us how a user accesses the result of the
CQ. In particular, the user will provide an instance of a relation

Space-Time Tradeoffs for Conjunctive Queries with Access Patterns

Qa(xa), which we call an access request. The task is then to return
the result of the following CQ, denoted as ¢, where

p(xi) — Qa(xa) A\ Re(xp).

Fe&

We call ¢ the access CQ. The most natural access request is one
where |Q4| = 1; in other words, the user provides only one fixed
value for every variable x;, i € A. This can be thought of as using
the CQ result as an index with search key x4. By allowing the
access request Q4 to consist of more tuples, we can capture other
scenarios. For example, one can take a stream of access requests of
size 1 and batch them together to obtain a (possibly faster) answer
for all of them at once. Prior work [13, 21] has only considered the
case where |Q4]| = 1.

2.2 Problem Statement

Let ¢(xg | x4) be a CQAP under degree constraints DC guarded
by the input relations. In addition, we denote by AC another set
of degree constraints known in prior, guarded by any access re-
quest Q4. Similar to DC, we that assume there is a cardinality
constraint (0, A, |Qa| = Nyj¢) € AC guarded by Q4. For example,
the case where |Q4| = 1 can be interpreted as a cardinality con-
straint (0, A, 1) € AC. Given a database instance D guarding DC,
our goal is to construct a data structure, such that we can answer
any access request as fast as possible. More formally, we split query
processing into two phases:

Preprocessing phase: it constructs a data structure in space o(S)L.
The overall space cost takes the form 5(5 +|D|), where S is
called the intrinsic space cost of the data structure and |D] is
the (unavoidable) space cost for storing the database.

Online phase: given an access request Q4 (guarding AC), it re-
turns the results of the access CQ ¢ using the data structure
built in the preprocessing phase. The (worst-case) answering
time is then O(T + [Q4l)+O(|p|), where T is called the intrin-
sic time cost and |Q4| + || is the (unavoidable) time cost of
reading the access request Q4 and enumerating the output.
For the Boolean case and when |Q4| = 1, the answering time
simply becomes O(T).

In this work, we study the tradeoffs between the two intrinsic
quantities, S and T, which we will call an intrinsic tradeoff. At one
extreme, the algorithm stores nothing, thus S = O(1), and we
answer each access request from scratch. At the other extreme, the
algorithm stores the results of the CQ ¢ar(xgua) < Areg Rr(xF)
as a hash table with index key x4. For any access request Q4, we
simply evaluate the query ¢(xp) < Q4 Ay in the online phase by
probing each tuple of Q 4 in the hash table. If H 2 A, then any access
request can be answered in (instance-optimal) time O(|Q4| + |¢|),
in which case T = O(1).

Example 2.2 (k-Set Disjointness). In this problem, we are given
sets S1, ..., Sy, with elements drawn from the same universe U.
Each access request asks whether the intersection between k sets
is empty or not. By encoding the family of sets as a binary relation
R(y, x) such that element y belongs to set x, we can express the

IThe notation O hides a polylogarithmic factor in | D].

61

PODS 23, June 18-23, 2023, Seattle, WA, USA

problem as the following CQAP:
o xp) =\ R(y.x).

ie[k]

1)

If we also want to enumerate the elements in their intersection, we
would instead use the non-Boolean version:

oy I xk) =\ Rw.x).
i€lk]

@)

Example 2.3 (k-Reachability). Given a direct graph G , the k-
reachability problem asks, given a pair vertices (u,v), to check
whether they are connected by a path of length k. Representing
the graph as a binary relation R(x, y), we can model this problem
through the following CQAP (the k-path query):

Gl x1,3001) — [\ RCxixie)-
i€e[k]

We can also check whether there is a path of length at most k by
combining the results of k such queries (one for each 1, ..., k).

In this work, we focus on the CQAP such that H 2 A. If we are
given a CQAP where H 2 A, we replace the head of the CQAP with
¢@(xgua | x4), and simply project on the desired results in the end.

3 PARTIALLY MATERIALIZED TREE
DECOMPOSITIONS

In this section, we introduce a type of tree decomposition that
augments a decomposition with information about what bags we
want to materialize.

Definition 3.1 (Tree Decomposition). A tree decomposition of a
hypergraph H = ([n], &) is a pair (7, y) where (i) 7 is an undi-
rected tree, and (ii) y : V(7)) — 2lnl isa mapping that assigns to
every node t € V(7") a subset of [n], called the bag of t, such that

(1) For every hyperedge F € &, the set F is contained in some

bag; and

(2) For each vertex x € [n], the set of nodes {t | x € y(t)}

forms a (non-empty) connected subtree of 7.

Take a tree decomposition (7, y) and a node r € V(7). We
define TOP, (x) as the highest node in 7~ containing x in its bag if
we root the tree at r. We now say that (7, y) is free-connex w.r.t.
rif for any x € H and y € [n] \ H, TOP,(y) is not an ancestor of
TOP,(x) [34]. We say that (7, y) is free-connex if it is free-connex
w.r.t. some r € V(7).

We can now introduce our key concept of a partially materialized
tree decomposition, tailored for CQAPs. Let ¢(xg | x4) be a CQAP
such that A C H. Let H be the hypergraph associated with ¢ (xg),
the access CQ.

Definition 3.2 (PMTD). A Partially Materialized Tree Decompo-
sition (PMTD) of the CQAP ¢(xp | x4) with H 2 A is a tuple
(7", x, M, r) such that the following properties hold:

(1) (7, x) is a free-connex tree decomposition of H w.r.t. node
r, called the root ; and

(2) AC x(r);and

(3) M C V(7)) such that whenever t € M then all the nodes of
its subtree (w.r.t. orienting the tree away from r) are in M.

PODS ’23, June 18-23, 2023, Seattle, WA, USA

Given a PMTD (7, y, M, r), we call M the materialization set.
We also associate with each node t € V(7) a view with variables
Xy(¢)» where the mapping v : V(7)) — 2[n] is defined as follows.

If the node t ¢ M, then v(t) def x(t) and the view is of the form
Ty(t) (Xy(s)), called a T-view. Otherwise, t € M.Ift = r € M, define

v(r) def x(t) N H. Let p be the parent node of a non-root node
t € M and define

et x()NHUx(p) ifpegM
v(t) S { () nH ifpeMand y(t) NH ¢ x(p) NH
0 ifpeMand y(t) NH C y(p) NH.

The view (for each t € M) then is of the form S, ;) (x,(;)), called
the S-view. This definition of S-views corresponds to running a
bottom-up semijoin-reduce pass of the Yannakakis algorithm in the
materialization set M of the free-connex tree decomposition (7,).
Indeed, any variables in y(t) \ v(t) are safely projected out after
the semijoin-reduce.

On a high level, M specifies the type of views associated with
each bag (S-view or T-view), and v(-) pinpoints the schema of that
view (possibly empty). A PMTD appoints its S-views to be materi-
alized in the preprocessing phase and its T-views to be computed
in the online phase. In the case where M = (), every view in the
decomposition is obtained in the online phase. When H = A or
H = [n], the free-connex property does not put any additional
restrictions on the tree decompositions for a PMTD.

Example 3.3. We use the CQAP for 3-reachability as an example:
¢3(x1, x4 | x1,%4) < Ry (x1,x2) A Rz (x2,x3) A R3(x3,x4).

Here, (x1, x4) is the access pattern. Figure 1 shows three PMTDs for
the above query, along with the associated views of each bag in each
PMTD. The leftmost PMTD has an empty materialization set. The
middle PMTD materializes the bag {x1, x, x3} but the associated
view S13 projects out x3. The rightmost PMTD materializes the only
bag {x1, x2, x3, x4} but the view S14 keeps only the variables x1, x4.

Redundancy & Domination. We say that a tree decomposition is
non-redundant if no bag is a subset of another bag. We say that a tree
decomposition (71, y1) is dominated by another tree decomposition
(72, x2) if every bag of (71, y1) is a subset of some bag of (72, y2).

Here, we will generalize both notions to PMTDs.

Definition 3.4 (PMTD Redundancy). APMTD (7T, y,M,r) is non-
redundant if (1) for t € M, v(t) # 0 and no v(¢) is a subset of
another; and (2) for t ¢ M, no v(t) is a subset of another.

Definition 3.5 (PMTD Domination). A PMTD (71, y1, M1,r1) is
dominated by another PMTD (72, y2, Mz, r2) if (1) for every node
t; € My, there is some node t; € M, such that v(t;) C v(t2), and (2)
for every node t; € V(77) \ My, there is some node t; € V(73) \ My
such that v(#1) C v(t2).

For PMTDs, both redundancy and domination are defined using
the materialization set and views instead of the bags. For PMTDs
with M = 0, both PMTD redundancy and domination become
equivalent to the standard definition.

Example 3.6. Continuing Example 3.3, suppose we consider a
PMTD with that takes the same tree decomposition as the left

62

Hangdong Zhao, Shaleen Deep, & Paraschos Koutris

Ti34 S14

S13

T134

Figure 1: Three PMTDs for the 3-reachability CQAP. The
materialized nodes are shaded and labeled as S-views.

PMTD, but with both bags in the materialization set. The S-view
associated with the root bag is S14, and Sg for the child bag; thus,
this PMTD is redundant. Moreover, suppose we consider a PMTD
with one bag {x1, x2, X3, x4} which is the root, but is not in M. The
T-view associated with this bag is T1234; thus, this PMTD dominates
the left PMTD in Figure 1. On the other hand, all PMTDs in Figure 1
are non-redundant and non-dominant to each other.

As we later suggest in our general framework, we mostly focus
on sets of non-redundant and non-dominant PMTDs. Note that
a non-redundant PMTD (7, y, M,r) satisfies v(¢t) # 0, for any
t € V(7), thus we can safely assume that all views are non-empty.

3.1 Online Yannakakis for PMTDs

We introduce an adaptation of the Yannakakis algorithm [36] for
a non-redundant PMTD (so no empty views), called Online Yan-
nakakis. Recall that for a non-redundant PMTD, the S-views, one
for each t € M, are stored in the preprocessing phase, while the
T-views, one for each t € 7 \ M, and the access request Q4 are
accessible only in the online phase.

THEOREM 3.7. Consider a PMID (T, y, M, r) and its view v(-).
Given S-views, we can preprocess them in space linear in their size
such that we can compute the free-connex acyclic CQ

P« Qan N\ Sunn N
teM teV(T)\M

for any T-view and Q4 in time O(max;cy (7)\m | Ty (1) | +1Qal+1¥1),
where || is the output size of (3).

Tv(t) ®3)

Note that the time cost has no dependence on the size of S-views,
because throughout Online Yannakakis, S-views will be only used
for hash probing in semijoin operations. We defer the details of the
algorithm and the proof of its correctness to the full version of the
paper [37].

4 GENERAL FRAMEWORK

Consider a CQAP ¢(xp | x4) < AFreg Rr(xF) with H 2 A. Recall
that our goal is to find the best space-time tradeoffs under degree
constraints DC (guarded by input relations) and AC (guarded by
any access requests Q4), as specified in Subsection 2.2. Our main
algorithm is parameterized by:
e P = {Pi}icr, a (finite) indexed set of non-redundant and
non-dominant PMTDs such that P; = (73, yi, Mj, ri) for every
i € I. Including all such PMTDs in P (which are finite) will
result in the best possible tradeoff. However, as we will see
later, it is meaningful to consider smaller sets of PMTDs that
result in more interpretable space-time tradeoffs.

Space-Time Tradeoffs for Conjunctive Queries with Access Patterns

e S, the space budget.

4.1 2-Phase Disjunctive Rules

In this section, we define a specific type of disjunctive rule that
will be necessary to acquire the S-views and T-views for PMTDs.
We start by recalling the notion of a disjunctive rule. A disjunctive
rule has the exact body of a CQ, while the head is a disjunction of
output relations Tg(xp), which we call targets. Let BT C 2[nl pe a
non-empty set, then a disjunctive rule p takes the form:

p: v Tp(xp) < /\ Rp(xp).
BeBT Fe&

Given a database instance D, a model of p is a tuple (Tg)geBT
of relations, one for each target, such that the logical implication
indicated by (4) holds. More precisely, for any tuple a that satisfies
the body, there is a target Tg € (Tg)gep such that IIg(a) € Tp.
The size of a model is defined as the maximum size of its output
relations and the output size of a disjunctive rule p, denoted as |p|,
is defined as the minimum size over all models.

©

For our purposes, we define a type of disjunctive rules, called
2-phase disjunctive rules.

Definition 4.1 (2-phase Disjunctive Rules). A 2-phase disjunctive
rule p defined by a CQAP ¢(xp | x4) is a single disjunctive rule
that takes the body of the access CQ ¢, while the head has two sets
of output relations. In other words, p takes the form

pi\/ Ssxp) v \/ Te(xp) — Qalxa) A /\ Re(xp), (5)

BeBS BeBT Fe&
where BS, BT C 2["] and at most one can be empty. A model of
p thus consists of two sets of output relations, i.e. the S-targets
(5B)BeBs and the T-targets (Tg)BeBT-
As the name suggests, a model of a 2-phase disjunctive rule p is
computed in two phases, the preprocessing and online phase:

Preprocessing phase: we obtain the S-targets (Sg)pegs using a
preprocessing disjunctive rule

\/ Sp(xp) « /\ Rp(xF),

BeBS Fe&

ps: (6)
The space cost for storing the S-targets is 5(Sp), and the
overall space cost is 5(Sp + | D). The preprocessing phase
has no knowledge of Q4 except for the degree constraints
AC, so as to explicitly force the S-targets to be universal for
any instance of access request.

Online phase: given an access request Q4 (under AC), we obtain
the T-targets (Tg)BepT using an online disjunctive rule

v Tg(xB) < Qa(xa) A /\ Rp(xF)

BeBT Fe&

pT - ™

in time and space 5(Tp). The overall time is 5(Tp +104l)-

If BS = 0, then the model is computed from scratch in the
online phase (and vice versa). As in Subsection 2.2, our focus is
on analyzing the space-time tradeoffs between the two intrinsic
quantities, S and Tp.

For the next part, assume that we have a 2-phase algorithm
(called 2PP) that, given a space budget S, has a preprocessing proce-
dure 2PP-Preprocess using space S, < S and an online procedure

63

PODS 23, June 18-23, 2023, Seattle, WA, USA

2PP-Online using time (and space) T,. We will discuss this algo-
rithm in the next section.

4.2 Preprocessing Phase

As a first step, we construct from P a set of 2-phase disjunctive rules
as follows. Let v; be the mapping for associated views of P;. Let
us define the cartesian product A = X;e{V(7)} and let M = |A].
Informally, every element a € A picks one view from every PMTD
in the indexed set. For every a € A, we construct the following
2-phase disjunctive rule (recall that M; is the materialization set of
PMTD (7i, i, Mi, ri)):

V Suan®u@) ¥V Tua) Kugan) — Qatxa) A /\ Re(xe)
a; eM; a;¢M; Fe&
The body of the rule is the same independent of a € A. The head
of the rule introduces an S-target whenever the corresponding bag
is in the materialization set of the PMTD (using the corresponding
view); otherwise, it introduces a T-target. There are exactly M 2-
phase disjunctive rules constructed from the given set of PMTDs,
which is a query-complexity quantity.

Example 4.2. Continuing our running example, consider the
three PMTDs in Figure 1. These result in four 2-phase disjunctive
rules (after removing redundant T-targets and S-targets):

T134(x1, %3, X4) V S14(x1, X4) < body
Ti34(x1, X3, x4) V S13(x1,%3) V S14(x1, x4) < body
T123(x1, X2, x3) V T134(x1, X3, X4) V S14(x1, X4) < body
Ti23(x1, X2, x3) V S13(x1,x3) V S14(x1, x4) < body
where
body = Q14(x1,x4) A R1(x1,x2) A Ra(x2,x3) A R3(x3,x4)

For each 2-phase disjunctive rule py, where k € [M], we run
2PP-Preprocess with the space budget S. 2PP-Preprocess generates
the S-targets for py. Next, we compute each S-view of a PMTD P; by
unioning all S-targets with the same schema as the S-view (possibly
from outputs of different disjunctive rules). Then, we semijoin-
reduce every S-view with the full join ~pcg Rp. This semijoin-
reduce can be accomplished by tentatively storing ~pc g RF as an
intermediate truth table and remove it after the semijoin-reduce
of all S-views. This step guarantees that any tuple in a S-view
participates in »><gcg Rp. Finally, we preprocess the S-views as
described in Theorem 3.7.

4.3 Online Phase

Recall that upon receiving an instance of access request Qy4, we
need to return the results of the CQ, ¢(xp). We obtain ¢(xp) as
follows. First, we apply 2PP-Online for every py. to get its T-targets
(of size 5(Tpk)) in time 5(Tpk +1Qal). Let Tmax = maxge[ar) Tpy-

Next, we compute each T-view of a PMTD P; by unioning all T-
targets with the same schema as the T-view (possibly from outputs
of different disjunctive rules). We semijoin-reduce every T-view
(of size 5(Tp)) with every input relation and Q 4. Then, for every
PMTD in {P;};cs, we compute the free-connex acyclic CQ

i) = Qan N\ Sy A\

teM; teVi (7)) \M;

Ty, (r) (®)

PODS ’23, June 18-23, 2023, Seattle, WA, USA

by applying Online Yannakakis as described in Section 3.1 in time
O(Thmax) + O(|Qal+1¢i Ngl|). We obtain the final result by unioning
the outputs across all PMTDs in our set, ¢ = ;¢ ¥i- In total, we
answer the access request Q4 in time O(Tmax + 104 + O(|e)-

5 CONSTRUCTING THE TRADEOFFS

Let p be a 2-phase disjunctive rule taking the form (5), under degree
constraints DC (guarded by input relations) and degree constraints
AC (guarded by Q). In this section, we will discuss how we can
obtain a model of p in two phases using PANDA, and the resulting
space-time tradeoff. Due to limited space, we will keep the presen-
tation informal and introduce the key ideas through an example.
The full details and proofs are deferred to [37]. We will use the
following rule as our running example, where |R;| = |[Rz2| = |D|:

Ti23 V S13 < Q13(x1, x3), R1(x1, X2), Ro (%2, x3).

This rule is the only rule we obtain from considering two PMTDs
for the 2-reachability query. To compute a disjunctive rule, PANDA
starts with a Shannon-flow inequality, which is an inequality over
set functions A : 2["] — R, that must hold for any set function
that is a polymatroid?. For our purposes, we need a joint Shannon-
flow inequality, which holds over two set functions hg, hr that
must be polymatroids. Intuitively, hs governs the preprocessing
phase, while A governs the online phase. The joint Shannon-flow
inequality for our example is:
hs(1) + h1(2]|1) + hg(3) + h1(2]3) +2 h7(13) > hg(13) +2 h1(123)
—_— —— —
Ry R, O3 Si3 Tizs
where A(Y|X) = h(Y) —h(X). The right-hand side includes terms of
hs that correspond to S-targets and terms of hr that correspond to
T-targets. The left-hand side includes a term of A7 that corresponds
to the access request Q 4, and possibly terms of hg (h7) that encode
the degree constraints DC (DC U AC). More importantly, it contains
terms that correlate the two polymatroids by splitting an input
relation with attributes Y into two parts, either (i) hs(X)+h7(Y|X),
or (ii) h7(X) + hs(Y]X), where X C Y. Intuitively, the first split
materializes the heavy X-values and sends everything else to the
online phase, while the second split preprocesses the light X-values
and sends the heavy X-values to the online phase. In our example,
relation R; is split into hs(1) + h7(2]1), and each part is sent to
a different polymatroid. Using the coefficients of the above joint
Shannon-flow inequality, we get the following intrinsic space-time
tradeoff:

S-T% = |Qus)* - |1DI
We will use the = notation to mean that S - T2 = 5(|Q13|2 CDP).
Generally, we show (for a formal definition, see the full version of
the paper [37]):

THEOREM 5.1 (INFORMAL). Every joint Shannon-flow inequality
for a 2-phase disjunctive rule implies a space-time tradeoff computed
by reading the coefficients of the inequality.

The above theorem requires that we are given a joint Shannon-
flow inequality to obtain a space-time tradeoff. We additionally
show that, given a space budget S, we can also compute via a linear

2A polymatroid is a set function h : 2lnl & R, thatis non-negative, monotone, and
submodular, with £(0) = 0.

64

Hangdong Zhao, Shaleen Deep, & Paraschos Koutris

Figure 2: Two PMTDs for the square CQAP. The materialized
nodes are shaded and labeled as S-views.

Ti23

program the optimal inequality that will result in the best possible
answering time.

The 2PP algorithm. We now present how our main algorithm
works (see [37] for a detailed description). For the running example,
we take |Q13] = 1, and S is a fixed space budget.

As a first step, 2PP scans the joint Shannon-flow inequality and
partitions Ry (x1, x2) (on x1) into R{{ and R{‘ , where R{i contains all
(x1, x2) tuples where |0y, =t (R12)| > |D|/VS, and R{‘ contains the
tuples that satisfy deg;, (x2|x1) < |D|/VS. Ry is partitioned sym-
metrically (on x3) into R’zq and Ré. This creates four subproblems,
{R{{, R’;}, {RH, R%}, {RE, R?} and {RL, Ré‘} In general, these splits
will be done according to the correlated terms in the joint flow.

The preprocessing phase (2PP-Preprocess) is governed by the
Shannon-flow inequality for hg, which is hs(1) + hs(3) = hs(13).
We now follow PANDA and construct a proof sequence for this
inequality. A proof sequence proves the inequality via a sequence
of smaller steps, such that each step can be interpreted as a relational
operator. The proof sequence for our case is:

hs(1) + hs(3) = hg(13]3) + hs(3)
= hs(13)

(submodularity)
(composition)
In this case, PANDA attempts to join the two relations in each
subproblem. However, we allow this to happen only if the re-
sulting space is at most S. Because R{J and Rg{ have size at most
|DI/(ID]/VS) = VS values for x1, x3 respectively, the subproblem
{Rllq, RIZLI} can be stored in Sy3 in space at most VS - VS = S.

The online phase (2PP-Online) takes an access request Q13 (x1, x3)
that contains one tuple. Now, 2PP-Online follows the second proof
sequence for the polymatroid hr:

h1(2|1) + h7(2|3) + 2h7(13) = 2h7(2]13) + 2h7(13)
2h7(123)

(submod.)
(comp.)

For the other 3 subproblems, 2PP-Online computes the following
3 joins: Q13(x1,x3) >« RE(xz,x3), Q13(x1,x3) > RE(x1,x7) and

Q13(x1,x3) > Rf(xl,xg). In the submodularity step, 2PP-Online
identifies that for the first join, deg,;(x2|x3) < |D|/VS, so this
join takes time |Q13] - |D|/VS < |D|/VS; and since degy,(x2]x1) <
|D|/VS, the last two identical joins take time |Q13] -deg,(x2]x1) <
|D|/VS. Therefore, the overall online computing time is |D|/ Vs.

Example 5.2 (The square query). We now give a comprehensive
example of how to construct tradeoffs for the following CQAP:

@(x1,x3 | x1,x3) < Ry(x1,x2) AR (x2, x3) AR3(x3, X4) AR4 (x4, x1).

Space-Time Tradeoffs for Conjunctive Queries with Access Patterns

This captures the following task: given two vertices of a graph,
decide whether they occur in two opposite corners of a square.
We consider two PMTDs. The first PMTD has a root bag {1, 3,4}
associated with a T-view Tj34, and a bag {1, 3, 2} associated with a
T-view Ti32. The second PMTD has one bag {1, 2, 3, 4} associated
with an S-view S13. The two PMTDs are depicted in Figure 2. This
in turn generates two disjunctive rules:

Ti34 V S13 «— bOdy, Ti3y V S13 «— bOdy

where body = Q13(x1,x3) A Ri(x1,x2) A Ra(x2,x3) A R3(x3,%4) A
R4(x4,x1). We can construct the following joint Shannon-flow in-
equality (and its proof sequence) for the first rule:
hs(1) + hr(4]1) + hs(3) + h1(4]3) +2 - hp(13)
———

R3 Q13
> hg(13) + hp(4|1) + hr(4|3) + 2 - h(13)
> hs(13) + h7(4]13) + hr(13) + h7(4]13) + h7(13)
= hg(13)+2 - hr(134).

——— ———
Si3 Ti3q

Ry

For the second rule, we symmetrically construct a proof sequence
for 2log |D|+2log |Q13| = hs(13)+2- h7(132). Hence, reading the
coefficients of the above joint Shannon-flow inequalities, we obtain
the following intrinsic space-time tradeoff S - T? = |D|? - |Q13/?
for the given square CQAP.

6 APPLICATIONS

In this section, we apply our framework to obtain state-of-the-art
space-time tradeoffs for several specific problems, as well as obtain
new tradeoff results. We defer the discussion for hierarchical CQAPs
to the full version of the paper [37].

6.1 Tradeoffs for k-Set Intersection

We will first study the CQAP (2) that corresponds to the non-
Boolean k-Set Disjointness problem (set y = xp1)

e(X[ks1] | X[k]) < /\ R(xg41, %)
ie[k]

From the decomposition with a single node ¢ with y(t) = [k + 1],
we construct two PMTDs, one with M; = 0, another with My = {t}.
Thus, v1(t) = vo(t) = [k + 1]. This gives rise to the following (only)
two-phase disjunctive rule:

Tika1] V Sik1] < Qe (X A A R, i)
ie[k]
For this rule, we have the following joint Shannon-flow inequality:
hs(k,k+1) + Z {hs(ilk +1) + hp(k+ 1)} + (k= 1) - hr([k])
ie[k-1]
> hs([k+1]) + (k—1) - hr([k +1]).

By Theorem 5.1, we get the tradeoff S - TE=1 = | DIk - |Q4)F L.

6.2 Tradeoffs via Fractional Edge Covers

Let (x4 | x4) be a CQAP with hypergraph ([n], &) of ¢. A frac-
tional edge cover of S C [n] is an assignment u = (up)peg such

65

PODS 23, June 18-23, 2023, Seattle, WA, USA

that (i) up > 0, and (ii) for every i € S,) ,p.jep ur > 1. For any

fractional edge cover u of [n], we define the slack of u w.r.t. A C [n]:
a(u, A) def min Uf.

igA Feé&:ieF

In other words, the slack is the maximum factor by which we

can scale down the fractional cover u so that it remains a valid

edge cover of the variables not in A. Hence (up/a(u, A))peg is a

fractional edge cover of [n] \ A. We always have a(u, A) > 1.

THEOREM 6.1. Let (x4 | x4) be a CQAP. Let u be any fractional
edge cover of the hypergraph of ¢. Then, for any input database D,
and any access request, the following intrinsic tradeoff holds:

. 7awA) o |QA|a(u,A) . l_[|Rp|4F
Fe&

The above theorem can also be shown as a corollary of Theorem
1 in [13]. However, the data structure used in [13] is much more in-
volved, since its goal is to also bound the delay during enumeration
(while we are interested in total time instead). A simpler construc-
tion with the same tradeoff was shown in [12]. Our framework
recovers the same result using a simple materialization strategy
with two PMTDs.

Example 6.2. Consider ¢(x[] | X[k]) < Aie[k] R(y, xi) (corre-
sponds to the k-Set Disjointness problem) with the fractional edge
cover u, where uj = 1for j € {1,...,k}. The slack w.r.t. [k] is k,
since the fractional edge cover G, where @; = u;j/k = 1/k covers x.
Applying Theorem 6.1, we obtain a tradeoff of S - Tk = |01k - |DIF.
When |Q4]| = 1, this matches the best-known space-time tradeoff
for the k-Set Disjointness problem.

6.3 Tradeoffs via Tree Decompositions

Let (x4 | x4) be a CQAP. In the previous section, we recovered a
space-time tradeoff using two trivial PMTDs. Here, we will show
how our framework recovers a better space-time tradeoff by consid-
ering a larger set of PMTDs that corresponds to one decomposition.

Pick any arbitrary non-redundant free-connex decomposition
(T, x,r). We start by taking any set of nodes that are not ancestors
of each other in the decomposition as a materialization set. Then,
for each node t in the materialization set, we merge all bags in the
subtree of ¢ into the bag of ¢ (and truncate the subtree). By ranging
over all such materialization sets, we construct a fixed (finite) set
of PMTDs. We say that this set of PMTDs is induced from (77, y,r).
We now input the induced set of PMTDs to our general framework.
To discuss the obtained space-time tradeoff, take any assignment
of a fractional edge cover u; to each node ¢t € V(77) and let u}; be
its total weight. Let A; denote the common variables between node
t and its parent (for the root, A, = A), and define a; = a(us, A;)
to be the slack in node t w.r.t. A;. Now, take the nodes P of any
root-to-leaf path in 7. We can show that any such path P generates
the following intrinsic tradeoft:

§leepl/ar T ~ |04l - |D|Z[5Pu:/at

To obtain the final space-time tradeoff, we take the worst such
tradeoff across all root-to-leaf paths. We show in [37] how to obtain
this tradeoff, and also show why it recovers prior results [12]. Our
framework guarantees that adding PMTDs to the induced set we
considered here can only make this tradeoff better.

PODS ’23, June 18-23, 2023, Seattle, WA, USA

Ti34

Ti23

Hangdong Zhao, Shaleen Deep, & Paraschos Koutris

S24

Ti24

T34

Figure 3: The PMTDs for the 3-reachability CQAP.

Table 1: 2-phase disjunctive rules for 3-reachability

rule ‘ head ‘ tradeoff

P | Ti34 V Ti24 V S14 | $-T% = |DI*-|Qal®
§2.13 = |D* - |Qal

p2 Ti23 V S13 VTiza V S14 T = |D|'||QAI Q4]
SZ . T3 ~ |D 4 3

P3 Ti34 V To34 V S24 V S14 T = |D|'||QA: Q4]
S-T = |DP - |Qal

ps | Tizz VS13V Toag VSpg VSiy | S* - T = |DI° - |Qal
T =|D]-1Q4l

Example 6.3. Consider the 4-reachability CQAP. Here, H = A =
{x1,x5}. We will consider the tree decomposition with bags t; =
{x1, X2, X4, x5} — t2 = {x2, x3, x4}.

Take the edge cover u; = 1,u4 = 1 for the bag t;, and the
edge cover up = 1,uz = 1 for the bag t;. The first bag has slack
a1 = 1 (w.r.t. x1, x5), while the second has slack az = 2 (w.r.t. x2, x4).
Here we have one root-to-leaf path, hence we get the tradeoff
SW2.T = |Q4| - |D|?/1*2/2, or equivalently $3/2. T = |Q4]-|D|>.

6.4 Tradeoffs for k-Reachability

In this part, we will consider the CQAP that corresponds to the
k-reachability problem described in Example 2.3:

Pr (1, Xpea1 | X1, Xpey) /\ R(xi, Xi41).
ie[k]
Prior work [15] has shown the following tradeoff for a input D,
which was conjectured to be asymptotically optimal for |Q 4] = 1:

S T2/ (k=1) = |2 . |02/ k=1,

We will show that the above tradeoff can be significantly im-
proved for k > 3 by applying our framework.

3-reachability. As a first step, we consider the set of all non-
redundant and non-dominant PMTDs (five in total), as seen in
Figure 3. The five PMTDs will lead to 24 =16 disjunctive rules, but
we can reduce the number of rules we analyze by discarding rules
with strictly more targets than other rules. For example, the disjunc-
tive rule with head T134 V S13 V Ti24 V S14 can be ignored, since there
is another disjunctive rule which has a strict subset of targets, i.e.,
Ti34 V T124 V S14. We list out the heads of the two-phase disjunctive
rules we need to consider (we omit the variables for simplicity),
along with the intrinsic tradeoffs for each rule in Table 1.

66

Note that rules can admit two (or more) tradeoffs that do not
dominate each other; hence, we need to pick the best tradeoff de-
pending on the regime we consider (see [37] for how we prove each
tradeoff). To understand the combined tradeoff we obtain from our
analysis, we plot in Figure 4a each tradeoff curve by taking log| o
and then taking the x-axis as log| 5| (T) and the y-axis as log| 5| (5)
(fixing |Q4| = 1). The dotted line in the figure shows the resulting
tradeoff, which is a piecewise linear function. Note that each lin-
ear segment denotes a different strategy that is optimal for that
regime of space. Note that Figure 4a is not necessarily optimized
for |Qa| > 1. Suppose that S = |D| and we receive |D| single-tuple
access requests in the online phase. Answering them one-by-one
costs time O(|D|?) using the above tradeoffs. However, one better
strategy is to batch the |D| tuples (into a 4-cycle query) and use
PANDA to answer it from scratch, which costs time 5(|D|3/ 2.

4-reachability. We also study the CQAP for the 4-reachability
problem. We leave the (quite complex) calculations to [37], but we
include here a plot (Figure 4b) similar to the one in Figure 4a. One
surprising observation is that the new space-time tradeoff is better
than the prior state-of-the-art for every regime of space. We should
also point out that the tradeoff can possibly be further improved
by including even more PMTDs (our analysis involved 11 PMTDs!),
but the calculations were beyond the scope of this work.

General reachability. Analyzing the best possible tradeoff for
k > 5 becomes a very complex proposition. However, from Subsec-
tion 6.3 and the analysis of [12], our framework can at least obtain
the S - T%(k=1) ~ | D|? tradeoff, and can likely strictly improve it.

7 RELATED WORK

Set Intersection and Distance Oracles. Space-time tradeoffs for
query answering (exact and approximate) has been an active area of
research across multiple communities in the last decade [1, 8, 25, 26].
Cohen and Porat [8] introduced the fast intersection problem and
presented a data structure to enumerate the intersection of two sets
with guarantees on the total answering time. Goldstein et. al [15]
formulated the k-reachability problem on graphs, and showed a
simple recursive data structure which achieves the S - T2/ (k1) =
O(|D|?) tradeoff. They also conjectured that the tradeoff is optimal
and used it to justify the optimality of an approximate distance
oracle proposed by [2]. The study of (approximate) distance oracles
over graphs was initiated by Patrascu and Roditty [32], where lower
bounds are shown on the size of a distance oracle for sparse graphs
based on a conjecture about the best possible data structure for a
set intersection problem. Cohen and Porat [9] also connected set
intersection to distance oracles. Agarwal et al. [2, 3] introduced
the notion of stretch of an oracle that controls the error allowed

Space-Time Tradeoffs for Conjunctive Queries with Access Patterns

log | (5)
2 7777777777777777777777777777

baseline

log| 1| (T)

(a) 3-reachability CQAP.

PODS 23, June 18-23, 2023, Seattle, WA, USA

2/3

\

log| 5| (T)

|
|
|
|
: *
3/5 9/11 1 2

(b) 4-reachability CQAP.

Figure 4: Space-time tradeoffs for the 3- and 4-reachability CQAP. The new tradeoffs obtained from our framework are depicted
via the dotted segments. The brown lines (baseline) show the previous state-of-the-art tradeoffs.

in the answer. Further, for stretch-2 and stretch-3 oracles, we can
achieve tradeoffs S- T = O(|D|?) and S- T? = O(]D|?) respectively,
and for any integer k > 0, a stretch-(1 + 1/k) oracle exhibits an
STk = O(|D|?) tradeoff. Unfortunately, no lower bounds are
known for non-constant query time.

Space/Delay Tradeoffs. A different line of work considers the prob-
lem of enumerating query results of a non-Boolean query, with
the goal of minimizing the delay between consecutive tuples of the
output. In constant delay enumeration [4, 33], the goal is to achieve
constant delay for a CQ after a preprocessing step of linear time
(and space); however, only a subset of CQs can achieve such a trade-
off. Factorized databases [31] achieve constant delay enumeration
after a more expensive super-linear preprocessing step for any CQ.
If we want to reduce preprocessing time further, it is necessary to
increase the delay. Kara et. al [20] presented a tradeoff between
preprocessing time and delay for enumerating the results of any
hierarchical CQ under static (and dynamic) settings. Deng et.al [14]
initiates the study of the space-query tradeoffs for range subgraph
counting and range subgraph listing problems. The problem of CQs
with access patterns was first introduced by Deep and Koutris [13]
(under the restriction |Q 4| = 1), but the authors only consider full
CQAPs. Previous work [35] considered the problem of constructing
space-efficient views of graphs to perform graph analytics, but did
not offer any theoretical guarantees. More recently, Kara et. al [21]
studied tradeoffs between preprocessing time, delay, and update
time for CQAPs. They characterized the class of CQAPs that ad-
mit linear preprocessing time, constant delay enumeration, and
constant update time. All of the above results concern the tradeoff
between space (or preprocessing time) and delay, while our work
focuses on the total time to answer the query. Our work is most
closely related to the non-peer-reviewed work in [12]. There, the au-
thors also study the problem of building tradeofts for Boolean CQs.
The authors propose two results that slightly improve upon [13].
They were also the first to recognize that the k-reachability tradeoff
is not optimal by proposing a small improvement for k > 3. The
results in our work are a vast generalization that is achieved using

67

a more comprehensive framework. For the dynamic setting, [5]
initiated the study of answering CQs under updates. Recently, [19]
presented an algorithm for counting the number of triangles un-
der updates. [21] proposed dynamic algorithms for CQAPs and
provided a syntactic characterization of queries that admit con-
stant time per single-tuple update and whose output tuples can be
enumerated with constant delay.

CQ Evaluation. Our proposed framework is based on recent ad-
vances in efficient CQ evaluation, and in particular the PANDA
algorithm [24]. This powerful algorithmic result follows a long
line of work on query decompositions [16, 27, 28], worst-case opti-
mal algorithms [29], and connections between CQ evaluation and
information theory [22, 23].

8 CONCLUSION

In this paper, we present a framework for computing general space-
time tradeoffs for answering CQs with access patterns. We show
the versatility of our framework by demonstrating how it can cap-
ture state-of-the-art tradeoffs for problems that have been studied
separately. The application of our framework has also uncovered
previously unknown tradeoffs. Many open problems remain, among
which are obtaining (conditional) lower bounds that match our up-
per bounds, and investigating how to make our approach practical.

Many open problems remain that merit further work. In particu-
lar, there are no known lower bounds to prove the optimality of the
space-time tradeoffs. The optimality of existing space-time trade-
offs for approximate distance oracles is also now an open problem
again and we believe our proposed framework should be able to
improve the upper bounds. It would also be very interesting to see
the applicability of this framework in practice. In particular, our
framework can be extended to also include views that have been
precomputed, which is a common setting. In this regard, challenges
remain to optimize the constants in the time complexity to ensure
implementation feasibility.

PODS ’23, June 18-23, 2023, Seattle, WA, USA

REFERENCES

(1]

[2

—

(3]

[11]

[12

[13]

[14

[15]

[16

[17]

[18]

Peyman Afshani and Jesper Asbjorn Sindahl Nielsen. Data structure lower bounds
for document indexing problems. In ICALP, 2016.

Rachit Agarwal. The space-stretch-time tradeoff in distance oracles. In ESA,
pages 49-60. Springer, 2014.

Rachit Agarwal, P Brighten Godfrey, and Sariel Har-Peled. Approximate distance
queries and compact routing in sparse graphs. In INFOCOM, pages 1754-1762.
IEEE, 2011.

Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunc-
tive queries and constant delay enumeration. In CSL, volume 4646 of Lecture
Notes in Computer Science, pages 208-222. Springer, 2007.

Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunc-
tive queries under updates. In PODS, pages 303-318. ACM, 2017.

Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study of large
sparql query logs. The VLDB Journal, 29(2):655-679, 2020.

Timothy M Chan and Moshe Lewenstein. Clustered integer 3sum via additive
combinatorics. In STOC, pages 31-40, 2015.

Hagai Cohen and Ely Porat. Fast set intersection and two-patterns matching.
Theoretical Computer Science, 411(40-42):3795-3800, 2010.

Hagai Cohen and Ely Porat. On the hardness of distance oracle for sparse graph.
arXiv preprint arXiv:1006.1117, 2010.

Nilesh Dalvi, Christopher Ré, and Dan Suciu. Probabilistic databases: diamonds
in the dirt. Communications of the ACM, 52(7):86—94, 2009.

Shaleen Deep, Xiao Hu, and Paraschos Koutris. Enumeration algorithms for
conjunctive queries with projection. In 24th International Conference on Database
Theory, page 1, 2021.

Shaleen Deep, Xiao Hu, and Paraschos Koutris. Space-time tradeoffs for answer-
ing boolean conjunctive queries. arXiv preprint arXiv:2109.10889, 2021.

Shaleen Deep and Paraschos Koutris. Compressed representations of conjunctive
query results. In PODS, pages 307-322. ACM, 2018.

Shiyuan Deng, Shanggi Lu, and Yufei Tao. Space-query tradeoffs in range sub-
graph counting and listing. In 26th International Conference on Database Theory,
ICDT 2023, March 28-31, 2023, Ioannina, Greece, pages 6:1-6:25, 2023.

Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Conditional
lower bounds for space/time tradeoffs. In WADS, pages 421-436. Springer, 2017.
Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Treewidth and hyper-
tree width. Tractability: Practical Approaches to Hard Problems, 1, 2014.
Gianluigi Greco and Francesco Scarcello. Structural tractability of enumerating
csp solutions. Constraints, 18(1):38-74, 2013.

Muhammad Idris, Martin Ugarte, and Stijn Vansummeren. The dynamic yan-
nakakis algorithm: Compact and efficient query processing under updates. In
Proceedings of the 2017 ACM International Conference on Management of Data,
pages 1259-1274, 2017

Hangdong Zhao, Shaleen Deep, & Paraschos Koutris

Ahmet Kara, Hung Q Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang.
Counting triangles under updates in worst-case optimal time. In ICDT, 2019.
Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in static
and dynamic evaluation of hierarchical queries. In PODS, pages 375-392, 2020.
Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Conjunctive queries
with free access patterns under updates. In Proceedings of the 26th International
Conference on Database Theory (ICDT 2023), 2022. The 26th International Con-
ference on Database Theory, 2023, ICDT 2023 ; Conference date: 28-03-2023
Through 31-03-2023.

Mahmoud Abo Khamis, Phokion G. Kolaitis, Hung Q. Ngo, and Dan Suciu. Bag
query containment and information theory. In PODS, pages 95-112. ACM, 2020.
Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: questions asked
frequently. In PODS, pages 13-28. ACM, 2016.

Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What do shannon-type
inequalities, submodular width, and disjunctive datalog have to do with one
another? In PODS, pages 429-444. ACM, 2017.

Tomasz Kociumaka, Jakub Radoszewski, and Wojciech Rytter. Efficient indexes
for jumbled pattern matching with constant-sized alphabet. In ESA, pages 625—
636. Springer, 2013.

Kasper Green Larsen, J Ian Munro, Jesper Sindahl Nielsen, and Sharma V
Thankachan. On hardness of several string indexing problems. Theoretical
Computer Science, 582:74-82, 2015.

Daniel Marx. Can you beat treewidth? Theory Comput., 6(1):85-112, 2010.
Daniel Marx. Tractable hypergraph properties for constraint satisfaction and
conjunctive queries. J. ACM, 60(6):42:1-42:51, 2013.

Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new develop-
ments in the theory of join algorithms. SIGMOD Rec., 42(4):5-16, 2013.

Dan Olteanu and Maximilian Schleich. Factorized databases. ACM SIGMOD
Record, 45(2):5-16, 2016.

Dan Olteanu and Jakub Zavodny. Size bounds for factorised representations of
query results. ACM Trans. Database Syst., 40(1):2:1-2:44, 2015.

Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup-zwick

bound. In FOCS, pages 815-823. IEEE, 2010.
Luc Segoufin. Enumerating with constant delay the answers to a query. In ICDT,

pages 10-20. ACM, 2013.

Yilei Wang and Ke Yi. Secure yannakakis: Join-aggregate queries over private
data. In SIGMOD Conference, pages 1969-1981. ACM, 2021.

Konstantinos Xirogiannopoulos and Amol Deshpande. Extracting and analyzing
hidden graphs from relational databases. CoRR, abs/1701.07388, 2017.

Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, pages
82-94. IEEE Computer Society, 1981.

Hangdong Zhao, Shaleen Deep, and Paraschos Koutris. Space-time tradeoffs for
conjunctive queries with access patterns. arXiv preprint arXiv:2304.06221, 2023.

	Abstract
	1 Introduction
	2 Background
	2.1 CQs with Access Patterns
	2.2 Problem Statement

	3 Partially Materialized Tree Decompositions
	3.1 Online Yannakakis for PMTDs

	4 General Framework
	4.1 2-Phase Disjunctive Rules
	4.2 Preprocessing Phase
	4.3 Online Phase

	5 Constructing the Tradeoffs
	6 Applications
	6.1 Tradeoffs for k-Set Intersection
	6.2 Tradeoffs via Fractional Edge Covers
	6.3 Tradeoffs via Tree Decompositions
	6.4 Tradeoffs for k-Reachability

	7 Related Work
	8 Conclusion
	References

