
PHYSICAL REVIEW C 106, 034322 (2022)

Nuclear level densities and γ-ray strength functions in 120,124Sn isotopes: Impact
of Porter-Thomas fluctuations
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Nuclear level densities (NLDs) and γ -ray strength functions (GSFs) of 120,124Sn have been extracted with
the Oslo method from proton-γ coincidences in the (p, p′γ ) reaction. The functional forms of the GSFs and
NLDs have been further constrained with the Shape method by studying primary γ -transitions to the ground and
first excited states. The NLDs demonstrate good agreement with the NLDs of 116,118,122Sn isotopes measured
previously. Moreover, the extracted partial NLD of 1− levels in 124Sn is shown to be in fair agreement with
those deduced from spectra of relativistic Coulomb excitation in forward-angle inelastic proton scattering.
The experimental NLDs have been applied to estimate the magnitude of the Porter-Thomas (PT) fluctuations.
Within the PT fluctuations, we conclude that the GSFs for both isotopes can be considered to be independent of
initial and final excitation energies, in accordance with the generalized Brink-Axel hypothesis. Particularly large
fluctuations observed in the Shape-method GSFs present a considerable contribution to the uncertainty of the
method and may be one of the reasons for deviations from the Oslo-method strength at low γ -ray energies and
low values of the NLD (below ≈1 × 103–2 × 103 MeV−1).
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I. INTRODUCTION

Numerous experimental and theoretical efforts have been
dedicated to the study of γ -decay processes in atomic nuclei.
The decay properties of excited nuclei are not only pivotal
for the basic nuclear physics research, but also are the core
ingredients for large-scale calculations of nucleosynthesis and
element abundances in the universe [1,2].

While gradually moving from the lowest to higher exci-
tation energies of a nucleus, the spacing between individual
excited states becomes smaller, and the sensitivity of exper-
imental techniques might be no longer sufficient to resolve
them separately. Here, the nucleus enters the quasicontinuum
regime and the concept of the nuclear level density (NLD),
i.e., the number of nuclear states per excitation energy unit,
becomes an indispensable tool for a statistical description of
nuclei. By analogy, the γ -ray strength function (GSF), or
the average, reduced γ -transition probability, becomes more
suitable to describe the numerous γ transitions. The statistical
model as formulated by Hauser and Feshbach [3] with ingre-
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dients such as the NLD and GSF provides the main framework
for modeling nuclear reactions and calculating their cross sec-
tions for astrophysical purposes (see, e.g., Ref. [2]), the design
of nuclear reactors [4], and the transmutation of nuclear waste
[5].

Among all experimental techniques used for the extraction
of GSFs [6], the Oslo method has been widely used to obtain
the dipole strength below the neutron threshold by studying
the γ decay of residual nuclei formed in light-ion-induced
reactions [7–9]. The main advantage of the method is a si-
multaneous extraction of the NLD and GSF from primary
γ -decay spectra at excitation energies below the neutron sep-
aration energy Sn. The GSFs for many nuclei obtained by
employing different experimental techniques have previously
been reported to provide a rather good agreement in absolute
values and/or general shapes with the Oslo method strengths
[10–12]. A few cases of large discrepancies have also been
reported (e.g., the comparison of the Oslo and (γ , γ ′) data for
89Y and 139La presented in Ref. [6]).

A large fraction of theoretical and experimental techniques
focusing on calculating or measuring the GSF, including the
Oslo method, rely on the validity of the generalized Brink-
Axel (gBA) hypothesis [13,14]. In its most general form, the
hypothesis states that the GSF is independent of excitation
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energies, spins and parities of initial and final states and de-
pends solely on the γ -ray energy of involved transitions. This
is often used as a necessary approximation and simplification
in many methods and allows us to set a direct correspondence
between strengths extracted from the γ decay and photoex-
citation processes [13,15]. Even though this hypothesis is
experimentally established at high energies, i.e., in the vicinity
of the giant dipole resonance, its validity below the neutron
threshold still triggers quite some debate. For example, several
theoretical studies suggest the need of a modification of the
hypothesis [16–20], while experimental studies range from
claims of a violation [21–24] to a validity [12,15,25–27].
The question regarding the validity is a rather difficult one,
partially depending on what degree of violation is considered
acceptable in different experimental and theoretical applica-
tions.

A crucial point to be considered when addressing the appli-
cability of the gBA hypothesis is the presence of fluctuations
of partial radiative widths, or the so-called Porter-Thomas
(PT) fluctuations [28]. The partial radiative widths are pro-
portional to the corresponding reduced transition strengths
[B(XL) values where X is the electromagnetic character and
L the angular momentum of the γ ray]. At sufficiently high
excitation energies and high NLD values, the nuclear wave
functions are quite complex with many components. In this
region, according to random-matrix theory [29], the partial
widths follow a χ2

ν behavior with ν = 1 degree of freedom,
while the total widths are more narrowly distributed with the
variance inversely proportional to the number of indepen-
dently contributing partial widths.

Such a variation of partial widths is directly reflected in the
variation of the GSF, which may mask the excitation energy
independence of the strength, and thus a test of the gBA
hypothesis might become especially difficult. Indeed, for rel-
atively light nuclei, e.g., 64,65Ni [26] and 46Ti [30], the NLDs
are rather low, and tests of the gBA hypothesis are limited. On
the other hand, the 238Np nucleus [25] with a particularly high
NLD makes a perfect case for studying the GSF as a function
of initial and final excitation energies, as fluctuations of the
strength are strongly suppressed. The Sn isotopes investigated
here present an intermediate case for studying to what degree
the PT fluctuations are expected to distort excitation energy
dependence of the GSF.

Moving away from the valley of stability opens up new
perspectives for studying exotic, neutron-rich nuclei, with ap-
plications to heavy-element nucleosynthesis [31], using for
example, the β-Oslo method [32] and the Oslo method in
inverse kinematics [33]. However, this leads to additional
complications, such as the lack of neutron-resonance data for
normalizing the NLD and GSF from the Oslo-method data.
Moreover, some of the light-ion-induced reactions may lead
to a population of a limited spin range, which might introduce
additional assumptions and uncertainties when extracting the
shapes of the NLD and GSF.

A novel technique, the Shape method [34], has recently
been proposed to mend this problem. Applied to the primary
γ transitions to several low-lying discrete states at consecutive
excitation energy bins, it allows for an independent deter-
mination of the shape of the GSF. Thus, the shape of the

strength and the interlinked slope of the NLD extracted with
the Oslo method can be additionally constrained by the Shape
method. However, as the latter is using data on direct decays
to low-lying discrete states only, the PT fluctuations of the
involved partial widths are expected to be significantly larger
than for the Oslo-method GSF.

In this work, the potential role of PT fluctuations in es-
tablishing the validity of the gBA hypothesis as well as the
application of the Shape method are addressed for 120Sn and
124Sn. Both the Oslo method and the Shape method have
been applied to the same data sets. Experimental NLDs have
been used to estimate fluctuations of the strengths for different
specific initial and final excitation energies and compared with
previous Oslo-method NLDs for even-even isotopes [35–37].
In Sec. II the details of the experimental procedure, the appli-
cation of the Oslo method (Sec. II A) and the Shape method
(Sec. II B) are presented. Section III focuses on the NLDs
for 120,124Sn and the comparison with other experimental and
theoretical results. In Sec. IV the procedure of estimating
fluctuations of the strengths is presented together with the
Shape method results, and the study of fluctuations and GSFs
as functions of initial and final excitation energies. Finally, the
main conclusions are summarized in Sec. V.

II. DETAILS OF THE EXPERIMENT AND DATA ANALYSIS

Experiments on both 120Sn and 124Sn were performed
in February 2019 at the Oslo Cyclotron Laboratory (OCL).
The isotopes were studied through the inelastic scattering
reactions 120,124Sn(p, p′γ ) with a proton beam of energy
16 MeV and intensity I ≈ 3–4 nA provided by the MC-35
Scanditronix cyclotron. Both targets used in the experiment
were self-supporting with thicknesses and enrichments of
2.0 mg/cm2, 99.6% for 120Sn and 0.47 mg/cm2, 95.3% for
124Sn, respectively. The 120Sn target was placed in the beam
for approximately 24 hours, while the whole run on 124Sn
lasted approximately 17 hours. A self-supporting 28Si target
(natural Si, 92.2% 28Si) with thickness of 4 mg/cm2 was
placed in the same proton beam for ≈1.5 hours at the end of
the experiment for the energy calibration of the γ detectors.

The experimental setup at the OCL comprises of the
target chamber surrounded by 30 cylindrical large-volume
LaBr3(Ce) detectors (Oslo Scintillator Array, OSCAR for
short) [33,38], and 64 Si particle�E -E telescopes (SiRi) [39].
The LaBr3(Ce) scintillator detectors with φ3.5′′ × 8′′ crystals
were mounted on a truncated icosahedron frame with all front-
ends fixed at a distance of 16.3 cm from the center of the target
chamber, thus covering ≈57% of the total solid angle. The
full-energy peak efficiency and energy resolution of OSCAR
have been measured to be ≈20% and ≈2.7%, respectively, at
Eγ = 662 keV for the 137Cs calibration source placed at the
same distance from the front-ends of the detectors.

The (p, p′γ ) reaction on 120,124Sn was one of the first in
the series of experiments performed with OSCAR, installed
in 2018 at the OCL. As compared with the previously used
array CACTUS, consisting of 28 5′′ × 5′′ NaI(Tl) detectors
[40], OSCAR provides greatly improved timing and γ -energy
resolution. All the scintillator crystals in the OSCAR array
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FIG. 1. Experimental E -�E spectrum measured for the 124Sn
isotope. The proton channel used for the data analysis is marked with
the red solid line. The ground and first excited states of 124Sn in the
proton channel and the ground state of 122Sn in the triton channel,
used for the calibration of the particle telescope, are marked with
yellow circles.

are coupled to Hamamatsu R10233-100 photomultiplier tubes
with active voltage dividers (LABRVD) [41].

In these experiments, the SiRi particle-telescope array was
placed in backward angles with respect to the beam direction,
covering a rather narrow range of angles from 126◦ to 140◦
and making up ≈6% of the total solid-angle coverage. SiRi
consists of eight trapezoidal-shaped �E -E telescopes with a
thick E detector and a thinner �E detector with thicknesses
of 1550 and 130 μm, respectively. Each of the eight �E
detectors is segmented into eight curved pads, amounting to
2◦ of particle scattering angle per pad, yielding an angular
resolution of 2◦. For the 120,124Sn(p, p′γ ) experiment, the full
width at half maximum (FWHM) for SiRi was estimated to be
≈100–120 keV from a Gaussian fit to the elastically scattered
protons. All particle-γ coincidences in the experiment were
recorded using XIA digital electronics [42].

SiRi enables the exploitation of the �E -E technique to
differentiate between the various observed reaction channels,
as shown in Fig. 1. The elastic peak in the proton channel and
the ground-state peak in the triton channel, combined with
the known energy deposition in each of the 64 �E -E pads,
were used to perform a linear calibration of the SiRi detectors
for both targets. The kinematics of the reactions were used to
convert the proton energies deposited in the SiRi detectors into
the corresponding excitation energies of the target nucleus.

As previously shown for φ3.5′′ × 8′′ LaBr3(Ce) detectors
coupled to the same type of photomultiplier and voltage di-
vider, the energy response of the detector remains rather linear
up to ≈17–18 MeV [43]. However, to account for minor
nonlinearity effects, a quadratic calibration was applied to all
30 OSCAR detectors. Prominent γ transitions in 28Si ranging
from 1.78 to 7.93 MeV were used for this purpose. Further-

more, by applying graphical energy (see Fig. 1) and timing
cuts on the studied proton channel, putting gates on the prompt
timing peak and subtracting background for particle and γ

detection in SiRi and OSCAR, a so-called raw coincidence
matrix was constructed for both studied nuclei. The raw ma-
trices are shown in Figs. 2(a) and 2(d) for 120Sn and 124Sn,
respectively. Consecutive diagonals indicate direct transitions
to the ground and first excited states. For excitation energies
between 7 and 9 MeV, peaks that are due to minor 12C and 16O
contaminants in the targets are observed. At further stages of
the analysis these peaks were removed1 to minimize the effect
of these contaminants and any related artifacts on the final
results. Approximately 5.3 × 107 and 1.3 × 107 p-γ events
in the excitation-energy range up to the neutron separation
energy were collected for 120Sn and 124Sn, respectively.

The γ spectra for each excitation-energy bin of the co-
incidence matrices were further unfolded according to the
procedure outlined in Ref. [7], using the most recent re-
sponse function of the OSCAR detectors [44] simulated with
the GEANT4 simulation tool [45–47]. This procedure has
been applied to a large number of Oslo-type data published
throughout the past two decades and has been repeatedly
shown to provide valuable results. A great advantage of the
method is the preservation of statistical fluctuations of the raw
coincidence spectrum into the unfolded one by using the
so-called Compton subtraction method [7]. This technique
strongly suppresses additional, artificial fluctuations. The un-
folded matrices for 120Sn and 124Sn are shown in Figs. 2(b)
and 2(e).

The main objective of the analysis is to extract the sta-
tistical nuclear properties, namely, the NLD and GSF, by
exploiting their proportionality to the decay probability at
each specific excitation energy and γ energy. Information
regarding this decay probability can be obtained by isolat-
ing the first γ rays in a cascade emitted by the nucleus at
a certain excitation energy, i.e., primary γ rays originating
directly from the nucleus decaying from this excited state,
or the so-called first-generation γ rays. The unfolded matrix
contains all possible generations of γ rays emitted in every
cascade from all excitation energies up to the neutron separa-
tion energy. The γ -ray spectra for each excitation-energy bin
in the unfolded matrix are expected to contain the same γ rays
as in the lower-lying bins, in addition to the γ rays originating
from the excited states confined by this energy bin. This fact
is the key for the iterative subtraction technique, the so-called
first-generation method, applied to both unfolded matrices
for 120Sn and 124Sn. This technique relies on the assumption
that γ decay is independent of whether states were populated
directly in a reaction or via decays from higher-lying states.
The details of the procedure are outlined in Ref. [8]. The
primary matrices obtained after 23 iterations for both nuclei
are shown in Figs. 2(c) and 2(f).

1The contaminants were removed after unfolding of the γ spectra.
A narrow graphical gate is put on each Gaussian-like contaminant
peak in the unfolded matrix, and the parts of the spectra within the
gate are obtained by interpolating the neighboring regions of the
matrix.
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FIG. 2. (a), (d) Experimental raw p-γ coincidence, (b), (e) unfolded and (c), (f) primary matrices for 120,124Sn obtained in the (p, p′γ )
experiments. Yellow dashed lines indicate the neutron separation energies. Red and green dashed lines in panels (c) and (f) confine transitions
to the ground (region 1) and the first excited Jπ = 2+ (region 2) states. Blue solid lines (region 3) indicate the areas of the primary matrices
used further in the Oslo method. Bin sizes are 64 keV × 64 keV and 80 keV × 80 keV for 120Sn and 124Sn, respectively. Blue arrows mark the
sequence of the analysis steps.

At this stage, two alternative methods can be used in order
to extract the GSF from the primary matrix, namely the Oslo
method and the Shape method. The former is a well-developed
procedure primarily used to extract nuclear properties from
the OCL data and it has been in use for more than two decades
(see, e.g., Ref. [48]). In addition to the GSF, it provides the
simultaneous extraction of the NLD, which are the main char-
acteristics of interest in this article. The latter procedure, the
Shape method, has been recently presented and published in
Ref. [34]. The two methods are expected to complement each
other and a combined analysis yields an improved normaliza-
tion of the GSF and, therefore, the NLD. All details of these
procedures applied to the 120,124Sn isotopes are provided in
the subsequent sections.

A. Analysis with the Oslo method

As already mentioned, the primary matrix is proportional
to the decay probability from a set of initial excited states i
within a chosen bin Ei to final states f confined within a bin
Ef of the same size with γ rays of energy Eγ = Ei − Ef . The
first step of the Oslo-type of analysis is the decomposition of
the primary matrix into the density of final states ρ f and the
γ -ray transmission coefficient Ti→ f :

P(Eγ ,Ei ) ∝ Ti→ f ρ f . (1)

Here, Ti→ f , the transmission coefficient, is a function of
γ -ray energy depending on both the initial and final state.
The thorough derivations of this decomposition using Fermi’s
golden rule and the Hauser-Feshbach theory of statistical
reactions as starting points can be found in Refs. [49] and
[50], correspondingly. This relation is expected to hold for
relatively high excitation energies below the neutron thresh-
old, corresponding to the compound states and their decay
[48]. This energy range essentially coincides with the range
of applicability of the first-generation method.

This form of dependence on Ei, Ef , and Eγ , however,
does not allow a simultaneous extraction of the transmis-
sion coefficient and NLD. To enable such an extraction, the
gBA hypothesis is adopted as one of the central assumptions
in the Oslo method [13,14]. As mentioned previously, the
gBA hypothesis suggests an independence of the GSF (and,
therefore, the transmission coefficient) of spins, parities, and
energies of initial and final states, leading to a dependence on
γ -ray energy only. This significantly simplifies the form of the
relation given in Eq. (1): Ti→ f → T (Eγ ) and ρ f = ρ(Ef ) =
ρ(Ei − Eγ ).

In earlier applications of the Oslo method, the gBA hy-
pothesis has been found to be adequate for the relatively
low-temperature regimes studied (T ≈ 0.7–1.5 MeV) [30].
However, as the Oslo method relies on the gBA hypothesis,
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it cannot be used alone to test its validity. To investigate the
validity of the hypothesis, either comparisons of independent
experimental methods [15] or additional tests suggested in,
e.g., Refs. [25,26] are required. This matter is of particular
importance and will be discussed in more detail in Sec. IV.

The next step of the Oslo method includes an iterative
χ2-minimization procedure between the experimental first-
generation matrix P(Eγ ,Ei ) normalized to unity for each Ei

bin and the theoretical Pth(Eγ ,Ei ) given by the following
expression [9]:

Pth(Eγ ,Ei ) = T (Eγ )ρ(Ei − Eγ )∑Ei

Eγ =Emin
γ

T (Eγ )ρ(Ei − Eγ )
. (2)

This χ2 fit of the transmission coefficient and NLD normally
gives a very good agreement with the experimental matrix
P(Eγ ,Ei ) when applied to the statistical region of excitation
energies. The step-by-step description of the minimization
procedure is provided in Ref. [9]. To ensure the applicability
of the statistical assumptions, minimum excitation energies
of Emin

i = 4.5 MeV for 120Sn and 5.0 MeV for 124Sn were
chosen. Sufficient statistics at higher energies allows us to
set Emax

i to the neutron separation energy for each isotope,
Sn = 9.1 and 8.5 MeV for 120Sn and 124Sn, respectively. To
exclude regions where counts have been over-subtracted in the
first-generation procedure, minimum γ -ray energies Emin

γ =
1.3 and 1.6 MeV were set accordingly for 120Sn and 124Sn.
The resulting areas where the Oslo method was applied in this
work are marked by the blue lines in Figs. 2(c) and 2(f).

The global χ2 fit yields only functional forms of the trans-
mission coefficient T (Eγ ) and NLD ρ(Ei − Eγ ). It can be
shown mathematically that one can construct an infinite set
of T (Eγ ) and ρ(Ei − Eγ ) combinations corresponding to the
obtained fit and given by the forms [9]

ρ̃(Ei − Eγ ) =Aρ(Ei − Eγ ) exp [α(Ei − Eγ )],

T̃ (Eγ ) =BT (Eγ ) exp (αEγ ),
(3)

where ρ and T are two fixed solutions, A and B are the
scaling parameters, and α is the slope parameter shared by
both the transmission coefficient and NLD. For each stud-
ied nucleus this ambiguity must be removed via determining
unique normalization parameters A, B, and α from exter-
nal experimental data. If available, low-lying discrete states
and neutron-resonance data are the main input parameters,
combined with models for the spin distribution and for ex-
trapolations where there is a lack of experimental data.

The first step of the normalization procedure is to deter-
mine the unique NLD solution ρ(Ei − Eγ ). The parameters
A and α can be constrained by fitting the NLD to low-lying
discrete states [51] in the excitation-energy range where the
level scheme can be considered complete. At the neutron
separation energy, the NLD can be normalized to the total
NLD calculated from neutron-resonance spacings [52]. These
data also provide the average, total radiative width 〈�γ 〉 used
to determine the scaling parameter B for the transmission co-
efficient. All details of the normalization procedure for 120Sn
and 124Sn have been presented in the Supplemental Material
of Ref. [15]. However, some minor changes were introduced

in this work to improve the normalization and the estimated
uncertainties. We would like to stress that these changes do
not affect the results presented in Ref. [15] in any significant
way and do not undermine any of the presented conclusions.
To avoid any confusion regarding the normalization parame-
ters, we provide the updated and complete description of this
procedure in the following.

The most recent compilation of the discrete states [51]
was used to anchor the NLD for 120,124Sn at low excitation
energies. As compared with the compilation from 2003 used
in the previous analysis, some changes in the number and
the excitation energies of low-lying states appear and give a
slightly different slope of the NLD. The anchor point at the
neutron separation energy, ρ(Sn), is usually extracted from
the neutron resonance spacing D0 for s-wave neutrons or D1

for p-wave neutrons. As 123Sn is an unstable target nucleus
(T1/2 = 129.2 d [51]), no neutron resonance data are available,
and we used other means to estimate ρ(Sn) and 〈�γ 〉 for 124Sn.

The normalization procedure for 120Sn is rather straightfor-
ward, in accordance with the steps outlined in Ref. [48], due to
the available s-wave neutron capture data. The target spin of
119Sn is Iπt = 1/2+, thus spins 0+ and 1+ of the compound
nucleus 120Sn are populated in s-wave capture. Assuming
that both positive and negative parities contribute equally to
ρ(Sn), the average s-wave neutron resonance spacing D0 can
be written as [48]

1

D0
= 1

2
[ρ(Sn, It + 1/2) + ρ(Sn, It − 1/2)]. (4)

A transformation of the partial NLD for specific spins
into the total NLD can be performed by adopting the back-
shifted Fermi gas model (BSFG) for the NLD ρ(Ex, J ) =
ρ(Ex )g(Ex, J ) (Ex here stands for the excitation energy vari-
able) with the spin distribution function given by [53,54]

g(Ex, J ) 	 2J + 1

2σ 2
exp

[
− (J + 1/2)2

2σ 2

]
, (5)

where σ is the spin-cutoff parameter. Given this distribution
function, Eq. (5) can be rewritten for the total NLD at the
neutron separation energy as a function of the experimental
resonance spacing D0 (taken from Ref. [52]) and the target
nucleus spin [48]:

ρ(Sn) = 2σ 2

D0

1

(It + 1) exp
(− (It+1)2

2σ 2

) + It exp
(− I2t

2σ 2

) . (6)

Note that the spin-cutoff parameter is an excitation-energy-
dependent function. The form of the spin-cutoff parameter at
Sn of Ref. [55] was chosen for 120,124Sn

σ 2(Sn) = 0.0146A5/3 1 + √
1 + 4a(Sn − E1)

2a
. (7)

Here, a and E1 are the level-density parameter and the back-
shift parameter for the BSFG model taken from Ref. [55].

In the Oslo method, the measured level densities do not
reach up to Ex = Sn due to the nonzero minimum γ -ray en-
ergy limit in the extraction of ρ(Ei − Eγ ). To use the ρ(Sn)
value as an anchor point for the normalization, the experimen-
tal Oslo data were extrapolated using the constant temperature
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FIG. 3. (a) Experimental systematics for the average total radia-
tive width for Sn isotopes. (b) Experimental systematics for the NLD
at the neutron separation energy. The estimated values of 〈�γ 〉 and
ρ(Sn) for 124Sn are marked with stars, the experimental 〈�γ 〉 values
are taken from Ref. [52], and the level densities are obtained from
the D0 values given in Ref. [52]. Arrows mark ρ(Sn) values shifted
by the neutron pair-gap values for the χ 2 fit.

(CT) level density model [54–56]:

ρCT (Ex ) = 1

TCT
exp

(Ex − E0

TCT

)
, (8)

characterized by the temperature (TCT ) and shift energy (E0)
parameters. Earlier Oslo-method analyses exploited the BSFG
model as an alternative for the interpolation procedure [48],
however, the choice between these two alternatives is defined
by the fit quality in each particular case (see Sec. III).

As the experimental information on the s-wave neutron-
resonance spacing is available for 120Sn, Eq. (6) was used
directly to transform the D0 value into ρ(Sn). For 124Sn, this
value was estimated from the systematics for even-even and
even-odd Sn isotopes in the following way: The ρ(Sn) values
were estimated for each Sn isotope with available neutron-
resonance spacing D0 using Eq. (6). The resulting systematics
for the ρ(Sn) values are shown in the lower panel of Fig. 3.
The values of ρ(Sn) for even-even isotopes were shifted by the
corresponding values of the neutron pairing gaps calculated
from the AME 2003 mass evaluation [57] using Eq. (1) of
Ref. [58]. Finally, the value of ρ(Sn) for 124Sn was calculated
from a log-linear fit through the data points for even-odd and

shifted even-even isotopes as shown by the red dashed line in
Fig. 3(b).

The second step after constraining the A and α parameters
for the NLD is to normalize the transmission coefficient (and
thus the GSF). As the slope α is already determined by the
NLD normalization, the scaling parameter B is the only pa-
rameter that remains to be estimated. The starting point for
normalizing the γ -transmission coefficient is the following
relation [59]:

〈�(Ex, J, π )〉 = 1

2πρ(Ex, J, π )

∑
XL

∑
Jf ,π f

∫ Ex

Eγ =0
dEγ

× TXL(Eγ )ρ(Ex − Eγ , J, π ),

(9)

where 〈�(Ex, J, π )〉 is the average radiative width for states
with spin J , parity π at excitation energy Ex, and X and
L indicate the electromagnetic character and multipolarity,
respectively. The GSF, fXL(Eγ ), is connected to the transmis-
sion coefficient by [60]

TXL(Eγ ) = 2πE (2L+1)
γ fXL(Eγ ). (10)

At high excitation energies, there is experimental evi-
dence that the dipole radiation is dominant (L = 1) (see e.g.,
Ref. [59]). The Oslo-type of experiments and analysis does
not allow for distinguishing between different types of radia-
tion, and, thus, the strength extracted with the Oslo method
is presented by the total contribution of both electric and
magnetic types of dipole transitions, E1 and M1.

Insertion into Eq. (9) links the experimental dipole GSF
f (Eγ ) to the value of the total average radiative width 〈�γ 〉
obtained from s-wave neutron capture [52]. For a target nu-
cleus with ground state spin It and parity πt , Eq. (9) can be
rewritten as

〈�γ 〉 = 〈�(Sn, It ± 1/2, πt )〉 = 1

2ρ(Sn, It ± 1/2, πt )

×
∫ Sn

Eγ =0
dEγE

3
γ f (Eγ )ρ(Sn − Eγ )

×
1∑

J=−1

g(Sn − Eγ , It ± 1/2 + J ). (11)

Here, we adopt again the assumption on an equal contribution
of states with positive and negative parities and apply the spin
distribution function of Eq. (5). It can be easily seen that
the 1/ρ(Sn, It ± 1/2, πt ) term equals the D0 value. For the
spin-cutoff parameter dependence on the excitation energy,
we follow the procedure outlined in Ref. [61]:

σ 2(Ex ) = σ 2
d + Ex − Ed

Sn − Ed

[
σ 2(Sn) − σ 2

d

]
, (12)

where σd is estimated from the discrete lower-lying states at
Ex ≈ Ed [51] (see Table I).

In the case of 120Sn, the average total radiative width
〈�γ 〉 was estimated as an average of three s-wave neutron
resonances with energies in the range of ≈455–828 eV [52].
The remaining two resonances presented in Ref. [52] were
excluded due to either being possibly of p-wave nature, or
having a significantly lower value as compared with values for
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TABLE I. Parameters used for the normalization of the nuclear LD and GSF for 120,124Sn

Nucleus Sn D0 a E1 Ed σd σ (Sn) ρ(Sn) T E0 β 〈�γ 〉
(MeV) (eV) (MeV−1) (MeV) (MeV) (105 MeV −1) (MeV) (MeV) (meV)

120Sn 9.105 95(14) 13.92 1.12 2.53(4) 3.4(5) 5.82 3.66(54) 0.72+1
−2 0.19+9

−4 0.70 121(25)b
124Sn 8.489 12.92 1.03 2.77(3) 3.3(5) 6.00 1.38(30)a 0.75+2

−2 −0.11+11
−6 0.20 82(19)a

aFrom systematics.
bModified with respect to the value published in Ref. [52].

confirmed s-wave resonances found in the neighboring Sn iso-
topes. In the case of 124Sn, we performed a linear fit through
all values of 〈�γ 〉 available for other Sn isotopes as shown in
Fig. 3(a) to estimate the 〈�γ 〉 value for 124Sn. Ideally, the fit of
the NLD to the low-lying discrete levels and the ρ(Sn) value
are sufficient to constrain the slope parameter α for the GSF
and NLD. However, the latter can be influenced by the range
of experimentally populated spins, which might be narrower
than the intrinsic2 spin distribution. This issue was previously
discussed in Refs. [62,63]. An analysis of the observed transi-
tions in the unfolded matrices below Ei ≈ 4–5 MeV and their
relative intensities can aid to reveal the populated spins of the
120,124Sn nuclei populated in the (p, p′γ ) reaction. However,
this method has a large uncertainty in the determination of
the exact maximum spin populated in the reaction. Alterna-
tively, one can make use of the new Shape method [34] to
obtain the NLD slope that corresponds to the experimental
spin range. This is of particular importance for 124Sn with
no available neutron-resonance parameters. The application
of the Shape method will be discussed in detail in Sec. II B.
From the Shape method we obtained a reduction factor β

for ρ(Sn), representing a certain fraction of the total spin
distribution from Eq. (5), corresponding to the reduced spin
range from J = 0 to a certain maximum spin. This was done
by requesting optimally matching slopes of the Oslo method
and the Shape method GSFs above Eγ ≈ 5 MeV. A rather
strong reduction of the level density in 124Sn at the neutron
separation energy might reflect some maximum limit of the
experimental spin range. However, it is important to note that
using experimental systematics of the ρ(Sn) and 〈�γ 〉 might
have large uncertainties. In the case of 124Sn, it is quite prob-
able that such a large reduction factor is needed due to, e.g.,
an overestimated ρ(Sn) from the χ2 fit of the systematics. The
simultaneous use of the Oslo and Shape methods can therefore
significantly reduce systematic uncertainties for the slopes of
extracted strengths and level densities. All parameters used in
the normalization procedure for 120,124Sn are listed in Table I.
The resulting NLDs for 120Sn and 124Sn with their estimated
error bands are shown in Fig. 4.

We note that the errors in Table I and the resulting error
bands for the NLD and the GSF presented in Secs. III and
IV combine statistical and systematic components. The latter
includes uncertainties introduced by the unfolding and the
first-generation procedures for both 120,124Sn isotopes. These
are propagated through the Oslo method according to the

2All existing spins possible for a given nucleus at a given excitation
energy.

procedure outlined in Ref. [9]. In addition, systematic uncer-
tainties due to the normalization parameters are included. For
the 120Sn isotope, the experimental uncertainty (1 standard
deviation) of theD0 value was propagated to estimate the error
for the NLD at the neutron separation energy. The experimen-
tal uncertainties of the radiative widths in 120Sn [52] were used
to estimate the error of the average, total radiative width 〈�γ 〉,
contributing to the uncertainty of the scaling factor B. In the
case of the 124Sn isotope, the errors of the ρ(Sn) and 〈�γ 〉
were calculated from the uncertainties of the χ2 fit parameters
and propagated into the total uncertainties of the NLD and
GSF. In the previously published result on 124Sn [15], a 50%

FIG. 4. Experimental nuclear level densities for (a) 120Sn and
(b) 124Sn. The NLDs at Sn are marked with crosses, discrete states
are shown as shaded areas. For the 124Sn isotope both the total and
reduced NLDs are shown. The first two vertical arrows at lower
Ex energies on each figure constrain the lower excitation energy fit
region, while the last two arrows at higher Ex energies mark the lower
and upper limits for the higher excitation energy fit region.
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uncertainty of ρ(Sn) was assumed to account for presumably
underestimated errors from the χ2 fit. However, the excellent
agreement within the estimated error bands of the slopes of
the GSFs obtained with the Oslo and Shape method allows us
to apply a more modest error band as presented in this work.
All errors of the normalization parameters described above are
summarized in Table I.

B. Analysis with the Shape method

Quite often, nuclei with no available neutron resonance
data and/or a restricted experimental spin range are encoun-
tered. One possible way to overcome this is the use of isotopic
systematics comprising of nuclei with stable neighboring A −
1 isotopes as applied in the present case for 124Sn. However,
this is often not possible in other isotopic chains due to the
lack of data (e.g., 127Sb [64]). Moreover, the question on
whether systematics from neighboring isotopic chains can be
used for a given nucleus, and to what extent one can rely on
these systematics, is still open. Hence, an alternative way to
constrain the normalization parameters is required. The novel
Shape method [34] provides a way to determine the slope
parameter α for the NLD and the GSF without making use
of neutron resonance data.

The starting point for the method is extracting experimental
intensities of first generation γ transitions to specific final
states with spins and parities Jπ at final excitation energies
Ef , represented by diagonals in the primary matrix. The in-
tensities (related to the branching ratios) of these γ transitions
are proportional to the number of counts ND in the diagonals.
The selection of which diagonals are to be used depends on
a particular nucleus, the spacing between the final states, and
whether the resolution is sufficient to distinguish between dif-
ferent diagonals. The main concept behind the Shape method
is that the intensities of the γ transitions are proportional to the
partial widths and hence to the GSF. By taking intensities of
transitions in successive excitation energy bins, the functional
form of the GSF can be obtained.

In the case of 120,124Sn, the only two diagonals clearly
seen in the primary matrices are the ground state diagonal D1

and the diagonal D2 corresponding to the first excited state
[marked accordingly as regions 1 and 2 in Figs. 2(c) and 2(f)].
For given initial excitation-energy bins Ei (horizontal line)
they define the direct decay to the final excitation energy Ef at
the ground state with Jπ = 0+ and the first excited state with
Jπ = 2+ with γ -ray energies Eγ = Ei − Ef .

The Shape method adopts the same form of the spin dis-
tribution, given by Eq. (5), as used in the Oslo method, and
assumes γ transitions to be of predominantly dipole nature
(this has been confirmed by measuring angular distributions).
According to Eq. (13) in Ref. [34], the number of counts
in a chosen diagonal ND corresponding to the final energy
Ef is proportional to the population cross-section of initial
states Ei with Ji = Jf − 1, Jf , Jf + 1, spin distribution func-
tion g(Ei, Ji ) and the partial γ -decay width. For the case of
120,124Sn with the ground and first-excited-state diagonals D1

and D2, the following relations can be written:

f (Eγ 1) ∝ ND1

E3
γ 1g(Ei, 1)

,

f (Eγ 2) ∝ ND2

E3
γ 2[g(Ei, 1) + g(Ei, 2) + g(Ei, 3)]

. (13)

By varying Ei, one obtains corresponding pairs of values
f (Eγ = Ei ) and f (Eγ = Ei − Ex(2+)). As Eqs. (13) only give
the proportionality with the GSF, these pairs are not normal-
ized in absolute value.

First, the consecutive pairs of values are normalized in-
ternally, as shown and described in Fig. 2 of Ref. [34], to
reconstruct the functional shape of the GSF. Thus, one can
extract two GSFs, corresponding to decays to the ground
state and decays to the first excited state. Second, the general
shape of both GSF must be scaled to match any available
strength below the neutron separation energy, i.e., normalizing
to external experimental data. This is the main limitation of
the method because it provides only a slope or a shape of
the strength but not the absolute GSF and therefore requires
some additional experimental information. For the 120,124Sn
isotopes, the GSFs extracted from relativistic Coulomb exci-
tation in forward-angle inelastic proton scattering below the
neutron separation energy [65] were used to scale the GSF
points obtained for both diagonals separately [15].

The upper excitation energy limit for the application of
the Shape method can, in principle, be extended to Sn, while
the definition of the lower limit is rather arbitrary. The appli-
cability of Eqs. (13) is restricted to the statistical excitation
energy region where the spin distribution function g(Ex, J )
can be trusted. There is no clear criterion for the minimum
level density which can be considered high enough to assume
this is fulfilled. In this work, we require that the level density
must be at least 10 levels per excitation energy bin for the spin
distribution g(Ex, J ) to be applied.

III. NUCLEAR LEVEL DENSITIES

The experimental NLDs of 120,124Sn displayed in Fig. 4
follow nicely the discrete low-lying states up to ≈3 MeV
for 120Sn and ≈2.7 MeV for 124Sn. At higher energies, the
NLDs increase rapidly and reach an exponential, constant-
temperature behavior. This suggests that the level schemes
used for the normalization of the NLDs can be considered
complete up to ≈3 and 2.7 MeV for 120Sn and 124Sn, re-
spectively. The energy resolution is sufficient to distinguish
the ground state and the first excited states, presented by two
bumps at 0 and ≈1.1–1.2 MeV for both nuclei. The presence
of the data points between the ground and first excited states
can be explained by the finite excitation energy resolution of
order 100 keV and the presence of the leftover counts between
the diagonals in the primary matrices after the background
subtraction procedure. At higher excitation energies, the ex-
perimental points are following the CT model prediction,
starting from ≈4 MeV. The normalization of the NLDs was
found to be rather insensitive to the exact choice of the two
upper normalization limits (the two arrows at higher excitation
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FIG. 5. Experimental total nuclear level densities for 116Sn [35],
117Sn [35], 118Sn [36], 118Sn [36], 120Sn, 121Sn [37], 122Sn [37], 124Sn.

energies in Fig. 4), due to the smooth behavior of the NLDs at
higher excitation energies.

In Fig. 5 we show a comparison of the total NLDs for Sn
isotopes extracted with the Oslo method, including the present
results for 120,124Sn. The 116,117,118,119,121,122Sn isotopes were
previously studied with a 38-MeV beam of 3He using the
(3He, αγ ) and (3He, 3He γ ) reaction channels and reported in
Refs. [35–37]. The slopes of the NLDs for 120,124Sn are quite
similar to each other (T = 0.72 and 0.75 MeV, see Table I)
and those of other even-mass isotopes. All NLDs of even-
mass nuclei agree quite well within the estimated error bands
below the neutron separation energy. However, it is important
to note some differences in the normalization procedures in
the newest analysis of 120,124Sn and the older analyses of
even-mass isotopes. First, all previous analyses exploited the
BSFG for the extrapolation of the highest experimental NLD
points to the ρ(Sn) values instead of the CT model. As was
previously shown in Ref. [66] and confirmed for 120,124Sn,
the CT model results in a better χ2 fit value. For example,
between ≈4.8 and 6.8 MeV in 124Sn, the reduced χ2 value is
a factor of four smaller for the CT model than for the BSFG
model. This factor becomes larger and might exceed 10 if
lower excitation energy points above ≈3 MeV are included.
Second, the different form of the spin-cutoff parameter taken
from Ref. [54] was used in the older analyses. The immediate
consequence of this choice is slightly less steep slopes of the
NLDs if the CT extrapolation is used. However, in combina-
tion with the BSFG extrapolation model, the resulting slopes
of the NLDs in 116,118,122Sn are expected to be close to those
obtained for 120,124Sn, as can also be observed in Fig. 5.

In general, the NLDs of odd-mass Sn isotopes are by a
factor of seven to eight higher than for the even-mass iso-
topes, primarily due to the unpaired valence neutron [69]. As

FIG. 6. Experimental nuclear level densities for 1± states for
124Sn obtained with the Oslo method (blue data points) and the
(p, p′) data [65] (orange data points). The prediction of the CT model
used for the normalization of the Oslo method data is shown by the
dashed blue line. A fit with the BSFG through all data and with the
composite formula [54] are shown by the dashed magenta and solid
cyan lines. Predictions of the microscopic Hartree-Fock-BCSmethod
[67] and Hartree-Fock-Bogolyubov + Gogny force calculations [68]
are marked by the dashed light and dark-gray lines, respectively.

compared with other even-mass isotopes, 120,124Sn demon-
strate essentially the same features, such as the well-defined
bumps at the ground and the first excited state and a step-
like structure right below 3 MeV excitation energy. Earlier
studies exploiting microscopic calculations based on the se-
niority model link the latter feature to breaking of consecutive
nucleon Cooper pairs [70]. Due to the closed proton shell,
Z = 50, the breaking of proton Cooper pairs is suppressed
until higher excitation energies are reached. Thus, these step-
like structures are likely to be correlated with the breaking of
neutron pairs at energies exceeding 2�n = 2.6 and 2.5 MeV
[58] for 120Sn and 124Sn, respectively. For higher excitation
energies, where a continuous “melting” of Cooper pairs sets
in, the NLDs follow a smooth trend with no distinctive struc-
tures, as previously observed for 116,118,122Sn [35–37].

The inelastic proton scattering data [65], used for the ab-
solute normalization of the Shape method GSFs, can also
provide information on the partial NLD. The NLD of 1−
states in 124Sn was extracted for the excitation-energy range
≈4.5–14.5 MeV by means of the fluctuation analysis [71],
applying procedures analog to those used in Refs. [11,72]. All
details of the extraction procedure can be found in Ref. [73].
To compare with the Oslo data, we apply the spin distri-
bution function in Eq. (5) to the total NLD of 124Sn to
reduce it to the density of J = 1 levels for excitation energies
above ≈3.2 MeV, where this function can be assumed to be
applicable. Furthermore, applying the assumption on equal
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contribution of positive- and negative-parity states [74,75],
the density of J = 1 states was obtained. In contrast with the
previously published results on 96Mo [12] and 208Pb [11],
there is in fact a region of overlap between the two data
sets, as shown in Fig. 6. The Oslo data, as well as the CT
model used in the normalization procedure (blue dashed line),
lie within, but closer to the lower edge of the error band
for the inelastic proton scattering data up to ≈10.5 MeV.
This provides support of the spin-cutoff model adopted in
the Oslo-method normalization. A model predicting a higher
spin-cutoff value than presented in Table I would imply a
wider spin distribution and, therefore, a significantly lower
fraction of J = 1 states leading to a larger discrepancy be-
tween the Oslo and the (p, p′) data in the overlapping area.
Thus, we can conclude that the spin-cutoff estimate provided
by Eq. (7) is reasonable, and probably lies closer to the upper
limit in the range of acceptable spin-cutoff values that would
make the two experimental NLDs agree with each other.

The constant-temperature regime, characterized by the
pair-breaking process, continues at least up to the neutron
separation energy or higher, where the temperature begins to
rise and the Fermi gas behavior of nucleons sets in. As shown
in Fig. 6, the CT model begins to deviate quite drastically
from the (p, p′) data at higher excitation energies, well above
the Sn value. For this reason, the BSFG model is expected
to provide a more accurate description of the NLD at high
excitation energies, although it is not an appropriate model
at lower excitation energies. The global fit of all data with
the BSFG model only indeed fails to reproduce the regime
of increasing nuclear temperature between ≈6.5–14 MeV,
especially in the vicinity of the neutron separation energy and
slightly above. The composite NLD formula, introduced by
Gilbert and Cameron in Ref. [54] (denoted G&C), combines
the CT model at lower excitation energies and the BSFG
model at higher energies and appears to be more suitable
for the simultaneous description of the Oslo and (p, p′) data.
From the result of the fit with the composite NLD formula,
the constant-temperature regime holds up to ≈8.5 MeV, i.e.,
in the vicinity of the neutron separation energy. Even though
this formula reproduces the general trend and performs better
than the BSFG, it is still not able to completely describe the
NLD above the neutron separation limit.

Microscopic spin-dependent NLD calculations based on
the Hartree-Fock-BCS method [67] deviate from both the
Oslo and the (p, p′) data at low and high excitation en-
ergies correspondingly (up to ≈6.5 and from 12.5 MeV),
being higher by a factor of 2–2.5 on average. Between ≈6.5
and 12.5 MeV it agrees quite well with the (p, p′) data.
Similarly, the spin- and parity-dependent NLD calculated
within the temperature-dependent Hartree-Fock-Bogolyubov
approach with the Gogny force [68] follows the (p, p′) data
and the composite formula prediction nicely from ≈6.5 MeV
excitation energy and above, while still being about a factor of
3 higher than the Oslo-method NLD. For the case of the total
NLD, this deviation might reach up to one order of magnitude.
We conclude that although microscopic models are appealing,
as they should in principle grasp the underlying physics in
contrast to simple analytical formulae, they are at this point

not able to describe experimental data well enough over a
wide excitation-energy range.

IV. PORTER-THOMAS FLUCTUATIONS AND γ-RAY
STRENGTH FUNCTIONS

The experimental GSFs extracted with the Oslo method
result from averaging γ transitions over relatively wide
excitation-energy windows, ≈4.6 for 120Sn and 3.5 MeV for
124Sn [region 3 in Fig. 2(c) and 2(f)]. Therefore, any varia-
tions of the strength due to PT fluctuations are expected to
be strongly suppressed, lying well within the estimated error
bands. As such, PT fluctuations play a minor role and have
little influence on the overall shapes of the GSFs. However,
to test the gBA hypothesis, it is necessary to investigate how
the GSF varies as a function of excitation energy (and also, in
principle, spin and parity of the initial and final states). Then,
a complication arises because the action of narrowing down
the averaging interval to study the GSF for different specific
initial and final excitation energies will inevitably introduce
larger uncertainties due to increased PT fluctuations of the
partial radiative widths.

Oslo-method data have previously been used to study the
shapes of the GSFs as functions of initial and final excitation
energies to address the question on the validity of the gBA
hypothesis [25,26,30,76]. With the exception of Ref. [26],
which presents a detailed discussion and estimates of the PT
fluctuations for the case of 64,65Ni, the role of these fluctua-
tions are approached mostly in a qualitative way. Due to the
particularly high density of initial and accessible final states in
238Np, studied in Ref. [25], reaching up to ≈4.3 × 106 states
at Sn = 5.488 MeV, the PT fluctuations are expected to be
negligible for the comparison of individual GSFs for differ-
ent individual initial and final excitation energies with the
Oslo-method strength. An excellent agreement of all strengths
was found, and this indeed serves as a strong argument for
the validity of the gBA hypothesis [25]. Such a compari-
son, however, is much more difficult in the case of lighter
nuclei such as 46Ti [30], 64,65Ni [26], and 92Zr [34]. For
example, the density of levels at Sn = 9.658 MeV in 64Ni is
only ≈2.6 × 103 MeV−1, and variations on the strengths for
specific excitation energies might reach some tens of percent
of the absolute value [26]. In this regard, the nuclei studied
in this work present an intermediate case between the heavy
238Np and relatively light 64,65Ni nuclei, with the total NLDs
of ≈2.5 × 105 MeV−1 at Sn = 9.104 MeV for 120Sn and
≈8.8 × 104 MeV−1 at Sn = 8.489 MeV for 124Sn.

To study the variation in the GSFs of 120,124Sn, we follow
the procedure outlined in Refs. [26,76], assuming that the
fluctuations of the GSF follow a χ2

ν distribution with the
number of degrees of freedom corresponding to the number
of γ -ray transitions n(Eγ ) at a given transition energy Eγ .
Relative fluctuations of the GSF are given by the ratio between
the deviation σPT and average μ, or r = σPT /μ = √

2/ν, of
the χ2

ν distribution [28].
The number of transitions (i.e., the number of partial

widths, or primary transitions) n can be calculated for each
Eγ for specific initial and final excitation energies, allowing
to study how the fluctuations evolve with γ -ray and excitation
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FIG. 7. Relative fluctuations of the GSF r(Eγ ,Ei ) for different
initial excitation energies for (a) 120Sn and (b) 124Sn. All initial Ei

and final energies Ei − Eγ lie within the quasicontinuum region. The
excitation and γ -ray energy bins are 128 keV for 120Sn and 160 keV
for 124Sn.

energy. We adopt the following relation from Refs. [26,76] to
estimate the number of transitions n(Eγ ,Ei ):

n(Eγ ,Ei ) = �E2
∑
Jπ

1∑
L=−1

∑
π ′

ρ(Ei, J, π )

× ρ(Ei − Eγ , J + L, π ′), (14)

where we consider dipole transitions only, and �E is the
excitation-energy bin width. By substituting Ei with Ef and
Ei − Eγ with Ef + Eγ , it is also possible to obtain the number
of transitions as a function of Eγ and final excitation energy.

We limit ourselves to two types of cases in estimating the
GSF fluctuations. First, we study the case when the initial Ei

and final Ef excitation energies both lie within the quasicon-
tinuum region, for which the spin distribution of Eq. (5) is
considered applicable. This allows us to apply this distribution
to account for the spin dependence of the NLDs in Eq. (14).
Furthermore, it is assumed again an equal contribution of
positive- and negative-parity states within the quasicontin-
uum. We also require a minimum level density of 10 levels
per bin, corresponding to Ef ≈ 3.2 MeV in 120Sn and Ef ≈
3.0 MeV in 124Sn. Note that this is a rather crude estimate that
should be taken with some caution. However, since we want

FIG. 8. Relative fluctuations of the GSF r(Eγ ,Ef ) for different
final excitation energies for (a) 120Sn and (b) 124Sn. All initial ener-
gies Ei − Eγ lie within the quasicontinuum region. The same applies
to the different final energies Ef represented by blue lines. The red
dashed line corresponds to the ground state as the final state, the
green one corresponds to the first excited 2+ state as the final state,
and the yellow one corresponds to several discrete final low-lying
states. The excitation-energy bins and γ -ray energy bins are 128 keV
for 120Sn and 160 keV for 124Sn.

to obtain an approximate magnitude of the fluctuations, small
deviations from the spin distribution formula are not expected
to impact the results. Second, we consider initial excited states
within the quasicontinuum and final states with known parities
and spins within the discrete region. Here, the level density at
the final excitation energy can be calculated directly using the
known states from Ref. [51].

Figure 7 shows the relative GSF fluctuations r(Eγ ,Ei ) =√
2/n(Eγ ,Ei ) as functions of Eγ for transitions from differ-

ent initial excitation-energy bins within the quasicontinuum
for 120Sn and 124Sn. The data are shown for Ef � 3.2 MeV
for 120Sn and Ef � 3.0 MeV for 124Sn, so that the final
excitation energies of the included transitions lie within the
quasicontinuum. The experimental level densities were used
for the calculation. Similar to the results for 64,65Ni [26], the
fluctuations increase exponentially with γ -ray energy for a
given Ei, as well as from the lowest to the highest initial
excitation energy at a given Eγ . This behavior can easily be
explained by the decreasing number of possible transitions for
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consecutively lower excitation energies, given the exponen-
tially decreasing density of accessible levels.

The magnitudes of the fluctuations in both nuclei are quite
similar due to the similar values of the total NLDs, and all
minor differences stem primarily from a slight difference in
the bin width. At the neutron separation energy, fluctuations
in both nuclei range from ≈10−2 to 4–5 × 10−1%, while for
the lower excitation energy they reach up to ≈3–6%. Fluctu-
ations of these orders of magnitude are indeed expected for
the relatively heavy 120,124Sn nuclei. For example, based on
the NLD of 64Ni [26] and 120Sn, the number of transitions
at Ei ≈ 7.7 MeV at Eγ ≈ 2.3 MeV in 120Sn is roughly a
factor of 1000 larger than in 64Ni, which indeed yields larger
fluctuations in 64Ni by approximately a factor of 30.

The relative GSF fluctuations calculated from the tran-
sitions to specific final excitation energies demonstrate the
opposite trend, exponentially decreasing with γ -ray energies,
as shown in Fig. 8. These trends are displayed with an ap-
proximately equal spacing for several final excitation energy
bins within the quasicontinuum, as well as the bins containing
the ground state, the first excited state, and several known
low-lying excited states. In contrast with the lowest initial
excitation energies, fluctuations at final excitation energies
below Ef ≈ 3 MeV reach up to tens of percent and might
become a considerable contribution to the total uncertainty of
the GSF.

The estimates of the PT fluctuations can be further put
into the context of testing the gBA hypothesis for 120,124Sn.
By analogy with the 238Np results from Ref. [25], the ex-
perimental data obtained for 120,124Sn can be readily used
to test whether the transmission coefficients, and, therefore,
the GSFs, are dependent on the initial and final excitation
energies. Equation (1) can be rewritten in the form [25]

P(Eγ ,Ei )N (Ei ) = T (Eγ )ρ(Ei − Eγ ), (15)

where we introduce an additional energy-dependent factor
N (Ei ) given by

N (Ei ) =
∫ Ei

0 T (Eγ )ρ(Ei − Eγ )dEγ∫ Ei

0 P(Eγ ,Ei )dEγ

. (16)

Here, we make use of the transmission coefficient extracted
from the Oslo method, and hence averaged over a wide range
of excitation energies. We can deduce the transmission coeffi-
cient as a function of excitation energy and γ energy through

T (Eγ ,Ei ) = P(Eγ ,Ei )N (Ei )

ρ(Ei − Eγ )
. (17)

A similar relation can be obtained for the final excitation
energy by substituting Ei with Ef + Eγ .

The GSFs for several initial excitation energies in the
case of 120Sn were previously published in Ref. [15], where
they were compared with the strength extracted with the
Oslo method. In this work, we present the comparison of
the individual GSFs for different initial and final excitation
energy bins for both 120Sn and 124Sn with the corresponding
Oslo-method results. Individual strengths are shown together
with the error band due to the statistical uncertainty propa-

gated through the method, denoted by statistical for short. As
the Oslo-method GSF is an averaged strength with heavily
suppressed PT fluctuations, it is shown with the total error
band as well as additional error bars, denoting the expected
PT fluctuations, or rather expected deviations of the individ-
ual strengths due to PT fluctuations. The latter is essential
to assess whether there is an agreement or not between the
strengths extracted for various excitation-energy bins and the
Oslo-method strengths.

The results for 120Sn at four initial excitation energies are
shown in the upper row of Fig. 9. The dark-gray shaded
areas indicate regions of potential infinite fluctuations due to
the expected zero values of the NLD at the final excitation
energies in the energy gaps between the first few discrete
states. As can be seen from Fig. 4, the experimental NLD
has small nonzero values between the ground state and the
first and second excited states at ≈1.171 and 1.875 MeV
due to the experimental resolution and the presence of some
residual counts in the raw matrix after the background sub-
traction. The analysis applied to each individual excitation
energy Ei generates a continuous data set for the GSF from the
highest possible γ -ray energy at Eγ = Ei downward to γ -ray
energies below 2 MeV shown for 120Sn in Figs. 9(a)–(d).
The GSF values in the dark-gray region at higher gamma
energies belong to hypothetical primary γ -ray transitions in
the energy range between the ground state and 1.171 MeV,
while the dark-gray region at lower energies belongs to decays
into the energy range from 1.171 to 1.875 MeV. However, it
should be mentioned that direct gamma decays to those final
excitation energy regions are physically not possible and that
the corresponding data points are artifacts of the continuous
analysis. It is, however, interesting to observe that the PT fluc-
tuation analysis reveals those regions by unusually large PT
fluctuations

In case of fixed initial excitation energies, light-gray
shaded areas correspond to energy bins where the fluctuations
cannot be estimated, either due to Eγ > Ei or unambiguous
spins of some final excited states. In the latter case it is no
longer possible to define what spins of initial states within the
quasicontinuum yielding dipole transitions must be included
to the sum in Eq. (14). For the rest of the experimental points,
the fluctuations were estimated and shown in Fig. 9 as vertical
error bars. The values of these errors exceed or are of the same
magnitude as the statistical uncertainties for high Eγ for all of
the presented cases. For the highest initial excitation energies
in Fig. 9, Ei = 7.74 and 7.10 MeV, they become increasingly
suppressed, as compared with the statistical errors, by roughly
a factor of 10 at Eγ ≈ 4.5 MeV, gradually increasing to ≈102

toward Eγ ≈ 1 MeV. For lower initial excitation energies, this
factors are of order 1 and 10. Except for the strong devia-
tions in the areas with expected large fluctuations (dark-gray
areas), all strengths are in fairly good agreement with the
Oslo-method result within its error band.

Similar results with an excitation energy bin width of 160
keV are shown for 124Sn in the upper row of Fig. 10. Since the
range of populated spins might be limited in this case, using
the total NLD provides a lower estimate of the PT fluctuations,
and they might be slightly larger than shown in the figure. By
analogy with the case of 120Sn, the GSFs for different initial
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FIG. 9. GSFs for 120Sn at initial excitation energies (a) 5.82 MeV, (b) 6.46 MeV, (c) 7.10 MeV, (d) 7.74 MeV and final excitation energies
(e) ground state, (f) first excited state, (g) 2.50 MeV, (h) 3.26 MeV compared with the Oslo method strength (blue shaded band). For each
strength the statistical error band is shown together with the error due to the PT fluctuations. Dark gray regions correspond to the areas of
expected infinite PT fluctuations, light gray area marks energies for which the fluctuations of the strength were not determined. The γ -ray and
excitation energy bin widths are both 128 keV.

excitation energies are in rather good agreement with the
Oslo-method strength within the shown error bands and areas
of expected finite PT fluctuations. These results for both the
120,124Sn isotopes further support the GSF being independent
of the initial excitation energy, in accordance with the gBA
hypothesis. At lower excitation energies, the uncertainty due
to PT fluctuations is expected to gradually outweigh the sta-

tistical error bar. This effect becomes especially apparent for
the GSFs extracted for specific final excitation-energy bins.
The GSF for the ground state and the first excited state at
1.171 MeV in 120Sn are demonstrated in comparison with
the Oslo-method GSF in Figs. 9(e) and 9(f). The data are
shown for Ef + Eγ � 3.2 MeV. The area below this energy
and the area corresponding to Ef + Eγ > Sn are shaded. The

FIG. 10. GSFs for 124Sn at initial excitation energies (a) 5.52 MeV, (b) 6.16 MeV, (c) 6.96 MeV, (d) 7.76 MeV and final excitation energies
(e) ground state, (f) first excited state, (g) 2.80 MeV, (h) 3.44 MeV compared with the Oslo method strength (blue shaded band). For each
strength the statistical error band is shown together with the error due to the PT fluctuations. Dark gray regions correspond to the areas of
expected infinite PT fluctuations, light gray area marks energies for which the fluctuations of the strength were not determined. The γ -ray and
excitation energy bin widths are both 160 keV.
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FIG. 11. Shape-method GSFs of 120Sn for γ rays (a) feeding the
ground state and (b) the first excited state compared with the Oslo
method result (blue band). The Shape method results are shown
together with the statistical error propagated through the method,
shown as a band (significantly smaller in width than the size of the
data points), and the error bars due to the PT fluctuations. The Oslo
method GSF is shown with the total (stat.+syst.) error band.

fluctuations of the ground-state strength are large below
≈5 MeV, where they reach ≈40% of the absolute value.
Between Eγ ≈ 3.3 and 5 MeV, the fluctuations of the strength
are ≈60% on average and reach up to 90% toward the lowest
γ energy. The latter case corresponds to only 1–3 possible
dipole transitions at this Eγ . Applying the χ2

ν distribution
for fluctuations of so few transition widths is not justified
because it is valid solely in the statistical regime. Thus, the
estimation procedure should be taken with great care when
r(Eγ ) approaches values of 1.

Below ≈5 MeV, some strong deviations of the ground-
state strength from the Oslo-method result are observed.
Besides the strong PT fluctuations at these γ -ray energies,
there might be some quadrupole transitions that cause me-
thodical problems in this region. As the extraction of the
GSF relies on dipole radiation being dominant, quadrupole
transitions from numerous low-lying 2+ states to the ground
state could distort the strength as the factor of E5

γ should be
used instead of E3

γ . At higher γ -ray energies, the ground-state
strength reproduces the slope of the Oslo method strength,
lying well within the Oslo-method error band. Similar effects
can be seen for the 124Sn [in Fig. 10(e), Ef + Eγ � 3.0 MeV],
where the fluctuations were again estimated with the total

FIG. 12. Same as Fig. 11, but for 124Sn.

NLD and, therefore, should be considered lower-limit esti-
mates.

High PT fluctuations of 10%–60% are observed also for
the GSF to the first excited states in both isotopes, as shown in
Figs. 9(f) and 10(f). For both nuclei these strengths reproduce
the slopes of the Oslo method GSF in the region between 5 and
6.5 MeV quite well. For the higher final excitation energies,
the fluctuations of the strengths are at most by one order of
magnitude larger than the statistical uncertainties at low γ -ray
energies, while at higher γ -ray energies they are by one order
of magnitude smaller. For these strengths it is challenging to
argue for an exact agreement with the Oslo method result. If
taking a general agreement of the strengths within the error
bars as a criterion, it can be possible to claim an overall
independence of the strengths of final excitation energy for
120,124Sn.

As the PT fluctuations become more significant at lower
final excitation energies, they are expected to make a consid-
erable contribution to the total error band of the Shape-method
results. In Figs. 11 and 12, the GSFs for γ rays feeding
the ground state and the first excited 2+ state are shown
for 120Sn and 124Sn, respectively, together with the corre-
sponding Oslo-method strengths. To test what a reasonable
minimum excitation-energy limit would be for the appli-
cation of the Shape method, we choose Ei = 4 MeV in
both nuclei as a starting point. The Shape method results
are presented with their statistical uncertainties, propagated
through the unfolding and the first generation method. The
Oslo-method strength is shown with the total error band and
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the expected variations of the corresponding ground-state
or first-excited-state strengths due to the PT fluctuations.
Both of these strengths for 120Sn follow the shape of the
Oslo-method strength quite well from the neutron separation
energy and down to ≈5.5–6 MeV. Here, they start deviating
gradually for lower γ -ray energies. In 124Sn, the agreement
between the GSFs is quite good from Eγ ≈ 5 MeV and
higher.

Remarkably, the ground-state strengths and the first-
excited-state strengths for 120,124Sn demonstrate quite signif-
icant enhancements between 3 and 5 MeV, which cannot be
attributed to any real features of the strength. Moreover, there
are no noticeable structures on the diagonals at 4 < Ei <

5 MeV that might have induced these features. No similar
effect was previously reported for even-even isotopes [34].
The appearance of these bumps might partly arise from the
failure of the internal normalization technique at relatively
low γ -ray energies where large fluctuations of the strengths
are observed. The fluctuations of the ground-state strength
in 120,124Sn range from ≈30% to 70% below 5.5 MeV, and
from ≈15%–35% below 4.3 MeV for the GSF corresponding
to the first excited state. Since the pairs of data points for
the two diagonals at each excitation energy are normalized
internally to each other (see Ref. [34]), large variations of
the strengths could lead to an erratic internal normalization
at relatively low γ -ray energies. When reaching densities of
1 × 103–2 × 103 levels per MeV, the distorting effect due to
the PT fluctuations becomes smaller, and the Shape-method
results follow nicely the Oslo-method strength in both cases.
This potential problem should be considered in future studies
performed with the Shape method. When approaching the
neutron separation energies in 120,124Sn, fluctuations of the
strengths do not exceed a few percent, which is comparable
to the statistical error bands shown in Figs. 11 and 12, while
for the rest of the energy range, the PT fluctuations make a
noticeable contribution to the uncertainties.

Additional explanations for the smooth bump-like struc-
tures observed in the GSF might come from the failure of
some basic assumptions in the Shape method such as a sym-
metric parity distribution of the initial nuclear levels, pure
dipole transitions of the involved γ -ray decays, and a spin-
independent excitation probability in the (p, p′γ ) reaction at
16 MeV. The lower the excitation energy, the less the as-
sumption of a symmetric parity distribution might be justified,
especially in the magic Sn isotopes, so this may lead to de-
viations when using the Shape method at excitation energies
below 5–6 MeV. Furthermore, similar to the discussion of the
Oslo method, potential contributions of quadrupole transitions
can distort the analysis procedure due to the different energy
factor of E5

γ as compared with E3
γ for dipole transitions. In

particular, the excited 2+ states will most likely decay (on
average) preferably to the first 2+ instead to the ground state.
Within the Shape method, this can lead to the fact that the
value of the GSF for the ground state γ decay is (on average)
smaller than for the decay into the first 2+ state. Thus the value
pair in the Shape method has an increasing course towards low
γ energies due to fto 2+ [Ei − Ex(2+)] > fto g.s.[Ei − Ex(g.s.)]
and might explain the increasing bump-like trend of the GSF.
It remains an open question as to why the deviation of the

strengths is systematically upward (always an increase) and
whether the PT fluctuations, asymmetric parity distributions
or the specific decay behavior of 2+ states at low excitation
energies are the main cause of the observed deviation

V. CONCLUSIONS

The nuclear level densities and γ -ray strength functions
of 120,124Sn were extracted using the Oslo method, and the
slopes of the strengths were additionally constrained with the
Shape method. The NLDs were found to be in good agreement
with previously deduced NLDs for 116,118,122Sn, with slight
deviations primarily due to some differences in the normal-
ization procedures. The Oslo-method NLD for 1− states in
124Sn is in fairly good agreement within the estimated error
bands with the result obtained from the fluctuation analysis
of high-resolution inelastic proton scattering spectra above
6 MeV. Given the model-independence of the (p, p′) result,
this agreement supports the choice of the spin distribution
function and the spin-cutoff parameter employed in the Oslo
method. The combined results covering excitation energies
up to 14 MeV clearly demonstrate the transition between the
constant temperature and the Fermi gas regimes at ≈8.5 MeV.

The experimental NLDs were used to estimate the role of
the Porter-Thomas fluctuations in assessing the generalized
Brink-Axel hypothesis below the neutron separation energy
in 120,124Sn, as well as the applicability of the Shape method.
Most of the deviations of the GSFs for different initial and
final excitation energies from the Oslo-method strength can
be explained by strong PT fluctuations due to very few γ

transitions. For the ground-state and the first excited state
strengths, this effect is especially apparent, with the PT fluc-
tuations reaching up to 90%–100% at low γ -ray energies.
Despite some local discrepancies, the individual GSFs are in
overall good agreement with the Oslo-method strength within
the error bands, suggesting an independence of initial and final
excitation energies in support of the generalized Brink-Axel
hypothesis within uncertainties of the Oslo method.

Strong PT fluctuations were found to play a noticeable
role in the extraction of the GSFs with the Shape method,
as they might contribute to considerable deviations from the
Oslo-method result at low γ -ray energies. The reliability of
the Shape method applied to 120,124Sn is under question for
values of the NLDs below 1 × 103–2 × 103 levels per MeV,
but quite satisfactory above this limit in both nuclei. Fur-
ther investigations are needed to understand why the Shape
method seemingly leads to an overestimate of the low-energy
strength in the region where the PT fluctuations are large.
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J. Kopecky, M. Krtička, V. Plujko, R. Schwengner, S. Siem
et al., Eur. Phys. J. A 55, 172 (2019).

[7] M. Guttormsen, T. S. Tveter, L. Bergholt, F. Ingebretsen, and J.
Rekstad, Nucl. Instrum. Methods Phys. Res., Sect. A 374, 371
(1996).

[8] M. Guttormsen, T. Ramsøy, and J. Rekstad, Nucl. Instrum.
Methods Phys. Res., Sect. A 255, 518 (1987).

[9] A. Schiller, L. Bergholt, M. Guttormsen, E. Melby, J. Rekstad,
and S. Siem, Nucl. Instrum. Methods Phys. Res., Sect. A 447,
498 (2000).

[10] M. Wiedeking, L. A. Bernstein, M. Krticka, D. L. Bleuel, J. M.
Allmond, M. S. Basunia, J. T. Harke, P. Fallon, R. B. Firestone,
B. L. Goldblum, R. Hatarik, P. T. Lake, I. Y. Lee, S. R. Lesher,
S. Paschalis, M. Petri, L. Phair, and N. D. Scielzo, Phys. Rev.
Lett. 108, 162503 (2012).

[11] S. Bassauer, P. von Neumann-Cosel, and A. Tamii, Phys. Rev.
C 94, 054313 (2016).

[12] D. Martin, P. von Neumann-Cosel, A. Tamii, N. Aoi, S.
Bassauer, C. A. Bertulani, J. Carter, L. Donaldson, H. Fujita,
Y. Fujita et al., Phys. Rev. Lett. 119, 182503 (2017).

[13] D. M. Brink, Ph.D. thesis, Oxford University, 1955 (unpub-
lished).

[14] P. Axel, Phys. Rev. 126, 671 (1962).
[15] M. Markova, P. von Neumann-Cosel, A. C. Larsen, S. Bassauer,

A. Görgen, M. Guttormsen, F. L. Bello Garrote, H. C. Berg,
M. M. Bjørøen, T. Dahl-Jacobsen et al., Phys. Rev. Lett. 127,
182501 (2021).

[16] B. A. Brown and A. C. Larsen, Phys. Rev. Lett. 113, 252502
(2014).

[17] G. W. Misch, G. M. Fuller, and B. A. Brown, Phys. Rev. C 90,
065808 (2014).

[18] C. W. Johnson, Phys. Lett. B 750, 72 (2015).
[19] N. Q. Hung, N. D. Dang, and L. T. Q. Huong, Phys. Rev. Lett.

118, 022502 (2017).
[20] R. A. Herrera, C. W. Johnson, and G. M. Fuller, Phys. Rev. C

105, 015801 (2022).
[21] C. T. Angell, S. L. Hammond, H. J. Karwowski, J. H. Kelley,
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