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Instructional interventions and teacher moves to support student learning of logical principles in 
mathematical contexts 

Kyeong Hah Roh Paul Christian Dawkins 
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Derek Eckman Anthony Tucci Steven Ruiz 
Arizona State University Texas State University Arizona State University 

This study explores how instructional interventions and teacher moves might support students’ 
learning of logic in mathematical contexts. We conducted an exploratory teaching experiment 
with a pair of undergraduate students to leverage set-based reasoning for proofs of conditional 
statements. The students initially displayed a lack of knowledge of contrapositive equivalence 
and converse independence in validating if a given proof-text proves a given theorem. However, 
they came to conceive of these logical principles as the teaching experiment progressed. We will 
discuss how our instructional interventions played a critical role in facilitating students’ joint 
reflection and modification of their reasoning about contrapositive equivalence and converse 
independence in reading proofs. 

Keywords: logic and proof, instructional interventions and teacher moves, contrapositive 
equivalence, converse independence 

The purpose of this study is to explore how students might learn logical principles and how 
instructional interventions and teacher moves might support students’ learning of logic. We 
focus on two logical principles: contrapositive equivalence and converse independence. By 
contrapositive equivalence, we refer to a logical principle that a conditional statement has the 
same truth value as its contrapositive. By converse independence, we mean a logical principle 
that a conditional statement does not necessarily have the same truth value as its converse.  
These two logical principles are foundational for mathematical justification: the former provides 
a logical account that proof of a conditional statement is also a proof of its contrapositive, and 
the latter provides a logical account that proof of a conditional is not a proof of its converse.  
It is critical for students in proof-oriented mathematics courses to know and use 

contrapositive equivalence and converse independence for their proof activities. However, 
empirical studies have reported students’ challenges with using these logical principles: In 
Stylianides et al.’s (2004) study, many mathematics undergraduates did not use the 
contrapositive equivalence as a valid inference. Dawkins et al. (2021) reported a similar 
phenomenon in which undergraduate students with no proof experience in college conceived that 
the proof of the contrapositive would not provide a proof of the original conditional statement. 
Dawkins et al. (2021) also documented calculus students conceiving a proof of a conditional 
statement as proof of its converse when both the conditional and its converse are true.  
While issues with student learning of these logical principles have been studied widely in 

proof research, these empirical studies have not focused much on how instructional interventions 
and teacher moves might provide support for students to learn these logical principles (Melhuish 
et al., 2022; Stylianides & Stylianides, 2017). In this paper, we document a case of two 
undergraduate students, Carl and Sarah, as a possible account for students coming to understand 
and might use these two logical principles. We also examined how the instructional interventions 
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and teacher moves we designed and implemented might have played a role in students 
developing set-based reasoning for these logical principles. This study addresses the following 
research questions: (1) How might students make progress in learning to use contrapositive 
equivalence and converse independence by engaging in set-based reasoning? and (2) how, when, 
and what types of instructional interventions and teacher moves could encourage or facilitate 
their set-based reasoning for learning these logical principles?  

Theoretical Framework 
We employ Piaget’s genetic epistemology as our theoretical lens for this study. From this 

perspective, we assume that individual students idiosyncratically organize their experiences 
within mental schemes (Glasersfeld, 1995; Piaget, 1971; Piaget & Inhelder, 1969). The schemes 
organized by an individual student’s unique experience would provide space of implications for 
her reasoning (Thompson et al., 2014). On the other hand, individual students’ ways of reasoning 
are not accessible to observers; we, as researchers, propose viable models of their ways of 
reasoning through their behaviors and utterances. We suggest and use a triad of relationships a 
student might need to construe when validating a proof-text paired with a conditional statement 
to be proven (Error! Reference source not found.):   

• What the student knows: this may include mathematical propositions, logical principles, 
or any relationship that the student conceives from the given conditional  

• What the student construes from the given conditional to be proven: a student might posit 
a relationship that the given conditional construes (to them).  

• What the student believes the given proof-text attempts to prove: A student might posit a 
relationship that the given proof-text construes (to them). 

The three relationships a student construes would likely support her reasoning when examining if 
the proof-text proves the statement to be proven. However, students may not find compatibility 
among the relationships they have construed. In such cases, instructional interventions and 
teacher moves could play a critical role in supporting students in connecting these relationships 
(e.g., Ellis et al., 2019; Mata-Pereira & da Ponte, 2017). Using this triad as an analytic tool, this 
paper provides empirical evidence that instructional interventions and teacher moves could 
leverage students’ learning of contrapositive equivalence and converse independence. 

Research Methodology 
As part of a more extensive study aiming to develop constructivist models of students’ 

abstraction of logic for proof of conditional statements, we have conducted exploratory teaching 
experiments (Steffe & Thompson, 2000) since 2018. The exploratory aspect of the experiments 
allowed us to repeat six iterations of the design-implementation-analysis cycle over five years to 
refine the instructional tasks and our models of students’ ways of reasoning about logical 
principles.  

Figure 1. Three relationships a student may construe while reading a proof-text paired with a statement 
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This paper documents our findings from our sixth iteration of the teaching experiments 
conducted at a large public university in the United States. Two undergraduate students, Carl 
(engineering major) and Sarah (mathematics major), were recruited from calculus 3 at the 
beginning of the semester in the Spring of 2022. We selected Carl and Sarah out of 14 students 
who completed the screening survey (Roh & Lee, 2018) as they met our selection criteria. Their 
survey responses indicated they would have sufficient mathematical knowledge to comprehend 
conditional statements and proof-texts in our designed tasks yet need to learn logical principles 
to validate mathematical proofs. Both students also reported they learned proofs in geometry in 
high school but had not yet taken any proof-oriented courses in college.  
The exploratory teaching experiment was organized once a week for 12 weeks for 75-minute 

interviews. For the first (intake) and last (exit) interviews, we conducted clinical interviews 
(Clement, 2000) by meeting each student individually to assess their use of logic to validate 
proofs of conditional statements. We conducted exploratory teaching interviews for the rest of 
the ten interviews (Sellers, 2020). We met with both students and implemented the tasks we 
designed to help students leverage set-based reasoning. The tasks for the teaching interviews 
consisted of 4 tasks: (1) set theory tasks (defining sets by shared properties); (2) truth conditions 
tasks (evaluating truth values of conditional statements); (3) what-does-it-prove tasks (reading 
and comparing proof-texts paired with a conditional statement), and (4) abstraction task 
(comparing various proofs across different mathematical contents to abstract general proof 
frames for conditional statements). With these tasks, we tried to create a student-centered 
learning environment to encourage students’ reflection and modification of their reasoning.  

Results 
At the intake interviews, Carl and Sarah exhibited the opposite of the normative 

mathematical logic regarding contrapositive equivalence and converse independence. 
Specifically, they both responded that a proof of the contrapositive of a given conditional does 
not prove the statement. In contrast, a proof of the converse of a given conditional proves the 
statement when both the original conditional and its converse are true. Their responses at the 
intake interviews indicate the absence of these logical principles in the students’ reasoning, or at 
least the intake interview tasks did not evoke the students to use these logical principles. 
However, their reasoning about logic shifted during the teaching interviews in which we 
implemented the what-does-it-prove (WDIP) tasks (Days 5-8). Carl and Sarah first made sense 
of the contrapositive equivalence and later began to make sense of the converse independence. 
We describe how contrapositive equivalence became these students’ knowledge base for proof 
by contrapositive, yet created resistance to develop converse independence. We also document 
how our instructional interventions designed to leverage set-based reasoning and teacher moves 
facilitated students’ reflection on mathematical proof and their eventual recognition of converse 
independence.       

Teacher Moves Leveraging Student Progress in the Contrapositive Equivalence   
On Day 5, the first day for the WDIP tasks, the interviewer presented Theorem 1 (“For every 

integer x, if x is a multiple of 6, then x is a multiple of 3”) with three associated proof-texts, 
Proof 1.1 (direct proof), Proof 1.2 (disproof of converse), and Proof 1.3 (proof of the 
contrapositive). Carl and Sarah immediately attended to the first and last lines of Proof 1.1 and 
said that Proof 1.1 would prove Theorem 1. Afterward, these students frequently examined if the 
first line and last line of other proof-texts matched the if-part (the premise) and the then-part (the 
conclusion) of the theorem to be proven, respectively. These students’ attention to the first and 
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last lines of the proof-texts enabled them to find the compatibility among what relationship they 
know about the premise and conclusion of the given theorem, what relationship the given 
theorem describes, and direct proof attempts to prove the given theorem.  
On the other hand, these students’ tendency to check the matches between the first line of a 

proof-text and the premise of the theorem statement may have hindered them from discerning 
why proof of contrapositive indeed proves the given theorem, even though proof of 
contrapositive does not start with the if-part of the given theorem statement.  
Sarah: I said it [Proof 1.3] proves something different. I guess it [Proof 1.3] proves the 
complements of the original one that if x is not a multiple of 3, then x is not a multiple of 
6, which [is] base[d] off of how we were seeing the complement, remember? That could 
possibly be true [inaudible]. 

Carl: Yeah. I said the same thing […] It’s, yes, if we’re allowed to say that if A is a subset of 
B, and B’s complement is a subset of A’s complement. 

In the dialogue above, Sarah and Carl used set languages, such as subsets and complement sets. 
Carl used letters A and B to name the truth sets for the premise and conclusion of Theorem 1 and 
used these letters to interpret what Theorem 1 says and what Proof 1.3 proves in terms of subset 
relationships. Sarah then claimed that what Proof 1.3 attempts to prove is the contrapositive of 
Theorem 1 and could also be true. Carl agreed to interpret Theorem 1 and Proof 1.3 in terms of 
subset relationships if they were allowed to say the set relationships 𝐴 ⊆ 𝐵 and 𝐵𝑐 ⊆ 𝐴𝑐. 
However, the students’ use of set language itself did not indicate their use of contrapositive 
equivalence. They responded that both Theorem 1 and its contrapositive are true in this case but 
drew two different diagrams to represent what Theorem 1 construed to them and what they 
believed Proof 1.3 attempts to prove. Sarah drew a diagram to represent what Theorem 1 meant 
to her: the truth set 𝑃 of the premise of Theorem 1 is a subset of the truth set 𝑄 of the conclusion 
of Theorem 1. She also drew another diagram for Proof 1.3, in which 𝑄𝑐 is contained in 𝑃𝑐 
(Error! Reference source not found. left).  

At this point, the interviewer intervened with Carl and Sarah by inviting them to use only one 
diagram for both Theorem 1 and Proof 1.3. This teacher intervention enabled Sarah to use her 
diagram for Theorem 1 to shade the region corresponding to the complements of 𝑃 and 𝑄. (i.e., 
If 𝑃 ⊆ 𝑄, then 𝑄𝑐 ⊆ 𝑃𝑐). By Instructor’s request, Sarah was also able to use her diagram for 
Proof 1.3 to describe Theorem 1 (i.e., If 𝑄𝑐 ⊆ 𝑃𝑐, then 𝑃 ⊆ 𝑄). Sarah’s revised diagrams 
(Error! Reference source not found., right) are indicative of her progress in the 
conceptualization of contrapositive equivalence (P ⊆ 𝑄 iff 𝑄𝑐 ⊆ 𝑃𝑐). After looking at Sarah’ 
revised diagrams, Carl agreed with Sarah and illustrated his diagram, which was similar to 

Figure 2. Sarah’s diagrams for Theorem 1 & Proof 1.3: (left) initial; (right) after the teacher intervention 
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Sarah’s diagrams. But he also added another case in which if two sets A and B are equal, then 
A’s complement and B’s complement are also equal (If P = 𝑄, then 𝑄𝑐 = 𝑃𝑐). Figure 3 
illustrates our model of Sarah’s reasoning in which she began to use contrapositive equivalence 
as her new knowledge to comprehend a proof of contrapositive as a proof of the original 
conditional. From that point, the contrapositive equivalence became robust knowledge for Carl 
and Sarah for the rest of the teaching experiment. Here, we see the teacher intervention 
supported these students to use what they came to know (contrapositive equivalence) to connect 

what relationship Theorem 1 construed to them (𝑃 ⊆ 𝑄) with what they believed Proof 1.3 
attempts to prove (𝑄𝑐 ⊆ 𝑃𝑐). 

Teacher Moves Leveraging Student Progress in Converse Independence   
On Day 6, the interviewer presented Theorem 2 (for any integer 𝑥, if 𝑥 is a multiple of 2 and 

7, then 𝑥 is a multiple of 14) with two associated proof-texts: Proof 2.1 (proof of converse) and 
Proof 2.2 (direct proof). Carl and Sarah responded that Proof 2.1 proves Theorem 2 despite the 
reversed order because they believed Theorem 2 and its converse are both true. To be more 
specific, Carl explained that he knew the set of all multiples of 2 and 7 (𝑃) is the same set as the 
set of all multiples of 14 (𝑄), i.e., 𝑃 = 𝑄, and to him, Theorem 2 interprets the subset 
relationship 𝑃 ⊆ 𝑄. Carl also believed Proof 2.1 proves the reversed subset relationship 𝑄 ⊆ 𝑃. 
While Theorem 2 and Proof 2.1 form different subset relationships, he could infer Theorem 2 
from Proof 2.1 by substituting 𝑃 to 𝑄 and 𝑄 to 𝑃 in the subset relationship 𝑄 ⊆ 𝑃. He said that 
since he already knows 𝑃 = 𝑄, by using his knowledge, he could infer Theorem 2 from what 
Proof 2.1 proves.  

On Day 7, the interviewer presented Theorem 4 (Given any quadrilateral ABCD, if ABCD is 
a kite and parallelogram, then ABCD is a rhombus) with Theorem 4.1 (proof of converse) and 
Theorem 4.2 (direct proof). Carl continued claiming, and Sarah agreed, that although Proof 4.1 
proves the converse of Theorem 4, it also proves Theorem 4 because both Theorem 4 and its 
converse are true. We infer that these students meant the two subset relationships 𝑃 ⊆ 𝑄 and 
𝑄 ⊆ 𝑃 are indistinguishable to them when 𝑃 = 𝑄. In our model, they conceived that Proof 4.1 
proves the converse of Theorem 4. But since they already knew the premise and the conclusion 
of Theorem 4 represents the same truth sets (𝑃 = 𝑄), they went further to infer that Proof 4.1 
proves Theorem 4 as well.  

Figure 4. A model of Carl's reasoning about why Proof 2.1 proves Theorem 2 

Figure 3. A model of Sarah's way of reasoning with contrapositive equivalence 
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On Day 7, Carl claimed, and Sarah agreed, that they should be allowed to use what they 
know without justification. He compared proof of converse with proof of contrapositive. 
Although Proof 1.3 does not justify contrapositive equivalence, Carl accepted that Proof 1.3 
(proof of contrapositive) proves Theorem 1 because he knew contrapositive equivalence. Carl 
then claimed with an analogy that we should also accept Proofs 2.1 and 4.1 (proofs of converse) 
even though these proofs do not provide justification for 𝑃 = 𝑄, since he already knew these sets 
were equal. Furthermore, Carl claimed, and Sarah agreed, that proof does not necessarily justify 
explicitly what they already know. This is similar to how one may apply a known theorem 
without reproving it. The distinction between the ways mathematicians cite prior knowledge and 
how Carl wanted to cite prior knowledge is quite subtle, and we see Carl’s reasoning as 
subjectively rational. The more central question was: how would Carl and Sarah justify 𝑃 = 𝑄 
instead of saying they already know it?  
On Day 8, the interviewer presented Proof 4.4 () as an instructional intervention, which 

resembled our model of Carl’s reasoning on Day 7. As a version of proof of converse, Proof 4.4 
explicitly stated the equal set relationship that “we already know” without justification. Both 
students responded that Proof 4.4 would prove Theorem 4 directly because it explicitly stated 
𝑃 = 𝑄 in the proof-text and thus provided warrants (𝑃 = 𝑄) to support Proof 4.1 (𝑄 ⊆ 𝑃) infers 
Theorem 4 (𝑃 ⊆ 𝑄).  

While the interviewer acknowledged that the students already knew 𝑃 = 𝑄, she invited them 
to state what it would mean for two sets 𝑃 and 𝑄 to be equal. Students’ responses to this 
instructional intervention uncovered the absence of meaning for equal sets in these students’ 
reasoning: They were not sure how to say two sets are equal. Carl merely suggested that two sets 
are equal (𝑃 = 𝑄) when their complements are equal (𝑃𝑐 = 𝑄𝑐) (see Error! Reference source 
not found., left). Sarah then suggested combining Theorem 4 and its converse (see Error! 
Reference source not found., right) as a meaning for equal sets.  
 

Figure 6. Students wrote their meaning of equal sets: Left: Carl; Right: Sarah 

Figure 5. Proof 4.4: A model of Carl's reasoning in accepting Proof 4.1 (proof of converse) as a proof of Theorem 4 

25th Annual Conference on Research in Undergraduate Mathematics Education 699



After the interviewer invited Carl and Sarah to state their meaning of equal sets, Sarah shifted 
her interpretation, revealing a sense of circularity. In particular, her interpretation of equal sets 
by this conjunction of a conditional and its converse helped her to realize the absence of 
justification for 𝑃 = 𝑄 in Proof 4.4. When Carl asked if “we are given 𝑃 = 𝑄 from Proof 4.4 or 
not,” Sarah responded to Carl that “No, Proof 4.4 isn’t even really proving 𝑃 =  𝑄. It’s just 
saying it is.” When Carl asked again if that (𝑃 = 𝑄) is “given or inferred,” Sarah again 
responded to Carl that “it [Proof 4.4] never says [justifies] 𝑃 = 𝑄.” From this student dialogue, 
we could see Sarah’s reasoning had evolved regarding the converse independence. While 
engaging in the sequence of activities and responding to the interviewer’s prompts, she 
concluded that we should use only what we had already proved without justification again. Since 
they already justified contrapositive equivalence by diagrams (Figure 2), Sarah believed that they 
could say Proof 1.3 (proof of contrapositive) proves Theorem 1 even though Proof 1.3 does not 
justify the contrapositive equivalence. However, she contended that “Proofs 2.1 and 4.1 (proofs 
of converse) do not necessarily prove their original theorems because the theorems ask “if 𝑃, 
then 𝑄” (𝑃 ⊆ 𝑄) but the proofs instead prove “if 𝑄, then 𝑃” (𝑄 ⊆ 𝑃). To prove the theorem to be 
proven, the proofs would have to prove 𝑃 = 𝑄 so we can assume 𝑃 ⊆ 𝑄 and 𝑄 ⊆ 𝑃.” While Carl 
did not accept Sarah’s claim on Day 8, he exhibited his acceptance of converse independence at 
the exit interview. Specifically, Carl determined, “Proof 𝛾 (proof of converse) proves 𝐵 ⊆ 𝐴 but 
doesn’t really prove Theorem 𝛾 (𝐴 ⊆ 𝐵) [because] Proof 𝛾 lies on the reader inferring 𝐴 = 𝐵. 
Basically, if proof 𝛾 added an extra line, proving 𝐴 = 𝐵, then it would be equal to it. Then it 
would prove the theorem. [but] I don't think they do it.” 

Discussion 
 In this paper, we documented how Carl and Sarah generalized contrapositive equivalence 

and converse independence across proofs of conditional statements as they were engaging with 
the WDIP tasks. The interviewer’s prompting to use only one diagram to interpret two subset 
relationships helped the students make the line of inference between Proof 1.3 (proof of 
contrapositive) and Theorem 1 explicit, such that they affirmed it by their “prior knowledge” 
regarding the contrapositive equivalence. Later, Carl used this idea to justify why proof of 
converse proves the original conditional. For him, proof of contrapositive and proof of converse 
both relied on his prior knowledge, which he called “prove indirectly.” Indeed, in one case, his 
prior knowledge was logical knowledge about the generalizable contrapositive relationship; in 
the other, it was local mathematical knowledge that the situation described by Theorem 4 related 
two equal sets of quadrilaterals. By introducing Proof 4.4, the interviewer’s move of reflecting 
the form of Carl’s justification back to the students allowed them to move forward in critiquing 
the justification. However, to see the conflict, which is what mathematicians usually call 
“circularity,” Sarah needed to interpret set equality as the conjunction of two subset claims. This 
made it clearer how asserting 𝑃 = 𝑄 without proof was tantamount to asserting 𝑃 ⊆ 𝑄 without 
proof. Understanding the logic of the relationships between proofs and theorems is quite 
challenging. Still, we see how these instructional moves supported Carl and Sarah in 
apprehending the structure of their own arguments to evaluate them more precisely. We are 
pleased with how our interventions allowed these students to wrestle deeply with these matters of 
justification, though more work is needed to explore this arena of learning.  
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