
Findings of the Association for Computational Linguistics: ACL 2023, pages 13089±13100

July 9-14, 2023 ©2023 Association for Computational Linguistics

DiffuSum: Generation Enhanced Extractive Summarization with Diffusion

Haopeng Zhang∗, Xiao Liu∗, Jiawei Zhang

IFM Lab, Department of Computer Science, University of California, Davis, CA, USA

haopeng,xiao,jiawei@ifmlab.org

Abstract

Extractive summarization aims to form a sum-

mary by directly extracting sentences from

the source document. Existing works mostly

formulate it as a sequence labeling problem

by making individual sentence label predic-

tions. This paper proposes DiffuSum, a novel

paradigm for extractive summarization, by di-

rectly generating the desired summary sentence

representations with diffusion models and ex-

tracting sentences based on sentence represen-

tation matching. In addition, DiffuSum jointly

optimizes a contrastive sentence encoder with

a matching loss for sentence representation

alignment and a multi-class contrastive loss for

representation diversity. Experimental results

show that DiffuSum achieves the new state-of-

the-art extractive results on CNN/DailyMail

with ROUGE scores of 44.83/22.56/40.56.

Experiments on the other two datasets with dif-

ferent summary lengths also demonstrate the

effectiveness of DiffuSum. The strong perfor-

mance of our framework shows the great poten-

tial of adapting generative models for extrac-

tive summarization. To encourage more follow-

ing work in the future, we have released our

codes at https://github.com/hpzhang94/

DiffuSum

1 Introduction

Document summarization aims to compress text

material while keeping its most salient informa-

tion. It plays a critical role with the growing

amount of publicly available text data. Automatic

text summarization approaches can be divided into

two streams: abstractive and extractive summariza-

tion. Although abstractive methods (Nallapati et al.,

2016; Gupta and Gupta, 2019; Bae et al., 2019; Li

et al., 2020) produce flexible and less redundant

summaries, they suffer from problems of gener-

ating ungrammatical or even nonfactual contents

(KryÂsciÂnski et al., 2019; Zhang et al., 2022b). In

∗ equal contribution

contrast, extractive summarization forms a sum-

mary by directly extracting sentences from the

source document. Thus, the extracted summaries

are grammatically accurate and faithful.

We focus on extractive summarization in this

work. Extractive summarization is commonly for-

mulated as a sequence labeling problem, which

predicts a 0/1 label for each sentence, indicating

whether the sentence should be included in sum-

mary (Nallapati et al., 2017; Zhou et al., 2018; Liu

and Lapata, 2019). Compared to individual sen-

tence label prediction in the sequence labeling set-

ting, generative models offer increased flexibility

and attend to the entirety of input context. Recent

works have also successfully applied generative

models to wide-ranging token-level sequence la-

beling tasks (Athiwaratkun et al., 2020; Du et al.,

2021; Yan et al., 2021). Nonetheless, how to ap-

ply generative models for sentence-level tasks like

extractive summarization has not been explored.

Recently, continuous diffusion models have

achieved great success in vision and audio do-

mains (Ho et al., 2020; Kong et al., 2020; Yang

et al., 2022; Rombach et al., 2022; Ho et al., 2022).

Researchers have also attempted to apply diffusion

models for text generation by converting the dis-

crete token to continuous embeddings and mapping

from embedding space to words with a rounding

method (Li et al., 2022; Yuan et al., 2022; Strudel

et al., 2022; Gong et al., 2022). However, these

approaches are not applicable for sentence-level

tasks like summarization: (1) Summarization has

a relatively longer input context and larger genera-

tion length (around 3-6 sentences), while the above

token-level diffusion-LM models are only applica-

ble to short generation tasks like text simplification

and question generation. Their performance tends

to drop by a large margin when generating longer

sequences; (2) The word embeddings generated

by these models could be indistinguishable, result-

ing in ambiguous and hallucinated generation; (3)

13089

The rounding step in those existing diffusion mod-

els is less efficient and slows down the inference

dramatically.

To address the above issues, we propose a novel

extractive summarization paradigm, DiffuSum,

which generates the desired summary sentence rep-

resentations with transformer-based diffusion mod-

els and extracts summaries based on sentence rep-

resentation matching. Instead of generating word

by word, DiffuSum directly generates the desired

continuous representations for each summary sen-

tence and thus could process much longer text.

DiffuSum is a summary-level framework since the

transformer-based diffusion architecture generates

all summary sentence representations simultane-

ously. Moreover, DiffuSum incorporates a con-

trastive sentence encoding module with a matching

loss for sentence representation alignment and a

multi-class contrastive loss (Khosla et al., 2020)

for representation diversity. DiffuSum jointly opti-

mizes the sentence encoding module and the diffu-

sion generation module, and extracts sentences by

representation matching without any rounding step.

We validate DiffuSum by extensive experiments on

three benchmark datasets and experimental results

demonstrate that DiffuSum achieves a compara-

ble or even better performance than state-of-the-art

systems that rely on pre-trained language models.

DiffuSum also shows a strong adaptation ability

based on cross-dataset evaluation results.

We highlight our contributions in this paper as

follows:

(i) We propose DiffuSum, a novel generation-

augmented paradigm for extractive summarization

with diffusion models. DiffuSum directly gener-

ates the desired summary sentence representations

and then extracts sentences based on representation

matching. To the best of our knowledge, this is

the first attempt to apply diffusion models for the

extractive summarization task.

(ii) We also introduce a contrastive sentence en-

coding module with a matching loss for represen-

tation alignment and a multi-class contrastive loss

for representation diversity.

(iii) We conduct extensive experiments and anal-

ysis on three benchmark summarization datasets to

validate the effectiveness of DiffuSum. DiffuSum

achieves new extractive state-of-art results on

CNN/DailyMail dataset with ROUGE scores of

44.83/22.56/40.56.

2 Related Work

2.1 Extractive Summarization

Recent advances in deep neural networks have dra-

matically boosted the progress in extractive sum-

marization systems. Existing extractive summa-

rization systems span an extensive range of ap-

proaches. Most works formulate the task as a se-

quence classification problem and use sequential

neural models with different encoders like recurrent

neural networks (Cheng and Lapata, 2016; Nalla-

pati et al., 2016) and pre-trained language mod-

els (Egonmwan and Chali, 2019; Liu and Lapata,

2019; Zhang et al., 2023). Another group of work

formulates extractive summarization as a node clas-

sification problem and applies graph neural net-

works to model inter-sentence dependencies (Xu

et al., 2019; Zhang and Zhang, 2020; Wang et al.,

2020; Zhang et al., 2022a). These formulations are

sentence-level methods that make individual pre-

dictions for each sentence. Recently, Zhong et al.

(2020) observed that a summary consisting of sen-

tences with the highest scores is not necessarily the

best. As a result, summary-level formulation like

text matching (Zhong et al., 2020; An et al., 2023)

and reinforcement learning (Narayan et al., 2018b;

Bae et al., 2019) are proposed. Our proposed frame-

work DiffuSum is also a novel summary-level ex-

tractive system with generation augmentation. In-

stead of sequentially labeling sentences, DiffuSum

directly generates the desired summary sentence

representations with diffusion models and extracts

sentences by representation matching.

2.2 Diffusion Models on Text

Continuous diffusion models are first introduced

in (Sohl-Dickstein et al., 2015) and have achieved

great success in continuous domain generations

like image, video, and audio (Kong et al., 2020;

Yang et al., 2022; Rombach et al., 2022; Ho et al.,

2022). Nevertheless, few works have applied

continuous diffusion model to text data due to

its inherently discrete nature. Among the ini-

tial attempts, Diffusion-LM (Li et al., 2022) first

adapts continuous diffusion models for text by

adding an embedding step and a rounding step,

and designing a training objective to learn the

embedding. DiffuSeq (Gong et al., 2022) pro-

poses a diffusion model designed for sequence-

to-sequence (seq2seq) text generation tasks by

adding partial noise during the forward process

and conditional denoising during the reverse pro-

13090

cess. CDCD (Dieleman et al., 2022) is pro-

posed for text modeling and machine translation

based on variance-exploding stochastic differential

equations (SDEs) on token embeddings. SeqDif-

fuSeq (Yuan et al., 2022) also proposes an encoder-

decoder diffusion model architecture for condi-

tional generation by combining self-conditioning

and adaptive noise schedule technique. However,

these works only focus on generating token-level

embeddings for short text generation (less than

128 tokens). In order to adapt diffusion models

to longer sequences like summaries, our DiffuSum

directly generates summary sentence embeddings

with a partial denoising framework. In addition,

DiffuSum jointly optimizes the diffusion model

with a contrastive sentence encoding module in-

stead of using a static embedding matrix.

3 Preliminary

3.1 Continuous Diffusion Models

The continuous diffusion model (Ho et al., 2020)

is a probabilistic model containing two Markov

chains: the forward and the backward process.

Forward Process Given a data point sampled from

a real-world data distribution x0 ∼ q(x), the for-

ward process gradually corrupts x0 into a standard

Gaussian distribution prior xT ∼ N (0, I). Each

step of the forward process gradually interpolates

Gaussian noise to the sample, represented as:

q(xt+1|xt) = N
(

xt+1;
√

1− βtxt, βtI
)

, (1)

where βt ∈ (0, 1) adjusts the scale of the variance.

Reverse Process The reverse process starts from

xT ∼ N (0, I) and learns a parametric distribu-

tion pθ (xt−1|xt) to invert the diffusion process of

Eq. 1 gradually. Each step of the reverse process is

defined as:

pθ (xt−1|xt) = N
(

xt−1;µθ (xt, t) , σ
2
θ (t) I

)

,
(2)

where µθ (xt, t) and σ2
θ(t) are learnable means and

variances predicted by neural networks.

While there exists a tractable variational lower-

bound (VLB) on log pθ (x0), Ho et al. (2020) sim-

plifies the loss function of continuous diffusion to:

Lsimple =
T
∑

t=1

∥

∥

∥
x0 − f̃θ (xt, t)

∥

∥

∥

2
, (3)

where f̃θ (xt, t) is the reconstructed x0 at step t.

Document

H
d

Generative

Model
H

s

Matching

Encode

h
s
j

h
d
1

h
d
2

h
d
3

0.8

0.05

0.15

Figure 1: The proposed generation-enhanced extractive

summarization framework. The model first condition-

ally generates desired summary embeddings and then

extracts sentences based on representation matching.

3.2 Problem Formulation

Given a document with n sentences as D =
{sd1, s

d
2, ..., s

d
n}, extractive summarization system

aims to form a m(m ≪ n) sentences summary

S = {ss1, s
s
2, ..., s

s
m} by directly extracting sen-

tences from the source document. Most existing

work formulates it as sequence labeling and gives

each sentence a {0, 1} label, where label 1 indi-

cates that the sentence will be included in summary

S. Since extractive ground-truth labels (ORACLE)

are not available for human-written gold summary,

it is common to use a greedy algorithm to gener-

ate an ORACLE consisting of multiple sentences

which maximize the ROUGE-2 score against the

gold summary following (Nallapati et al., 2017).

In contrast, we propose a summary-level frame-

work with generative model augmentation as

shown in Figure 1. Formally, we train a diffusion

model with the reverse process pθ(H̃
s
t−1|H̃

s
t ,H

d)
to directly generate the desired summary sentence

representations H̃s
t−1 = [h̃s

1, h̃
s
2, ..., h̃

s
m] ∈ R

m×h,

where h̃s
j is the vector representing the j-th sum-

mary sentence at diffusion step t− 1. The model

then extracts summary sentences based on the

matching between the generated summary sen-

tence representations after T reverse steps H̃s
0 =

[h̃s
1, h̃

s
2, ..., h̃

s
m] and the document sentence embed-

dings Hd = [hd
1,h

d
2, ...,h

d
n]. The matching score

for the j-th sentence in the output ssj with the docu-

ment is defined as:

ỹj = softmax(h̃s
j ·H

dT). (4)

Here we use dot product as similarity measure-

ment and then extract the sentence with the highest

matching score for each generated summary sen-

tence.

13091

Sentence Encoding Module

Document

Summary

h
d
1

h
d
2

h
d
3

Matching Loss

Diffusion Generation Module

h̃
s
1

h̃
s
2

Forward Process

Reverse Process (Diffusion Loss)

Generated

Summary

Embeddings
Contrastive Loss

sd
1

sd
2

sd
3

ss
1

ss
2

T
ra

n
sfo

rm
er E

n
co

d
er

x0

h
d
1

h
d
2

h
d
3

h
s
1

h
s
2

xt−1

h
d
1

h
d
2

h
d
3

h
s
1

h
s
2

xt

h
d
1

h
d
2

h
d
3

h
s
1

h
s
2

xT

h
d
1

h
d
2

h
d
3

h
s
1

h
s
2

… …

p
θ
(xt−1 |xt)

q(xt |xt−1)

… …

Joint

Optimization

h
s
1

h
s
2

Figure 2: The overall architecture of DiffuSum. The input document is passed to the sentence encoding module

and the diffusion generation module. DiffuSum will generate the desired summary sentence representations for

inference.

Our framework operates on the summary level

by generating all summary sentence representations

simultaneously and adopts continuous diffusion

models here for sentence embedding generation.

4 Method

In this section, we introduce the detailed design of

DiffuSum. DiffuSum consists of two major mod-

ules: a sentence encoding module and a diffusion

module, which will be introduced in Section 4.1

and Section 4.2, respectively. After that, we explain

how we optimize our model and conduct inference

in Section 4.3. The overall model architecture of

DiffuSum is also illustarted in Figure 2.

4.1 Sentence Encoding Module

In order to generate desired summary sentence

embeddings, we first build a contrastive sentence

encoding module to transfer discrete text inputs

D = {sd1, s
d
2, ..., s

d
n} into continuous vector repre-

sentations Hd = [hd
1, hd

2, ..., hd
n] ∈ R

n×h, where h
is the dimension of the encoded sentence represen-

tations.

Specifically, we first obtain the initial represen-

tations of sentences Ed = [ed1, e
d
2, ..., e

d
n] with

Sentence-BERT (Reimers and Gurevych, 2019).

Note that the Sentence-BERT is only used for ini-

tial sentence embedding, but is not updated dur-

ing training. The initial representations are then

fed into a stacked transformer layer followed by a

projection layer to obtain contextualized sentence

representations hd
i :

hd
i = MLP(Transformer(edi)). (5)

The same encoding process is applied to the sum-

mary sentences S = {ss1, s
s
2, ..., s

s
m} to obtain en-

coded summary sentence representations Hs =
[hs

1, hs
2, ..., hs

m] ∈ R
m×h. The encoded document

sentence representations Hd and summary sen-

tence representations Hs are then concatenated as

Hin = Hd∥Hs ∈ R
(n+m)×h and will be passed to

the diffusion generation module.

To ensure the sentence encoding module pro-

duces accurate and distinguishable representations,

we introduce a matching loss Lmatch and a multi-

class supervised contrastive loss Lcontra to optimize

the module, which are defined as follows.:

Matching Loss We first introduce a matching loss

to ensure an accurate matching between the en-

coded document and summary sentence represen-

tations. Formally, for the j-th encoded summary

sentence representation hs
j , we generate its encod-

ing matching scores ŷj by computing the dot prod-

uct with document representations followed by a

softmax function:

ŷj = softmax(hs
j ·H

dT). (6)

Then we have the encoding matching loss Lmatch as

the cross-entropy between our encoding matching

score ŷj and the ground truth extractive summa-

rization label (ORACLE) yj :

Lmatch =

m
∑

j=1

CrossEntropy (yj , ŷj) . (7)

Contrastive Loss The sentence encoding module

also needs to ensure the encoded summary sen-

tence embeddings [hs
1, hs

2, ..., hs
m] are diverse and

distinguishable. Thus, we introduce the multi-class

supervised contrastive loss (Khosla et al., 2020) to

push the summary sentence representation closer

13092

to its corresponding document sentence represen-

tation while keeping it away from other sentence

embeddings.

Given the sentence contextual representations

Hin = [h1,h2, ...,hn+m] ∈ R
(n+m)×h, the con-

trastive label yc is defined as:

ycp =







q, if p ≤ n and sdp = ssq
q, if p = n+ q
0, otherwise

, (8)

where q ∈ {1, 2, · · · ,m} and ycp is the p-th element

of yc. The contrastive loss Lcontra is defined as:

Lcontra =
−1

2Nyc
p
− 1

n+m
∑

p=1

L
p
contra ,

L
p
contra =

n+m
∑

q=1;q ̸=p;

yc
q
=yc

p

log
exp

(

hp · hT
q /τ

)

∑n+m

k=1;p ̸=k
exp

(

hp · hT
k /τ

) ,

(9)

where Nycp
is the total number of sentences in the

document that have the same label ycp (Nycp
= 2 in

our case) and τ is a temperature hyperparameter.

The overall optimizing objective for the sentence

encoding module Lse is defined as:

Lse = Lmatch + γLcontra, (10)

where γ is a rescale factor that adjusts the diversity

of the sentence representations.

4.2 Diffusion Generation Module

After obtaining the input encoding Hin = Hd∥Hs,

we adopt the continuous diffusion model to gen-

erate desired summary sentence embeddings con-

ditionally. As described in Section 3.1, our diffu-

sion generation module adds Gaussian noise gradu-

ally through the forward process and fits a stacked

Transformer to invert the diffusion in the reverse

process.

We first perform one-step Markov transition

q(x0|H
in) = N

(

Hin, β0I
)

for the starting state

x0 = xd
0∥x

s
0. Note that the initial Markov tran-

sition is applied to both document and summary

sentence embeddings.

We then start the forward process by gradually

injecting partial noise to summary embeddings xs

and leaving document embeddings unchanged xd

similar to (Gong et al., 2022). This enables the

diffusion model to generate conditionally on the

source document. At step t of the forward pro-

cess q (xs
t |xt−1), the noised representations is xt:

xt = xd
0||N

(

xs
t ;
√

1− βtx
s
t−1, βtI

)

, (11)

where t ∈ {1, 2, · · · , T} for a total of T diffusion

steps and ∥ represents concatenation.

Once the partially noised representations are ac-

quired, we conduct the backward process to re-

move the noise of summary representations given

the condition of the sentence representations of the

previous step:

pθ
(

xs
t−1|xt

)

= N
(

xs
t−1;µθ (xt, t) , σ

2
θ (t) I

)

,

(12)

where µθ (·) and σ2
θ (·) are parameterized models

(stacked Transformer in our case) to predict the

mean and standard variation at diffusion step t− 1.

The final output of the diffusion module is the gen-

erated summary sentence representations after T
reverse steps H̃s

0 = [h̃s
1, h̃

s
2, ..., h̃

s
m]. We optimize

the diffusion generation module with diffusion loss

Ldiffusion defined as:

Ldiffusion =
T
∑

t=2

∥

∥

∥
x0 − f̃θ (xt, t)

∥

∥

∥

2
+

∥

∥

∥
Hin − f̃θ (x1, 1)

∥

∥

∥

2
+R (x0) ,

(13)

where f̃θ (xt, t) is the reconstructed x0 at step t
and R (x0) is a L-2 regularization term.

4.3 Optimization and Inference

We jointly optimize the sentence encoding module

and the diffusion generation module in an end-to-

end manner. The overall training loss of DiffuSum

can be represented as:

L = Lse + ηLdiffusion (14)

where η is a balancing factor of sentence encoding

module loss Lse and diffusion generation module

loss Ldiffusion.

For inference, DiffuSum first obtains encoded

document representations Hd, followed by a one-

step Markov transition q(xd
0|H

d). Then we random

sample m Gaussian noise embeddings as initial

summary sentence representations xs
T ∈ R

m×h

and concatenate it with document representations

to get the input xin
T = xd

0||x
s
T for diffusion step T .

Then DiffuSum applies the learned reverse process

(generation process) to remove the Gaussian noise

iteratively and get the output summary sentence

representations H̃s
0 = [h̃s

1, h̃
s
2, ..., h̃

s
m].

DiffuSum then calculates the matching between

the generated summary representation h̃s
i and the

document representation Hd to obtain prediction

13093

Dataset Domain
Doc

#words
Sum

#words
#Ext

CNN/DM News 766.1 58.2 3
XSum News 430.2 23.3 2

PubMed Paper 444 209.5 6

Table 1: Statistics of the experimental datasets. Doc

words and Sum # words refer to the average word

number in the source document and summary. # Ext

refers to the number of sentences to extract.

label ỹ
pred
i as in Eq. 4. We extract the sentence

with the highest score for each generated summary

sentence representation and form the summary.

5 Experiment

5.1 Experimental Setup

Datasets We conduct experiments on three bench-

mark summarization datasets: CNN/DailyMail,

XSum, and PubMed. CNN/DailyMail (Hermann

et al., 2015) is the most widely-adopted summa-

rization dataset that contains news articles and

corresponding human-written news highlights as

summaries. We use the non-anonymized version in

this work and follow the common training, valida-

tion, and testing splits (287,084/13,367/11,489).

XSum (Narayan et al., 2018a) is a one-sentence

news summarization dataset with all summaries

professionally written by the original authors of the

documents. We follow the common training, vali-

dation, and testing splits (204,045/11,332/11,334).

PubMed (Cohan et al., 2018) is a scientific paper

summarization dataset of long documents. We

follow the setting in (Zhong et al., 2020) and

use the introduction section as the article and

the abstract section as the summary. The train-

ing/validation/testing split is (83,233/4,946/5,025).

The detailed statistics of each dataset are shown in

Table 1.

Baselines We compare DiffuSum with strong

sentence-level baseline methods: the vanilla Trans-

former (Vaswani et al., 2017), hierarchical en-

coder model HIBERT (Zhang et al., 2019), PN-

BERT (Zhong et al., 2019) that combines LSTM-

Pointer with pre-trained BERT, BERT-based extrac-

tive model BERTSum (Liu and Lapata, 2019), and

BERTEXT (Bae et al., 2019) that augments BERT

with reinforcement learning,.

We also compare DiffuSum with state-of-the-

art summary-level approaches: contrastive Learn-

ing based re-ranking framework COLO (An et al.,

2023) and summary-level two-stage text matching

framework MATCHSUM (Zhong et al., 2020).

5.2 Implementation Details

We use Sentence-BERT (Reimers and Gurevych,

2019) checkpoint all-mpnet-base-v2 for initial sen-

tence representations. The dimension of the sen-

tence representations h is set to 128. We use an

8-layer Transformer with 12 attention heads in our

sentence encoding module and a 12-layer Trans-

former with 12 attention heads in the diffusion gen-

eration module. The hidden size of the model is set

to 768, and temperature τ is set to 0.07. The scal-

ing factors γ and η are set to 0.001 and 100, where

γ is searched in the range of [0.0001, 1] and η is

searched within the range of [10, 1000]. We set the

diffusion steps T to 500. Effects of hyperparameter

T and h are discussed in section 6.2.

DiffuSum has a total of 13 million parame-

ters and is optimized with AdamW optimizer

(Loshchilov and Hutter, 2017) with a learning rate

of 1e−5 and a dropout rate of 0.1. We train the

model for 10 epochs and validate the performance

by the average of ROUGE-1 and ROUGE-2 F-1

scores on the validation set.

Following the standard setting, we evaluate

model performance with ROUGE1 F-1 scores (Lin

and Hovy, 2003). Specifically, ROUGE-1/2

scores measure summary informativeness, and

the ROUGE-L score measures summary fluency.

Single-run results are presented in the following

sections with the default random seed of 101.

5.3 Experiment Results

Results on CNN/DailyMail Experimental results

on CNN/DailyMail dataset are shown in Table

2. The first block in the table contains the ex-

tractive ground truth ORACLE (upper bound) and

LEAD that selects the first few sentences as a sum-

mary. The second block includes recent strong

one-stage extractive baseline methods and our pro-

posed model DiffuSum. The third section includes

two-stage baseline methods that pre-select salient

sentences. We follow the same setting and show

the results of DiffuSum with the same pre-selection

for a fair comparison.

According to the results, DiffuSum achieves

new state-of-the-art performance under both one-

stage and two-stage settings, especially a large

raise in the ROUGE-2 score. The supreme per-

1ROUGE: https://pypi.org/project/rouge-score/

13094

Model R-1 R-2 R-L

LEAD 40.43 17.62 36.67

ORACLE 52.59 31.23 48.87

One-stage Systems

Transformer (2017) 40.90 18.02 37.17

HIBERT∗ (2019) 42.37 19.95 38.83

PNBERT∗ (2019) 42.69 19.60 38.85

BERTEXT∗ (2019) 42.76 19.87 39.11

BERTSum∗ (2019) 43.85 20.34 39.90

COLO∗

Ext (2023) 44.58 21.25 40.65

DiffuSum (ours) 44.62 22.51 40.34

Two-stage Systems

MATCHSUM∗(BERT) (2020) 44.22 20.62 40.38

MATCHSUM∗(Roberta) 44.41 20.86 40.55

DiffuSum (ours) 44.83 22.56 40.56

Table 2: Experimental results on CNN/DailyMail

dataset. Models using pre-trained language models are

marked with*.

Model
PubMed XSum

R-1 R-2 R-L R-1 R-2 R-L

ORACLE 45.12 20.33 40.19 25.62 7.62 18.72

LEAD 37.58 12.22 33.44 14.40 1.46 10.59

BERTSUM 41.05 14.88 36.57 22.86 4.48 17.16

MatchSUM 41.21 14.91 36.75 24.86 4.66 18.41

DiffuSum 41.40 15.55 37.48 24.00 5.44 18.01

Table 3: Experimental Results on PubMed and XSum

datasets.

formance of DiffuSum demonstrates the efficacy

of our generation-augmented framework and the

great potential to apply diffusion models in text

representation generation. It is worth noting that

most baseline methods contain pre-trained lan-

guage model components, but our proposed frame-

work DiffuSum trains Transformers from scratch

and contains no pre-trained knowledge. We believe

DiffuSum would achieve even better performance

if combining pre-trained knowledge, and leave it

to future work. We also notice that summary-level

methods generally outperform sentence-level meth-

ods, proving the need to fill the inherent gap.

Results on XSum and PubMed We also evaluate

DiffuSum on PubMed and XSum datasets, repre-

senting datasets of different domains and summary

lengths as shown in Table 3.

For data with longer summaries like PubMed,

DiffuSum shows highly strong performance and

outperforms state-of-the-art baselines. The strong

performance proves that our model can tackle

Model R-1 R-2 R-L

DiffuSum 44.83 22.56 40.56

w/o Sentence-BERT 43.53 21.63 40.23

w/o ORACLE 39.19 17.12 34.38

w/o Contrastive Loss 44.57 22.35 40.34

Table 4: Ablation study results on CNN/DailyMail

dataset.

longer input contexts and complex generations.

Our summary-level setting also benefits data with

longer summaries by considering summary sen-

tence dependencies.

For data with shorter summaries like XSum,

DiffuSum also achieves comparable performance

to SOTA approaches, with a significantly higher

ROUGE-2 score. Short-summary data tend to be

simpler for matching-based methods like Match-

Sum since the candidate pool is much smaller.

Overall, DiffuSum achieves a comparable or

even better performance compared to pre-trained

language model-based baseline methods. The re-

sults demonstrate the effectiveness of DiffuSum on

summarization data with different lengths.

6 Analysis

6.1 Ablation Study

To understand the strong performance of DiffuSum,

we perform an ablation study by removing model

components of the sentence encoding module and

show the results in Table 4. The second row shows

that performance drops when replacing the initial

sentence representation from Sentence-BERT to

BERT-base encoder(Devlin et al., 2018). The per-

formance drop indicates sentence-level information

is necessary for the success of DiffuSum. The third

row shows that replacing ORACLE with abstrac-

tive reference summaries degrades performance.

As for the sentence encoding loss, both the match-

ing loss and contrastive loss benefit the overall

model performance according to rows 4 and 5. The

matching loss is critical to the model, and the per-

formance drops dramatically by more than 40%

without it. The results prove the importance of

jointly training a sentence encoder that produces

accurate and diverse sentence representations with

the generation module..

13095

Model R-1 R-2 R-L

DiffuSum(T=500, h=128) 44.83 22.56 40.58

DiffuSum(T=500, h=64) 43.36 21.27 39.89

DiffuSum(T=500, h=256) 44.53 22.49 40.27

DiffuSum(T=50, h=128) 42.60 19.71 38.96

DiffuSum(T=100, h=128) 44.61 22.24 40.32

DiffuSum(T=1000, h=128) 44.65 22.36 40.37

DiffuSum(T=2000, h=128) 44.64 22.37 40.40

Table 5: The performance of DiffuSum with different

hyperparameter settings on CNN/DM dataset.

Train
Test CNN/DM XSum PubMed

CNN/DM 44.83/22.56 21.35/3.85 39.83(-1.57)/13.25
XSum 42.85/21.37 24.0/5.44 38.71(-2.69)/12.93

Table 6: ROUGE-1 and ROUGE-2 results for cross-

dataset evaluation.

6.2 Hyperparameter Sensitivity

We also study the influence of our diffusion gen-

eration module’s two important hyperparameters:

diffusion steps T and the sentence representations

dimension h in Table 5. The first row is our best

model, and the second block shows the perfor-

mance of DiffuSum with different sentence rep-

resentation dimensions. The performance drops by

a large margin when setting the dimension to 64, in-

dicating severe information loss when shrinking the

sentence dimension too much. The performance

also drops a little when the dimension is set to 256,

suggesting that a too-large dimension may bring in

more noise. The third block shows the influence

of diffusion steps, where we find that model per-

formance first increases with more diffusion steps,

then starts to decrease and oscillate if steps keep

increasing. We argue that the noise injected in the

forward pass cannot be fully removed if the steps

are too small, and the model will introduce too

much noise to recover if the steps are too big.

6.3 Cross-dataset Evaluation

We also notice that DiffuSum shows a strong cross-

dataset adaptation ability. As shown in Table 6, the

model trained on the news domain (CNN/DM and

XSum) achieves comparable performance (only

1.57 and 2.69 ROUGE-1 drops) when directly

tested on the scientific paper domain. The cross-

dataset results demonstrate the robustness of our

generation-augmented framework and the poten-

tial to build a generalized extractive summarization

system.

Figure 3: T-SNE visualization of sentence embeddings

from 25 CNN/DM dataset documents.

6.4 Representation Analysis

We also analyze the generated sentence represen-

tation quality. We apply T-SNE (van der Maaten

and Hinton, 2008) to reduce the sentence repre-

sentation’s dimension to 2 and show the encoded

sentence representations as well as the generated

summary sentence representations in Figure 3. The

blue dots in the figure represent non-summary sen-

tences, and the red dots represent summary sen-

tences (ORACLE) from our sentence encoding

module. The green dots are summary sentence rep-

resentations reconstructed by our diffusion genera-

tion module. We can find that most of the ORACLE

sentences gather on the right. This finding proves

that our contrastive encoder could distinguish OR-

ACLE sentences from non-summary sentences. We

also find that the sentence representations gener-

ated by the diffusion module (green) are very close

to the original summary representations (red). The

finding demonstrates that our diffusion generation

module is powerful in reconstructing sentence rep-

resentations from random Gaussian noise.

7 Conclusions

This paper proposes a new paradigm for extractive

summarization with generation augmentation. In-

stead of sequentially labeling sentences, DiffuSum

directly generates the desired summary sentence

representations with diffusion models and extracts

summary sentences based on representation match-

ing. Experimental results on three benchmark

datasets prove the effectiveness of DiffuSum. This

work is the first attempt to adapt diffusion models

for summarization. Future work could explore var-

ious ways of applying continuous diffusion models

to both extractive and abstractive summarization.

13096

Limitations

Despite the strong performance of DiffuSum, its

design still has the following limitations. First,

DiffuSum is only designed for extractive summa-

rization, and the diffusion generation module only

generates sentence embeddings instead of token-

level information. Thus, it is not applicable to

the abstractive summarization setting. Moreover,

DiffuSum is only tested on single document sum-

marization datasets. How to adapt DiffuSum for

multi-document and long document summariza-

tion scenarios need further investigation. In addi-

tion, our generative model involves multiple steps

of noise injection and denoising, compared to

discriminator-based extractive systems.

Acknowledgement

This work is supported by NSF through grants IIS-

1763365 and IIS-2106972. We also thank anony-

mous reviewers for their helpful feedback.

References

Chenxin An, Ming Zhong, Zhiyong Wu, Qin Zhu, Xu-
anjing Huang, and Xipeng Qiu. 2023. Colo: A con-
trastive learning based re-ranking framework for one-
stage summarization.

Ben Athiwaratkun, Cicero Nogueira dos Santos, Jason
Krone, and Bing Xiang. 2020. Augmented natural
language for generative sequence labeling. arXiv
preprint arXiv:2009.13272.

Sanghwan Bae, Taeuk Kim, Jihoon Kim, and Sang-
goo Lee. 2019. Summary level training of sen-
tence rewriting for abstractive summarization. arXiv
preprint arXiv:1909.08752.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. arXiv
preprint arXiv:1603.07252.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents.
arXiv preprint arXiv:1804.05685.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Sander Dieleman, Laurent Sartran, Arman Roshan-
nai, Nikolay Savinov, Yaroslav Ganin, Pierre H
Richemond, Arnaud Doucet, Robin Strudel, Chris
Dyer, Conor Durkan, et al. 2022. Continuous
diffusion for categorical data. arXiv preprint
arXiv:2211.15089.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2021. All
nlp tasks are generation tasks: A general pretraining
framework. arXiv preprint arXiv:2103.10360.

Elozino Egonmwan and Yllias Chali. 2019.
Transformer-based model for single documents
neural summarization. In Proceedings of the 3rd
Workshop on Neural Generation and Translation,
pages 70±79.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and Lingpeng Kong. 2022. DiffuSeq: Sequence to
Sequence Text Generation with Diffusion Models.
ArXiv:2210.08933 [cs].

Som Gupta and Sanjai Kumar Gupta. 2019. Abstractive
summarization: An overview of the state of the art.
Expert Systems with Applications, 121:49±65.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in neural information
processing systems, pages 1693±1701.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840±
6851.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet.
2022. Video diffusion models. arXiv preprint
arXiv:2204.03458.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. Advances in Neural
Information Processing Systems, 33:18661±18673.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. 2020. Diffwave: A versatile dif-
fusion model for audio synthesis. arXiv preprint
arXiv:2009.09761.

Wojciech KryÂsciÂnski, Bryan McCann, Caiming Xiong,
and Richard Socher. 2019. Evaluating the factual
consistency of abstractive text summarization. arXiv
preprint arXiv:1910.12840.

Haoran Li, Junnan Zhu, Jiajun Zhang, Chengqing Zong,
and Xiaodong He. 2020. Keywords-guided abstrac-
tive sentence summarization. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8196±8203.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani,
Percy Liang, and Tatsunori B. Hashimoto. 2022.
Diffusion-LM Improves Controllable Text Genera-
tion. ArXiv:2205.14217 [cs] version: 1.

Chin-Yew Lin and Eduard Hovy. 2003. Automatic
evaluation of summaries using n-gram co-occurrence

13097

statistics. In Proceedings of the 2003 Human Lan-
guage Technology Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 150±157.

Yang Liu and Mirella Lapata. 2019. Text summa-
rization with pretrained encoders. arXiv preprint
arXiv:1908.08345.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based
sequence model for extractive summarization of doc-
uments. In Thirty-first AAAI conference on artificial
intelligence.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing
Xiang, et al. 2016. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv
preprint arXiv:1602.06023.

Shashi Narayan, Shay B Cohen, and Mirella Lap-
ata. 2018a. Don’t give me the details, just the
summary! topic-aware convolutional neural net-
works for extreme summarization. arXiv preprint
arXiv:1808.08745.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018b. Ranking sentences for extractive summa-
rization with reinforcement learning. arXiv preprint
arXiv:1802.08636.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
10684±10695.

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep un-
supervised learning using nonequilibrium thermody-
namics. In International Conference on Machine
Learning, pages 2256±2265. PMLR.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun
Du, Yaroslav Ganin, Arthur Mensch, Will Grathwohl,
Nikolay Savinov, Sander Dieleman, Laurent Sifre,
et al. 2022. Self-conditioned embedding diffusion for
text generation. arXiv preprint arXiv:2211.04236.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579±2605.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, èukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998±6008.

Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu,
and Xuanjing Huang. 2020. Heterogeneous graph
neural networks for extractive document summariza-
tion. arXiv preprint arXiv:2004.12393.

Jiacheng Xu, Zhe Gan, Yu Cheng, and Jingjing
Liu. 2019. Discourse-aware neural extractive
model for text summarization. arXiv preprint
arXiv:1910.14142.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021. A unified generative
framework for various ner subtasks. arXiv preprint
arXiv:2106.01223.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong,
Runsheng Xu, Yue Zhao, Yingxia Shao, Wentao
Zhang, Bin Cui, and Ming-Hsuan Yang. 2022. Diffu-
sion Models: A Comprehensive Survey of Methods
and Applications. ArXiv:2209.00796 [cs] version: 7.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang,
and Songfang Huang. 2022. Seqdiffuseq: Text dif-
fusion with encoder-decoder transformers. arXiv
preprint arXiv:2212.10325.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang. 2022a.
Hegel: Hypergraph transformer for long document
summarization. arXiv preprint arXiv:2210.04126.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang. 2023. Ex-
tractive summarization via chatgpt for faithful sum-
mary generation.

Haopeng Zhang, Semih Yavuz, Wojciech Kryscinski,
Kazuma Hashimoto, and Yingbo Zhou. 2022b. Im-
proving the faithfulness of abstractive summarization
via entity coverage control.

Haopeng Zhang and Jiawei Zhang. 2020. Text graph
transformer for document classification. In Confer-
ence on Empirical Methods in Natural Language
Processing.

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. Hib-
ert: Document level pre-training of hierarchical bidi-
rectional transformers for document summarization.
arXiv preprint arXiv:1905.06566.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuanjing Huang. 2020. Extrac-
tive summarization as text matching. arXiv preprint
arXiv:2004.08795.

Ming Zhong, Pengfei Liu, Danqing Wang, Xipeng Qiu,
and Xuanjing Huang. 2019. Searching for effective
neural extractive summarization: What works and
what’s next. arXiv preprint arXiv:1907.03491.

Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang,
Ming Zhou, and Tiejun Zhao. 2018. Neural docu-
ment summarization by jointly learning to score and
select sentences. arXiv preprint arXiv:1807.02305.

13098

ACL 2023 Responsible NLP Checklist

A For every submission:

�3 A1. Did you describe the limitations of your work?

The Limitations Section

�7 A2. Did you discuss any potential risks of your work?

Our paper proposes a summarization model and we experiment with public datasets. The model will

only summarize documents and has no potential risk.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?

Abstract and Section 1 Introduction

�7 A4. Have you used AI writing assistants when working on this paper?

Left blank.

B �3 Did you use or create scientific artifacts?

Section 5

�3 B1. Did you cite the creators of artifacts you used?

Section 5

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?

We only use public available data and models.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided

that it was specified? For the artifacts you create, do you specify intended use and whether that is

compatible with the original access conditions (in particular, derivatives of data accessed for research

purposes should not be used outside of research contexts)?

Section 5

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any

information that names or uniquely identifies individual people or offensive content, and the steps

taken to protect / anonymize it?

Not applicable. Left blank.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and

linguistic phenomena, demographic groups represented, etc.?

Section 5

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,

etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the

number of examples in train / validation / test splits, as these provide necessary context for a reader

to understand experimental results. For example, small differences in accuracy on large test sets may

be significant, while on small test sets they may not be.

Section 5.1

C �3 Did you run computational experiments?

Section 5

�3 C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?

Section 5.2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

13099

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found

hyperparameter values?

Sections 5.2 and 6.2

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary

statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,

etc. or just a single run?

Section 5.2

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did

you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,

etc.)?

Section 5.2

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?

Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,

disclaimers of any risks to participants or annotators, etc.?

No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)

and paid participants, and discuss if such payment is adequate given the participants’ demographic

(e.g., country of residence)?

No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? For example, if you collected data via crowdsourcing, did your instructions to

crowdworkers explain how the data would be used?

No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?

No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population

that is the source of the data?

No response.

13100

