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We study an optimal-control problem of polling systems with large
switchover times, when a holding cost is incurred on the queues. In particular,
we consider a stochastic network with a single server that switches between
several buffers (queues) according to a pre-specified order, assuming that the
switchover times between the queues are large relative to the processing times
of individual jobs. Due to its complexity, computing an optimal control for
such a system is prohibitive, and so we instead search for an asymptotically
optimal control. To this end, we first solve an optimal control problem for a
deterministic relaxation (namely, for a fluid model), that is represented as a
hybrid dynamical system. We then “translate” the solution to that fluid prob-
lem to a binomial-exhaustive policy for the underlying stochastic system, and
prove that this policy is asymptotically optimal in a large-switchover-time
scaling regime, provided a certain uniform integrability (UI) condition holds.
Finally, we demonstrate that the aforementioned UI condition holds in the
following cases: (i) the holding cost has (at most) linear growth, and all ser-
vice times have finite second moments; (ii) the holding cost grows at most at
a polynomial rate (of any degree), and the service-time distributions possess
finite moment generating functions.

1. Introduction. A polling system is a queueing network in which a single server attends
multiple queues according to a pre-specified routing mechanism. This class of models has
been extensively studied since the 1950’s, starting with Mack, Murphy and Webb (1957),
and have been employed in numerous application settings, such as computer-communication
(Bux (1981)), production (Federgruen and Katalan (1996), Olsen (1999)), inventory-control
(Winands, Adan and van Houtum (2011)), transportation (Altman, Khamisy and Yechiali
(1992), Van den Broek et al. (2006)), and healthcare (Cicin-Sain, Pearce and Sunde (2001),
Vlasiou, Adan and Boxma (2009)). We refer to Boon, Boxma and Winands (2011), Borst and
Boxma (2018), Levy and Sidi (1990), Takagi (1997), Vishnevskiı̆ and Semenova (2006) for
comprehensive reviews of the relevant literature.

Exact analysis of polling systems is in general prohibitively hard; Resing (1993) argues
that, unless the switching policy has a certain branching property, the system is not amenable
to exact analysis. However, even for those “branching-type” policies, results are typically
expressed via multi-dimensional transforms that can be hard to analyze. Thus, despite being
among the most extensively studied class of stochastic networks (Boon, Van der Mei and
Winands (2011)), little is known about how to optimally control polling systems, except for
special cases, such as the two-queue system in Hofri and Ross (1987), a symmetric cost
structure in Levy, Sidi and Boxma (1990), Liu, Nain and Towsley (1992), or a limited control
problem that is solved for a subset of the queues in Duenyas and Van Oyen (1996), Matveev,
Feoktistova and Bolshakova (2016), van der Mei and Levy (1997). As will be seen below, due
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to the dimensionality and the switching dynamics of the queue process, finding an optimal
control is a difficult problem even for deterministic polling systems.

Scalings of the switchover times. To achieve analytical simplification, it is sometimes as-
sumed that the server’s switchover times are instantaneous. This assumption is reasonable to
make when those switchover times are sufficiently small relative to the service times, and
the total traffic intensity is not too close to 1. (If the system is nearly critical, then even
small deviations from the “ideal” modeling assumptions can have substantial negative im-
pacts on the performance; see the discussion in Perry and Whitt (2016), Section 9.) However,
switchover times are often quite large, and sometimes can even be considered to be of a
larger order of magnitude than the service durations, see, for example, Federgruen and Kata-
lan (1994), Nahmias and Rothkopf (1984), Olsen (2001), Winands, Adan and van Houtum
(2011). In such cases, one can turn the analytical disadvantage of having switchover times
into an advantage by taking limits as those switchover times increase without bound. (This
approach is analogous to the one in which the switchover times are assumed to be instanta-
neous, which is in turn tantamount to taking limits as the switchover times decrease to 0.)
This large-switchover-times asymptotic approach was taken in Olsen (2001), Van der Mei
(1999), Winands (2007, 2011) to approximate stationary performance measures, and was
identified as an important future direction in Boon, Boxma and Winands (2011), Borst and
Boxma (2018). The same approach is taken here to solve an optimal-control problem in an
appropriate asymptotic sense that will be explained below.

1.1. Optimal control of stochastic networks. A standard approach in the stochastic-
network literature to solving optimal-control problems follows an asymptotic scheme that
was first proposed by Harrison (1988). This approach can be roughly summarized as follows:
(I) formulate and solve a Brownian control problem (BCP) inspired by a heavy-traffic approx-
imation for the system; (II) “translate” the resulting optimal Brownian control to a control for
the stochastic system; and (III) prove that the control for the system is asymptotically optimal
in an appropriate sense.

In this paper, we follow the main line or reasoning of the above scheme, but with impor-
tant differences. First, instead of a BCP, we solve a fluid-control problem (FCP) related to
the stochastic control problem. Moreover, an important step in solving the BCP in Harrison’s
scheme involves solving an equivalent workload formulation that is rigorously achieved for
the controlled stochastic system by showing that state-space collapse (SSC) holds asymptoti-
cally, namely, that the limit diffusion process is confined to a subspace having a lower dimen-
sion than that of the prelimit; see, for example, Harrison and Van Mieghem (1997). Under
fluid scaling, SSC corresponds to sliding motion of the fluid limit on a lower-dimensional
manifold, as explained in Perry and Whitt (2016), Section 1. For a specific example, see
Atar, Giat and Shimkin (2011), which considers the problem of asymptotically minimizing
long-run average costs in an overloaded many-server fluid regime. (There is customer aban-
donment with rate θi in queue i, keeping the system stable despite being overloaded.) The
proposed cμ/θ priority rule induces asymptotic SSC in the stationary fluid model, because
all the queues that receive service, except the ones with the smallest cμi/θi parameters, are
asymptotically null in stationarity; see equation (18) in this reference. However, SSC does
not occur in our setting, because all the queues increase at fixed rates (their respective arrival
rates) during the switchover times, which are nonnegligible in the fluid time scale. In partic-
ular, under the large-switchover-times asymptotic, there is no reduction in the dimensionality
of the limiting process, implying that the dynamics of the fluid limits are necessarily discon-
tinuous. (In fact, the fluid limits may not even exhibit continuous dependence on their initial
condition, and so do not adhere to the classical definition of well-posed dynamical systems.)
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We remark that asymptotic SSC can occur in polling systems if the switchover times are
small relative to the time scaling used to derive the limiting process. Such SSC following from
the averaging principles are proved in Coffman, Puhalskii and Reiman (1995) for polling sys-
tems with zero switchover times, and in Coffman, Puhalskii and Reiman (1998) for systems
with positive switchover times that do not scale in the limit (i.e., are negligible asymptoti-
cally).

The optimal-control problem. We consider the (asymptotically) optimal-control problem for
a polling system in which the server moves among the different queues in a fixed order that is
specified by a table, with the objective of minimizing a long-run average holding cost on the
queue process. In this setting, a dynamic control is a state-dependent server-routing policy
which determines when the server should switch away from its current queue to the next
queue in the table.

Since solving the optimal-control problem is prohibitively hard, we seek a control that is
optimal in an appropriate asymptotic sense. To this end, we consider a sequence of systems
under a functional weak law of large numbers (FWLLN) scaling, and analyze the resulting
fluid limits as solutions to a hybrid dynamical system (HDS).1 We then identify an optimal
fluid control for the HDS, which we “translate” to a control for the underlying polling system.
In particular, the control we propose is the well-known binomial-exhaustive policy whose
specific control parameters are taken directly from the optimal fluid control; see Sections 2
and 5.2 for more details. Finally, we prove that the binomial-exhaustive policy (with the
fluid-optimal control parameters) is asymptotically optimal under the fluid scaling, in that it
asymptotically achieves a lower bound on the long-run average cost.

The proof of asymptotic optimality requires that the sequence of cumulative holding costs
incurred over a table cycle in stationarity is uniformly integrable (UI). We demonstrate that
the UI condition holds in two important cases: (i) when the holding cost is linear and the
service times have finite second moments; and (ii) when the holding cost grows at most at a
polynomial rate (of any degree), and all service times have finite moment generating functions
(m.g.f.).

1.2. Conventions about notation. All the random variables and processes are defined on
a single probability space (�,F,P ). We write E to denote the expectation operator, and
EP when we want to emphasize that the expectation is with respect to a specific probability
measure P. We let R, Z and N denote the sets of real numbers, integers and strictly positive
integers, respectively, Z+ := N ∪ {0}, and R+ := [0,∞). For k ∈ N, we let Rk denote the
space of k-dimensional vectors with real components, and denote these vectors with bold
letters and numbers; in particular, we write 1 := (1, . . . ,1) for the vector of 1’s. We let Dk

denote the space of right-continuous Rk-valued functions (on arbitrary finite time intervals)
with limits everywhere, endowed with the usual Skorokhod J1 topology; see Chapter 11 of
Whitt (2002). We let D := D1. We use Ck (and C := C1) to denote the subspace of Dk of
continuous functions. It is well known that the J1 topology relativized to Ck coincides with
the uniform topology on Ck , which is induced by the norm

‖x‖t := sup
0≤u≤t

∥∥x(u)
∥∥,

where ‖x‖ denotes the usual Euclidean norm of x ∈ Rk . We use “⇒” to denote weak conver-
gence of random variables in Rk , and of stochastic processes over compact time intervals.

For f : Rk → [0,∞), g : Rk → [0,∞) and a ∈ Rk+ ∪ {∞} we write f (x) = O(g(x)) as
x → a if lim supx→a f (x)/g(x) < ∞, and f (x) = o(g(x)) if limx→a f (x)/g(x) = 0.

1We use the acronym HDS for both singular and plural forms (system and systems).
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Given a sequence of random variables {Xn : n ≥ 1} and a sequence of nonnegative real
numbers {an : n ≥ 1}, we write Xn = Op(an) if ‖Xn‖/an is stochastically bounded, that is,
for any ε > 0, there exist finite M,N ∈ N such that P(‖Xn‖/an > M) < ε for all n ≥ N .
We write Xn = op(an) if ‖Xn‖/an converges to zero in probability, and Xn = �p(an) if
Xn is Op(an) but not op(an). We write that a sequence of stochastic processes {Xn : n ≥ 1}
is Op(an), op(an) and �p(an) if the corresponding property holds for ‖Xn‖t for any t ∈
(0,∞).

For x, y ∈ R, we write x ∧ y := max{x, y}, x ∨ y := min{x, y} and x+ := max{x,0}. For
a function x ∈ D, x(a−) denotes the left-hand limit at a, that is, x(a−) := limt↑a x(t) is
the left-hand limit at the point a. For a vector v ∈ R�, � ∈ N, we use dim(v) to denote the
dimension of v; namely, dim(v) = �.

We use a “bar” to denote fluid-scale quantities: X̄n := Xn/n for a sequence of random
variables {Xn : n ≥ 1}, and X̄n(t) := Xn(nt)/n, t ≥ 0, if the {Xn : n ≥ 1} is a sequence of
processes.

1.3. Organization of the paper. The rest of the paper is organized as follows. In Sec-
tion 2 we introduce the model, the main results and a roadmap for our approach to proving
those result. In Section 3 we consider a deterministic relaxation (a fluid model) to the op-
timal control problem, which is characterized as the set of solutions to an HDS. It is also
shown that the fluid model is related to the sequence of stochastic systems via functional
weak laws. In Section 4 we analyze the FCP, propose an optimal fluid control and establish
important qualitative properties of the fluid model under this control. In Section 5 we relate
the proposed fluid control to the binomial-exhaustive policty. In Section 6 we prove that the
binomial-exhaustive policy is asymptotically optimal in our setting. Section 7 is dedicated to
the proofs of the main theorems. We conclude in Section 8. Complementary proofs appear in
the Appendix.

2. Problem formulation and main results. We consider a polling system with K

queues numbered 1, . . . ,K . Customers (or jobs) arrive at queue k ∈ K := {1, . . . ,K} ac-
cording to a Poisson process with rate λk > 0, and wait for their turn to be served in a buffer
with infinite capacity (so that no customers are blocked). We refer to customers who arrive
to queue k as class-k customers. The service times for class-k customers are independent
and identically distributed (i.i.d.) random variables with mean 1/μk < ∞. At this point, we
do not impose any other assumptions on the service time distributions (other than assuming
that they all have finite means), but further assumptions on the existence of higher moments
will be needed to prove the aforementioned UI condition. We denote by Sk a generic random
variable that has the service time distribution of class-k customers.

A single server visits the queues periodically according to a fixed order specified by a
table. In particular, the table consists of I stages, I ≥ K , and the queue to be served at each
stage is defined by a polling function p : I → K, for I := {1, . . . , I }, where p(i) is the queue
attended (polled) by the server at stage i, and (p(i), i ∈ I) is the table. Note that a queue may
appear more than once in a table, in which case that queue is attended by the server in two
or more nonconsecutive stages. We refer to each such attendance as a visit (of the server to
the queue). We refer to the starting time of a visit as a polling epoch and the ending time of
a visit as a departure epoch (of the server from the queue). A table cycle is the time elapsed
between two consecutive polling epochs of stage 1 (the first visit to queue p(1)) in I . The
table is said to be cyclic if all the queues appear in the table exactly once (so that the server
visits each queue exactly once in a table cycle), in which case K = I .

For i ∈ I , we assume that the switchover time of the server from stage i to stage i + 1 is a
random variable Vi with mean si := E[Vi] < ∞, that is independent of all other random vari-
ables and processes in the system. We let s :=∑i∈I si denote the total expected switchover
time incurred within a table cycle, and assume that s > 0.
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For a given table, the switching policy (the control) is the set of rules specifying when the
server should switch from each stage to the next. Note that if a queue is visited more than
once in the table, then the control may prescribe a different switching rule for each visit. In
addition, we allow the switching policy to induce an augmented table in which the queues
appear in a periodic pattern that is an L multiple of the pattern of the basic table, for some
integer L ≥ 2. We refer to a switching policy inducing an L-cycle augmented table as an
L-cycle control, and denote the set of stages in that augmented table by IL := {1, . . . , IL}.
We refer to the original table (p(i), i ∈ I) as the basic table and to a corresponding control,
whose switching rules are repeated after I stages, as a one-cycle control.

A server cycle is the time elapsed between two consecutive polling epochs of stage 1 in
IL. Thus, a server cycle in an L-cycle control consists of L table cycles (and the server cycle
is equal to the table cycle under a one-cycle control). Under an L-cycle control, an �th table
cycle is time elapsed between stage 1 + (� − 1)I and stage 1 + �I in the augmented table,
for 1 ≤ � ≤ L. (That is, the time it takes the server to complete the �th basic table within
the augmented table.) Further, we let the polling function p : IL → K map a stage in the
augmented table to the queue being visited at that stage. The corresponding augmented table
is given by (p(i), i ∈ IL). The expected total switchover time in a corresponding server cycle
is then sL.

For concreteness, consider a polling system with three queues (K = 3) visited according to
the basic table (1,2,3,2,3). The basic table contains five stages (I = 5): queue 2 is visited in
stages 2 and 4, and queue 3 is visited in stages 3 and 5. Hence, p(1) = 1, p(2) = p(4) = 2 and
p(3) = p(5) = 3. Under a one-cycle control (L = 1), the basic and L-cycle augmented table,
as well as table and server cycles, are all equivalent notions. In contrast, under a two-cycle
control (L = 2), the augmented table is given by (1,2,3,2,3;1,2,3,2,3), so that queue 1 is
visited twice, and queues 2 and 3 are each visited four times during a server cycle, which now
consists of two table cycles. Of course, by a two-cycle control we mean that the switching
rule of queue p(i) is different than the rule of queue p(i + 5), for at least one i ∈ {1, . . . ,5}.

REMARK 2.1. The term “basic table” typically suggests that the order at which the server
visits the queues has no repeated pattern. It may therefore seem artificial to consider aug-
mented tables with L ≥ 2 consecutive repetitions of the basic table. However, one cannot
rule out at the outset the possibility that an L-cycle control, for some L > 1, is better (re-
duces the cost) than a one-cycle control. Further, by considering L-cycle controls we can
prove in some important special cases that the asymptotically optimal one-cycle control is
the overall asymptotically optimal control.

Let ρk := λk/μk denote the traffic intensity corresponding to queue k, and let

ρ :=∑
k∈K

λk/μk.

We assume that ρ < 1, so that the system can be stabilized in the sense that there exist service
policies under which the queue process admits a stationary distribution (Boon, Van der Mei
and Winands (2011), Fricker and Jaïbi (1994)). We note that the system is stable under the
binomial-exhaustive policy if and only if ρ < 1.

Let U(0) := 0, and for m ≥ 1, let U(m−1) denote the beginning of the mth server cycle
(end of the (m − 1)st server cycle), where without loss of generality, we take time 0 to be
a polling epoch of stage 1. Let A

(m)
i and D

(m)
i , i ∈ IL, denote the polling and departure

epochs of stage i during the mth server cycle. Then, B
(m)
i := D

(m)
i − A

(m)
i is the busy time at

stage i in the mth server cycle. Lastly, let T (m) be the length of the mth server cycle, that is,

T (m) = U(m) − U(m−1) and T (m) =∑i∈IL(B
(m)
i + V

(m)
i ), where V

(m)
i

d= Vi . Under a given
switching policy π , we denote by Qπ,k(t) the number of customers in queue k at time t ,
k ∈K, and let Qπ(t) := (Qπ,k(t), k ∈K), t ≥ 0.
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The optimal control problem. Let ψ : RK+ → R+ denote the holding cost, so that ψ(Q(t))

is the cost incurred at time t when the state of the queue is Q(t). We assume that ψ is
nonnegative, nondecreasing and continuous. Our goal is to find an asymptotically optimal
control π within a family � of admissible controls (see Definition 2.1 below and Section 5),
that minimizes the following expected long-run average costs:

(2.1) lim inf
t→∞

1

t
E

[∫ t

0
ψ
(
Qπ(u)

)
du

]
and lim sup

t→∞
1

t
E

[∫ t

0
ψ
(
Qπ(u)

)
du

]
.

Let

(2.2) Q̃π (m) := Qπ

(
U(m)), m ≥ 0.

The service policies we consider are state-dependent controls that may depend on the value
of Q̃π (m), such that the process Q̃π := {Q̃π (m) : m ≥ 0} is a discrete-time Markov chain
(DTMC) (see Lemma 5.1 below), and is therefore regenerative whenever it is positive recur-
rent (as must be the case under an optimal policy). We refer to this DTMC as the embedded
DTMC, and remark that, under the asymptotically optimal control we propose, namely, un-
der the binomial-exhaustive policy, the embedded DTMC is ergodic; see Fricker and Jaïbi
(1994).

The family of admissible controls. We say that a switching control is nonidling if the server
does not idle while attending a nonempty queue, and in addition, it switches immediately to
the next queue in the table if it empties the attended buffer. On the other hand, if the server
finds a buffer empty upon its polling epoch, we allow it to wait for work to arrive. This latter
event is asymptotically null, because the server always finds a queue upon arrival to a buffer
in the fluid limits, and thus has no impact on our asymptotic analysis. Let {Ft : t ≥ 0} denote
the σ -algebra generated by the queue process.

DEFINITION 2.1 (Admissible control). A switching control is admissible if:
(i) The policy is nonidling.
(ii) For i ∈ IL, m ≥ 1, the number of customers served during the busy time at the ith

stage in the mth server cycle conditional on Q(A
(m)
i ) is independent of F

A
(m)
i

.

(iii) The policy is nonanticipative.

It is significant that the set of admissible controls contains a wide range of controls stud-
ied in the literature. For example, the family of branching-type controls, which includes the
exhaustive, gated, binomial-exhaustive, binomial-gated, and Bernoulli-type policies (Resing
(1993), Levy (1988, 1989)), limited-type policies (Boxma (1986), Szpankowski and Rego
(1987)), and base-stock policies (Federgruen and Katalan (1996)) are all admissible. More
generally, all the policies studied in Fricker and Jaïbi (1994) are admissible. In particular,
the policies considered in Fricker and Jaïbi (1994) satisfy the three requirements in Defini-
tion 2.1, in addition to a certain stochastic-monotonicity condition that we do not impose; see
Section 2 in this reference.

The binomial-exhaustive policy. Let Qp(i)(A
(m)
i ) denote the number of customers in queue

p(i) upon its polling epoch in the mth server cycle, i ∈ IL, m ≥ 1. The binomial-exhaustive
policy, which was proposed in Levy (1988), is fully characterized by two parameters: an
integer L, that specifies the number of table cycles contained in a server cycle, and a vector
r= (r1, . . . , rIL) ∈ [0,1]IL, whose component ri is the “success probability” of the binomial
random variable corresponding to stage i ∈ IL. Note that, if

∑
{i∈IL:p(i)=k} ri = 0, then queue

k explodes since it never gets served. We therefore consider r to be an element in the set

(2.3) R :=
{
r ∈ [0,1]IL : ∑

{i∈IL:p(i)=k}
ri > 0 for all k ∈ K

}
.
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DEFINITION 2.2 (Binomial-exhaustive policy). For (L, r) ∈ N × R, i ∈ IL and m ≥ 1,
conditional on the event {Qp(i)(A

(m)
i ) = N}, N ∈ Z+, the number of customers that the server

leaves behind at the departure epoch of queue p(i) is N − Y
(m)
i (N, ri), where Y

(m)
i (N, ri)

is a binomial random variable with parameters N and ri , which is independent of all other
random variables and processes.

The binomial-exhaustive policy can equivalently be described as one in which the server
performs an independent Bernoulli trial for each customer in the queue at stage i, having
“success probability” ri . If the outcome of that trial is a “success,” then the server serves that
customer as well as all of the new arrivals during the service duration of that customer. Thus,
the server attends the queue polled at stage i in the mth server cycle for Y

(m)
i (N, ri) busy

periods of an M/G/1 queue having arrival rate λp(i) and service rate μp(i).

2.1. The large-switchover-time asymptotic regime. To carry out our asymptotic analysis,
we consider a sequence of systems indexed by n ≥ 1, and append a superscript n to all random
variables and processes that scale with n. Let V n

i denote the switchover time from stage i in
system n. Under the large-switchover-time scaling, we keep λk and μk fixed (they do not
scale with n), and impose the following assumptions on the sequence of switchover times.

ASSUMPTION 1. V̄ n
i := V n

i /n ⇒ si as n → ∞. Further, E[V n
i ] = nsi for all i ∈ I .

We make three remarks: First, we allow V n
i = op(n) for some, but not all, i ∈ I , so

that si = 0, but s > 0. Second, the second part of Assumption 1 can be easily relaxed to
E[V n

i ]/n → si as n → ∞. However, this relaxation comes at the expense of more cumber-
some notation in some proofs, and has no practical significance (for the actual stochastic
system under consideration). Third, even though the switchover times may be random, they
are required to be asymptotically deterministic under our scaling, so that the fluid limit is
deterministic. This assumption is reasonable in applications in which switchover times are
large (as in our setting), because their variability is often relatively small; for example, see
(Winands (2007)).

Under the large-switchover-time scaling, the server spends �p(n) time switching, so that
the queues at polling epochs are also of order �p(n), namely, the queue process is strictly
positive in fluid scale. Recall that fluid-scaled quantities (random variables, processes and
parameters) are denoted with a bar, for example, Q̄n

πn(t) := Qn
πn(nt)/n. Let

C̄n
πn(t) := 1

t

∫ t

0
ψ
(
Q̄n

πn(u)
)
du,

where πn is the control employed in the nth system (and is allowed to depend on n).
We say that a sequence of controls π̃∗ := {π̃n∗ : n ≥ 1} is asymptotically optimal if

(2.4) lim sup
n→∞

lim sup
t→∞

E
[
C̄n

π̃n∗ (t)
]≤ lim inf

n→∞ lim inf
t→∞ E

[
C̄n

πn(t)
]
,

for any other sequence of admissible controls π := {πn : n ≥ 1}.
REMARK 2.2. Since we seek an effective control for a given stocahstic system, the se-

quence π̃∗ of asymptotically optimal controls should be considered to be a single control
whose parameters may depend on n. For example, if a threshold-type control is exercised,
then the control parameters (the thresholds) must increase linearly with n in order to appear
in the fluid limits. Hence, there is no abuse of terminology in saying that a control (as op-
posed to a sequence of controls) is asymptotically optimal. On the other hand, the elements
of π are allowed to change arbitrarily with n.
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2.2. Summary of main results. Our main result establishes that the binomial-exhaustive
policy, with properly selected parameters (L∗, r∗), is asymptotically optimal (among the set
of admissible controls) for a large family of cost functions ψ . The specific control parameters
(L∗, r∗) are computed by solving a corresponding FCP, as will be explained below, and are
referred to as the optimal (control) parameters. We thus denote the sequence of binomial-
exhaustive policies by π∗. Note that the same control parameters (L∗, r∗) are used for all
n ≥ 1; in particular, the same control is considered for all the systems along the sequence.
This property of the asymptotically optimal control we propose is attractive, because applying
the control in a given system can be done directly, without any engineering considerations
which are often needed in order to determine the size of the control parameters for a specific
system.

To formally state our main result, let T̄ n := T n/n, where T n is the length of the stationary
server cycle in the nth system, which is finite w.p.1 when the embedded DTMC is positive
recurrent. For each n ≥ 1 and control πn, let

(2.5) 
̄n
πn :=

∫ T̄ n

0
ψ
(
Q̄n

πn(u)
)
du

denote the cumulative fluid-scaled cost under πn over a stationary server cycle, namely, when
Q̄n

πn(0) is distributed according to a stationary distribution of the embedded DTMC. Let
(L∗, r∗) be the optimal FCP parameters, and c∗ be the optimal objective value of the FCP.
In addition, let πn∗ be the binomial-exhaustive policy with these parameters (which are fixed
along the sequence). The following theorem is the main result of the paper.

THEOREM 1. If {
̄n
πn∗ : n ≥ 1} is UI, then for any sequence of admissible controls π ,

(2.6) lim inf
n→∞ lim inf

t→∞ C̄n
πn(t) ≥ lim

n→∞ lim
t→∞ C̄n

πn∗ (t) = c∗ w.p.1.

PROOF. The result follows from Theorems 4 and 5 in Section 6. �

The next corollary is a simple consequence of Theorem 1.

COROLLARY 2.1. If {
̄n
πn∗ : n ≥ 1} is UI, then π∗ satisfies (2.4), that is, it is asymptoti-

cally optimal.

PROOF. It follows from (2.6) by applying Fatou’s Lemma twice that

lim inf
n→∞ lim inf

t→∞ E
[
C̄n

πn(t)
]≥ E
[

lim
n→∞ lim

t→∞ C̄n
πn∗ (t)
]
= c∗.

Moreover, for each n ≥ 1, the embedded DTMC Q̃πn∗ is ergodic by (Fricker and Jaïbi (1994)),
Proposition 1, so that C̄n

πn∗ (t) converges to a deterministic finite value w.p.1 as t → ∞ (see

(7.28) in Section 7.2 for a characterization of this constant). Since C̄n
πn∗ (t) is continuous in t ,

it holds that E[supt≥0 C̄n
πn∗ (t)] < ∞. Thus,

lim
n→∞ lim

t→∞E
[
C̄n

πn∗ (t)
]= lim

n→∞E
[

lim
t→∞ C̄n

πn∗ (t)
]
= c∗,

where the first equality follows from the dominated convergence theorem, and the second
equality follows from (2.6) and the fact that limt→∞ C̄n

πn∗ (t) is a constant w.p.1. �

To apply Theorem 1 (and Corollary 2.1) we must (i) compute the fluid-optimal control
parameters (L∗, r∗), which are also the parameters of the binomial-exhaustive policy πn∗ for
all n ≥ 1, and (ii) establish that the UI condition holds. We now discuss these two conditions,
starting with the latter.
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The UI condition in Theorem 1. Theorem 2 below provides sufficient conditions for {
̄n
πn∗ :

n ≥ 1} to be UI, whenever the next assumption holds.

ASSUMPTION 2. The following two conditions hold for all i ∈ I:
(i) E[etV n

i ] < ∞ for all t ≥ 0 and n ≥ 1.
(ii) E[(V̄ n

i )�] → s�
i as n → ∞ for all � ≥ 2.

Recall that Sk denotes a generic random variable having the service time distribution of
the class-k customers, k ∈ K.

THEOREM 2. For p ≥ 1, let ψ(x) = O(‖x‖p). Under Assumption 2, {
̄n
πn∗ : n ≥ 1} is UI

if either of the following two conditions holds for all k ∈ K.

(i) p > 1, and for some ε > 0, E[etSk ] < ∞ for all t ∈ (−ε, ε).
(ii) p = 1, and E[S2

k ] < ∞.

PROOF. See Section 7.3. �

As an immediate corollary to Theorems 1 and 2, we obtain that π∗ is asymptotically opti-
mal under either one of the assertions in Theorem 2.

We remark that the condition that the second moments of the service times are finite when
p = 1 is also necessary in order for the desired UI to hold; see Theorem 3 in Hu, Dong and
Perry (2020). Thus, for cost functions that grow at most at a linear rate, π∗ is asymptotically
optimal if and only if E[S2

k ] < ∞ for all k ∈ K.

The optimal control parameters. Solving the FCP in order to compute the optimal control
parameters (L∗, r∗) is not always feasible, because it requires optimizing over the table struc-
ture (within the infinite set of all possible augmented tables) simultaneously with optimizing
the parameters. Nevertheless, in addition to solving the FCP on a case-by-case basis, it can
also be solved in certain general settings. The most important case for which we can solve
the FCP is that of cyclic basic tables, when the cost function ψ is separable, namely, is of the
form ψ(x) =∑K

k=1 ψk(xk), x = (x1, . . . , xK), where ψk : R+ → R+ is nonnegative, nonde-
creasing, and continuous for each k ∈ K. In this setting, we prove that the exhaustive policy,
under which the server empties the queues in all visits, is fluid optimal; see Proposition 4.1.
See also Corollary 6.1 for the corresponding asymptotic-optimality result.

We also consider a restricted optimal-control problem for cases in which the FCP cannot be
solved. In the restricted problem, we optimize the control parameters for a finite set of values
of L (including the case L = 1). Unlike the FCP, the restricted FCP (RFCP) can always
be solved, and the corresponding binomial-exhaustive policy is then asymptotically optimal
under the same conditions in Theorem 2, although among a smaller family of admissible
controls; see Definition 5.2 in Section 5.1.1 and Theorem 6 in Section 6.2.

2.3. Roadmap to the proof of Theorem 1. We now describe the main steps in the proof
of Theorem 1. We emphasize that the description here is provided for overview, and is not
meant to be fully rigorous. In addition, the proof scheme outlined below is for the general
case, in which we optimize over all possible augmented tables. The aforementioned restricted
problem follows a similar procedure, except that the family of admissible controls is smaller
for that latter problem.
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(I) Formalizing an FCP (Sections 3 and 4.1). To formalize an FCP corresponding to the
control problem for the stochastic system, we consider a fluid model of the original stochas-
tic system. Specifically, we consider a deterministic polling system that has the same basic
table as the stochastic system, in which the arrival and service processes are replaced by
deterministic continuous processes with the same rates λk and μk , k ∈ K. In that determinis-
tic counterpart, the queue process Q is replaced by a fluid model q := {q(t) : t ≥ 0}, whose
dynamics are determined by its initial condition and the switching policy.

We then seek a fluid control that minimizes the long-run average cost. Let qφ(t) denote
the value of the fluid queue at time t under control φ, for φ in some appropriate family of
admissible fluid controls. To apply the asymptotic-optimization framework, we want qφ to be
related to Qπ via a FWLLN. Next, as will be shown in the proof of Theorem 4, all possible
fluid limits for Qπ in stationarity are “almost periodic” in the sense that each such limit is
arbitrarily close to a periodic equilibrium (PE).2 (A fluid model qe is a PE if qe(t +τ) = qe(t)

for all t ≥ 0, for some τ > 0; see Definition 3.1.) Thus, optimizing the long-run average
cost is equivalent to first optimizing over all possible PE, and then finding a control that
guarantees convergence of the fluid model to the optimal PE. In particular, we can take the
set of admissible fluid controls, denoted by �, to be the set of all controls under which the
fluid model converges to a PE, so that the FCP reduces to

inf
φ∈�

lim
t→∞

1

t

∫ t

0
ψ
(
qφ(u)

)
du = 1

τ∗

∫ τ∗

0
ψ
(
q∗(u)
)
du,

where q∗ is the optimal PE and τ∗ is its period.

(II) Solving the FCP (Section 4.2). From the description of step (I), solving the FCP consists
of two components: first, we need to identify an optimal PE q∗, and second, we need to design
a control φ∗ ∈ � such that qφ∗ converges in an appropriate sense (see Definition 3.3) to q∗.
These two components are interconnected, because we have quite some flexibility in how we
characterize the optimal PE. In particular, the orbit of any PE qe is a loop (a closed curve)
in RK+ , which is fully characterized by specifying the server’s departure epochs during that
server cycle, together with a single point on the PE, because the dynamics of the fluid model
are deterministic between switching epochs. A fluid control φ is then a switching rule that
produces the desired trajectory qe whenever the initial point is on that PE’s trajectory, and
is in � if it guarantees the desired convergence. (The main difficulty in establishing that a
control φ∗ is optimal is in establishing that it is an element of �.)

The fluid control φ∗ we propose prescribes reducing queue p(i) by a fixed proportion ri
of its size at the polling epoch. Specifically, letting the value of the fluid queue polled at
stage i be qp(i)(a

(m)
i ) at the polling epoch, the server will switch away from that queue when

its value reaches (1 − ri)qp(i)(a
(m)
i ), i ∈ IL, m ≥ 1. We refer to this control as stage-based

proportion reduction (SB-PR), and to the SB-PR control with the optimal parameters (L∗, r∗)
as the optimal SB-PR.

(III) Proving asymptotic optimality (Sections 5 and 6). The translation step of the optimal
SB-PR to the binomial-exhaustive policy is straightforward, and was discussed above and
further detailed in Section 5. To prove that the binomial-exhaustive policy with parameters
(L∗, r∗) is asymptotically optimal, we first show (in Theorem 4) that the limiting holding
cost of any sequence of admissible controls is lower bounded by the optimal fluid cost. We
then prove that under the conditions in Theorem 2, the binomial-exhaustive policy with the
optimal SB-PR parameters achieves the lower bound asymptotically; see Theorem 5.

2We use the acronym PE for both singular and plural forms, that is, periodic equilibrium and periodic equilibria.



ASYMPTOTICALLY OPTIMAL CONTROL FOR POLLING SYSTEMS 4813

3. The fluid model. To formulate the FCP, we start by constructing a fluid model for the
polling system. To this end, we consider a deterministic polling system having the exact same
system’s topology and basic table as the stochastic system, but in which arrivals and service
completions occur continuously and deterministically at rates λk and μk , k ∈K, respectively.
Let q(t) denote the fluid content at time t , and for i ∈ IL and m ≥ 1, let a

(m)
i , d

(m)
i and b

(m)
i

denote the polling epoch, departure epoch, and the busy time of stage i during the mth server
cycle. Let u(m−1) be the time at which the mth server cycle begins, and τ (m) be the length
of the mth server cycle. For the following, we write q instead of qφ to simplify the notation
whenever the control is fixed, and refer to q as the “queue” or “fluid content” interchangeably.

Let k= (i ∈ IL : p(i) = k) denote the vector of ordered stages at which queue k is visited
in a server cycle, so that queue k is visited a total of dim(k) times over a server cycle. Then
the fluid queue over the first server cycle satisfies

qk(t) = qk(0) + λkt − μk

dim(k)∑
j=1

∫ t

0
1[a(1)

kj
,d

(1)
kj

)
(s) ds, k ∈ K, t ∈ [u(0), u(1)).

Since the fluid model is time-invariant, it can be described inductively via its dynamics over
one server cycle; in particular, the dynamics of qk over the time interval [u(m−1), u(m)),
namely, during the mth server cycle, can be described by

(3.1) qk(t) = qk

(
u(m−1))+ λk

(
t − u(m−1))− μk

dim(k)∑
j=1

∫ t

u(m−1)
1[a(m)

kj
,d

(m)
kj

)
(s) ds,

for t ∈ [u(m−1), u(m)), k ∈ K, m ≥ 1.

3.1. The fluid model as a hybrid dynamical system. Note that the values of b
(m)
i , a

(m)
i

and d
(m)
i are determined by the state of q and the control, and are therefore not available a

priori (those values must be computed on the fly). It is therefore more useful to represent q

as a solution to a differential equation. To achieve such a representation, let z(t) denote the
location of the server at time t : we write z(t) = i if the server is actively serving queue p(i)

at time t , and z(t) = �i if the server is switching from stage i to stage i + 1 at time t (with
i + 1 := 1 for i = IL). We let

(3.2) Z := {1, . . . , IL,�1, . . . ,�IL}
denote the state space of the server-location process z.

If a control depends only on the state of the queue process q and the location of the server,
then we should keep track of the state of the process (q, z) in order to determine the values
of the switching times. However, since q is a “surrogate” for the stochastic process Q, and
since we consider controls under which {Q̃(m) : m ≥ 0} in (2.2) is a DTMC, we also allow
the control to depend on the value of the fluid queue at the last polling epoch prior to t , that
is, on q(a(t)), where

a(t) := max
{
a

(m)
i ≤ t : i ∈ IL,m ≥ 1

}
.

Thus, we consider the process

(3.3) x(t) := (q(t), q
(
a(t)
)
, z(t)
)
, t ≥ 0,

taking values in RK+ ×RK+ ×Z . Note that x in (3.3) is a hybrid of the fluid-content process q ,
which has a continuous state space, and the server-location process z, which has a finite state
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space, and is therefore an HDS. (In fact, x is a slight generalization of standard HDS due to
the additional processes q(a(t)).) Then x is a solution to the following state equations:

q̇(t) = f
(
z(t)
)
,

z(t) = g
(
q(t), q

(
a(t−)

)
, z(t−)

)
,

a(t) = h
(
q(t), q

(
a(t−)

)
, z(t−)

)
,

(3.4)

where f :Z →RK , g :RK+ ×RK+ ×Z → Z , and h :RK+ ×RK+ ×Z →RK+ are the functions
specified below.

First, the function f determines the dynamics of the queues, which change at the polling
and departure epochs of each stage. Thus, for each k ∈ K, f is defined via

fk

(
q(t), z(t)

)=
{
λk − μk if z(t) = i and p(i) = k,

λk otherwise.

The functions g and h are determined by the control; to characterize these function, we define
a service function φi :RK+ →R+ mapping the queue length at the polling epoch of stage i to
the immediate busy time of the server;

(3.5) φi

(
q
(
a

(m)
i

)) := b
(m)
i , i ∈ IL,m ≥ 1.

The nonidling property we impose implies that

b
(m)
i ≤ q

(
a

(m)
i

)
/(μp(i) − λp(i)), i ∈ IL,m ≥ 1.

Indeed, the expression on the right-hand side of the above inequality is the time at which
the fluid queue that is attended by the server hits state 0 if the server keeps processing work
continuously.

Now the function g characterizing the location of the server as follows:
(i) If z(t−) = i and qp(i)(t) = qp(i)(a(t−)) − (μp(i) − λp(i))φi(q(a(t−))), define

js := min{j ≥ i : s(j mod IL) > 0},
jφ := min

{
j > i : φ(j mod IL)

(
q
(
a(t−)

))
> 0
}
.

(a) If js < jφ , then g(q(t), q(a(t−)), z(t−)) = �(js mod IL).
(b) Otherwise, g(q(t), q(a(t−)), z(t−)) = (jφ mod IL).

(ii) If z(t−) = �i and qp(i+1)(t) = qp(i+1)(a(t−)) + λp(i+1)(φi(q(a(t−))) + si), define

js := min{j > i : s(j mod IL) > 0},
jφ := min

{
j > i : φ(j mod IL)

(
q
(
a(t−)

))
> 0
}
.

(a) If js < jφ , then g(q(t), q(a(t−)), z(t−)) = �(js mod IL).
(b) Otherwise, g(q(t), q(a(t−)), z(t−)) = (jφ mod IL).
(iii) Otherwise, g(q(t), q(a(t−)), z(t−)) = z(t−).
Lastly, the function h updates the most recent polling epoch according to

h
(
q(t), q

(
a(t−)

)
, z(t−)

)

=

⎧⎪⎪⎨
⎪⎪⎩

t if z(t−) = �i and qp(i+1)(t) = qp(i+1)

(
a(t−)

)+ λp(i+1)

(
φi

(
q
(
a(t−)

))+ si
)
,

a(t−)

otherwise.
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3.2. Qualitative behavior of the HDS. Our qualitative analysis of the HDS relies on fun-
damental concepts defined in this section.

DEFINITION 3.1 (PE). A solution xe to the HDS (3.4) is a PE if there exists τ > 0 such
that xe(t + τ) = xe(t) for all t ≥ 0. The smallest such τ is called the period.

Note that a solution xe is a PE if and only if the orbit of qe, namely, the image of qe in
RK+ , is a loop. Thus, we will henceforth refer to the queue component qe as a PE.

DEFINITION 3.2 (L-cycle PE). A solution xe to the HDS (3.4) is an L-cycle PE if xe(t +
τL) = xe(t) for all t ≥ 0, where τL is its cycle length spanning L table cycles.

Clearly, the cycle length τL of a PE is an integer product of the period of that PE. It follows
from basic flow-balance equations that the cycle length of L-cycle PE satisfies

(3.6) τL = sL/(1 − ρ).

To see this, observe that the server must be working a fraction ρ of the time, and is therefore
switching between stages for a fraction 1−ρ of the time. Since the total switchover time over
L table cycles is sL, it holds that τL(1 − ρ) = sL, from which (3.6) follows.

Stable PE. The purpose of the fluid-optimal control is to steer every possible trajectory q to
a desired PE q∗. It is significant that convergence of trajectories to a PE cannot occur in the
Lyapunov sense, that is, it does not hold that ‖q(t) − qe(t)‖ → 0 as t → ∞ for a trajectory q

that converges to the PE qe. Instead, convergence of q to the PE qe is said to hold if the orbit
of q in RK+ “spirals” towards the closed orbit of qe. Recall that, without loss of generality,

u(0) = 0, namely, the beginning of the first server cycle is time 0. Similarly, we take u
(0)
e = 0

for a PE xe.

DEFINITION 3.3 (Convergence to a PE). A solution x to the HDS (3.4) is said to con-
verge to a PE xe if ‖q(u(m) + ·) − qe(·)‖t → 0 as m → ∞, for all t > 0.

A PE qe may be of several types; if any other trajectory in some neighborhood of qe

converges to it, then qe is called a stable limit cycle. (It is unstable if the trajectories in its
neighborhood are “spirling” away from it, and semi-stable if some trajectories in its neigh-
borhood converge, while other are repelled.) For our optimality result, we require a stronger
stability property to hold.

DEFINITION 3.4 (Global limit cycle). A PE qe of the HDS is said to be a global limit
cycle if all the trajectories of the HDS converge to qe.

In ending we remark that determining the number of limit cycles of a dynamical system is
in general a hard problem, even in the classical setting of dynamical systems with continuous
vector fields. (For planar systems with a polynomial vector field of degree greater than 1,
this is part of Hilbert’s 16th open problem, which is still unsolved.) Further, HDS of the
form (3.1) can exhibit chaotic behavior, and in particular, possess infinitely many PE, none of
which is a limit cycle, even when the continuous-state process q is of a dimension as low as
3; see Chase, Serrano and Ramadge (1993). In contrast, the fluid model (and limit) under our
proposed SB-PR control will be shown to possess a global limit cycle (which is necessarily
unique).
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3.3. Fluid limits and their relation to the fluid model. Whereas the fluid model is derived
for deterministic polling systems, the fluid limits, namely, the subsequential limits of the se-
quence of fluid-scaled queue processes, may not be deterministic under an arbitrary sequence
of controls. A FWLLN holds, and the resulting fluid limit is deterministic, under an extra reg-
ularity condition; see Proposition 3.1 below. Since the deterministic fluid model is the basis
for solving the FCP and deriving the asymptotically optimal control, it is significant that the
FWLLN holds for the binomial-exhaustive policy.

Consider the stochastic polling system, and let Z(t) denote the location of the server at
time t , defined on the same state space Z in (3.2); that is, Z is the stochastic counterpart of
the server-location process z in the fluid model. For t ≥ 0, let

(3.7) A(t) := max
{
A

(m)
i ≤ t : i ∈ IL,m ≥ 1

}
.

We define the state-process (of the stochastic system)

X(t) := (Q(t),Q
(
A(t)
)
,Z(t)

)
, t ≥ 0,

where we removed π from the notation to simplify it.
Let Pk := {Pk(t) : t ≥ 0} denote the Poisson arrival process to buffer k, and let Sk :=

{Sk(t) : t ≥ 0} denote the potential service process in buffer k, namely, Sk(t) would be the
number of class-k service completions by time t if the server were to process work from
queue k continuously during [0, t). In particular,

Sk(t) := sup

{
m ≥ 1 :

m∑
j=1

S
(j)
k ≤ t

}
,

where {S(j)
k : j ≥ 1} is a sequence of i.i.d. random variables distributed like Sk . Then for

k ∈K,

(3.8) Qk(t) = Qk(0) +Pk(t) − Sk

( ∞∑
m=1

dim(k)∑
�=1

∫ t

0
1[A(m)

k�
,D

(m)
k�

)
(u) du

)
, t ≥ 0.

Now consider the sequence of stochastic systems under the large-switchover-time scaling.
For the nth system, let A

(m),n
i and D

(m),n
i denote, respectively, the polling and departure

epoch of stage i in the mth server cycle, i ∈ IL, m ≥ 1. The corresponding fluid-scaled
server-switching epochs (arrival and departure epochs to and from the queues) are given by
Ā

(m),n
i := A

(m),n
i /n and D̄

(m),n
i := D

(m),n
i /n. Analogously to (3.7), we denote the most recent

polling epoch prior to time t in system n via

An(t) := max
{
A

(m),n
i ≤ nt : i ∈ IL,m ≥ 1

}
, t ≥ 0.

The fluid-scaled state-process is given by

X̄n(t) := (Q̄n(t), Q̄n(Ān(t)
)
,Z(nt)

)
, t ≥ 0,

where Q̄n(t) := Q(nt)/n and Ān(t) := An(t)/n (there is no spacial scaling of the process
Z(nt)).

For k ∈ K and n ≥ 1, define Sn
k (t) := S(nt), Pn

k (t) := Pk(nt), S̄n
k (t) := Sn

k (nt)/n and
P̄n

k (t) := P(nt)/n. Then the representation (3.8) for the queue in the nth system becomes

(3.9) Qn
k(t) = Qn

k(0) +Pn
k (t) − Sn

k

( ∞∑
m=1

dim(k)∑
�=1

∫ t

0
1[Ā(m),n

k�
,D̄

(m),n
k�

)
(u) du

)
, t ≥ 0.
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LEMMA 3.1 (Tightness). If {Q̄n(0) : n ≥ 1} is tight in RK+ , then {Q̄n : n ≥ 1} is C-tight
in DK , and the sample paths of its subsequential limits are of the form (3.1).

It is significant that, for i ∈ I and m ≥ 1, the time epochs u(m), a
(m)
i and d

(m)
i of a sub-

sequential limit of Q̄n may be random variables, in which case that limit q is stochastic.
However, Lemma 3.1 states that, even in this case, the evolution of a stochastic limit q be-
tween any two consecutive server-switching epochs is deterministic, and is characterized in
(3.1).

PROOF OF LEMMA 3.1. Fix T > 0. Due to the scaling of the switchover times in As-
sumption 1, the number of server switchings in system n over the time interval [0, nT ) is fi-
nite w.p.1 as n → ∞. Hence, the sequence of fluid-scaled server-switching epochs is tight in
[0, T ). In particular, any subsequence of the sequences {Ā(m),n

k�
: n ≥ 1} and {D̄(m),n

k�
: n ≥ 1}

in (3.9) has a further converging sub-subsequence (for all m and k� for which there are in-
finitely many elements of these sequences in [0, T )). Now the indicator functions in the time-
changed service process in (3.9) are fixed at the value 0 or at 1 between any two consecutive
server-switching epochs, so that Q̄n

k is a continuous mapping of its primitives between any
two such switching epochs. It follows from Whitt (2002), Theorem 13.6.4, that any subse-
quence of {Q̄n

k : n ≥ 1} for which all the server-switching epochs in [0, T ) converge, con-
verges in DK to qk in (3.1) as n → ∞. �

It follows immediately from the proof of Lemma 3.1 that if the sequences of fluid-scaled
server-switching epochs converge in [0, T ) for all T > 0, then Q̄n

k ⇒ qk in DK as n → ∞,
for qk in (3.1). In fact, since the dynamics of the queues are deterministic between any two
server-switching epochs, convergence of the server departure times implies that the server
arrival times also converge. We therefore have the following FWLLN.

PROPOSITION 3.1 (FWLLN). Assume that Q̄n(0) ⇒ q(0) in RK+ as n → ∞. If

D̄
(m),n
i ⇒ d

(m)
i in RK+ for all m ≥ 1 and i ∈ IL, then Q̄n ⇒ q in DK as n → ∞, where

each element qk , k ∈ K, of the vector process q satisfies (3.1).

Note that if q(0) and d
(m)
i are deterministic for all m ≥ 1 and i ∈ IL, then the fluid limit q

is the unique solution to an HDS of the form (3.1).

4. The fluid control problems. In this section we formally define the FCP, whose so-
lution is an optimal fluid control for the family of all augmented tables, and the restricted
problem, namely the RFCP, whose solution is an optimal fluid control for a finite set of aug-
mented tables.

The FCP. For the FCP, we consider the set � of controls for which the following hold for
each control φ ∈ �:

(i) There exists a unique solution q
γ
φ := {qγ

φ (t) : t ≥ 0} to the HDS (3.4) under φ for any

initial condition γ ∈ RK+ .
(ii) Any solution q

γ
φ converges to a limit cycle as t → ∞.

For γ ∈ RK+ , let

Cφ(γ ) := inf
φ∈�

lim
t→∞

1

t

∫ t

0
ψ
(
q

γ
φ (u)
)
du.

DEFINITION 4.1 (Fluid optimal control). We say that φ∗ is fluid-optimal if Cφ∗(γ ) ≤
Cφ(γ ) for all φ ∈ � uniformly in γ .
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The following lemma, whose proof appears in Section 4.3, motivates searching for an
“optimal PE,” namely, a PE that achieves the lowest possible time-average cost over its cycle
length among all possible PE, and then devising a control ensuring that that PE is a global
limit cycle.

LEMMA 4.1. For φ ∈ � and γ ∈ RK+ , let q
γ
φ denote the unique solution to the HDS

when control φ is exercised and when q
γ
φ (0) = γ . Let q

γ
e denote the limit cycle to which q

γ
φ

converges, and τ
γ
e denote its cycle length. Then

lim
t→∞

1

t

∫ t

0
ψ
(
q

γ
φ (u)
)
du = 1

τ
γ
e

∫ τ
γ
e

0
ψ
(
qγ
e (u)
)
du.

Due to Lemma 4.1, the FCP is concerned with finding a control φ∗ that achieves the opti-
mal long-run average c∗, where

c∗ := inf
φ∈�

Cφ(γ ) := inf
φ∈�

lim
t→∞

1

t

∫ t

0
ψ
(
q

γ
φ (u)
)
du for all γ ∈ RK+ .(4.1)

In turn, to solve the FCP, we seek a control φ∗ ∈ � under which there exists a global limit
cycle q∗, such that

(4.2)
1

τ∗

∫ τ∗

0
ψ
(
q∗(u)
)
du ≤ 1

τe

∫ τe

0
ψ
(
qe(u)
)
du

holds for any other PE qe (whose cycle length is τe). Note that both τ∗ and τe in (4.2) are
allowed to have any possible value of τL in (3.6), so that we are effectively optimizing the PE
over all possible augmented tables.

Solving the FCP. We start by identifying closed curves in RK+ which are possible solutions
to the HDS (namely, they can be obtained as a PE under some control). We refer to each
such closed curve qe as a PE-candidate, and treat it as a mapping from [0, τe] to RK+ (where
qe(0) = qe(τe)). We then optimize over all possible PE-candidates in order to find an optimal
PE-candidate q∗ for which (4.2) holds. Finally, we design an optimal control φ∗ ∈ � under
which the optimal PE-candidate q∗ is a global limit cycle for the HDS, so that (4.1) holds for
any solution q

γ
φ to (3.4) with initial condition γ ∈ RK+ .

We emphasize two points: (i) We do not rule out the possibility that, in general, the infi-
mum c∗ is not achievable via a PE-candidate, namely, that there exists no PE-candidate whose
time-average cost over the cycle length is c∗. (However, we are unaware of such pathological
examples; we do not study this problem due to its impracticability, as explained in the next
point.) (ii) Computing a PE-candidate for which c∗ is attained is not always practically feasi-
ble, due to the need to optimize the table structure among all the possible augmented tables.
(Hence, proving that a given problem is well-posed may also be impractical.)

As was mentioned in Section 2.2, solving the FCP is possible for specific systems or in
specific settings. The most important case for which the FCP can be solved is when the cost
function is separable (including linear) and the basic table is cyclic; see Proposition 4.1 for the
optimal fluid control and Corollary 6.1 for the corresponding asymptotic-optimality result.

REMARK 4.1 (On the set �). It is significant that the set of fluid limits is larger than the
set of possible fluid models under �. In particular, fluid limits under a sequence of admissible
controls can be nonstable, in the sense that they do not converge to a limit cycle, and can
also be stochastic. Thus, � is smaller than the set of possible controls for the fluid limits.
However, Theorem 4 in Section 6 proves that c∗ in (4.1) is a lower bound on the achievable
costs asymptotically (as n → ∞), so that, it is sufficient to search for control in �.
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The RFCP. When solving the FCP in (4.1) is not feasible, one can instead optimize among
all L-cycle PE for L in some finite subset N ⊂ N, for example, L ∈ N = {1, . . . ,M}, where
M ≥ 1 is a finite integer. To this end, we consider the RFCP, whose goal is to find cN , where

(4.3) cN := min
L∈N inf

φ∈�L
Cφ(γ ) := min

L∈N inf
φ∈�L

lim
t→∞

1

t

∫ t

0
ψ
(
q

γ
φ (u)
)
du for all γ ∈ RK+ ,

where �L ⊂ � is the set of all the controls under which any solution to the HDS (3.4)
converges to an L-cycle limit cycle. Correspondingly, for each L ∈ N we seek an optimal
L-cycle PE-candidate qL∗ such that the inequality

1

τL

∫ τL

0
ψ
(
qL∗ (u)

)
du ≤ 1

τL

∫ τL

0
ψ
(
qL
e (u)
)
du,

holds for any other L-cycle PE qL
e . The solution to the RFCP is then

qN := min
L∈N qL∗ .

The procedure for solving the RFCP is similar to that of solving the FCP: We start by comput-
ing an optimal PE-candidate for each L ∈ N , and take the one with the lowest time-average
cost over the cycle length to be the optimal PE-candidate for the RFCP. Letting LN denote
the number of table cycles contained in the cycle length of qN , we then design a control
φN under which qN is a global limit cycle for the HDS. Unlike the FCP (4.1), solving the
RFCP is always feasible, because computing an optimal PE-candidate qL∗ for any fixed L,
and therefore computing qN , is straightforward.

In ending we remark that L = 1 should always be an element of N , not only because it
corresponds to the basic table, but also because the period of an L-cycle PE can be smaller
than τL, that is, the period might be τL2 < τL, with L being divisible by L2. In particular, an
optimal L-cycle PE with L > 1 may have period τ1.

4.1. Computing an optimal PE-candidate. We now discuss the first step in solving the
FCP and RFCP, namely, characterizing an optimal PE-candidate.

4.1.1. Optimal PE-candidates for the FCP. Let Q denote the set of all PE-candidates (of
all possible cycle lengths τL, L ≥ 1). When a solution to the FCP (4.1) exists, an optimal
PE-candidate for this FCP solves the optimization problem

min
qe∈Q

1

τL

∫ τL

0
ψ
(
qe(u)
)
du.(4.4)

Let qexh denote the one-cycle PE under the exhaustive policy, in which the server empties
the queue it attends and then switches to the next queue in the table (the existence of such a
PE is established in Lemma 4.3 below). Recall that ψ is separable if ψ(x) =∑k∈K ψk(xk)

for x ∈ RK+ . Under our assumption on ψ , ψk is nonnegative, nondecreasing and continuous
for each k ∈ K.

PROPOSITION 4.1. If the basic table is cyclic and ψ is separable, then qexh is a solution
to (4.4).

PROOF. See the Appendix. �

Whereas qexh is not a solution to (4.4) in general, as we show below, it is easy to see that
each queue must be emptied at least once in a PE-candidate that solves (4.4). In particular,
for q∗,k denoting the kth component process of a solution q∗ to (4.4), and τ∗ denoting the
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period (or cycle length) of q∗, it must hold that q∗,k(tk) = 0, for some tk ∈ [0, τ∗), k ∈ K.
To see this, observe that a PE-candidate is completely determined by its initial condition and
the busy times (bi, i ∈ IL). Consider a PE-candidate q

(1)
e in which the kth queue, denoted by

q
(1)
e,k , is such that q

(1)
e,k (t) > 0 for all t ∈ [0, τe), where τe is the period of q

(1)
e,k . We can construct

a PE-candidate q
(2)
e that has lower cost than q

(1)
e by taking

q
(2)
e,k (0) := q

(1)
e,k (0) − min

t∈[0,τ∗)
q

(1)
e,k (t), q

(2)
e,� (0) := q

(1)
e,� (0) for � �= k, � ∈ K,

and giving q
(2)
e the same busy times (bi, i ∈ IL) of q

(1)
e,k . Then q

(2)
e (t) < q

(1)
e (t) for all

t ∈ [0, τe), and the same inequality holds for the corresponding costs, because ψ is non-
decreasing.

4.1.2. Optimal PE-candidates for the RFCP. Let QL denote the set of all PE-candidates
having cycle length τL. To solve the RFCP in (4.3), we solve for the optimal L-cycle PE-
candidate for each L ∈ N , taking the one that gives the overall minimal cost as the solution.
To this end, we consider the following optimization problem:

min
qL
e ∈QL

1

τL

∫ τL

0
ψ
(
qL
e (u)
)
du for some (fixed) L ≥ 1.(4.5)

Unlike (4.4), problem (4.5) always admits solution.

LEMMA 4.2. For any fixed L ∈ N, the optimization problem (4.5) admits a solution qL
e .

The proof of the lemma builds on Lemmas 4.3 and 4.4 which are stated below, and is
therefore relegated to Section 4.3.

An analogous result to Proposition 4.1 holds for general cost functions, that is, any cost
function that is nonnegative, nondecreasing and continuous. However, the generalization
comes at the expense of fixing L = 1 in the RFCP. In particular, the following proposition
follows from the aforementioned fact that, in an optimal PE-candidate, each queue must be
exhausted at least once.

PROPOSITION 4.2. Fix L = 1. If the basic table is cyclic, then qexh is a solution to (4.5).

To demonstrate that qexh is not an optimal PE-candidate in general, consider a system with
three queues and basic (noncyclic) table (1,2,3,2,3). We take λk = 2, μk = 8, sk = 2 for
k = 1,2,3, and ψ to be linear with c1 = c2 = 1, and consider N = {1}. If c3 > 4, then it is
optimal to not exhaust q2 at stage 2. Moreover, the proportion of fluid processed at stage 2 is
decreasing to 0 as c3 increases. It is easy to explain why q2 is not exhausted in one of its visits.
Specifically, as the holding cost of q3 increases, it becomes more and more advantageous
to keep this queue smaller at the expense of making q2 larger. This can be achieved while
keeping q2 (and its corresponding holding cost) bounded, because q2 is visited twice, so the
server has an opportunity to exhaust it in a server cycle.

Lastly, we numerically solve (4.5) for polling systems with different basic tables, holding
costs, and values of L (i.e., allowing L to be larger than 1). In all numerical experiments, we
find that the optimal PE-candidate has L = 1. Thus, we conjecture that an optimal one-cycle
PE-candidate also solves (4.4).



ASYMPTOTICALLY OPTIMAL CONTROL FOR POLLING SYSTEMS 4821

4.2. The SB-PR control. Consider an L-cycle PE-candidate qL
e , and let ri denote the

proportion by which the queue polled in stage i ∈ IL is reduced. In particular, with ai and di

denoting, respectively, the polling epoch and departure epoch of stage i,

(4.6) ri :=

⎧⎪⎪⎨
⎪⎪⎩

qL
e,p(i)(ai) − qL

e,p(i)(di)

qL
e,p(i)(ai)

if qL
e,p(i)(ai) > 0,

0 otherwise,

i ∈ IL.

Clearly, one can always represent a PE-candidate via parameters (L, r), where r := (ri, i ∈
IL) is a vector whose component ri is defined in (4.6). The following lemma shows that the
reverse is also true; its proof is deferred to Section 4.3. For a given system, recall R in (2.3)
and that Q is the set of all PE-candidates.

LEMMA 4.3. For any (L, r) ∈ N × R, there exists a unique L-cycle PE-candidate qL
e

such that (4.6) is satisfied. In particular, the function qL
e �→ (L, r) is a bijection between Q

and N×R.

Lemma 4.3 motivates our proposed SB-PR control, which will be shown to be fluid optimal
in Theorem 3 below.

DEFINITION 4.2 (SB-PR control). Let (L, r) ∈ N×R. The SB-PR control with param-
eters (L, r) has the service function

φi(q) = riqp(i)/(μp(i) − λp(i)), i ∈ IL,

for φi in (3.5). In particular, at each stage i, the server reduces the polled queue to a proportion
1 − ri of its value at the polling epoch of this stage.

Let (L∗, r∗) denote the SB-PR control parameters corresponding to a solution to (4.4) (and
optimal PE-candidate for the FCP), and for N ⊂ N, let (LN , rN ) denote the SB-PR control
parameters corresponding to a solution to (4.5) (an optimal PE-candidate for the RFCP).

THEOREM 3 (optimality of SB-PR). SB-PR with parameters (L∗, r∗) is a solution to the
FCP (4.1). Similarly, SB-PR with parameters (LN , rN ) is a solution to the RFCP (4.3).

The proof of Theorem 3 relies on the following lemma, which establishes, in particular,
that any PE-candidate is a bona-fide PE under the corresponding SB-PR control, and that this
PE is a global limit cycle.

LEMMA 4.4 (global stability of SB-PR). Let qL
e be an L-cycle PE-candidate, and let r

be the corresponding vector of ratios defined for qL
e via (4.6). Then qL

e is a global limit cycle
for the HDS (3.4) under SB-PR with parameters (L, r).

PROOF OF LEMMA 4.4. For the HDS under SB-PR with parameters (L, r) ∈ N × R,
define the operator �i : RK+ → RK+ , i ∈ IL, mapping the queue length at the polling epoch
of stage i to that at the polling epoch of stage i + 1. Note that during the busy time of stage
i, queue p(i) decreases at rate μp(i) − λp(i), and any other queue k �= p(i) increases at rate
λk . If q is the queue length at the polling epoch of stage i, then the busy time at stage i

lasts for riqp(i)/(μp(i) − λp(i)) units of time, which is the time it takes to reduce queue p(i)

to (1 − ri)qp(i). During the switchover time from stage i to stage i + 1, each queue k ∈ K
increases at rate λk , and the switching takes si unit of time.
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For i ∈ IL, let

�i(q) := Aiq +Bi ,

where Ai is the K × K square matrix and Bi ∈RK are given by

Ai :=

p(i)th column⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 0 · · · λ1
ri

μp(i)−λp(i)
· · · 0 0

0 1 · · · λ2
ri

μp(i)−λp(i)
· · · 0 0

...
...

. . .
...

. . .
...

...

0 0 · · · 1 − ri · · · 0 0 p(i)th row,
...

...
. . .

...
. . .

...
...

0 0 · · · λK−1
ri

μp(i)−λp(i)
· · · 1 0

0 0 · · · λK
ri

μp(i)−λp(i)
· · · 0 1

Bi :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1si
...

λp(i)−1si
λp(i)si

λp(i)+1si
...

λKsi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

so that

Aiq :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1 + λ1
riqp(i)

μp(i) − λp(i)
...

qp(i)−1 + λp(i)−1
riqp(i)

μp(i) − λp(i)

(1 − ri)qp(i)

qp(i)+1 + λp(i)+1
riqp(i)

μp(i) − λp(i)
...

qK + λK

riqp(i)

μp(i) − λp(i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let �′ := �IL ◦ · · · ◦ �1 be the composition operator over one server cycle, namely, the
operator mapping the value of the queue at the beginning of a server cycle to its value at the
beginning of the subsequent server cycle. Then

�′(q) = A′q +B′

for

A′ := AIL · · ·A1 and B′ :=
IL−1∑
i=1

(
IL∏

j=i+1

Aj

)
Bi +BIL.

Since each of the operators �i , i ∈ IL, is affine and positively invariant, the same is true
for �′. (An affine operator is positively invariant if it maps RK+ into itself; see Matveev,
Feoktistova and Bolshakova (2016), page 10.) By Lemma 5.1 in Matveev, Feoktistova and
Bolshakova (2016), if �(A′) < 1, where �(A′) denotes the spectral radius of the matrix A′,
then the positively invariant affine operator �′(q) is a contraction mapping in RK+ .

Hence, we next show that �(A′) < 1. To this end, observe that A′ does not depend on the
switchover times, so that if the switchover times in the system are changed, but the arrival and
service rates are kept fixed, then the matrix A′ remains unchanged. In particular, the matrix
A′ does not change if the switchover times in the system under consideration are modified to
si = 0 for all i ∈ IL, with all other parameters remaining unchanged.

Consider an auxiliary system that has the same parameters as the system under consider-
ation, except that (si, i ∈ IL) = 0, and denote its queue process by qa := {qa(t) : t ≥ 0}. Let
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W(t) :=∑k∈K qa
k (t)/μk denote the total workload in this auxiliary system at time t . Since all

the switchover times are null, the server is busy at all times in the set W+ := {t : W(t) > 0},
so that

Ẇ (t) = ∑
�∈K,� �=k

λ�

μ�

+ λk − μk

μk

= ρ − 1 < 0, t ∈ W+.

Now A′ is a nonnegative square matrix, and so by the Perron–Frobenius theorem (e.g., Meyer
(2000), Chapter 8.3), it has a maximal eigenvalue which is strictly positive. This implies that
�(A′) > 0, and that the eigenvector v associated with �(A′) has strictly positive components.
Hence, the eigenvector v is a legitimate state for the queue process qa .

Take qa(0) = v. Then, at the end of the first server cycle, we have qa(u(1)) = A′v =
�(A′)v, with the second equality holding because v and �(A′) are the associated eigenvec-
tor and eigenvalue of A′. In addition, the workload in the system changes from W(0) =∑

k∈K vk/μk to W(u(1)) =∑k∈K �(A′)vk/μk . Since the workload process W is strictly de-
creasing, it holds that

�
(
A′)∑

k∈K

vk

μk

<
∑
k∈K

vk

μk

,

so that �(A′) < 1, from which it follows that �′ is a contraction mapping in RK . In turn,
under SB-PR (with any control parameters (L, r) ∈ N×R), there exists a global limit cycle
for the HDS3

 (3.4) if (and only if) ρ < 1. �

As a consequence of Lemmas 4.1 and 4.4, we also have the following corollary, which in
turn, implies the statement of Theorem 3.

COROLLARY 4.1. Let qL
e be an L-cycle PE-candidate with ratios r in (4.6). Then, under

SB-PR with parameters (L, r), it holds that

lim
t→∞

1

t

∫ t

0
ψ
(
q(u)
)
du = 1

τL

∫ τL

0
ψ
(
qL
e (u)
)
du,

for any solution q to the HDS (3.4).

PROOF OF THEOREM 3. The proof follows immediately from Corollary 4.1 by taking
the SB-PR control parameters to be (L∗, r∗) for the FCP, or (LN , rN ) for the RFCP. �

4.3. Proofs of Lemmas 4.1, 4.2 and 4.3.

PROOF OF LEMMA 4.1. Let Le denote the number of table cycles contained in the period
of the limit cycle q

γ
e . Let v(m−1) denote the beginning epoch of the ((m − 1)Le + 1)th table

cycle, m ≥ 1. Define T̃ (m) := v(m) − v(m−1). By construction, T̃ (m) contains exactly Le table
cycles. Since q

γ
e is the limit cycle for q

γ
φ , it follows that for any fixed ε > 0, there exists

Nε ≥ 1, such that, for all m ≥ Nε ,

(4.7)
∥∥qγ

φ

(
v(m−1) + ·)− qγ

e (·)∥∥t < ε for all t > 0,
∣∣T̃ (m) − τγ

e

∣∣< ε

and ∣∣∣∣
∫ v(m)

v(m−1)
q

γ
φ (s) ds −

∫ τ
γ
e

0
qγ
e (s) ds

∣∣∣∣< ε.

3It is easily seen that the global limit cycle under SB-PR for a system with zero switchover times is trivial,
namely, a fixed point; in particular, the limit cycle for this system is the origin.
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Since the PE q
γ
e is bounded (componentwise), (4.7) implies that q

γ
φ is also bounded. Due to

the continuity of ψ , q
γ
e and q

γ
φ , the composites ψ ◦ q

γ
e and ψ ◦ q

γ
φ are uniformly continuous

over any compact time interval. It follows that for any ε > 0, there exists Mε ≥ Nε , such that

(4.8)
∣∣∣∣
∫ v(m)

v(m−1)
ψ
(
q

γ
φ (s)
)
ds −
∫ τ

γ
e

0
ψ
(
qγ
e (s)
)
ds

∣∣∣∣< ε for all m ≥ Mε.

Let M(t) := max{m ≥ 1 : v(m) ≤ t}. Then

1

t

∫ t

0
ψ
(
q

γ
φ (s)
)
ds = 1

t

M(t)∑
m=1

∫ v(m)

v(m−1)
ψ
(
q

γ
φ (s)
)
ds + 1

t

∫ t

v(M(t))
ψ
(
q

γ
φ (s)
)
ds.

Since 0 ≤ t − v(M(t)) ≤ T̃ (M(t)+1) and T̃ (M(t)+1) is bounded by virtue of (4.7), the second
term on the right-hand side of the equality above converges to 0 as t → ∞. Now, for all t

large enough, it holds that M(t) > Mε , so that

1

t

M(t)∑
m=1

∫ v(m)

v(m−1)
ψ
(
q

γ
φ (s)
)
ds = 1

t

Mε−1∑
m=1

∫ v(m)

v(m−1)
ψ
(
q

γ
φ (s)
)
ds + 1

t

M(t)∑
m=Mε

∫ v(m)

v(m−1)
ψ
(
q

γ
φ (s)
)
ds.

For fixed ε > 0, Mε is fixed, so that the first term in the right-hand side of the equality
converges to 0 as t → ∞. Applying (4.8) for the second term gives that for t large enough,
we get that

1

t

M(t)∑
m=Mε

∫ v(m)

v(m−1)
ψ
(
q

γ
φ (s)
)
ds ≤ M(t)

t

1

M(t)

M(t)∑
m=Mε

(∫ τ
γ
e

0
ψ
(
qγ
e (s)
)
ds + ε

)

= M(t)

t

M(t) − Mε

M(t)

(∫ τ
γ
e

0
ψ
(
qγ
e (s)
)
ds + ε

)

≤
(

1

τ
γ
e − ε

+ o(1)

)(∫ τ
γ
e

0
ψ
(
qγ
e (s)
)
ds + ε

)

→ 1

τ
γ
e − ε

(∫ τ
γ
e

0
ψ
(
qγ
e (s)
)
ds + ε

)
as t → ∞.

(4.9)

In the second inequality above, we have used the fact that

t

M(t)
= 1

M(t)

(
Mε−1∑
m=1

T̃ (m) +
M(t)∑

m=Mε

T̃ (m) + (t − v(M(t))))

= 1

M(t)

M(t)∑
m=Mε

T̃ (m) + o(1)

≥ M(t) − Mε

M(t)

(
τγ
e − ε

)+ o(1) → τγ
e − ε as t → ∞.

It follows from (4.9) that

lim sup
t→∞

1

t

M(t)∑
m=Mε

∫ v(m)

v(m−1)
ψ
(
q

γ
φ (s)
)
ds ≤ 1

τ
γ
e − ε

(∫ τ
γ
e

0
ψ
(
qγ
e (s)
)
ds + ε

)
.

We can similarly show that

lim inf
t→∞

1

t

M(t)∑
m=Mε

∫ v(m)

v(m−1)
ψ
(
q

γ
φ (s)
)
ds ≥ 1

τ
γ
e + ε

(∫ τ
γ
e

0
ψ
(
qγ
e (s)
)
ds − ε

)
,

and so the statement follows by taking ε → 0. �
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PROOF OF LEMMA 4.2. Let ei,j denote the time elapsed between the departure epoch of
stage i and the polling epoch of stage j in qL

e , i, j ∈ IL, namely,

ei,j :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

si +
j−1∑

�=i+1

(s� + b�) if i < j,

si +
IL∑

�=i+1

(s� + b�) +
i−1∑
�=1

(s� + b�) if i ≥ j,

with
∑�2

�=�1
(s� + b�) := 0 for �1 > �2. Then an L-cycle PE-candidate qL

e necessarily satisfies
the following systems of equations:

(4.10) qL
k (akj

)(1 − rkj
) + λkekj ,kj+1 = qL

k (akj+1), j = 1, . . . ,dim(k), k ∈ K,

where kdim(k)+1 := k1. Since the L-cycle PE-candidate parameterized by r is unique by
virtue of Lemma 4.3, the linear system (4.10) admits a unique solution. Hence, solv-
ing (4.10) at all possible value of r ∈ R for the corresponding PE gives the entire con-
straint set of (4.5), because for given (L, r), qL

e is determined by the solution to (4.10),
(qL

e,k(akj
), j = 1, . . . ,dim(k), k ∈ K). Thus, (4.5) can be reformulated equivalently as fol-

lows:

min
r∈R

1

τL

∫ τL

0
ψ
(
qL
e (u)
)
du

s.t. qL
e,k(akj

)(1 − rkj
) + λkekj ,kj+1 = qL

e,k(akj+1), j = 1, . . . ,dim(k), k ∈ K

qL
e is determined by

(
qL
e,k(akj

), j = 1, . . . ,dim(k), k ∈ K
)
.

Now, as was explained in Section 4.1.1, each queue in an optimal PE-candidate must be
emptied at least once within a server cycle, and so the vector r corresponding to an optimal
PE-candidate is an element of the set

R′ :=
{
r ∈ [0,1]IL : ∑

{i∈IL:p(i)=k}
ri ≥ 1 for all k ∈ K

}
.

Note that R′ is a compact subset of the (noncompact) set R in (2.3).
Finally, since (4.10) is a system of linear equations for a given r, its unique solution

(qL
e,k(akj

), j = 1, . . . ,dim(k), k ∈ K), is continuous in r. It follows that, for a given ε > 0,
there exists a δ > 0, such that for all r1, r2 ∈ R′ and their corresponding PE-candidates
q

L,(1)
e , q

L,(2)
e , if ‖r1 − r2‖ < δ, then |ψ(q

L,(1)
e (u)) − ψ(q

L,(2)
e (u))| < ε for all u ∈ [0, τL),

so that ∣∣∣∣ 1

τL

∫ τL

0
ψ
(
qL,(1)
e (u)

)
du − 1

τL

∫ τL

0
ψ
(
qL,(2)
e (u)

)
du

∣∣∣∣< ε.

Thus, we established an equivalent formulation for problem (4.5), in which the objective
function is continuous over the compact constraint set R′. It follows from Weierstrass theo-
rem that a global minimum exists. �

PROOF OF LEMMA 4.3. It follows from the proof of Lemma 4.4 that under SB-PR with
parameters (L, r) ∈ N×R, the HDS converges to a global limit cycle. Thus, an L-cycle PE
qL
e that satisfies (2.3) exists. Moreover, this PE is a global limit cycle, and is therefore the

unique PE characterized via (L, r). The statement of the lemma follows, because a PE is a
PE-candidate by definition. �
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5. Translating SB-PR to the stochastic system. As discussed in Section 1, we translate
SB-PR with control parameters (L, r) in the deterministic system to the binomial-exhaustive
policy with the same control parameters in the stochastic system. To show that the binomial-
exhaustive policy with the optimal fluid-control parameters is asymptotically optimal, we
first establish general results for admissible policies. Recall that, for a control π , Q̃π is the
embedded process defined via (2.2). The proof of the following lemma follows from the proof
of Fricker and Jaïbi (1994), Proposition 1, and is thus omitted.

LEMMA 5.1. Q̃π is a homogeneous, aperiodic DTMC for any admissible control π .

We remark that the controls considered in Fricker and Jaïbi (1994) are assumed to satisfy
a certain stochastic monotonicity property, in addition to the conditions in our definition of
admissible controls. Thus, the set of controls in this reference is smaller than ours. However,
that extra stochastic-monotonicity property does not determine the Markov property of the
embedded process Q̃π ; see the proof of Fricker and Jaïbi (1994), Proposition 1.

DEFINITION 5.1. We say that a control π is stable if Q̃π is absorbed in a positive recur-
rent class, regardless of its initial distribution.

It follows from Lemma 5.1 that, for a stable control π ,

Qπ(m) ⇒ Q̃π (∞) as m → ∞,

where Q̃π (∞) is a random variable distributed according to a stationary distribution of the
DTMC Q̃π . By flow-balance arguments, see, for example, Boon, Van der Mei and Winands
(2011), the length of a stationary server-cycle over an L-cycle augmented table TL has mean

E[TL] = Ls/(1 − ρ) for L ≥ 1.

Clearly, only stable controls are relevant for our (asymptotic) control-optimization prob-
lem. However, we note that the stability region of a given control, namely, the set of values
of the service and arrival rates for which the system is stable, can be hard to characterize;
see Takagi (1988). The most general characterization of the stability region we are aware of
was developed in Fricker and Jaïbi (1994) (under the aforementioned stochastic-monotonicity
property).

5.1. Sequences of admissible controls. We say that a sequence of controls π = {πn : n ≥
1} is admissible if πn is an admissible policy for each n ≥ 1, and denote the family of all such
sequences by �. For n ≥ 1 and U(0),n := 0, let U(m),n denote the beginning of the (m + 1)st
server cycle of the nth system, m ≥ 0. Then, for π ∈ �,

Q̃n
πn(m) := Q̄n

πn

(
Ū (m),n), m ≥ 0,

is a DTMC for all n ≥ 1 by Lemma 5.1. If, in addition, the control is stable for each n ≥ 1,
then there exists a stationary distribution for each of the DTMCs in the sequence, and we say
that π is stable.

For the queue process in stationarity, the server-cycle length T n
L (when the control is de-

signed for an L-cycle augmented table) has mean nsL/(1 − ρ), and for T̄ n
L := T n

L/n,

(5.1) E
[
T̄ n

L

]= sL/(1 − ρ),

which is equal to the equilibrium cycle length τL in any L-cycle PE of the fluid model.
In order for a sequence of controls π ∈ � to be asymptotically optimal, it must be stable

and the sequence of corresponding stationary distributions {Q̃n
πn(∞) : n ≥ 1} must be tight

in RK+ . However, we remark at the outset that, even if π is stable and {Q̃n
πn(∞) : n ≥ 1} is

tight, there is no guarantee that there exists a global limit cycle for any of the resulting fluid
limits, because the limits as n → ∞ and as t → ∞ need not commute.
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5.1.1. L-cyclic controls for the restricted problem. As is the case for the unrestricted
problem, for a sequence of controls to be asymptotically optimal with respect to the restricted
optimal-control problem, that sequence must be stable, and the corresponding sequence of
stationary distributions must be tight. The difference between the two versions of the optimal-
control problem is that, in the restricted problem, we have fixed values of table cycles L which
we target.

Let qe denote a PE for a fluid limit when the sequence of controls is a stable sequence π ,

and when Q̃n
πn(0)

d= Q̃n
πn(∞). The fact that a fluid limit for such a sequence exists follows

from Lemma 3.1 because the sequence of initial distribution is stationary, and is assumed to
be tight, for the reason described above. From the asymptotic perspective, there is clearly no
point in considering L-cycle controls which give rise in the limit to PE that have a period
that does not divide τL. (We always allow the period of an L-cycle PE to be smaller than
the cycle length.) Thus, when solving the restricted problem over a set N ⊂ N, we should
only consider sequences of admissible controls that give rise to L-cycle PE for L ∈ N , which
motivates considering the following family of controls.

DEFINITION 5.2. A sequence of admissible controls π ∈ � is said to be L-cyclic if any

fluid limit of {Q̄n
πn : n ≥ 1} with initial condition Q̄n

πn(0)
d= Q̃n

πn(∞), n ≥ 1, is an L-cycle
PE.

We denote the subset of L-cyclic controls by �L.

5.2. SB-PR and the corresponding binomial-exhaustive policy. A FWLLN for the
binomial-exhaustive policy follows easily from Proposition 3.1, as the next corollary shows.

COROLLARY 5.1 (FWLLN under binomial-exhaustive). Let {Qn : n ≥ 1} denote a se-
quence of queues where, for each n ≥ 1, the system operates under the binomial-exhaustive
policy with the same parameters (L, r) ∈ N × R. If Q̄n(0) ⇒ q(0) in RK+ , then Q̄n ⇒ q

in DK , where q is the fluid queue process under SB-PR with parameters (L, r) and initial
condition q(0).

PROOF. We verify that the condition in Proposition 3.1 holds under SB-PR, namely,
D̄

(m),n
i ⇒ d

(m)
i in R+ as n → ∞, for all m ≥ 1 and i ∈ IL. To this end, consider the first

departure epoch, which is also the first busy time of the server at stage 1 in the first server
cycle, that is, time D̄

(1),n
1 = B̄

(1),n
1 , for n ≥ 1. Under the binomial-exhaustive policy, all the

arrivals to queue k ∈K during the service time of a customer from that same queue are served
as well, and so the total service time of each served customer and all the arrivals during his
service time is distributed like a busy period in an M/G/1 queue that has arrival rate λk and
service rate μk .

For each stage i ∈ IL and the corresponding queue p(i), denote by �
(�)
p(i) the busy period

“generated” by the service of the �th served customer in this queue. Let {Y (�)
i : � ≥ 1} be a

sequence of i.i.d. Bernoulli r.v.’s with success probability ri . We use Yi and �p(i) to denote
corresponding generic random variables. Then

B̄
(1),n
1 = 1

n

Qn
p(1)(0)∑
�=1

�
(�)
p(1)Y

(�)
1 ⇒ qp(1)(0)E[�p(1)Y1] as n → ∞,

and due to the independence of �p(1) and Y1,

(5.2) B̄
(1),n
1 = D̄

(1),n
1 ⇒ qp(1)(0)E[�p(1)]E[Y1] = r1qp(1)(0)/(μp(1) − λp(1)) = d

(1)
1 ,
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where the weak convergence holds as n → ∞. Furthermore, the length of queue p(1) at the
end of the busy time is given by

Q̄n
p(1)

(
D̄

(1),n
1

)= Q̄n
p(1)(0) − 1

n

Qn
p(1)(0)∑
�=1

Y
(�)
1 ⇒ qp(1)(0) − qp(1)(0)r1 = qp(1)

(
d

(1)
1

)

as n → ∞.

It follows from the FWLLN for the Poisson process and (5.2) that, for all k �= p(1),

Q̄n
k

(
D̄

(1),n
1

) ⇒ qk

(
d

(1)
1

)= qk(0) + λkb
(1)
1 as n → ∞,

and that

Q̄
(
D̄

(1),n
1 + V̄

(1),n
1

) ⇒ q
(
d

(1)
1 + s1

)
as n → ∞.

Continuing with the same line of arguments gives D̄
(m),n
i ⇒ d

(m)
i as n → ∞, for all m ≥ 1,

i ∈ IL, as required. �

The FWLLN under the binomial-exhaustive policy remains to hold if the condition that
the initial queue converges is replaced with the condition that the initial distribution of the
queue is equal to its stationary distribution at the beginning of a server cycle. In this case, the
resulting fluid limit is the global limit cycle (the unique PE) under the corresponding SB-PR
control. This result, stated formally in the following lemma, will be employed in the proofs
of our main theorems.

LEMMA 5.2 (Interchange of limits). Let {Qn : n ≥ 1} denote a sequence of queues
where, for each n ≥ 1, the system operates under the binomial-exhaustive policy with the
same parameters (L, r) ∈ N × R. Then for any real-valued, continuous, and bounded func-
tion f on RK+ ,

(5.3) lim
m→∞ lim

n→∞E
[
f
(
Q̃n(m)

)]= lim
n→∞ lim

m→∞E
[
f
(
Q̃n(m)

)]= f
(
qe(a1)

)
,

where qe is the PE under SB-PR with parameters (L, r). In particular, if Q̄n(0)
d= Q̃n(∞)

for all n ≥ 1, then Q̄n ⇒ qe in DK as n → ∞.

PROOF. The key to the proof is the fact that E[Q̄n(Ān
1)] = qe(a1) for all n ≥ 1.

This fact, which is established in Lemma 7.3, implies that supnE[Q̄n(Ān
1)] < ∞. It fol-

lows from Markov’s inequality that {Q̄n(Ān
1) : n ≥ 1} is UI, and thus tight in RK+ . Since

Q̄n(0) = Q̄n(Ān
1) by definition, {Q̄n(0) : n ≥ 1} is tight. Further, {Q̄n(U(m),n) : m ≥ 0} is a

stationary sequence, so that, since An
1 = U(0),n, we have convergence along subsequences

Q̄n(U(m),nk ) ⇒ Q̄(0) as k → ∞, for all m ≥ 0. Note that, conditional on Q̄(0), the fluid
limit Q̄ is deterministic, and converges to the global limit cycle qe as t → ∞, regardless of
the realized value of Q̄(0).

Assume, in order to arrive at a contradiction, that there exists a set E �RK , with qe(a1) /∈
E, such that P(E) > 0, where P denotes the probability distribution of Q̄(0). Due to the
convergence of Q̄(t) to qe as t → ∞, there exists an m0, such that ‖Q̄(Ū (m))−qe(u

(1))‖ < ε

w.p.1 for all m ≥ m0 and for any ε > 0. It follows that, for all m large enough, Q̄(Ū (m)) /∈
E. Since this holds for all the trajectories Q̄ with Q̄(0) ∈ E, it follows that E is a set of
transient states, contradicting the stationarity of {Q̄(Ū (m)) : m ≥ 0}. Thus, P(E) = 0, and
in turn, Q̄(0) = qe(a1) w.p.1. This latter equality holds for all converging subsequences of
{Q̄n(0) : n ≥ 1}, and so it holds for the sequence itself, namely, Q̄n(0) ⇒ qe(a1) as n → ∞,

implying (5.3). This, together with the FWLLN in Corollary 5.1 when Q̄n(0)
d= Q̄n(∞),

n ≥ 1, implies that Q̄n ⇒ qe in DK as n → ∞. �



ASYMPTOTICALLY OPTIMAL CONTROL FOR POLLING SYSTEMS 4829

6. Asymptotic optimality of binomial-exhaustive. In this section we consider the
global optimal-control problem, which is the subject of Theorem 1 and the corresponding
FCP, and the restricted optimal-control problem.

6.1. Asymptotic optimality for the global problem. Theorems 4 and 5 below imply The-
orem 1. Recall that c∗ is the optimal objective value of the FCP.

THEOREM 4 (Asymptotic lower bound). lim infn→∞ lim inft→∞ C̄n
πn(t) ≥ c∗ w.p.1, for

any π ∈ �.

PROOF. See Section 7.1. �

Recall 
n
πn∗ in (2.5), and that πn∗ is the binomial-exhaustive policy with the same parame-

ters (L∗, r∗) for all n ≥ 1, where (L∗, r∗) are the optimal FCP parameters.

THEOREM 5 (Asymptotic optimality). If {
̄n
πn∗ : n ≥ 1} is UI, then

lim
n→∞ lim

t→∞ C̄n
πn∗ (t) = c∗ w.p.1.

PROOF. See Section 7.2. �

The following is an immediate corollary to Theorems 4 and 5 (alternatively, to Theorem 1),
Corollary 2.1, Proposition 4.1 and Theorem 2.

COROLLARY 6.1. Assume that Assumption 2 holds and that the basic table is cyclic.
Then the exhaustive policy is asymptotically optimal under either of the following:

(i) For some p ≥ 1, ψ(x) = O(‖x‖p) and is separable, and in addition, there exists an
ε > 0 such that E[etSk ] < ∞ for all t ∈ (−ε, ε) and for all k ∈ K.

(ii) ψ(x) = O(‖x‖), and in addition, E[S2
k ] < ∞ for all k ∈ K.

6.2. Asymptotic optimality for the restricted problem. Recall that LN is the number of
table cycles contained in one server cycle of qN , and that rN is the vector of proportion
reductions at each stage in qN . Let πN := {πn

N : n ≥ 1} denote the sequence of binomial-
exhaustive policies with parameters (LN , rN ). We then have the following asymptotic opti-
mality result for the restricted class of admissible controls. The proof of this result follows
similar lines of arguments to those in the proofs of Theorems 4 and 5, and is therefore omitted.

THEOREM 6 (asymptotic optimality for the restricted problem). For all π ∈⋃L∈N �L

it holds that

lim inf
n→∞ lim inf

t→∞ C̄n
πn(t) ≥ cN w.p.1,

for cN in (4.3). If, in addition, {
̄n
πn
N

: n ≥ 1} is UI, then
lim

n→∞ lim
t→∞ C̄n

πn
N

(t) = cN w.p.1.

Following the same lines of arguments as in Corollary 2.1, Theorem 6 implies that if
{
̄n

πn
N

: n ≥ 1} is UI, then πN is asymptotically optimal among the restricted class of admis-

sible controls. In particular, (2.4) holds. This, together with Theorem 2, implies the following
corollary.
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TABLE 1
Established asymptotic optimality results

Corollary 6.1(i) Corollary 6.1(ii) Corollary 6.2

Admissible controls � �
⋃

L∈N �L

Cost function polynomial growth
and separable

linear growth polynomial growth

Basic table cyclic cyclic general
Service time distributions finite m.g.f.’s second moments finite m.g.f.’s
Optimal control (L, r) = (1,1)

(exhaustive)
(L, r) = (1,1)
(exhaustive)

binomial-exhaustive with
parameters (LN , rN )

COROLLARY 6.2. Suppose that ψ(x) = O(‖x‖p), for some p ≥ 1, and that Assump-
tion 2 holds. If, for some ε > 0, E[etSk ] < ∞ for all t ∈ (−ε, ε) and for all k ∈ K, then
the binomial-exhaustive policy with parameters (LN , rN ) is asymptotically optimal among⋃

L∈N �L.

6.3. Summary of established asymptotic optimality results. We summarize the conditions
and results of Corollaries 6.1 and 6.2 in Table 1.

7. Proofs of the main results. In this section we prove Theorems 4 and 5, from which
Theorem 1 follows, and Theorem 2. Some technical results which are employed in the proofs
are proved in the Appendix.

7.1. Proof of Theorem 4. To establish Theorem 4, it is sufficient to restrict attention to se-
quences of admissible controls π ∈ � under which the corresponding sequences of embedded
stationary DTMC’s {Q̃n

πn(∞) : n ≥ 1} are tight with limits bounded on RK+ (otherwise, the
cost is asymptotically unbounded); the set of such controls π is not empty due to Lemma 5.2.

Take Q̃n
πn(0)

d= Q̃n
πn(∞) for each n ≥ 1. Then {Q̄n

πn(0) : n ≥ 1} is tight, so that {Q̄n
πn : n ≥ 1}

is C-tight in DK by Lemma 3.1.
To decrease the notational burden, we fix a sequence of admissible controls π and a corre-

sponding converging subsequence of {Q̄n
πn : n ≥ 1}, but we remove the subscript πn from the

notation, and denote the converging subsequence by a superscript �. For example, Q̄� := Q̄n�

denotes the fluid-scaled queue process in system n�, � ≥ 1, operating under the control πn�

in the converging subsequence of {Q̄n�

πn� : � ≥ 1}.
Let Q̄ denote the limit of {Q̄� : � ≥ 1}, and let α� denote the stationary distribution of

the corresponding embedded DTMC {Q̃�(m) : m ≥ 0}. Since each process in the pre-limit
is stationary, the limit {Q̃(m) : m ≥ 0} of this subsequence of DTMCs is also stationary; we
denote the corresponding stationary distribution by α. For r ≥ 0, let B(r) denote a ball in
RK+ with positive α-measure, namely, α(B(r)) ∈ (0,1], and let Bo = (Bo

1 , . . .Bo
K) denote the

center of this ball. Note that we do not rule out the case where r = 0, which is tantamount to
B(r) being a point in RK+ and the limiting distribution α having a point mass on Bo.

Due to the weak convergence of {Q̃� : � ≥ 1} to Q̃, we have

(7.1) lim
�→∞P

(
Q̃�(0) ∈ B(r)

)= P
(
Q̃(0) ∈ B(r)

)
,

so that

lim
�→∞α�(B(r)

)= α
(
B(r)
)
> 0.
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It follows from (7.1) that α�(B(r)) > 0 for all � large enough, so that {Q̃�(m) : m ≥ 0} must
return to B(r) infinitely often for any such �. Similarly, there are infinitely many m’s for
which Q̃(m) ∈ B(r). Let

N�
r := inf

{
m ≥ 1 : Q̃�(m) ∈ B(r)

}
and Nr := inf

{
m ≥ 1 : Q̃(m) ∈ B(r)

}
.

Then for

(7.2) α�
r (·) := P

(
Q̃�(0) ∈ ·|Q̃�(0) ∈ B(r)

)
and αr(·) := P

(
Q̃(0) ∈ ·|Q̃(0) ∈ B(r)

)
,

we have

(7.3) lim
�→∞Eα�

r

[
N�

r

]= lim
�→∞

1

α�(B(r))
= 1

α(B(r))
= Eαr [Nr ].

Define the following first return times to B(r):

R̄�
r := inf

{
Ū (m),� > 0 : Q̄�(Ū (m),�) ∈ B(r)

}
,

R̄r := inf
{
Ū (m) > 0 : Q̄(Ū (m)) ∈ B(r)

}
.

(7.4)

The next lemma is proved in Section 7.1.1.

LEMMA 7.1. The subsequence {R̄�
r : � ≥ 1} in (7.4) is UI and satisfies R̄�

r ⇒ R̄r . Hence,

Eα�
r

[
R̄�

r

]→ Eαr [R̄r ] as � → ∞.

Observe that the trajectory of Q̄ over one return time (from time 0 to R̄r ) is “nearly pe-
riodic” for small r , in the sense that both Q̄(0) and Q̄(R̄r ) are in B(r), although the return
time R̄r may increase as r decreases.

The next lemma, whose proof is given in Section 7.1.1 below, provides an upper bound on
the value of R̄r , and formalizes the observation that Q̄ is “nearly periodic,” by proving that
it can be made arbitrarily close to a PE-candidate. To emphasize the fact that that the PE-
candidate depends on the realization of Q̄, and therefore on the sample point ω ∈ � (where
� is the underlying sample space), we make explicit the dependence on ω by adding it to the
notation when needed. For example, we write Q̄(ω, ·) for the sample path {Q̄(t) : t ≥ 0} and
R̄r (ω) for the realization of the random variable R̄r corresponding to ω.

LEMMA 7.2. There exist constants d1, d2 > 0 such that the following hold:
(i) |R̄r − τNr | ≤ d1r w.p.1.
(ii) There exists a set E ⊆ �, with P(E) = 1, such that, for each ω ∈ E, there exists an

Nr(ω)-cycle PE-candidate qω for which

(7.5)
∥∥Q̄(ω, ·) − qω

∥∥
R̄r (ω)∨τNr (ω)

≤ d2r.

Consider the set E in Lemma 7.2, and fix ω ∈ E. Assume that R̄r (ω) ≥ τNr(ω); similar
arguments to those below hold for the case R̄r (ω) < τNr(ω).

Clearly, (7.5) implies that

(7.6) max
k∈K
∣∣Q̄k(ω, t) − qω

k (t)
∣∣≤ d2r for all t ∈ [0, R̄r (ω)

]
.

Now, ‖Q̄(ω,0) − Bo‖ ≤ r because Q̄(ω,0) ∈ B(r), so that

max
k∈K Q̄k(ω,0) ≤ max

k∈K Bo
k + r.
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Then (7.5) implies that

max
k∈K qω

k (0) ≤ max
k∈K Bo

k + r + d2r,

and in turn, for all t ∈ [0, R̄r(ω)],
max
k∈K qω

k (t) ≤ max
k∈K qω

k (0) + max
k∈K
{
λk(1 − ρk)

}
τNr(ω)

≤ max
k∈K Bo

k + r + d2r + max
k∈K
{
λk(1 − ρk)

}
τNr(ω).

(7.7)

Together with (7.6), (7.7) implies that for all t ∈ [τNr(ω), R̄r(ω)],
1

τNr

max
k∈K Q̄k(ω, t) ≤ 1

τNr(ω)

(
max
k∈K Bo

k + r + 2d2r
)

+ max
k∈K
{
λk(1 − ρk)

}

≤ 1

τ1

(
max
k∈K Bo

k + r + 2d2r
)

+ max
k∈K
{
λk(1 − ρk)

}
= d3r + d4,

(7.8)

where d3 and d4 are the following constants (that do not depend on ω):

d3 := 1

τ1
(1 + 2d2) and d4 := 1

τ1
max
k∈K Bo

k + max
k∈K
{
λk(1 − ρk)

}
.

Thus, for any ω ∈ E, it holds that

max
k∈K

∣∣∣∣ 1

R̄r (ω)

∫ R̄r (ω)

0
Q̄k(ω,u) du − 1

τNr(ω)

∫ τNr (ω)

0
qω
k (u) du

∣∣∣∣
= max

k∈K

∣∣∣∣ 1

R̄r (ω)

(∫ τNr (ω)

0
Q̄k(ω,u) du +

∫ R̄r (ω)

τNr (ω)

Q̄k(ω,u) du

)

− 1

τNr(ω)

∫ τNr (ω)

0
qω
k (u) du

∣∣∣∣
≤ max

k∈K

(
1

τNr(ω)

∫ τNr (ω)

0

∣∣Q̄k(ω,u) − qω
k (u)
∣∣du + 1

τNr(ω)

∫ R̄r (ω)

τNr (ω)

Q̄k(ω,u) du

)

≤ d2r + (d3r + d4) d1r,

(7.9)

where the last inequality follows from (7.6), statement (i) in Lemma 7.2, and (7.8). It follows
from (7.9) that, for any ε > 0, there exists rε > 0 (that does not depend on ω), such that for
all r < rε ,

(7.10) max
k∈K

∣∣∣∣ 1

R̄r (ω)

∫ R̄r (ω)

0
Q̄k(ω,u) du − 1

τNr(ω)

∫ τNr (ω)

0
qω
k (u) du

∣∣∣∣< ε.

Therefore, due to the continuity of ψ , qω, and of the sample path Q̄(ω, ·), the composite
functions ψ ◦qω and ψ ◦ Q̄(ω, ·) are both uniformly continuous over compact time intervals.
It therefore follows from (7.10) that for any δ > 0, there exists an ε > 0 and a corresponding
rε > 0, such that∣∣∣∣ 1

R̄r (ω)

∫ R̄r (ω)

0
ψ
(
Q̄(ω,u)

)
du − 1

τNr(ω)

∫ τNr (ω)

0
ψ
(
qω(u)

)
du

∣∣∣∣< δ for all r ∈ (0, rε),

so that

(7.11)
1

R̄r (ω)

∫ R̄r (ω)

0
ψ
(
Q̄(ω,u)

)
du > cω − δ ≥ c∗ − δ,
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where

cω := 1

τNr(ω)

∫ τNr (ω)

0
ψ
(
qω(u)

)
du

is the time-average holding cost of qω, and is necessarily no smaller than c∗ by the definition
of the latter term. Hence, due to the regenerative structure of Q̄� for all � ≥ 1, we have
(considering the random elements, and thus dropping ω from the notation)

lim inf
�→∞ lim

t→∞ C̄�(t) = lim inf
�→∞ lim

t→∞
1

t

∫ t

0
ψ
(
Q̄�(u)

)
du

= lim inf
�→∞

Eα�
r
[∫ R̄�

r

0 ψ(Q̄�(u)) du]
Eα�

r
[R̄�

r ]
w.p.1 by renewal-reward theorem

≥ lim inf�→∞Eα�
r
[∫ R̄�

r

0 ψ(Q̄�(u)) du]
lim sup�→∞Eα�

r
[R̄�

r ]

= lim inf�→∞Eα�
r
[∫ R̄�

r

0 ψ(Q̄�(u)) du]
Eαr [R̄r ] by Lemma 7.1

≥ Eαr [lim inf�→∞
∫ R̄�

r�

0 ψ(Q̄�(u)) du]
Eαr [R̄r ] by Fatou’s lemma

=
Eαr [( 1

R̄r

∫ R̄r

0 ψ(Q̄(u)) du)R̄r ]
Eαr [R̄r ]

>
Eαr [(c∗ − δ)R̄r ]

Eαr [R̄r ] on the event E by (7.11)

= c∗ − δ.

Note that the second equality above holds regardless of whether Eα�
r
[∫ R̄�

r

0 ψ(Q̄�(u)) du] < ∞
because ψ is nonnegative; see, for example, Theorem 2.2.1 and the corresponding remark on
page 42 in Tijms (2003). The result follows because δ is arbitrary

7.1.1. Proofs of the auxiliary results in the proof of theorem 4.

PROOF OF LEMMA 7.1. The weak convergence in the statement follows from the con-
tinuous mapping theorem applied to the first passage time (Whitt (2002), Theorem 13.6.4).
To prove the convergence of the means, let Q̄�(0) be distributed according to α�, and Q̄(0)

be distributed according to α, for α� and α in (7.2).
The length of the return time R̄�

r consists of the total time the server spends serving each
queue k, k ∈ K, plus the total switchover time in N�

r table cycles. Let G�
k denote the number

of customers served at queue k over the time interval [0, R̄�
r ], and Ḡ�

k := G�
k/�. It holds that

(7.12) Q̄�
k(0) + P̄ �

k

(
1

�

K∑
ν=1

G�
ν∑

j=1

S(j)
ν + 1

�

N�
r∑

ν=1

I∑
i=1

V
(ν),�
i

)
− Ḡ�

k = Q̄�
k

(
R̄�

r

)
, k ∈ K,

where

R̄�
r = 1

�

K∑
ν=1

G�
ν∑

j=1

S(j)
ν + 1

�

N�
r∑

ν=1

I∑
i=1

V
(ν),�
i .
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Since Q̄ is stationary, both Q̄�(0) and Q̄�(R̄�) are distributed according to α�
r , so that

Eα�
r

[
Q̄�

k(0)
]= Eα�

r

[
Q̄�

k

(
R̄�

r

)]
, k ∈ K.

Thus, taking expectations in (7.12) and applying Wald’s equation give

Eα�
r

[
Ḡ�

k

]= λk

(
K∑

ν=1

1

μν

Eα�
r

[
Ḡ�

ν

]+Eα�
r

[
N�

r

]
s

)
, k ∈ K.

It follows that Eα�
r
[Ḡ�

k] = λks
1−ρ

Eα�
r
[N�

r ], so that

(7.13) Eα�
r

[
R̄�

r

]= s

1 − ρ
Eα�

r

[
N�

r

]
, k ∈ K.

A similar flow equation holds for the subsequential limit process Q̄. Since the sample
paths of Q̄ are of the form (3.1) by Lemma 3.1, the process Q̄ satisfies

Q̄k(t) = Q̄k(0) + λkt − μkB̄k(t), t ≥ 0, k ∈ K,

where B̄k := {B̄k(t) : t ≥ 0} is of the form

(7.14) B̄k(t) =
∫ t

0
bk(u) du,

for a piecewise-constant function bk :R+ → {0,1}. Then, by definition of R̄r , we have

(7.15) Q̄k(R̄r ) = Q̄k(0) + λkR̄r − μkB̄k(R̄r ), k ∈ K,

where R̄r =∑K
k=1 B̄k(R̄r ) + N̄rs. As both Q̄k(0) and Q̄k(R̄r) are distributed according to α,

it holds that Eαr [Q̄k(0)] = Eαr [Q̄k(R̄r )], and therefore

λkEαr

[
K∑

ν=1

B̄ν(R̄r ) + Nrs

]
= μkEαr

[
B̄k(R̄r )

]
, k ∈ K.

In turn, Eαr [B̄k(R̄r )] = ρks
1−ρ

Eαr [Nr ], so that

(7.16) Eαr [R̄r ] = s

1 − ρ
Eαr [Nr ], k ∈ K.

Since Eα�
r
[N�

r ] → Eαr [Nr ] as � → ∞ by (7.3), it follows from (7.13) and (7.16) that

Eα�
r
[R̄�

r ] → Eαr [R̄r ] as � → ∞, and the result follows. Finally, since R̄r ≥ 0 and R̄�
r ≥ 0

for all � ≥ 1 w.p.1, the sequence {R̄�
r : � ≥ 1} is UI by Theorem 5.4 in Billingsley (1968). �

PROOF OF LEMMA 7.2. We prove the two assertions of the lemma separately.

Proof of (i). By (7.15) and the fact that ‖Q̄(R̄r ) − Q̄(0)‖ ≤ 2r , it holds that for each k ∈ K,

(7.17) −2r ≤ −μkB̄k(R̄r ) + λkR̄r ≤ 2r,

so that

(7.18)
∑
k∈K

(−2r/μk + ρkR̄r) ≤∑
k∈K

B̄k(R̄r ) ≤∑
k∈K

(2r/μk + ρkR̄r) w.p.1.

Since R̄r is the total length of the Nr table cycles, it equals the total time the server spends
switching, which is equal to sNr , and the total time it spends serving in each of the queues.
Hence,

R̄r = sNr +∑
k∈K

B̄k(R̄r ).
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It then follows from (7.18) that

sNr +∑
k∈K

(−2r/μk + ρkR̄r) ≤ R̄r ≤ sNr +∑
k∈K

(2r/μk + ρkR̄r) so that

− 2r
∑
k∈K

1

μk

≤ (1 − ρ)R̄r − sNr ≤ 2r
∑
k∈K

1

μk

,

and employing (3.6) gives

(7.19) − 2r

1 − ρ

∑
k∈K

1

μk

≤ R̄r − τNr ≤ 2r

1 − ρ

∑
k∈K

1

μk

.

Taking d1 := 2(1 − ρ)−1∑
k∈K 1/μk proves the first part of the lemma.

Proof of (ii). We show that (7.5) holds w.p.1, so that the event E in the statement exists.
To this end, we fix ω ∈ �, and prove the result by constructing a Nr(ω)-cycle PE-candidate
qω such that (7.5) holds for the sample path Q̄(ω, ·). To simplify the notation, the values
of all the random elements (variables and processes) below are assumed to be realizations
corresponding to that fixed ω, although we remove it from the notation (except for the PE-
candidate qω we construct).

For the limiting process Q̄, let B̄
(m)
kj

, j = 1, . . . ,dim(k), m = 1, . . . ,Nr , denote the busy
time spent serving queue k at stage kj in the mth server cycle. By definition,

B̄k(R̄r ) =
Nr∑

m=1

dim(k)∑
j=1

B̄
(m)
kj

, k ∈ K,

for B̄k in (7.14). It follows from (7.17) and (7.19) that for k ∈ K,

− 2r

μk

+ ρk

(
τNr − 2r

1 − ρ

∑
k∈K

1

μk

)
≤ B̄k(R̄r ) ≤ 2r

μk

+ ρk

(
τNr + 2r

1 − ρ

∑
k∈K

1

μk

)
,

so that, for δk := B̄k(R̄r ) − ρkτNr , it holds that

(7.20) |δk| ≤ 2r

(
1

μk

+ ρk

1 − ρ

∑
k∈K

1

μk

)
, k ∈ K.

The proof proceeds by explicitly constructing qω. To this end, we first characterize a Nr -
cycle closed-curve in RK , denoted by Q̄′, whose trajectory is sufficiently close to the sample
path of Q̄ (corresponding to the sample point ω). However, that closed curve Q̄′ is not nec-
essarily a PE-candidate, as its components may achieve negative values. We then show that
only a small perturbation of the trajectory Q̄′, such that the perturbed trajectory remains
sufficiently close to Q̄, produces a bona-fide Nr -cycle PE-candidate qω.

To construct Q̄′, we first take Q̄′(0) := Q̄(0), and then specify the busy times of Q̄′, such
that Q̄′(τNr ) = Q̄′(0). (We treat Q̄′ as a queue process, similarly to our treatment of the fluid
models. Thus, by “busy times” of Q̄′

k we mean the times at which the kth component of Q̄′ is
decreasing.) This can be easily achieved by solving flow balance equations which equate the
“inflow” to Q̄′ over the Nr table cycles, which occurs at a constant rate λk throughout, to the
“outflow” over the Nr table cycles, which occurs at constant rate −μk only during the busy
times. Let (B̄

′(m)
kj

, j = 1, . . . ,dim(k),m = 1, . . . ,Nr) denote those busy times of Q̄′
k .

(1) For queue k with δk < 0, we take B̄
′(1)
k1

:= B̄
(1)
k1

+ |δk|; and B̄
′(m)
kj

:= B̄
(m)
kj

, for j =
1, . . . ,dim(k), m = 1, . . . ,Nr , and j + m > 2. Thus, except for its first busy time, all other
busy times of Q̄′

k are equal to those of Q̄k .
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(2) For queue k with δk > 0, we take B̄
′(m̂)
k
ĵ

:= B̄
(m̂)
k
ĵ

− δk for some ĵ ∈ {1, . . . ,dim(k)} and

m̂ ∈ {1, . . . ,Nr} with B̄
(m̂)
k
ĵ

≥ δk . (Such ĵ and m̂ exist for sufficiently small r due to (7.18)

and (7.19).) and as B̄
′(m)
kj

:= B̄
(m)
kj

for j = 1, . . . ,dim(k), m = 1, . . . ,Nr , j �= ĵ , and m �= m̂.

Thus, Q̄′
k and Q̄k have the same busy times, except for one busy time, which is shorter for

Q̄′
k by δk .

(3) For queue k with δk = 0, we take B̄
′(m)
kj

:= B̄
(m)
kj

for all j = 1, . . . ,dim(k) and m =
1, . . . ,Nr . In particular, Q̄′

k and Q̄k have the same busy times.
Observe that the busy times of Q̄′ satisfy the flow balance at all queues, that is,

Nr∑
m=1

dim(k)∑
j=1

B̄
′(m)
kj

= ρkτNr , k ∈ K,

so that Q̄′(τNr ) = Q̄′(0). In addition, we will show that

(7.21)
∥∥Q̄ − Q̄′∥∥

R̄r∨τNr
≤
(

2rK

1 − ρ

∑
k∈K

1

μk

)
max
k∈K {μk}.

However, before proving (7.21) we show that we can use this inequality to construct a PE-
candidate qω as in the statement of the lemma. To this end, let

(7.22) qω := Q̄′ + � for � :=
(

2rK

1 − ρ

∑
k∈K

1

μk

)
max
k∈K {μk}.

Since Q̄ ≥ 0, it follows from (7.21) that qω ≥ 0, and since Q̄′ is a closed curve in RK , so is
qω. Finally, qω clearly satisfies the fluid model equations (3.1), and is therefore a bona-fide
PE-candidate. Combining (7.21) and (7.22) gives

∥∥Q̄ − qω
∥∥
R̄r∨τNr

≤
(

4rK

1 − ρ

∑
k∈K

1

μk

)
max
k∈K {μk},

so that (7.5) follows by setting d2 := ( 4K
1−ρ

∑
k∈K 1

μk
)maxk∈K{μk}.

To finish the proof of the lemma, it remains to justify (7.21). To this end, note that Q̄′ and
Q̄ follow identical trajectories from initialization until some busy time differs, namely, when
B̄

′(m)
�j

�= B̄
(m)
�j

, for some � ∈ K, j ∈ {1, . . . ,dim(k)}, and m ∈ {1, . . . ,Nr}. By construction,

|B̄ ′(m)
�j

− B̄
(m)
�j

| = |δ�|. Since queue k in either process decreases at rate μk − λk during the
busy times, and increases at rate λk everywhere else, it holds that

(7.23)
∥∥Q̄k − Q̄′

k

∥∥
D̄

(m)
�j

∨D̄
′(m)
�j

= |δ�|μk, k ∈ K,

where D̄
′(m)
�j

(alternatively, D̄
(m)
�j

) is the departure epoch immediate after the busy time B̄
′(m)
�j

(alternatively, B̄
(m)
�j

) in Q̄′ (alternatively, Q̄). Then (7.23) implies that

(7.24)
∥∥Q̄ − Q̄′∥∥

D̄
(m)
�j

∨D̄
′(m)
�j

≤ |δ�|max
k∈K {μk}.

After that departure epoch (i.e., D̄
′(m)
�j

for Q̄′, and D̄
(m)
�j

for Q̄), the trajectories of Q̄′

and Q̄ increase and decrease at the same rate over the same time intervals, until another
busy time differs, that is, B̄

′(m̂)

�̂
ĵ

�= B̄
(m̂)

�̂
ĵ

, for some �̂ ∈ K (�̂ �= �), ĵ ∈ {1, . . . ,dim(�̂)},
and m̂ ∈ {1, . . . ,Nr}. Following similar arguments as above, the second difference in the
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busy times can further enlarge the distance between Q̄′ and Q̄ (from time zero to the
departure epoch after the busy time in consideration) component wise by a maximum of
(|δ�| + |δ

�̂
|)maxk∈K{μk}. In particular, define

(7.25) Q̃′ := Q̄′ − (Q̄′(D̄(m)
�j

∨ D̄
′(m)
�j

)− Q̄
(
D̄

(m)
�j

∨ D̄
′(m)
�j

))
.

(Note that Q̃′ is the trajectory “shifted” from Q̄′, so that Q̃′(D̄(m)
�j

∨ D̄
′(m)
�j

) = Q̄(D̄
(m)
�j

∨
D̄

′(m)
�j

).) It holds that

(7.26) sup
t∈[D̄(m)

�j
∨D̄

′(m)
�j

,D̄
(m̂)

�̂
ĵ

∨D̄
′(m̂)

�̂
ĵ

]
max
k∈K
∣∣Q̄k(t) − Q̃′

k(t)
∣∣≤ (|δ�| + |δ

�̂
|)max

k∈K {μk}.

This fact in (7.26), together with (7.24) and (7.25), gives

(7.27) sup
t∈[D̄(m)

�j
∨D̄

′(m)
�j

,D̄
(m̂)

�̂
ĵ

∨D̄
′(m̂)

�̂
ĵ

]
max
k∈K
∣∣Q̄k(t) − Q̄′

k(t)
∣∣≤ (2|δ�| + |δ

�̂
|)max

k∈K {μk}.

Since the right-hand side of (7.27) is larger than that of (7.24), we have that∥∥Q̄ − Q̄′∥∥
D̄

(m̂)

�̂
ĵ

∨D̄
′(m̂)

�̂
ĵ

≤ (2|δ�| + |δ
�̂
|)max

k∈K {μk}.

The same arguments continue to the end of the Nr th server cycle. Therefore,∥∥Q̄ − Q̄′∥∥
R̄r∨τNr

≤∑
k∈K

K|δk|max
k∈K {μk}

≤ K
∑
k∈K

2r

(
1

μk

+ ρk

1 − ρ

∑
k∈K

1

μk

)
max
k∈K {μk} by (7.20)

=
(

2rK

1 − ρ

∑
k∈K

1

μk

)
max
k∈K {μk}. �

7.2. Proof of Theorem 5. Consider a sequence of systems operating under the sequence
of binomial-exhaustive policies π∗, each with parameters (L∗, r∗). For each n ≥ 1, let
M̄n(t) := max{m ≥ 1 : Ū (m),n ≤ t}. Then

lim
t→∞ C̄n

πn∗ (t)

= lim
t→∞

1

t

∫ t

0
ψ
(
Q̄n

πn∗ (u)
)
du

= lim
t→∞

∑M̄n(t)
m=1

∫ Ū (m),n

Ū (m−1),n ψ(Q̄n
πn∗ (u)) du + ∫ t

Ū (M̄n(t)),n ψ(Q̄n
πn∗ (u)) du∑M̄n(t)

m=1 T̄ (m),n + (t − Ū (M̄n(t)),n)
(7.28)

= lim
t→∞

1
M̄n(t)

∑M̄n(t)
m=1

∫ Ū (m),n

Ū (m−1),n ψ(Q̄n
πn∗ (u)) du + 1

M̄n(t)

∫ t
Ū (M̄n(t)),n ψ(Q̄n

πn∗ (u)) du

1
M̄n(t)

∑M̄n(t)
m=1 T̄ (m),n + 1

M̄n(t)
(t − Ū (M̄n(t)),n)

= Eαn[
̄n
πn∗ ]

Eαn[T̄ n
L∗]

w.p.1,

for 
̄n
πn∗ in (2.5), where the last equality follows because the embedded DTMC converges to

its unique stationary distribution αn, and because the second terms on both the numerator
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and denominator converge to 0 w.p.1. Indeed, Q̄n
πn∗ (∞) is bounded and 0 ≤ t − Ū (M̄n(t)),n ≤

T̄
(M̄n(t)+1),n
L∗ < ∞ w.p.1 by virtue of (5.1).

Lemma 5.2, the continuity of ψ and the continuous mapping theorem imply that


̄n
πn∗ ⇒

∫ τ∗

0
ψ
(
q∗(u)
)
du in R as n → ∞.

Thus, since Eαn[T̄ n
L∗] = τ∗ for all n ≥ 1, due to (3.6) and (5.1), the assumed UI of {
̄n

πn∗ : n ≥
1} and (7.28) give

lim
n→∞ lim

t→∞ C̄n
πn∗ (t) = lim

n→∞
1

τ∗
Eαn

[

̄n

πn∗
]= 1

τ∗

∫ τ∗

0
ψ
(
q∗(u)
)
du = c∗ w.p.1.

7.3. Proof of Theorem 2. Throughout this section, we consider a sequence of systems
operating under the binomial-exhaustive policy with control parameters (L, r) ∈ N × R for
each system n, and its fluid limit q (established in Corollary 5.1). We denote the unique PE
(the global limit cycle) of that fluid limit by qe.

Before proving Theorem 2, we state two technical lemmas—Lemma 7.3 and Lemma 7.4
below. These two lemmas are proved in Theorem 4 and Proposition 6.1 in Hu, Dong and
Perry (2020), and are restated here for completeness. Recall that, if Q̄n is stationary for each
n ≥ 1, then Q̄n ⇒ qe in DK as n → ∞ by Lemma 5.2.

LEMMA 7.3. Assume that, for all n ≥ 1, Q̄n(0)
d= Q̃n(∞), so that the process Qn is

stationary. Then:

(i) E[Q̄n
k(Ā

n
i )] = qe,k(ai) for all n ≥ 1, k ∈ K, i ∈ IL.

(ii) If (a) E[S2
k ] < ∞ for all k ∈ K, (b) E[(V n

i )2] < ∞ for all i ∈ IL, n ≥ 1, and (c)
E[(V̄ n

i )2] → s2
i as n → ∞ for all i ∈ IL, then E[Qn

k(A
n
i )Q

n
j (A

n
i )] < ∞ for all n ≥ 1 and

lim
n→∞E

[
Q̄n

k

(
Ān

i

)
Q̄n

j

(
Ān

i

)]= qe,k(ai)qe,j (ai) for all k, j ∈K, and i ∈ IL.

(iii) If (a) for each k ∈ K, there exists εk > 0 such that E[etSk ] < ∞ for all t ∈ (−εk, εk),
(b) E[etV n

i ] < ∞ for all t ∈ R+, i ∈ IL, n ≥ 1, (c) E[(V̄ n
i )�] → s�

i as n → ∞ for all � ≥ 3,
i ∈ IL, then E[Qn

k(A
n
i )

�] < ∞ for all n ≥ 1 and

lim
n→∞E

[
Q̄n

k

(
Ān

i

)�]= (qe,k(ai)
)� for all � ≥ 3, k ∈ K, and i ∈ IL.

Recall (see Section 5.2) that, for each stage i, �
(�)
p(i) denotes the busy period “generated”

by the service of the �th served customer in queue p(i), which is the queue being polled at
stage i.

LEMMA 7.4. Assume that Q̄n(0)
d= Q̃n(∞), so that Qn is stationary, for all n ≥ 1,

and consider the corresponding sequence of busy times {Bn
i : i ∈ IL,n ≥ 1} (over a generic

stationary server cycle). Then:

(i) E[B̄n
i ] = riqe,p(i)(ai)E[�p(i)] for all n ≥ 1, i ∈ IL.

(ii) If (a) E[S2
k ] < ∞ for all k ∈ K, (b) E[(V n

i )2] < ∞ for all i ∈ IL, n ≥ 1, and (c)
E[(V̄ n

i )2] → s2
i as n → ∞ for all i ∈ IL, then E[(B̄n

i )2] < ∞ for all n ≥ 1 and

lim
n→∞E

[(
B̄n

i

)2]→ (riqe,p(i)(ai)E[�p(i)])2 for all i ∈ IL.
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(iii) If (a) for each k ∈ K, there exists εk > 0 such that E[etSk ] < ∞ for all t ∈ (−εk, εk),
(b) E[etV n

i ] < ∞ for all t ∈ R+, i ∈ IL, n ≥ 1, (c) E[(V̄ n
i )�] → s�

i as n → ∞ for all � ≥ 3,
i ∈ IL, then E[(B̄n

i )�] < ∞ for all n ≥ 1 and

lim
n→∞E

[(
B̄n

i

)�]= (riqe,p(i)(ai)E[�p(i)])� for all � ≥ 3, i ∈ IL.

PROOF OF THEOREM 2. We prove that the two assertions in the theorem hold for the
binomial-exhaustive policy under any control parameters (L, r) ∈ N×R, and so, in particu-
lar, for (L∗, r∗).

Proof of (i). Since ψ(x) = O(‖x‖p) for some p > 1, there exist x0 ∈ R+ and M ∈ R+ such
that for all x with maxk∈K xk ≥ x0, we have

(7.29) ψ(x) ≤ M‖x‖p ≤ M
(
K
(
max
k∈K xk

)2)p
2 ≤ MK

p
2
∑
k∈K

x
p
k .

Let M ′ := MK
p
2 , and x0 := (x0, . . . , x0) ∈ RK+ . Due to (7.29) and the fact that ψ is nonde-

creasing, 
̄n
(L,r) satisfies


̄n
(L,r) =

∫ T̄ n
L

0
ψ
(
Q̄n(u)

)
du

≤
∫ T̄ n

L

0

(
ψ(x0)1{maxk∈K Q̄n

k (u)<x0} +
(
M ′∑

k∈K

(
Q̄n

k(u)
)p)1{maxk∈K Q̄n

k (u)≥x0}
)

du(7.30)

≤ T̄ n
Lψ(x0) +

∫ T̄ n
L

0

(
M ′∑

k∈K

(
Q̄n

k(u)
)p)

du.

We start by showing that {T̄ n
Lψ(x0) : n ≥ 1} is UI. To do this, note that the steady-state

cycle length T̄ n
L can be represented as T̄ n

L =∑i∈IL(B̄n
i + V̄ n

i ). Similar derivation to that of
(5.2) gives

(7.31) B̄n
i ⇒ riqe,p(i)(ai)E[�p(i)] as n → ∞,

and, by Lemma 7.4(i),

(7.32) E
[
B̄n

i

]= riqe,p(i)(ai)E[�p(i)] for all n ≥ 1.

Since B̄n
i ≥ 0 for all n ≥ 1, the two convergence in (7.31) and in (7.32) imply together that

the sequence {B̄n
i : n ≥ 1} is UI; for example, Billingsley (1968), Theorem 5.4. Together

with the fact that {V̄ n
i : n ≥ 1} is UI by Assumption 1, we get that {T̄ n

L : n ≥ 1}, and thus
{T̄ n

Lψ(x0) : n ≥ 1}, is UI.
We next prove that the second term in the right-hand side of (7.30) is UI. To this end, let

B̃n
i denote the busy time if the exhaustive policy is employed at stage i, when the initial queue

length at the corresponding polling epoch, the arrival process to the queue, and the service
times of all customers served during Bn

i remain unchanged, so that B̄n
i ≤ B̃n

i w.p.1 for all
n ≥ 1. Then

M ′
∫ T̄ n

L

0

∑
k∈K

(
Q̄n

k(u)
)p

du

= M ′ ∑
i∈IL

∫ Ān
i +B̄n

i +V̄ n
i

Ān
i

∑
k∈K

(
Q̄n

k(u)
)p

du(7.33)
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≤ M ′ ∑
i∈IL

(
B̄n

i + V̄ n
i

)∑
k∈K

(
Q̄n

k

(
Ān

i

)+ P̄n
k

(
B̄n

i + V̄ n
i

))p

≤ M ′ ∑
i∈IL

(
B̃n

i + V̄ n
i

)∑
k∈K

(
Q̄n

k

(
Ān

i

)+ P̄n
k

(
B̃n

i + V̄ n
i

))p
,

where the first inequality is due to the omission of the service process at stage i.
We next show that, for any � ≥ 1,

(7.34) sup
n≥1

E
[(

B̃n
i + V̄ n

i

)�]
< ∞,

and

(7.35) sup
n≥1

E
[(

Q̄n
k

(
Ān

i

)+ P̄n
k

(
B̃n

i + V̄ n
i

))�]
< ∞,

from which it follows that, for any ε > 0,

sup
n≥1

E
[(

B̃n
i + V̄ n

i

)1+ε(
Q̄n

k

(
Ān

i

)+ P̄n
k

(
B̃n

i + V̄ n
i

))p(1+ε)]
< ∞

by virtue of Hölder’s inequality, so that the sequence of bounds in (7.33) is UI.
The inequality in (7.34) follows directly from the fact that B̃n

i and V̄ n
i are independent,

and both are uniformly bounded in n. Indeed, supnE[(B̃n
i )�] < ∞ by Lemma 7.4(i)–(iii), and

supnE[(V̄ n
i )�] < ∞ by Assumption 2. To prove (7.35), note that

E
[(

Q̄n
k

(
Ān

i

)+ P̄n
k

(
B̃n

i + V̄ n
i

))�]

= E

[
�∑

j=0

(
�

j

)(
Q̄n

k

(
Ān

i

))�−j (P̄n
k

(
B̃n

i + V̄ n
i

))j](7.36)

≤
�∑

j=0

(
�

j

)
E
[(

Q̄n
k

(
Ān

i

))(�−j)α] 1
α E
[(
P̄n

k

(
B̃n

i + V̄ n
i

))jβ] 1
β ,

where the equality holds the binomial theorem, and the inequality follows from Hölder’s
inequality, for α > 1 and 1/α + 1/β = 1.

Let
{·
·
}

denote the Stirling numbers of the second type, and recall that, for a Poisson random

variable Y with mean ν, it holds that E[YN ] =∑N
j=1
{N

j

}
νj , for N ∈N. Thus,

E
[(
P̄n

k

(
B̃n

i + V̄ n
i

))jβ]= E
[
E
[(
P̄n

k

(
B̃n

i + V̄ n
i

))jβ |B̃n
i + V̄ n

i

]]
= E

[
E

[(
1

n
Pn

k

(
B̃n

i n + V̄ n
i n
))jβ

|B̃n
i + V̄ n

i

]]

= E

[
1

njβ

jβ∑
m=0

(
λk

(
B̃n

i n + V̄ n
i n
))m{jβ

m

}]

= E

[ jβ∑
m=0

1

njβ−m
λm

k

(
B̃n

i + V̄ n
i

)m{jβ
m

}]

=
jβ∑

m=0

1

njβ−m
λm

k

{
jβ

m

}
E
[(

B̃n
i + V̄ n

i

)m]

= λ
jβ
k E
[(

B̃n
i + V̄ n

i

)jβ]+ o(1).

(7.37)
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Plugging (7.37) into (7.36), we get

E
[(

Q̄n
k

(
Ān

i

)+ P̄n
k

(
B̃n

i + V̄ n
i

))�]

≤
�∑

j=0

(
�

j

)
E
[(

Q̄n
k

(
Ān

i

))(�−j)α] 1
α
(
λ

jβ
k E
[(

B̃n
i + V̄ n

i

)jβ]+ o(1)
) 1

β ,

which is uniformly bounded in n due to Lemma 7.3(i)–(iii), Lemma 7.4(i)–(iii), Assump-
tion 2, and the independence of B̃n

i and V̄ n
i . Thus, (7.35) holds.

Proof of (ii). For x ∈ RK , let f (x) =∑K
k=1 ckxk . Since ψ(x) = O(f (x)), there exist x0 ∈

R+ and M ∈ R+, such that for all x with maxk∈K xk ≥ x0,

ψ(x) ≤ Mf (x) = M
∑
k∈K

ckxk.

As in (7.30), this implies that


̄n
(L,r) =

∫ T̄ n
L

0
ψ
(
Q̄n(u)

)
du ≤ T̄ n

Lψ(x0) +
∫ T̄ n

L

0

(
M
∑
k∈K

ckQ̄
n
k(u)

)
du.(7.38)

Since {T̄ n
Lψ(x0) : n ≥ 1} was shown to be UI in the proof of part (i) above, we need only

show that the sequence corresponding to the second term on the right-hand side of (7.38) is
UI. Similar to the derivation of (7.33), we can bound this term from above via∫ T̄ n

L

0

(
M
∑
k∈K

ckQ̄
n
k(u)

)
du

≤ M
∑
k∈K

ck

∑
i∈IL

(
Q̄n

k

(
Ān

i

)+ P̄n
k

(
B̃n

i + V̄ n
i

))(
B̃n

i + V̄ n
i

)

= M
∑
k∈K

ck

∑
i∈IL

(
Q̄n

k

(
Ān

i

)
B̃n

i + Q̄n
k

(
Ān

i

)
V̄ n

i + P̄n
k

(
B̃n

i + V̄ n
i

)(
B̃n

i + V̄ n
i

))
.

(7.39)

We next show that the sequence corresponding to each term in the right-hand side of (7.39) is
UI. First, by Lemma 5.2, Q̄n

k(Ā
n
i ) ⇒ qe,k(ai) in R+ as n → ∞. In addition, it follows from

(7.31) (setting ri = 1) that

B̃n
i ⇒ qe,p(i)(ai)E[�p(i)] as n → ∞,(7.40)

so that, by Slutsky’s theorem,

(7.41) Q̄n
k

(
Ān

i

)
B̃n

i ⇒ qe,k(ai)qe,p(i)(ai)E[�p(i)] as n → ∞.

Now,

E
[
Q̄n

k

(
Ān

i

)
B̃n

i

]= E

[
E

[
Q̄n

k

(
Ān

i

)1
n

Qn
p(i)(A

n
i )∑

j=1

�
(j)
p(i)|Qn(An

i

)]]

= E
[
Q̄n

k

(
Ān

i

)
Q̄n

p(i)

(
Ān

i

)]
E[�p(i)]

→ qe,k(ai)qe,p(i)(ai)E[�p(i)] as n → ∞ by Lemma 7.3(ii).

(7.42)

It follows from (7.41), (7.42), and the fact that both Q̄n
k(Ā

n
i )B̃

n
i and qe,k(ai)qe,p(i)(ai)E[�p(i)]

are nonnegative, that the sequence {Q̄n
k(Ā

n
i )B̃

n
i : n ≥ 1} is UI. Second, Q̄n

k(Ā
n
i ) and V̄ n

i being
independent implies that

E
[(

Q̄n
k

(
Ān

i

)
V̄ n

i

)2]= E
[(

Q̄n
k

(
Ān

i

))2]
E
[(

V̄ n
i

)2]
.
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Because E[(V̄ n
i )2] < ∞ under Assumption 2, and E[(Q̄n

k(Ā
n
i ))

2] < ∞ given E[S2
k ] < ∞ by

Lemma 7.3(ii), the second moment of Q̄n
k(Ā

n
i )V̄

n
i is finite, implying that {Q̄n

k(Ā
n
i )V̄

n
i : n ≥ 1}

is UI.
Lastly, for P̄n

k (B̃n
i + V̄ n

i )(B̃n
i + V̄ n

i ), note that B̃n
i ⇒ qe,p(i)(ai)E[�p(i)] by (7.40), and

V̄ n
i ⇒ si as n → ∞. By the FWLLN for Poisson processes, we have

(7.43) P̄n
k

(
B̃n

i + V̄ n
i

) ⇒ λk

(
qe,p(i)(ai)E[�p(i)] + si

)
as n → ∞.

By Slutsky’s theorem, P̄n
k (B̃n

i + si)(B̃
n
i + V̄ n

i ) ⇒ λk(qe,p(i)(ai)E[�p(i)] + si)
2 as n → ∞.

Next,

E
[
P̄k

(
B̃n

i + V̄ n
i

)(
B̃n

i + V̄ n
i

)]= E
[
E
[
P̄k

(
B̃n

i + V̄ n
i

)(
B̃n

i + V̄ n
i

)|B̃n
i + V̄ n

i

]]
= E
[
λk

(
B̃n

i + V̄ n
i

)2]
→ λk

(
qe,p(i)(ai)E[�p(i)] + si

)2 as n → ∞,

(7.44)

where the limit follows from Lemma 7.4(i)–(ii) and Assumption 2. Since both the pre-limit
and limit in (7.43) are nonnegative, Theorem 5.4 in Billingsley (1968), (7.43) and (7.44)
imply that {P̄n

k (B̃n
i + V̄ n

i )(B̃n
i + V̄ n

i ) : n ≥ 1} is UI, and in turn, so is {
̄n
(L,r) : n ≥ 1}. �

8. Summary and future research. We considered the optimal-control problem of
polling systems with large switchover times. Under the large-switchover-time scaling, we
established that the binomial-exhaustive policy, with properly chosen control parameters,
is asymptotically optimal. Those optimal control parameters are computed by solving an
FCP for a related deterministic relaxation, which is described via an HDS, and arises as the
fluid limit for a sequence of stochastic systems operating under the corresponding binomial-
exhaustive policy. For the important special case in which the basic table is cyclic and the cost
function is separable and has at most a polynomial growth, we showed that the exhaustive
policy is asymptotically optimal.

The analytical tools in this paper can be useful in characterizing asymptotically opti-
mal controls in other settings. For example, the stochastic economic lot scheduling problem
(SELSP), can be modeled as a polling system in which backlogged demand implies that the
buffer content can be negative; see, for example, Federgruen and Katalan (1996). Further, the
stability region of the fluid model for polling systems is easier to characterize than that of
the underlying stochastic system, and can therefore be used to study the stability of stochas-
tic polling systems under controls that do not adhere to the conditions in Fricker and Jaïbi
(1994).

Fluid control problems are in general much easier to solve than the optimal control of
the original stochastic system. For our system, the RFCP in (4.5) can be solved numerically
with little effort for different basic tables, holding costs, and values of L. However, solving
the general FCP in (4.4) may not always be practically feasible, due to the need to optimize
the table structure among all the possible augmented tables. Based on extensive numerical
experiments, we conjecture an optimal one-cycle PE-candidate with L = 1 also solves (4.4).
Rigorously proving this conjecture is an interesting future research direction.

Lastly, our large-switchover-time framework assumes asymptotically deterministic fluid-
scaled switchover times so that the fluid limit is an HDS. Extending the analysis to allow
for more general switchover-time distributions is another interesting future research topic.
Note that switchover times that violate Assumption 1 may lead to random fluid limits with
deterministic arrival and service processes but random switchover times. Analyzing and op-
timizing stochastic fluid limits require fundamentally different techniques than those in this
paper.
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APPENDIX: PROOF OF PROPOSITION 4.1

The proof of Proposition 4.1 involves approximating ψ with piecewise linear functions.
Since ψ is assumed to be separable, each of its components ψk is a nonnegative, increasing
and continuous function mapping R+ into itself, and can therefore be approximated over any
compact interval by piecewise linear functions of the form

pk(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
(1)
k

(
x − α

(1)
k

)+ p
(0)
k

if α
(1)
k ≤ x < α

(2)
k

p
(2)
k

(
x − α

(2)
k

)+ p
(1)
k

(
α

(2)
k − α

(1)
k

)+ p
(0)
k

if α
(2)
k ≤ x < α

(3)
k ,

...

p
(Nk)
k

(
x − α

(Nk)
k

)+ Nk−1∑
i=1

p
(i)
k

(
α

(i+1)
k − α

(i)
k

)+ p
(0)
k

if α
(Nk)
k ≤ x < α

(Nk+1)
k ,

(A.1)

where p
(0)
k ,p

(1)
k ,p

(2)
k , . . . , p

(Nk)
k ∈ R+, 0 = α

(1)
k < α

(2)
k · · · < α

(Nk)
k ∈ R+, and α

(Nk+1)
k :=

∞. We refer to (α
(�)
k ,1 ≤ � ≤ Nk) as the irregular points of pk , since pk is differentiable

everywhere except at those points, to (p
(�)
k ,1 ≤ � ≤ Nk) as the coefficients (of pk), and to

p
(0)
k as the constant (of pk).
The next lemma is the key to proving Proposition 4.1; its proof appears in Section A.1

below. We say that f : RK+ → R+ is separable and piecewise linear if for x ∈ RK+ , f (x) =∑K
k=1 fk(xk) and each fk is a piecewise linear function, mapping R+ into itself.

LEMMA A.1. If the basic table is cyclic and ψ is separable and piecewise linear (in
addition to being nondecreasing and continuous), then qexh solves (4.4).

PROOF OF PROPOSITION 4.1. Fix L ∈ N. For any L-cycle PE-candidate qL
e with cycle

length τL, the trajectory of queue k is bounded from below by 0 and from above by Mk :=
1
2(1 − ρk)λkτ

2
L, so that ∥∥ψk

(
qL
e,k

)∥∥
τL

≤ ψk(Mk), k ∈K.

Hence, for any ε > 0, there exist piecewise linear functions pk and hk , both mapping R+ to
itself, such that for all y ∈ [0,ψk(Mk)],

0 < pk(y) − ψk(y) < ε/K and 0 < ψk(y) − hk(y) < ε/K, k ∈ K.

Let p,h : RK+ → R+ be defined for x ∈ RK+ via p(x) := ∑k∈K pk(xk) and h(x) :=∑
k∈K hk(xk). It follows that

0 <
1

τL

∫ τL

0
p
(
qL
e (u)
)
du − 1

τL

∫ τL

0
ψ
(
qL
e (u)
)
du < ε

and

0 <
1

τL

∫ τL

0
ψ
(
qL
e (u)
)
du − 1

τL

∫ τL

0
h
(
qL
e (u)
)
du < ε.

Consider two L-cycle optimization problems, denoted by Pp and Ph, which replace the ob-
jective function ψ in problem (4.5) with p and h, respectively. Since qexh is optimal for
both Pp and Ph by Lemma A.1 and ε is arbitrary, qexh is a solution to L-cycle optimization
problem (4.5). As the latter statement holds for all L ∈ N, qexh is a solution to the global
optimization problem (4.4). �
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A.1. Proof of Lemma A.1. For each k ∈ K, let ψk be in the form of (A.1), with irregular
points (α

(�)
k ,1 ≤ � ≤ Nk), coefficients (ψ

(�)
k ,1 ≤ � ≤ Nk), and constant ψ

(0)
k , for some Nk ∈

N. Fix L ∈ N. To show that qexh is a solution of the L-cycle optimization problem (4.5), we
consider a relaxed problem, in which each queue is optimized without consideration of all
other queues. To this end, for each k ∈ K, we consider the following relaxation to (4.5):

min
qL∈QL

1

τL

∫ τL

0
ψk

(
qL
k (u)
)
du.(A.2)

Note that we have K different optimization problems of the form (A.2)—one for each k ∈ K.
For each of these K optimization problems, let qL

e,k denote the kth component of a solution to
the problem (A.2). The closed curve qL

e := (qL
e,k, k ∈ K) necessarily gives a lower bound for

the optimal objective value in the L-cycle optimization problem (4.5). (However, qL
e needs

not be an element of QL, as it may not be a bona-fide L-cycle PE-candidate.) The statement
of the lemma will therefore follow by proving that qexh, which is a feasible solution to (4.5),
is a solution to (A.2) for each k ∈ K.

Fix k ∈ K. The objective function in (A.2) satisfies

1

τL

∫ τL

0
ψk

(
qL
k (s)
)
ds

= 1

τL

∫ τL

0

[(
ψ

(1)
k

(
qL
k (s) − α

(1)
k

)+ ψ
(0)
k

)
1{α(1)

k ≤qL
k (s)<α

(2)
k }

+ (ψ(2)
k

(
qL
k (s) − α

(2)
k

)+ ψ
(1)
k

(
α

(2)
k − α

(1)
k

)+ ψ
(0)
k

)
1{α(2)

k ≤qL
k (s)<α

(3)
k } ds + · · ·

+
(
ψ

(Nk)
k

(
qL
k (s) − α

(Nk)
k

)+ Nk−1∑
�=1

ψ
(�)
k

(
α

(�+1)
k − α

(�)
k

)+ ψ
(0)
k

)
1{α(Nk)

k ≤qL
k (s)<α

(Nk+1)

k }

]
ds

= 1

τL

∫ τL

0

[
ψ

(1)
k

(
min
{
qL
k (s), α

(2)
k

}− α
(1)
k

)
1{qL

k (s)≥α
(1)
k }

+ ψ
(2)
k

(
min
{
qL
k (s), α

(3)
k

}− α
(2)
k

)
1{qL

k (s)≥α
(2)
k } + · · ·

+ ψ
(Nk)
k

(
min
{
qL
k (s), α

(Nk+1)
k

}− α
(Nk)
k

)
1{qL

k (s)≥α
(Nk)

k }
]
ds + ψ

(0)
k

= 1

τL

Nk∑
�=1

ψ
(�)
k

∫ τL

0

(
min
{
qL
k (s), α

(�+1)
k

}− α
(�)
k

)
1{qL

k (s)≥α
(�)
k } ds + ψ

(0)
k .

Then for

A(�)(qL
k

) := ∫ τL

0

(
min
{
qL
k (s), α

(�+1)
k

}− α
(�)
k

)
1{qL

k (s)≥α
(�)
k } ds, 1 ≤ � ≤ Nk,

(A.2) is equivalent to

min
qL∈QL

1

τL

Nk∑
�=1

ψ
(�)
k A(�)(qL

k

)+ ψ
(0)
k

s.t. A(�)(qL
k

)= ∫ τL

0

(
min
{
qL
k (s), α

(�+1)
k

}− α
(�)
k

)
1{qL

k (s)≥α
(�)
k } ds,

1 ≤ � ≤ Nk.

(A.3)
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Now A(�)(qL
k ) can be further partitioned into L sub-areas over each table cycle. In particular,

for 1 ≤ m ≤ L and 1 ≤ � ≤ Nk , let

a(�,m)(qL
k

) := ∫ u(m)

u(m−1)

(
min
{
qL
k (s), α

(�+1)
k

}− α
(�)
k

)
1{qL

k (s)≥α
(�)
k } ds,

where u(m−1) denotes the beginning epoch of the mth table cycle. (To facilitate the notation
henceforth, the superscript (m) in u(m) is an index for table cycles of qL over the cycle length
[0, τL]. This is different from the convention elsewhere in the paper, e.g., in (3.1), where (m)

was indexing server cycles.) We can then write

A(�)(qL
k

)= L∑
m=1

a(�,m)(qL
k

)
, 1 ≤ � ≤ Nk,

so that (A.3) can be equivalently written as

min
qL∈QL

1

τL

Nk∑
�=1

ψ
(�)
k

L∑
m=1

a(�,m)(qL
k

)+ ψ
(0)
k

s.t. a(�,m)(qL
k

)= ∫ u(m)

u(m−1)

(
min
{
qL
k (s), α

(�+1)
k

}− α
(�)
k

)
1{qL

k (s)≥α
(�)
k } ds,

1 ≤ m ≤ L,1 ≤ � ≤ Nk.

(A.4)

For 1 ≤ m ≤ L and 1 ≤ � ≤ Nk , define

τ (�,m)(qL
k

) := ∫ u(m)

u(m−1)
1{qL

k (s)≥α
(�)
k } ds

ã(�,m)(qL
k

) := 1

2

(
2τ (�,m)(qL

k

)− α
(�+1)
k − α

(�)
k

λk

− α
(�+1)
k − α

(�)
k

μk − λk

)(
α

(�+1)
k − α

(�)
k

)
× 1{α(�+1)

k −α
(�)
k <(1−ρk)λkτ

(�,m)(qL
k )}

+ 1

2
(1 − ρk)λk

(
τ (�,m)(qL

k

))21{α(�+1)
k −α

(�)
k ≥(1−ρk)λkτ

(�,m)(qL
k )}

M(�) := max
{
τL − L

(
α

(�)
k

λk

+ α
(�)
k

μk − λk

)
,0
}
.

We have that

(A.5) a(�,m)(qL
k

)≥ ã(�,m)(qL
k

)
, 1 ≤ m ≤ L,1 ≤ � ≤ Nk

and

(A.6)
L∑

m=1

τ (�,m)(qL
k

)≥ M(�), 1 ≤ � ≤ Nk.

Adding the inequalities in (A.5) and (A.6) to the constraints of problem (A.4) does not
change its feasible region, and yields the following equivalent formulation:

min
qL∈QL

1

τL

Nk∑
�=1

ψ
(�)
k

L∑
m=1

a(�,m)(qL
k

)+ ψ
(0)
k

s.t. a(�,m)(qL
k

)= ∫ u(m)

u(m−1)

(
min
{
qL
k (s), α

(�+1)
k

}− α
(�)
k

)
1{qL

k (s)≥α
(�)
k } ds
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τ (�,m)(qL
k

)= ∫ u(m)

u(m−1)
1{qL

k (s)≥α
(�)
k } ds(A.7)

a(�,m)(qL
k

)≥ ã(�,m)(qL
k

)
L∑

m=1

τ (�,m)(qL
k

)≥ M(�), 1 ≤ m ≤ L,1 ≤ � ≤ Nk.

Next, let

τ := (τ (�,m),1 ≤ m ≤ L,1 ≤ � ≤ Nk

)
and a := (a(�,m),1 ≤ m ≤ L,1 ≤ � ≤ Nk

)
.

We consider the following relaxed problem by dropping the first two constraints in problem
(A.7):

min
τ ,a

1

τL

Nk∑
�=1

ψ
(�)
k

L∑
m=1

a(�,m) + ψ
(0)
k

s.t. a(�,m) ≥ ã(�,m)

L∑
m=1

τ (�,m) ≥ M(�), 1 ≤ m ≤ L,1 ≤ � ≤ Nk.

(A.8)

It follows from observation (and can be verified by solving the Karush–Kuhn Tucker equa-
tions) that the solution to problem (A.8), denoted by (τ ∗,a∗), has elements

τ (�,m)∗ = M(�)/L and a(�,m)∗ = ã(�,m), 1 ≤ m ≤ L,1 ≤ � ≤ Nk.

Note that problem (A.8) is a relaxation of problem (A.7) because for any feasible solution
(τ ,a) to (A.8), there does not necessarily exist a corresponding qL ∈ QL such that, for all
1 ≤ m ≤ L and 1 ≤ � ≤ Nk ,

a(�,m) =
∫ u(m)

u(m−1)

(
min
{
qL
k (s), α

(�+1)
k

}− α
(�)
k

)
1{qL

k (s)≥α
(�)
k } ds,

τ (�,m) =
∫ u(m)

u(m−1)
1{qL

k (s)≥α
(�)
k } ds.

(A.9)

Hence, if there exists a qL
e ∈ QL such that (A.9) holds for (τ ∗,a∗), then qL

e is a solution to
(A.7).

Let qexh,k denote the trajectory of queue k in qexh. (Note that qexh ∈ QL.) It can be verified
that (A.9) indeed holds for (qexh,k,τ ∗,a∗), namely, for all 1 ≤ m ≤ L and 1 ≤ � ≤ Nk ,

a(�,m)∗ =
∫ u(m)

u(m−1)

(
min
{
qL
exh,k(s), α

(�+1)
k

}− α
(�)
k

)
1{qL

exh,k(s)≥α
(�)
k } ds

τ (�,m)∗ =
∫ u(m)

u(m−1)
1{qL

exh,k(s)≥α
(�)
k } ds.

Thus, qexh solves (A.7), and therefore also the equivalent problem (A.2). In turn, qexh is a
solution to the L-cycle optimization problem (4.5). Since the arguments hold for each L ∈ N,
qexh is optimal to (4.4).
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