


is limited by the following two aspects: (1) These

methods only model the pairwise interaction be-

tween sentences, while sentence interactions could

be triadic, tetradic, or of a higher-order in natu-

ral language (Ding et al., 2020). How to capture

high-order cross-sentence relations for extractive

summarization is still an open question. (2) These

graph-based approaches rely on either semantic

or discourses structure cross-sentence relation but

are incapable of fusing sentence interactions from

different perspectives. Sentences within a docu-

ment could have various types of interactions, such

as embedding similarity, keywords coreference,

topical modeling from the semantic perspective,

and section or rhetorical structure from the dis-

course perspective. Capturing multi-type cross-

sentence relations could benefit sentence repre-

sentation learning and sentence salience modeling.

Figure 1 is an illustration showing different types of

sentence interactions provide different connectiv-

ity for document graph construction, which covers

both local and global context information.

To address the above issues, we propose HEGEL

(HypErGraph transformer for Extractive Long doc-

ument summarization), a graph-based model de-

signed for summarizing long documents with rich

discourse information. To better model high-order

cross-sentence relations, we represent a document

as a hypergraph, a generalization of graph struc-

ture, in which an edge can join any number of ver-

tices. We then introduce three types of hyperedges

that model sentence relations from different per-

spectives, including section structure, latent topic,

and keywords coreference, respectively. We also

propose hypergraph transformer layers to update

and learn effective sentence embeddings on hyper-

graphs. We validate HEGEL by conducting exten-

sive experiments and analyses on two benchmark

datasets, and experimental results demonstrate the

effectiveness and efficiency of HEGEL. We high-

light our contributions as follows:

(i) We propose a hypergraph neural model,

HEGEL, for long document summarization. To

the best of our knowledge, we are the first to

model high-order cross-sentence relations with hy-

pergraphs for extractive document summarization.

(ii) We propose three types of hyperedges (sec-

tion, topic, and keyword) that capture sentence de-

pendency from different perspectives. Hypergraph

transformer layers are then designed to update and

learn effective sentence representations by message

passing on the hypergraph.

(iii) We validate HEGEL on two benchmarked

datasets (arXiv and PubMed), and the experimental

results demonstrate its effectiveness over state-of-

the-art baselines. We also conduct ablation studies

and qualitative analysis to investigate the model

performance further.

2 Related Works

2.1 Scientific Paper Summarization

With the promising progress on short news summa-

rization, research interest in long-form documents

like academic papers has arisen. Cohan et al. (2018)

proposed benchmark datasets ArXiv and PubMed,

and employed pointer generator network with hi-

erarchical encoder and discourse-aware decoder.

Xiao and Carenini (2019) proposed an encoder-

decoder model by incorporating global and local

contexts. Ju et al. (2021) introduced an unsuper-

vised extractive approach to summarize long sci-

entific documents based on the Information Bottle-

neck principle. Dong et al. (2020) came up with

an unsupervised ranking model by incorporating

hierarchical graph representation and asymmetri-

cal positional cues. Recently, Ruan et al. (2022)

proposed to apply pre-trained language model with

hierarchical structure information.

2.2 Graph based summarization

Graph-based models have been exploited for ex-

tractive summarization to capture cross-sentence

dependencies. Unsupervised graph summarization

methods rely on graph connectivity to score and

rank sentences (Radev et al., 2004; Zheng and La-

pata, 2019; Dong et al., 2020). Researchers also

explore supervised graph neural networks for sum-

marization. Yasunaga et al. (2017) applied Graph

Convolutional Network (GCN) on the approximate

discourse graph. Xu et al. (2019) proposed to apply

GCN on structural discourse graphs based on RST

trees and coreference mentions. Cui et al. (2020)

leveraged topical information by building topic-

sentence graphs. Recently, Wang et al. (2020) pro-

posed to construct word-document heterogeneous

graphs and use word nodes as the intermediary be-

tween sentences. Jing et al. (2021) proposed to

use multiplex graph to consider different sentence

relations. Our paper follows this line of work on

developing novel graph neural networks for sin-

gle document extractive summarization. The main

difference is that we construct a hypergraph from

10168





PE(pos, 2i) = sin(pos/100002i/dmodel),
(3)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel).
(4)

Then we can get the initial input node representa-

tions H0 = {h0
1,h

0
2, ...,h

0
n}, with vector h0

i de-

fined as:

h0
i = xi + HPE(si) (5)

3.1.2 Hyperedge Construction

To effectively model multi-type cross-sentence re-

lations in a long context, we propose the following

three hyperedges. These hyperedges could capture

high-order context information via the multi-node

connection and model both local and global con-

text through document structures from different

perspectives.

Section Hyperedges: Scientific papers mostly

follow a standard discourse structure describing the

problem, methodology, experiments/results, and fi-

nally conclusions, so sentences within the same sec-

tion tend to have the same semantic focus (Suppe,

1998). To capture the local sequential context, we

build section hyperedges that consider each section

as a hyperedge that connects all the sentences in

this section. Section hyperedges could also address

the incidence matrix sparsity issue and ensure all

nodes of the graph are connected by at least one

hyperedge. Assume a document has q sections,

section hyperedge esecj for the j-th section can be

represented formally in its corresponding incidence

matrix Asec ∈ R
n×q as:

Asec
ij =

{

1, if si ∈ esecj

0, if si /∈ esecj
(6)

where Asec
ij denotes whether the i-th sentence is in

the j-th section.

Topic Hyperedges: Topical information has

been demonstrated to be effective in capturing im-

portant content (Cui et al., 2020). To leverage top-

ical information of the document, we first apply

the Latent Dirichlet Allocation (LDA) model (Blei

et al., 2003) to extract the latent topic relationships

between sentences and then construct the topic hy-

peredge. In addition, topic hyperedges could ad-

dress the long-distance dependency problem by

capturing global topical information of the doc-

ument. After extracting p topics from LDA, we

construct p corresponding topic hyperedges etopicj ,

represented by the entry Atopic
ij in the incidence

matrix Atopic ∈ R
n×p as:

Atopic
ij =

{

1, if si ∈ etopicj

0, if si /∈ etopicj

(7)

where Atopic
ij denotes whether the i-th sentence be-

longs to the j-th latent topic.

Keyword Hyperedges: Previous work finds that

keywords compose the main body of the sentence,

which are regarded as the indicators for impor-

tant sentence selection (Wang and Cardie, 2013;

Li et al., 2020). Keywords in the original sentence

provide significant clues for the main points of the

sentence. To utilize keyword information, we first

extract keywords for academic papers with Key-

BERT (Grootendorst, 2020) and construct keyword

hyperedges to link the sentences that contain the

same keyword regardless of their sequential dis-

tance. Like topic hyperedges, keyword hyperedges

also capture global context relations and thus, ad-

dress the long-distance dependency problem. After

extracting k keywords for a document, we con-

struct k corresponding keyword hyperedges ekwj ,

represented in the incidence matrix Akw ∈ R
n×k

as:

Akw
ij =

{

1, if si ∈ ekwj
0, if si /∈ ekwj ,

(8)

where si ∈ ekwj means the i-th sentence contains

the j-th keyword.

We finally fuse the three hyperedges by con-

catenation ∥ and get the overall incidence matrix

A ∈ R
n×m as:

A = Asec∥Atopic∥Akw, (9)

where dimension m = q + p+ k
The initial input node representations H0 =

{h0
1,h

0
2, ...,h

0
n} and the overall hyperedge inci-

dence matrix A will be fed into hypergraph trans-

former layers to learn effective sentence embed-

dings.

3.2 Hypergraph Transformer Layer

The self-attention mechanism in Transformer

(Vaswani et al., 2017) has demonstrated its effec-

tiveness for learning text representation and graph

representations (VeličkoviÂc et al., 2017; Ying et al.,

2021; Ding et al., 2020; Zhang and Zhang, 2020;
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Zhang et al., 2020). To model cross-sentence rela-

tions and learn effective sentence (node) represen-

tations in hypergraphs, we propose the Hypergraph

Transformer Layer as in Figure 2(b).

3.2.1 Hypergraph Attention

Given node representations H0 = {h0
1,h

0
2, ...,h

0
n}

and hyperedge incidence matrix A ∈ R
n×m, a l-

layer hypergraph transformer computes hypergraph

attention (HGA) and updates node representations

H in an iterative manner as shown in Algorithm 1.

Specifically, in each iteration, we first obtain all

m hyperedge representations {gl
1,g

l
2, ...,g

l
m} as:

gl
j = LeakyReLU





∑

vk∈ej

αjkWhh
l−1
k



 , (10)

αjk =
exp

(

wT
ahuk

)

∑

vp∈ej
exp

(

wT
ahup

) ,

uk = LeakyReLU
(

Whh
l−1
k

)

,

(11)

where the superscript l denotes the model layer,

matrices Wh,wah are trainable weights and αjk is

the attention weight of node vk in hyperedge ej .
The second step is to update node representa-

tions Hl−1 based on the updataed hyperedge repre-

sentations {gl
1,g

l
2, ...,g

l
m} by:

hl
i = LeakyReLU

(

∑

vi∈ek

βijWeg
l
k

)

, (12)

βki =
exp

(

wT
aezk

)

∑

vi∈eq
exp (wT

aezi)
,

zk = LeakyReLU
([

Weg
l
k∥Whh

l−1
i

])

,

(13)

where hl
i is the representation of node vi, We,wae

are trainable weights, and βki is the attention

weight of hyperedge ek that connects node vi. ∥
here is the concatenation operation. In this way,

information of different granularities and types can

be fully exploited through the hypergraph attention

message passing processes.

Multi-Head Hypergraph Attention As in Trans-

former, we also extend hypergraph attention (HGA)

into multi-head hypergraph attention (MH-HGA)

to expand the model’s representation subspaces,

represented as:

MH-HGA(H,A) = σ(WO∥
h
i=1headi),

headi = HGAi(H,A),
(14)

where HGA(·) denotes hypergraph attention, σ
is the activation function, WO is the multi-head

weight, and ∥ denotes concatenation.

3.2.2 Hypergraph Transformer

After obtaining the multi-head attention, we also

introduce the feed-forward blocks (FFN) with resid-

ual connection and layer normalization (LN) like

in Transformer. We formally characterize the Hy-

pergraph Transformer layer as below:

H′(l) = LN(MH-HGA(Hl−1,A) +Hl−1)

Hl = LN(FFN(H′(l)) +H′(l)
(15)

Algorithm 1: MH-HGAhead(H,A)

input :node representation Hl−1
∈ R

n×d,
incidence matrix A ∈ R

n×m

output :updated representation Hl
∈ R

n×d

1 for head = 1, 2, ..., h do
// update hyperedges from nodes

2 for j = 1, 2, ...,m do
3 for node vk ∈ ej do
4 compute attention αjk with Eq. 11;

5 update hyperedge representation gl
j

with Eq. 10;

6 end

7 end
// update node representations

8 for i = 1, 2, ..., n do
9 for hyperedge that vi ∈ ek do

10 compute attention βki with Eq. 13;

update node representation hl
i with

Eq. 12;

11 end

12 end

13 end

3.3 Training Objective

After passing L hypergraph transformer layers,

we obtain the final sentence node representations

HL = {hL
1 ,h

L
2 , ...,h

L
n}. We then add a multi-

layer perceptron(MLP) followed by a sigmoid acti-

vation function indicating the confidence score for

selecting each sentence. Formally, the predicted

confidence score ŷi for sentence si is:

zi = LeakyReLU(Wp1h
L
i ),

ŷi = sigmoid(Wp2zi),
(16)
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Arxiv PubMed

# train 201,427 112,291
# validation 6,431 6,402

# test 6,436 6,449
avg. document length 4,938 3,016
avg. summary length 203 220

Table 1: Statistics of PubMed and Arxiv datasets.

where Wp1,Wp2 are trainable parameters.
Compared with the sentence ground truth label

yi, we train HEGEL in an end-to-end manner and
optimize with binary cross-entropy loss as:

L = −
1

N ·Nd

N∑

d=1

Nd∑

i=1

(yi log ŷi + (1− yi) log (1− ŷ
i
)),

(17)

where N denotes the number of training instances

in the training set, and Nd denotes the number of

sentences in the document.

4 Experiment

This section presents experimental details on

two benchmarked academic paper summarization

datasets. We compare our proposed model with

state-of-the-art baselines and conduct detailed anal-

ysis to validate the effectiveness of HEGEL.

4.1 Experiment Setup

Datsasets Scientific papers are an example of

long documents with section discourse structure.

Here we validate HEGEL on two benchmark sci-

entific paper summarization datasets: ArXiv and

PubMed (Cohan et al., 2018). PubMed contains

academic papers from the biomedical domain,

while arXiv contains papers from different scien-

tific domains. We use the original train, validation,

and testing splits as in (Cohan et al., 2018). The

detailed statistics of datasets are shown in Table 1.

Compared Baselines We perform a system-

atic comparison with state-of-the-art baseline ap-

proaches as follows:

• Unsupervised methods: LEAD that selects

the first few sentences as summary; graph-

based methods LexRank (Erkan and Radev,

2004), PACSUM (Zheng and Lapata, 2019),

and HIPORANK (Dong et al., 2020).

• Neural extractive models: encoder-decoder

based model Cheng&Lapata (Cheng and La-

pata, 2016) and SummaRuNNer (Nallapati

et al., 2016a); local and global context model

ExtSum-LG (Xiao and Carenini, 2019) and

its variant RdLoss/MMR (Xiao and Carenini,

2020); transformer-based models SentCLF,

SentPTR (Subramanian et al., 2019), and

HiStruct+ (Ruan et al., 2022).

• Neural abstractive models: pointer network

PGN (See et al., 2017), hierarchical attention

model DiscourseAware (Cohan et al., 2018),

transformer-based model TLM-I+E (Subra-

manian et al., 2019), and divide-and-conquer

method DANGER (Gidiotis et al., 2020).

4.2 Implementation Details

We use pre-trained sentence-BERT (Reimers and

Gurevych, 2019) checkpoint all-mpnet-base-v2 as

the encoder for initial sentence representations.

The embedding dimension is 768, and the input

layer dimension is 1024. In our experiment, we

stack two layers of hypergraph transformer, and

each has 8 attention heads with a hidden dimension

of 128. The output layer’s hidden dimension is set

to 4096. We generate at most 100 topics for each

document and filter out the topic and keyword hy-

peredges that connect less than 5 sentence nodes

or greater than 25 sentence nodes. For position

encodings, we set the rescale weights γ1 and γ2 to

0.001.

The model is optimized with Adam optimizer

(Loshchilov and Hutter, 2017) with a learning rate

of 0.0001 and a dropout rate of 0.3. We train the

model on an RTX A6000 GPU for 20 epochs and

validate after each epoch using ROUGE-1 F-score

to choose checkpoints. Early stopping is employed

to select the best model with the patience of 3.

Following the standard-setting, we use ROUGE

F-scores (Lin and Hovy, 2003) for performance

evaluation. Specifically, ROUGE-1/2 scores mea-

sure summary informativeness, and the ROUGE-L

score measures summary fluency. Following prior

work (Nallapati et al., 2016b), we construct ex-

tractive ground truth (ORACLE) by greedily op-

timizing the ROUGE score on the gold-standard

abstracts for extractive summary labeling.

4.3 Experiment Results

The performance of HEGEL and baseline methods

on arXiv and Pubmed datasets are shown in Ta-

ble 2. The first block lists the extractive ground

truth ORACLE and the unsupervised methods. The

second block includes recent extractive summariza-

tion models, and the third contains state-of-the-art

abstractive methods.

The LEAD method has limited performance

on scientific paper summarization compared to
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Models
PubMed ArXiv

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

ORACLE 55.05 27.48 49.11 53.88 23.05 46.54
LEAD 35.63 12.28 25.17 33.66 8.94 22.19

LexRank (2004) 39.19 13.89 34.59 33.85 10.73 28.99
PACSUM (2019) 39.79 14.00 36.09 38.57 10.93 34.33

HIPORANK (2021) 43.58 17.00 39.31 39.34 12.56 34.89

Cheng&Lapata (2016) 43.89 18.53 30.17 42.24 15.97 27.88
SummaRuNNer (2016) 43.89 18.78 30.36 42.81 16.52 28.23

ExtSum-LG (2019) 44.85 19.70 31.43 43.62 17.36 29.14
SentCLF (2020) 45.01 19.91 41.16 34.01 8.71 30.41
SentPTR (2020) 43.30 17.92 39.47 42.32 15.63 38.06

ExtSum-LG + RdLoss (2021) 45.30 20.42 40.95 44.01 17.79 39.09
ExtSum-LG + MMR (2021) 45.39 20.37 40.99 43.87 17.50 38.97

HiStruct+ (2022) 46.59 20.39 42.11 45.22 17.67 40.16

PGN (2017) 35.86 10.22 29.69 32.06 9.04 25.16
DiscourseAware (2018) 38.93 15.37 35.21 35.80 11.05 31.80

TLM-I+E (2020) 42.13 16.27 39.21 41.62 14.69 38.03
DANCER-LSTM (2020) 44.09 17.69 40.27 41.87 15.92 37.61
DANCER-RUM (2020) 43.98 17.65 40.25 42.70 16.54 38.44

HEGEL (ours) 47.13 21.00 42.18 46.41 18.17 39.89

Table 2: Experimental Results on PubMed and Arxiv datasets.

its strong performance on short news summariza-

tion like CNN/Daily Mail (Hermann et al., 2015)

and New York Times (Sandhaus, 2008). The phe-

nomenon indicates that academic paper has less po-

sitional bias than news articles, and the ground truth

sentence distributes more evenly. For graph-based

unsupervised baselines, HIPORANK (Dong et al.,

2020) achieves state-of-the-art performance that

could even compete with some supervised methods.

This demonstrates the significance of incorporat-

ing discourse structural information when model-

ing cross-sentence relations for long documents.

In general, neural extractive methods perform bet-

ter than abstractive methods due to the extended

context. Among extractive baselines, transformer-

based methods like SentPTR and HiStruct+ show

substantial performance gain, demonstrating the ef-

fectiveness of the attention mechanism. HiStruct+

achieves strong performance by injecting inherent

hierarchical structures into large pre-trained lan-

guage models Longformer. In contrast, our model

HEGEL only relies on hypergraph transformer lay-

ers for sentence representation learning and re-

quires no pre-trained knowledge.

As shown in Table 2, HEGEL outperforms state-

of-the-art extractive and abstractive baselines on

both datasets. The supreme performance of HEGEL

shows hypergraphs’ capability of modeling high-

order cross-sentence relations and the importance

of fusing both semantic and structural information.

We conduct an extensive ablation study and perfor-

mance analysis next.

Model ROUGE-1 ROUGE-2 ROUGE-L

full HEGEL 47.13 21.00 42.18
w/o Position 46.86 20.05 41.91
w/o Keyword 46.92 20.71 42.03

w/o Topic 46.35 20.30 41.48
w/o Section 45.63 19.30 40.71

Table 3: Ablation study results on PubMed dataset.

5 Analysis

5.1 Ablation Study

We first analyze the influence of different compo-

nents of HEGEL. Table 3 shows the experimental

results of removing hyperedges and the hierarchi-

cal position encoding of HEGEL on the PubMed

dataset. As shown in the second row, removing the

hierarchical position embedding hurts the model

performance, which indicates the importance of

injecting sequential order information. Regarding

hyperedges (row 3-5), we can see that all three

types of hyperedges (section, keyword, and topic)

help boost the overall model performance. Specifi-

cally, the performance drops most when the section

hyperedges are removed. The hypergraph becomes

sparse and hurts its connectivity. This indicates

that the section hyperedges, which contain local

context information, play an essential role in the in-

formation aggregation process. Note that although

we only discuss three types of hyperedges (sec-

tion, keyword, and topic) in this work, it is easy

to extend our model with hyperedges from other

perspectives like syntactic for future work.
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Limitations

Despite the strong performance of HEGEL, its

design still has the following limitations. First,

HEGEL relies on existing keyword and topic mod-

els to pre-process the document and construct hy-

pergraphs. In addition, we only explore academic

paper datasets as a typical example for long docu-

ment summarization.

The above limitations may raise concerns about

the model’s performance. However, HEGEL is an

end-to-end model, so the pre-process steps do not

add the model computation complexity. Indeed,

HEGEL relies on hyperedge for cross-sentence at-

tention, so it is parameter-efficient and uses 50%
less parameters than heterogeneous graph model

(Wang et al., 2020) and 90% less parameters than

Longformer-base (Beltagy et al., 2020). On the

other hand, our experimental design follows a se-

ries of previous long document summarization

work (Xiao and Carenini, 2019, 2020; Subrama-

nian et al., 2019; Ruan et al., 2022; Dong et al.,

2020; Cohan et al., 2018) on benchmark datasets

ArXiv and PubMed. These two new datasets con-

tain much longer documents, richer discourse struc-

ture than all the news datasets and are therefore

ideal test-beds for long document summarization.
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