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ABSTRACT

Our knowledge of stellar evolution is driven by one-dimensional (1D) simulations. 1D models, however, are severely limited
by uncertainties on the exact behaviour of many multidimensional phenomena occurring inside stars, affecting their structure
and evolution. Recent advances in computing resources have allowed small sections of a star to be reproduced with multi-D
hydrodynamic models, with an unprecedented degree of detail and realism. In this work, we present a set of 3D simulations of a
convective neon-burning shell in a 20 Mg, star run for the first time continuously from its early development through to complete
fuel exhaustion, using unaltered input conditions from a 321D-guided 1D stellar model. These simulations help answer some
open questions in stellar physics. In particular, they show that convective regions do not grow indefinitely due to entrainment
of fresh material, but fuel consumption prevails over entrainment, so when fuel is exhausted convection also starts decaying.
Our results show convergence between the multi-D simulations and the new 321D-guided 1D model, concerning the amount of
convective boundary mixing to include in stellar models. The size of the convective zones in a star strongly affects its structure
and evolution; thus, revising their modelling in 1D will have important implications for the life and fate of stars. This will thus
affect theoretical predictions related to nucleosynthesis, supernova explosions, and compact remnants.

Key words: convection —hydrodynamics —nuclear reactions, nucleosynthesis, abundances — stars: evolution —stars: interiors —
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physical processes without using any of the prescriptions of the

1 INTRODUCTION one-dimensional (1D) case (e.g. José & Hernanz 1998; Asplund

To have good understanding and reliable predictions of the evolution
and properties of stars, researchers have developed stellar evolution
models that can follow the life cycle of an entire star from birth
to death (e.g. Heger & Woosley 2002; Paxton et al. 2011; Ekstrom
et al. 2012). However, there are many physical processes to take
into account that can affect the evolution and fate of a star. To
make the computation possible and affordable, stellar models rely
on simplifications and assumptions, one of the most important of
which is spherical symmetry. An equally important though less easily
envisages simplification is the treatment of convection in stars with
mixing length theory (MLT; Béhm-Vitense 1958).

To improve and refine these prescriptions, sections of a star
may be studied in more detail employing multidimensional hy-
drodynamic models, which can realistically reproduce complex
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et al. 2009; Lentz et al. 2015; Janka, Melson & Summa 2016;
Burrows & Vartanyan 2021). Unfortunately, these simulations are
computationally very expensive, requiring millions of core-hours to
simulate hours of stellar evolution, so reproducing the evolutionary
time-scales has so far been inaccessible. Hydrodynamic simulations
of stellar interiors mostly focus on reproducing turbulent convection
and mixing between layers (known as ‘convective boundary mixing’,
CBM), resulting in the growth over time of convective zones due to
entrainment of material from the stable regions into the convective
ones. This is particularly impactful for the late phases of massive
stars, where convective speeds are high and entrainment is vigorous,
affecting the structure of the star and the end of its life. The very last
phases before the onset of iron-core collapse are often studied with
multi-D hydrodynamic supernova (SN) simulations (Couch et al.
2015), which recently started to take into account also the effects of
rotation (Yoshida et al. 2021; McNeill & Miiller 2022) and magnetic
fields (Varma & Miiller 2021) on the convective motions.
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CBM is also important for the convective cores of main-sequence
stars, with implications for the stellar lifetime and type of remnant
(Kaiser et al. 2020), but here the convective velocities are much
smaller and it is difficult for hydrodynamic models to simulate
significant time ranges without boosting the rate of energy release to
accelerate the simulations (Meakin & Arnett 2007; see also the study
in Baraffe et al. 2023), as is also often done for later phases (Cristini
et al. 2017; Horst et al. 2021).

To validate results, it is crucial to investigate stellar convection
in hydrodynamic simulations that do not modify the energy release.
Previous studies of 3D stellar simulations do alter the initial condi-
tions introducing some energy boosting, with some exceptions such
as the very late oxygen and silicon convective shells run for short
time-scales (Couch & Ott 2015; Miiller et al. 2017; Yoshida et al.
2019). However, Rizzuti et al. (2022), with their analysis of CBM
in a nominal-luminosity neon shell, revealed the presence of strong
entrainment in the convective zone, confirming it is not an effect of
the boosting in luminosity but a natural result of the convectively
unstable structure predicted by the 1D stellar models. This shows
the importance of correctly implementing entrainment also in 1D
models, to ensure consistency and agreement between results. We call
this approach ‘321D-guided’, referring to 1D stellar models that have
been improved using the results of 3D hydrodynamic simulations.

It is worth noting though that the nominal-luminosity simulation
of Rizzuti et al. (2022) has been run only up to 3000 s, which while
long enough for studying CBM with good statistics is too short to
give any information on the evolution of the burning shell towards
fuel exhaustion. Until now, multi-D studies have not investigated the
interplay between entrainment and fuel exhaustion at the end of a
burning phase, leaving many questions about the fate of convection
unanswered. Specifically, does convection stop when the fuel is
exhausted or does the mixing of fresh fuel from entrained material
extend the convective growth indefinitely? This issue, on which 1D
models cannot give any information, has a pivotal role for correctly
predicting the later evolution of the star, in particular the pre-SN
structure and the type of remnant.

We organize the paper as follows: In Section 2, we present the ini-
tial conditions and general set-up of the hydrodynamic simulations.
In Section 3, we analyse the results from the sets of simulations.
Finally, we discuss results and draw conclusions in Section 4.

2 METHODS

2.1 Initial conditions from a 1D stellar model

To run a stellar hydrodynamic simulation, initial conditions need to
be assumed from a 1D stellar evolution model that simulates the entire
lifetime of the star, so that the realism of the simulated environment
can be ensured. For this purpose, we used the MESA stellar evolution
code (Paxton et al. 2011, 2013, 2018, 2019) to model the evolution
of a 20 Mg star of solar metallicity (Z = 0.014 using the relative
abundances of Asplund et al. 2009) from the pre-main sequence until
core collapse. Mass-loss rates were taken from the ‘Dutch’ options.
This includes several prescriptions: for O-stars, the mass-loss rates
from Vink, de Koter & Lamers (2000, 2001) are used; if the star
enters the Wolf-Rayet stage, i.e. when the surface hydrogen mass
fraction drops below 0.4, the mass-loss rate switches to the scheme
from Nugis & Lamers (2000); if Ter < 10* K, the empirical mass-
loss rate from de Jager, Nieuwenhuijzen & van der Hucht (1988)
is used. The MLT (Bohm-Vitense 1958) of convection describes
the treatment of convection in our model (using the ‘Henyey’ and
‘MLT++’ options), where we applied an efficiency of amir =

MNRAS 523, 2317-2328 (2023)

1.67 (Arnett et al. 2018). The Schwarzschild criterion defines the
convective boundaries in our model and as such we did not need
to implement semiconvective mixing. For CBM, we included the
exponential decaying diffusive model (Freytag, Ludwig & Steffen
1996; Herwig 2000) with f,, = 0.05 for the top of convective cores
and shells and with f,, = 0.01 for the bottom of convective shells
(with fy = f for both cases). We furthermore used the decline of
the diffusion coefficient near the boundary (Jones et al. 2017). The
value of f,, = 0.05 for the top boundaries is larger than the majority
of published large grids of stellar models (e.g. using ooy = 0.1 in
Ekstrom et al. 2012, oy = 0.335 in Brott et al. 2011). The value of
0.05 is motivated by the study of Scott et al. (2021), where values
for f,y up to at least 0.05 for 20 Mg and above (see caption of
their fig. 9 and references therein for the relation between oy, fov,
and entrainment) best reproduce the observed width of the main
sequence in the spectroscopic Hertzsprung-Russell diagram (Castro
et al. 2014). For the bottom boundary, a CBM value of 1/5 the
value of the top boundary is based on 3D hydrodynamic simulations
(Cristini et al. 2017, 2019; Rizzuti et al. 2022), finding that CBM is
slower at the bottom boundary due to it being stiffer and therefore
harder to penetrate. Scott et al. (2021) also show that the amount of
CBM should increase with initial mass since more massive stars are
much more luminous (L ~ M? between 1 and 20 M) and thus our
chosen value of 0.05 for 20 M, is consistent with the range of values
inferred from asteroseismology for less massive stars (fo, = 0.02—
0.04; Bowman 2020). As we describe below, the inclusion and the
extent of CBM, guided by both 3D hydrodynamic simulations and
observations (main-sequence width in Hertzsprung-Russell diagram
and asteroseismology), is a key aspect for the novelty of the results.

2.2 The 3D hydrodynamic model set-up

The 1D simulation has been run from the pre-main-sequence phase
until core collapse (see the structure evolution diagram in Fig. 1,
left). The hydrodynamic simulations have been started with initial
conditions taken from the first neon-burning shell that develops in
the 1D simulation (see Fig. 1, right). We employ here the stellar
hydrodynamical code PROMPI (Meakin & Arnett 2007), successfully
used over the years to simulate and study convection and CBM in
advanced phases of massive stars (e.g. Arnett, Meakin & Young
2009; Cristini et al. 2017, 2019; Mocék et al. 2018; Rizzuti et al.
2022). PROMPI has been also recently compared to other stellar
hydrodynamical codes in Andrassy et al. (2022), who showed PROMPI
to be fully consistent with the other codes.

The radial variables density, pressure, temperature, entropy, mass,
and chemical composition have been remapped on a tri-dimensional
grid adding relatively small perturbations (~10~7) to density and
temperature as seeds for convective instabilities. The grid we used is
in spherical coordinates with a radial extension from 3.6 to 8.5 x 108
cm and an angular size of about 26° in both angular dimensions.
Since the radial size of the grid is roughly twice the size of the other
dimensions, we used a resolution with double the cells in radius.
Making use of the spherical coordinates, gravity is recomputed at
each time-step by integrating the mass inside each shell as a function
of the radius. This allows for the contraction or expansion of the
layers. A resolution of 256 x 1282 grid points in r, 6, and ¢,
respectively, was initially used to explore the evolutionary time-
scale of the simulations, and then for this study we analysed a more
detailed set of simulations with resolution 512 x 2562, and finally
results have been validated with our most detailed simulations of
1024 x 512% and 2048 x 10242,
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Figure 1. Left: Structure evolution diagram of the 20 M 1D MESA input stellar model as a function of the time left until the predicted collapse of the star (in
years, log scale). In blue the convective zones, and in green the CBM zones. The red arrow indicates the neon-burning shell the 3D simulations were started
from. Top right corner is a zoom-in on the neon-burning shell. Right: Zoom-in on the model used as initial conditions for the 3D simulations. The horizontal
axis is the time in seconds relative to the start of the 3D simulations. The vertical axis is the radius in units of 10® cm. In colour scale, the squared convective
velocity. Isomass contours are shown as black lines. The lines show that the shell undergoes significant expansion during the Ne-burning phase. The vertical red

bar indicates the start time and radial extent of the hydrodynamic simulations.

Convection has been fuelled with nuclear energy. Nuclear burning
and nucleosynthesis are not always explicitly tracked in hydrody-
namic simulations, because of the high computing cost: instead,
fixed heating profiles are often used to drive convection. Rizzuti et al.
(2022) included a simple energy generation routine of five isotopes
(“He, 190, °Ne, 2*Mg, and 2Si) to reproduce neon burning. We have
now extended this network to include 12 isotopes: n, p, *He, 12C, 10,
20Ne, 2*Na, 24Mg, 2884, 31p, 328, and °Ni. We employed the most
recent nuclear rates from the JINA REACLIB data base (Cyburt
et al. 2010). While this extension does not have important effects
on the energy release, which was already accurate with the five-
isotopes burning routine, it allows us to study the nucleosynthesis
and transport of other species, paving the way towards an extended
multi-D nucleosynthesis in stellar models.

Finally, following the same approach as Rizzuti et al. (2022), in
this study we included simulations with and without modified energy
generation. In the nominal-luminosity simulations, the luminosity
remains the same as in the 1D model. In this way, we make sure
to validate our results ruling out the possibility that the boosting
in luminosity introduces additional differences from the nominal
case. When a boosting in luminosity was included, the nuclear rates
for neon burning *Ne(y, «)'°O and *°Ne(a, y)**Mg have been
multiplied by a boosting factor. Since these are the reactions that
dominate the energy release, it does not make any difference that
the other reactions have not been boosted. The boosting factors used
here are 1 (nominal-luminosity), 5, 10, and 50.

2.3 Entrainment law computation

PROMPI has a long history of modelling entrainment in stellar
environments, having investigated a massive star O-shell (Meakin &
Arnett 2007), C-shell (Cristini et al. 2019), and Ne-shell (Rizzuti
et al. 2022). We can express the entrainment rate for a convective

boundary, i.e. entrainment velocity v, divided by convective velocity
Vrms» according to Meakin & Arnett (2007):

E=_%

= A Rig" (€]
vrms

as a function of the ‘bulk Richardson number’ Rig, which we can

see as a measure of boundary resistance against convective fluid

penetration, and defined as

tAD rp+€/2
A
Rig=——; Ab= / N*dr 2)
vrms Z/Z
p—

with Ab the buoyancy jump across the convective boundary, N the
Brunt-Viisild frequency, ¢ the length-scale of turbulent motions,
and r, the convective boundary location.

For the computation of the quantities just defined, we refer to
Cristini et al. (2019) and Rizzuti et al. (2022) since we used here
their same approach and definitions. It is worth mentioning here that
7 has been obtained using the neon abundance gradient, that v, is the
time derivative of r,, that v,y is equal to (vr2 + vg + v;) 12 inside
the convective zone, that ¢ has been set equal to 1/12 of the local
pressure scale height to enclose the peak in N2, and that all quantities
have been averaged for the entire time the simulations spent in the
entrainment regime.

3 RESULTS

In this article, we present a set of 3D hydrodynamic simulations
run continuously from the beginning to the end of a neon-shell
burning phase. The level of realism of these new simulations is
guaranteed by the updated 1D model for initial conditions, which
includes a stronger CBM than usually implemented, the complex
burning routine including 12 isotopes for energy generation, the
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presence of unaltered nominal-luminosity runs, spherical geometry,
and some high-resolution runs.

In Table 1, we summarize the most important properties of the
hydrodynamic simulations we have run for this study, each of them
used for some part of the analysis, contributing to the final results
we present here. The code name for each simulation summarizes its
radial resolution (r) and the boosting factor (e).

3.1 Analysis of the fluid dynamics

To provide a visual representation of our simulations, we show
in Fig. 2a cross-section of the neon mass fraction from our high-
resolution nominal-luminosity r2048e1 simulation. In addition to
showing the fine detail that hydrodynamic simulations can reveal
with modern computing resources, this image helps us understand the
importance of CBM for stellar evolution. Indeed, it is possible to see
the mixing of neon-rich and neon-poor material inside the convective
zone, as well as the entrainment of neon-rich material from the upper
stable region, due to shear mixing at the interface of the two layers.
The entrainment of fresh fuel extends the nuclear burning time-scale
and therefore the convective shell lifetime, showing the importance
of including CBM in all stellar models.

The effects of the mixing on the convective boundaries can also
be seen in Fig. 3, where we show the difference in the radial profiles
of mean atomic mass and entropy between the 1D initial conditions
and a 3D r512e1l test simulation. This 3D r512e1l test simulation
was run for five convective turnovers to highlight similarities and
differences between the 1D and 3D profiles near the start of the
simulations (the r512e1 simulation listed in Table 1 and discussed
in the rest of the paper was restarted from the r256el simulation
after 16 000 s to make the most of our computing budget). We added
in Fig. 3 the grid points on the 3D simulation profiles, to indicate
the resolution of the simulation across the convective boundary. The
reason why the values for atomic mass and entropy in the convective
plateaus at r < 5.4 x 10% cm do not match perfectly (~10~* absolute
difference) is the remapping and the small mixing that takes place
during the initial transient. Importantly, what we can see from this
plotis that, as the boundary moves outwards due to CBM, both chem-
ical composition and entropy are consequently mixed. This point is
also underlined by Fig. 4, which shows the temperature gradients
for the same models. Since both 1D and 3D stellar models deviate
from the adiabatic temperature gradient outside the convective region
(although the 1D curve is affected by numerical noise), it is clear that
CBM in the 3D simulation contributes to altering the temperature
gradient in the ‘overshooting’ region, which becomes adiabatic due
to the fast entropy mixing. These plots show that in the 1D MESA code
the composition mixing is accurately modelled, since the shape of A
is similar to the 3D, but the entropy profile is not compatible, so it will
be necessary in the future to also add the mixing of entropy in the 1D
models.

Another way of studying the evolution of the different simulations
is to analyse how the kinetic energy of the fluid builds up and changes
with time. In Fig. 5, we show the time evolution of the specific turbu-
lent kinetic energy, defined as % (vir2 -0 40— + vé — %2)
where the single quantities have been averaged in r, 6, and ¢ inside
the convective zone. The figure shows the most complete set of
simulations we have run, which consists of r256el, r256e5,
r256el0, and r256e50. These simulations have the same resolu-
tion but different luminosity boosting, and this explains the different
evolution of the tracks in the figure. After an initial transient, during
which convection develops in the 3D grid and the kinetic energy
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builds up, all simulations evolve in a similar way, with a more or less
gradual increase in kinetic energy during the nuclear burning phase,
and a slow decrease after neon is consumed and nuclear burning
does not sustain the kinetic energy any longer. The differences in
magnitude and time-scale can be all traced back to the boosting in
luminosity, which strongly affects both the amount of kinetic energy
produced during the simulation, and how rapidly neon is consumed,
therefore the time-scale for nuclear burning. The peak in kinetic
energy is approximately at 20 000, 2200, 960, and 180 s for r256e1,
r256e5,r256e10, and r256e50, respectively.

It is also interesting to notice that towards the end all simulations
seem to converge to the same constant value of turbulent kinetic
energy, regardless of the luminosity boosting. This comes from the
fact that after neon is exhausted the reactions 2°Ne(y, «)'®0 and
20Ne(a, y)**Mg stop occurring, so the only nuclear reaction that can
proceed is the secondary 2*Mg(a, y)?*Si, which was not boosted and
has the same rate for all simulations. This is confirmed by a slight
decrease in magnesium and increase in silicon abundances during this
late phase. However, this reaction is not energetic enough; therefore,
turbulence decays and the shell growth halts.

The time evolution of the turbulent kinetic energy is also shown in
Fig. 6 for the same set of simulations, but as a colour map with
angularly averaged values in colour scale. First, it is interesting
to note the strong effect that the luminosity boosting has on the
evolutionary time-scale. Apart from this, the shell is evolving in the
same way in all simulations, with the first period being dominated by
nuclear burning and entrainment, and demonstrating a linear growth
of the shell. An additional weak burning front is visible around » ~
8 x 10% cm, produced by the impact of gravity waves on a carbon
shell above the neon one, but its energy is so small compared to
the neon-burning shell (three orders of magnitude lower) that it has
no impact on convection and entrainment. Once fuel is exhausted
in the neon-burning shell (neon abundance is 6 per cent at the peak
of kinetic energy) convection slowly diminishes, as evident from
the drop in kinetic energy, and therefore entrainment also stops,
halting the shell growth. This result has important implications for
stellar evolution. In contrast to previously suppositions (e.g. Cristini
et al. 2019; Horst et al. 2021; Rizzuti et al. 2022), CBM does
not lead to the convective engulfment of the entire star, but our
simulations show that the shell naturally stops growing when its
fuel is exhausted. Indeed, making use of network calculations with
a one-zone model to exclude convective mixing, we estimated the
nuclear burning time-scale (Xne/ Xne) to be approximately 4000 s in
this environment, which is much shorter than the time-scale for mass
entrainment (M, /M.), here around 30 000 s; therefore, entrainment
cannot sustain convection on its own. This finding puts a limit on the
size of convective zones, which can have a strong effect on the final
structure of massive stars.

There are other important points that can be drawn from Fig. 6.
Comparing the nominal-luminosity run (first panel) to the corre-
sponding evolution in the 1D model (Fig. 1, right), it is evident that
the convective shell in the 3D model evolves ~5 times faster than
that in its 1D equivalent. To understand this difference, in Fig. 6 we
overlay isomass contours in white that can be used to track expansion.
The contours show some expansion in the bulk of the convective zone,
but no expansion is allowed closer to the upper and lower domains,
because mass flow is not allowed through those closed boundaries. If
compared again to Fig. 1 (right), it is clear that an expansion is present
in the 1D layers that are not limited by domain boundaries, but which
are free to contract or expand. It is this difference in convective zone
size between 1D and 3D that explains the difference in burning time-
scales. Indeed, the neon-burning energy release is strongly dependent
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Table 1. Properties of the 3D hydrodynamic simulations presented in this study: model name; resolution N,g¢; boosting factor of the driving luminosity ¢;
starting fsiare and ending fepg time of the simulation; time spent in the entrainment regime Teper; cOnvective turnover time 7 cony; NUMber of convective turnovers
simulated in the entrainment regime 7ncony; root-mean-square convective velocity vyms; sonic Mach number Ma; and number of CPU core-hours required to

run the simulation.

Name Nigo € Istart (S) fend () Tentr (8) Tconv (8) Rcony Vrms (cm Sil) Ma (1072) Mcore-h
r256el 256 x 1282 1 0 60 000 15 000 155 96 3.29 x 10° 0.83 2.08
r256e5 256 x 1282 5 0 29 000 1500 59 25 6.55 x 10° 1.76 0.89
r256el0 256 x 1282 10 0 19 000 800 50 16 8.06 x 100 2.15 0.60
r256e50 256 x 1282 50 0 30 000 150 30 5 1.31 x 107 3.48 0.96
r512el 512 x 2562 1 16 000 19 000 3000 136 22 3.83 x 10° 0.99 1.66
r512e5 512 x 2562 5 0 2000 1500 59 25 6.65 x 10° 1.80 0.80
r512el0 512 x 2562 10 0 1000 800 49 16 8.28 x 100 2.23 0.50
r512e50 512 x 2562 50 0 490 150 30 5 1.34 % 107 3.61 0.20
rl024el 1024 x 5122 1 10 000 10 400 400 127 3 3.26 x 10° 0.84 2.88
r2048el 2048 x 10242 1 10010 10 030 20 113 0 3.85 x 10° 0.99 2.02
20Ne mass fraction , time = 10030 s
0.149
6.5
- 0.148
=
[}
°<'§ - 0.147
ot
— 0.146
0.145

-10°

Figure 2. Cross-section of the neon mass fraction (values in colour scale) from the r2048el simulation. The frame shows entrainment of some neon-rich
material from the upper stable region into the convective zone. Videos of the evolution of the r1024e1l simulation are available online as Supplementary

material, showing fluid speed and mass fractions in colour scale.

on the temperature, sensitive to a power of ~7°° (Woosley, Heger &
Weaver 2002) due to the temperature dependence of nuclear reaction
rates and the a-particle mass fraction. Furthermore, the temperature
of a gas is dependent on its volume, according to the equation of
state. It is possible to show with a simple calculation that the volume
difference between the final states of our convective zone in 1D
versus 3D can explain the shorter time-scale of the 3D simulation.
If we assume for simplicity that the two states are separated by an
adiabatic expansion (it is reasonable to assume no heat exchange

with the surroundings), then

Tsp _ (Vlb)yl _ <R?D - rfn)y_]

T \Vap Rp—rn/)
where r and R are the inner and outer radii of the shells, respectively.
Comparing the 1D and 3D states at the end of the nominal-luminosity

neon burning (taken when the neon abundance in the bulk of the
convective zone Xxe ~ 0.015), we have (in units of 10% cm)

3)

RID = 734, rip = 463, R3D = 693, rp = 444
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Figure 3. Radial profiles of the mean atomic mass A (black) and entropy
(blue) for the 1D input model (dashed lines) and at the end of a 3D r512el
test simulation (angularly averaged quantities plotted as solid lines) run for
five convective turnovers. The dots on the 3D curves indicate the location of
the simulation cells.
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Figure 4. Same as Fig. 3, but radial profiles of the actual temperature
gradient (red) and the adiabatic temperature gradient (yellow), defined as
V = dln 7/dIn P, for the 1D input model (dashed lines) and the 3D r512el
test simulation (angularly averaged quantities plotted as solid lines).

and y = 1.55, which gives T5p/T)p = 1.11. At the same point in
the actual simulations, we find T3p = 1.88 GK and T|p = 1.78 GK
at the temperature peak (located near the bottom of the convective
shell) corresponding to a ratio of 1.06. Thus, we can conclude that
the limited expansion in 3D due to the closed boundary conditions
can account for the higher temperature found in the 3D simulations
compared to the 1D stellar model.

Since the nuclear energy generation rate depends on a power of
the temperature ¢ ~ T, the difference in nuclear burning time-scale
T ~ 1/¢é between 1D and 3D can be approximated as

TIp Trp

Using o = 50 from Woosley et al. (2002) results in a 3D time-scale
15 times shorter than that for the 1D, which is much faster than
what we see in our simulations. Realistically, the energy generation
rate is also dependent on the neon abundance, which decreases with

time; therefore, @ < 50 is expected, although the value changes in
time. While both the 1D and 3D simulations are complex, this simple
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estimate of the effect on the temperature of the different expansion
shows that this can explain the difference in the time-scales of neon
burning between the 3D and 1D simulations.

3.2 Spectral analysis and turbulence theory

The well-established ‘Kolmogorov theory’ (Kolmogorov 1941)
states that, for a quasi-steady isotropic regime of convection, the
rate of energy dissipation is independent of the scale and of the type
of dissipative process, and the kinetic energy is expected to behave
according to

Ex ~ vy, ~ K, )

rms

where k is the wavenumber associated with the fluid scale. The fluid
is expected to follow this scaling throughout the so-called ‘inertial
range’, while it deviates from it at the smallest (dissipation) scales
due to dissipative effects, and at the largest (integral) scales because
it stops being isotropic. These premises allowed hydrodynamic
codes to employ the implicit large eddy simulation (ILES) scheme,
which replaces the explicit physical viscosity with implicit numerical
viscosity due to the finite grid resolution. An important advantage of
ILES is that it overcomes the necessity of resolving the flow at the
viscosity scale, which would be impossible for stellar simulations.

It is thus possible to determine the quality of our simulations
in the inertial range by comparing the power spectrum of the
turbulent velocity in the simulations to the scaling expected from
the Kolmogorov theory. Since we are employing spherical geometry,
the default method would be to compute the spherical harmonic
decomposition of v.y,s. However, our simulations cover only a small
section of a spherical surface (0.2 sr, or 2 per cent of the total spherical
surface); therefore, it is not trivial to do the decomposition, which
would also be unable to show the lowest order modes due to the
limited solid angle covered. One way of doing that would be to
repeat the pattern periodically to fill a full spherical surface, as done
in Horst et al. (2021), but this would introduce artefacts coming from
the spherical mapping and the risk of underestimating the low-order
modes. For these reasons, we prefer here to compute the spectrum
using a 2D Fourier analysis, following a similar approach to e.g.
Cristini et al. (2019) and Andrassy et al. (2022). Selecting a radius,
r=75 x 10® cm, in the middle of the convective region, a 2D Fourier
transform of the velocity magnitude as a function of the angular
coordinates 0, ¢ was computed:

1 Np—1Ng—1 —i271<k;’ﬂ+k;]n¢>
Arms k 7k = rms 95 0 ¢ s 6
Drms (Ko, kgp) N9N¢,MZ:O,;:OU ®, p)e (6)

where Ny, Ny are the numerical resolution, ng, n, are the cell
numbers, and kg, k, are the wavenumbers, which span the range:

L [ if 0<i<Ng/2
=T \i=Ny, if Ny/2<i<DNy

. ‘ D
if 0<j<Ny/2

_ [
kd*‘{j—w, it Np/2<j <N,

Finally, we plot in Figs 7 and 8 the power spectrum %hﬁrmS |2, which
can be interpreted as the specific kinetic energy, as a function of the
k2 + k2. Since ky € [—Ny/2, Np/2] and likewise
for kg4, and the norm k draWs a circle in the (kg, k) space, we limit
the plot to & € [0, min{Ny/2, Ny/2}] to avoid the circle going beyond
the domain and losing a fraction of the signal, resulting in a drop of
the power spectrum. Spectra have been averaged over at least one

wavenumber k =
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Figure 6. Time evolution of the angularly averaged specific turbulent kinetic energy (in colour scale) for four simulations with different luminosity boosting
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convective turnover for all simulations, except r2048e1l that has
been run for a very short time-scale given its very high resolution, so
it has been averaged for the last 10 s.

Fig. 7 shows the spectra for simulations with boosting factor equal
to 1 (nominal luminosity) but different resolutions. In all simulations,
the bulk of the spectrum follows the expected Kolmogorov scaling,
which is a good confirmation of the presence of a large inertial
range in our simulations. Also, as expected, the spectrum starts
deviating from the k=3 scaling both at the largest scales (around

the vertical k ~ 2 line) and at the smallest scales, because of
the numerical dissipation near the grid scale. For this reason, as
resolution increases in Fig. 7 the inertial range extends towards larger
wavenumbers, because dissipation takes place on smaller and smaller
spatial scales. The point where the spectrum slope starts deviating
strongly from the k=3 scaling corresponds approximately to 15 cells
for all simulations, as we indicate in the plot with vertical dotted lines
around k ~ 8-70.
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each simulation.
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Figure 8. Same as Fig. 7, but for simulations with same resolution and
different boosting factors: r256el, r256e5, r256e10, and r256e50.
All spectra were averaged over one convective turnover. The two vertical
lines identify the inertial range, as in Fig. 7.

In Fig. 8, we present instead the spectra for a set of simulations
with same resolution but different boosting factors. As expected, the
specific kinetic energy of the spectra increases with the boosting
factor, but the extent of the inertial range does not change, since
the resolution is the same. This is a confirmation of the fact that
introducing a boosting factor does not affect the general properties
of the turbulent flow (apart from the magnitude of the kinetic energy).
These findings are perfectly in line with previous simulations (e.g.
Cristini et al. 2019) and especially with results from the code
comparison study of Andrassy et al. (2022).
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Figure 9. Entrainment rate versus bulk Richardson number. Data from stellar
simulations and respective linear regressions: ‘MESA’ Ne-shell from this study
(blue), ‘GENEC’ Ne-shell from Rizzuti et al. (2022) (red), and H-core from 1D
Scott et al. (2021) (black). Triangles are lower convective boundaries, circles
are upper boundaries. The dashed vertical line indicates the bulk Richardson
number in the convective H-core. Error bars are standard deviations. The
legend shows parameter estimates for the entrainment law ve /vrms = A Ri "

3.3 Entrainment analysis and parametrization

As mentioned earlier, entrainment of fresh fuel into the convective
zone is one of the most important effects on stellar convection,
profoundly affecting the stellar structure and its evolution. We remind
that the new simulations we are presenting in this work have been
started from initial conditions taken from a 1D model using strong
CBM at all convective boundaries, including the late-phase shells.
This last point is particularly important in order to understand how
entrainment differs between 1D and 3D stellar models, since many
studies underline strong discrepancies between the two (Staritsin
2013; Higl, Miiller & Weiss 2021; Horst et al. 2021; Scott et al.
2021; Rizzuti et al. 2022). In particular, entrainment in 3D is always
found to be much stronger than in 1D models, which often include
little or no CBM at all. Starting from a 1D model with strong CBM,
we can determine whether the corresponding entrainment in 3D is
larger as usual or whether a convergence between 1D and multi-D
stellar models can be achieved.

In Fig. 9, we present the entrainment rates estimated from the data
presented in this work (blue), alongside one of the previous PROMPI
simulations of a neon shell from Rizzuti et al. (2022) (red), and the
1D study of a convective hydrogen core in a 15 Mg, star from Scott
et al. (2021) (black). To study entrainment, we used the data coming
fromthe r512el,r512e5,r512e10, and r512e50 simulations,
which have been run for many convective turnovers with a high
resolution. For each simulation, we computed the entrainment rate
and bulk Richardson number for both the upper and lower convective
boundaries, averaged through the entire entrainment phase; we list
results in Table 2. As expected, a larger boosting factor in the
simulations results in higher convective and entrainment velocities
and smaller Rig due to the larger penetrability. In addition, the upper
boundary has always larger entrainment rate and smaller Rig than
the lower one. Error bars in the figure are standard deviations of
the values at each time-step in our simulations, and since both their
computation and the fitting have been done in real space, in some
cases the log scale of the plot shows the bars going towards zero.
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Table 2. Properties of the 3D hydrodynamic simulations used to study
entrainment in this work: model name; root-mean-square convective velocity
Vs (cm s~); upper entrainment rate v:p/vrms; lower entrainment rate
1% /ums: upper bulk Richardson number Ri]l;p; and lower bulk Richardson

€
number Rillfw.

Name Urms Ucup/vrms Ulecw/vrms Rl]‘;p Ri]l3ow
r512el  3.83x10° 1.01x 1073 538x 107> 513 224
r512e5  6.65 x 10° 5.03 x 1073 3.69 x 10~* 13.8 64.7
r512e10 828 x 10° 825 x 1073 6.54 x 107* 891 425
r512e50 134 x 107 272x 1072 184 x 1073 263 15.3
100
=== C-—shell, logA= —1.30+0.06,n=0.74 £ 0.04
= Ne genec, 10gA= —0.53+£0.47,n=0.96 +£0.19
—— Nemgsa ,l0gA= —0.92+0.12,n=1.38+0.08
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Figure 10. Same as Fig. 9, but comparison between PROMPI simulations:
‘MESA’ Ne-shell from this study (red, solid), ‘GENEC’ Ne-shell from Rizzuti
etal. (2022) (blue, dotted), C-shell from Cristini et al. (2019) (green, dashed),
and O-shell from Meakin & Arnett (2007) (in yellow, dot—-dashed). In the
legend, parameter estimates for the entrainment law ve /vrms = A Rig n,

It is evident from Fig. 9 that the value of Rig for convection in late
phases (data points) is several orders of magnitude smaller than that
during the main sequence (vertical line): the lack of entrainment data
and the consequent need for extrapolation are the main reasons for the
current disagreement on CBM between different stellar phases. From
the comparison of the different trends in Fig. 9, several interesting
conclusions may be drawn. The entrainment rates measured from our
simulations are lower than all the previous multi-D studies done with
PROMPI, as we show in Fig. 10 where we compare entrainment in all
PROMPI simulations so far. Although our new rates are not as small
as the ones predicted from studying the H-core in 1D (black line in
Fig. 9), the larger steepness and lower dispersion of the new results
imply much less entrainment than the previous studies, especially at
larger Rip, reaching a surprisingly good agreement with predictions
for the convective core in 1D models (dashed vertical line). This
finding is an important step towards convergence of results between
1D and 3D stellar models.

To better understand the reasons for this convergence, it is
important to underline the differences between the previous and
the new simulations. The two sets of hydrodynamic simulations
we show in Fig. 9 are both of a Ne-burning shell, with a similar
burning network and energy release, but with initial conditions taken
from two different 1D models: one (Rizzuti et al. 2022, red) from a
GENEC model with no CBM for this phase and the other (this study,
blue) from a MESA model with strong CBM. The stellar mass is also
different (15 Mg for Rizzuti et al. 2022 and 20 M, for this study), but
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Figure 11. Angularly averaged mass fractions of 100, 2'Ne, >*Mg, and 28Si
as a function of the stellar radius. Dashed: the abundances at the beginning of
the r256e1 simulation. Solid: after ~8 h, close to the end of the convective
phase.

previous PROMPI simulations show that stellar mass does not seem to
affect the entrainment law parameters (Cristini et al. 2019; Rizzuti
et al. 2022). Furthermore, the present set of simulations has been
run for much longer than before, covering the entire shell evolution
until fuel exhaustion. What we can conclude from this is that a
hydrodynamic simulation started from a 1D model already including
CBM produces significantly less entrainment than simulations from a
1D model with no CBM. This is a clear sign of convergence in the old
problem of comparing CBM between 1D and 3D models. Moreover,
it is a significant confirmation of the potential of this novel approach
towards developing 3D stellar evolutionary simulations.

3.4 Nucleosynthesis and evolution of the chemical composition

The simulations we present here have been produced employing a
nuclear burning routine with an explicit list of isotopes to generate
energy and drive convection. Making use of this routine, it is possible
to study the time evolution of the chemical abundances and their
distribution in the different layers of the simulations. We show in
Fig. 11 the initial (dashed lines) and final (solid lines) mass fraction
profiles from simulation r256e1l for the most important isotopes
involved in neon burning. At the beginning of the simulation, the
convective zone, identified by the central plateaus in the abundance
profiles, is limited to the region between 4.5 and 5.8 x 10% cm, while
towards the end it has almost doubled in size, as we have already
seen from Fig. 6. 2’Ne has been almost completely consumed in the
convective zone via the reactions 2’Ne(y, «)'°0 and 2°Ne(e, y )**Mg,
while '°0 and 28Si have been produced as a result, as well as some
2¥Mg that has been partially burnt to produce silicon according to
XMg(a, y)Si.

Another way of tracking the neon consumption is to look at the
time evolution of the neon abundance inside the convective zone, as
we show in Fig. 12. The plot shows the four simulations r256e1l,
r256e5,r256e10, and r256e50 with different boosting factors.
During the initial transient phase (up to ~100 s), some fluctuations in
the neon abundance come from the initial propagation of plumes and
eddies through the convection region, linked with the entrainment of
some neon-rich material, and we can see that this trend is the same for
all simulations except r256e50, where some neon is already being
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Figure 12. Time evolution of the ’Ne mass fraction in the bulk of the
convective zone, for the four different simulations r256el, r256e5,
r256e10, and r256e50, each with a different boosting factor.

burnt due to the high energy boosting. After this phase, simulations
consume neon on a different time-scale but all with a very similar
trend: this is an additional confirmation of the fact that the boosting
in luminosity affects mainly the simulation time-scale.

The chemical abundances can be also studied with a mean-
field statistical analysis. We use here the Reynolds-averaged
Navier-Stokes (RANS) framework developed for hydrodynamic
simulations in spherical geometry by Mocdk et al. (2014), making
use of the dedicated open-source code RANSX.! We refer to Mocdk
et al. (2014, 2018) for definitions and implementation. The RANS
framework includes two types of averaging, a time averaging and an
angular averaging. We will indicate here the Reynolds average (time
and angular average) of a quantity ¢ on a spherical shell at radius r as

_ 1 r
q@r) = m/o /AQ q(r,0,¢,1)dt dQ ®)

with d2 = sin 0d0d¢ the solid angle element, T the time window, and
A the solid angle of the shell. The Favre average (density-weighted
average) is defined as ¢ = pq/p; therefore, the field decomposition
has been done as ¢ = ¢+ ¢’ and g = g + ¢”, respectively, with
g, q the means and ¢/, ¢” the fluctuations of the quantity g (see
Mocik et al. 2014, 2018).

Fig. 13 shows the radial profiles of the mean turbulent flux in
the r1024e1 simulation for '°0, *Ne, *Mg, and 8Si, defined
as fi=p )/(1/\’_1)/;’ for a species i. Positive and negative values in
the flux represent upward and downward flows, respectively. It is
evident that the flux is dominated by downward transport of 2°Ne,
towards the bottom of the convective zone where the nuclear burning
is taking place. On the other hand, '°0, ?*Mg, and 28Si, the ashes
of the burning, are all transported upwards in a similar way, through
the entire convective zone. Additionally, a small non-zero flux is
present immediately below the convective zone, slightly positive
for silicon and negative for oxygen and magnesium. This is due
to the mixing that takes place at the lower convective boundary,
and the fact that silicon is more abundant below the boundary
so it is brought inside the convective zone, while oxygen and
magnesium are produced and more abundant above the boundary
so they are transported downwards. Finally, the thin black line

Thttps://github.com/mmicromegas/ransX

MNRAS 523, 2317-2328 (2023)

1.0
(7 T —
05 /./ R
T "\
+ 00 / \
g
()
oo —0.5
=
—
= 101
I
X151 o
\‘clz ...... f’UNe
w209 — = feng
—2.51 fossi
o - f‘r,()t
—-3.0 T T T T T
4.5 5.0 5.5 6.0 6.5

radius (10% cm)

Figure 13. Turbulent flux profiles of 160, 2ONe, 24Mg, and 23Si as a function
of the stellar radius, from the r1024el simulation, averaged over the
entrainment regime (three convective turnovers), and defined as fi = 0 )/(?_IZ/ .
The thin black line is the sum of the flux profiles for all the 12 elements in
the network.

1071 T160
S LR o200
% 3 mm g
§<'~ 028G;
=~ 102 "E Si
! | HE:
§) - SR
#- St
g ;',"_“x SR
E’ 10-34 | .............................. / ,E
< 1 Ak
5 ! S == £
E i 3
< a3 :
2 ] i
SRl s
< i
T T T T T
4.5 5.0 5.5 6.0 6.5

radius (10% cm)

Figure 14. Same as Fig. 13, but standard deviation profiles of the mass
fraction for 16O, 2ONe, 2“Mg, and 28Si, defined as o; = (X{’Xi”)l/z.

in Fig. 13 represents the sum of the flux profiles for all the 12
elements included in our nuclear network: it is always equal to zero,
confirming that the sum of the mass fractions is conserved in our
simulations.

Finally, we show in Fig. 14 the standard deviation profiles
of the mass fraction for 'O, 2Ne, 24Mg, and 28Si, defined as
o; = (}i”\X/i”)'/ 2 for a species i, and in Fig. 15 the standard deviation
normalized by the Reynolds-averaged mass fraction of the isotopes
0i/X;, presenting deviations as fractions of the mean values.?
The standard deviation represents the dispersion of the chemical
composition as a function of the radius; therefore, it can be seen as a
way of measuring the departure from a perfect spherical symmetry,
providing important information for the comparison between 1D

2Note that in previous PROMPI studies, such as Mocdk et al. (2018), the
variable o; is used to indicate the variance, rather than the standard deviation.
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Figure 15. Same as Fig. 14, but normalized standard deviation profiles for
160, 2ONe, 24Mg, and ZSSi, defined as o; /Yi.

and multi-D stellar models. The largest deviations of up to a few
tens of per cents (see Fig. 15) are found at the convective boundary
locations. These deviations are explained by the deformation of the
boundary due to the convective flow plowing into it as well as
entrainment and the interaction of different layers at the interface
(see e. g. Fig. 2). Inside the convective zone, on the other hand, the
mixing makes the composition more homogeneous and reduces the
dispersion down to a percent or less. It is interesting to note that
deviations are still present below the convective region due to the
fluctuations generated by entrainment and internal gravity waves.

Overall, the magnitude of the standard deviation is quite small
and we do not expect major deviation from spherical symmetry
for nucleosynthesis in normal convective burning episodes. The
situation, however, is expected to be different in more dynamic
contexts, such as merging shells or in cases where fuel is ingested
in an unusual burning region (see Mocék et al. 2018; Andrassy et al.
2020).

4 CONCLUSIONS

In this paper, we have presented a set of 3D hydrodynamic simu-
lations of a complete stellar burning phase, a neon-burning shell in
a 20 Mg star. The accuracy of the simulations has been enhanced
by improvements in geometry and resolution, nuclear network and
burning routine, and initial conditions. We show that results from our
simulations may be analysed in terms of nucleosynthesis, studying
the abundance evolution and stratification of the isotopes included
in the nuclear network, and of hydrodynamics. For the latter, we
have analysed the convective motions and tracked the convective
boundary evolution, allowing observation of the growth of the
convective zone and its death when fuel is exhausted. Studying
CBM is also an excellent way of comparing 1D and multi-D
stellar simulations, where results are often in disagreement. CBM
in 1D models is subject to uncertainties and needs calibration;
hydrodynamic models can provide this calibration, but only if started
from correct initial conditions. This shows how the two approaches
are mutually dependent, and a convergence of results can only be
achieved by improving one with the other.

In previous works, 1D models sometimes include little CBM in
the convective core but totally ignore any CBM in later phases, when
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convection is even stronger and its effects are more important. In
other works, multi-D models are started from initial conditions with
little to no CBM, always leading to a very strong entrainment that
is completely in disagreement with the initial 1D model. With this
work, we make a step forward towards the convergence of 3D to 1D
stellar models (321D approach). Our 3D simulations of a burning
shell, run continuously from early development to fuel exhaustion,
show that (a) entrainment in late-phase shells does not proceed
indefinitely as previously supposed, engulfing the entire star, but
it halts when fuel is exhausted and convection dies (see Fig. 6), and
(b) starting from initial conditions already including strong CBM, the
resulting entrainment in 3D is much more in agreement with the 1D
model (see Fig. 9). In particular for this last point, our entrainment
study produced a law that may be equally well applied to CBM in
convective cores (large RiB, vertical line in Fig. 9) and to late-phase
shells (small RiB, data points in Fig. 9). This law may finally close the
gap between the 1D and 3D stellar models, usually in disagreement
regarding the amount of CBM to be included. Our results show that
significant CBM is required not only in the convective core, as the
most recent 1D models are starting to include, but also in the late-
phase convective shells. The presence of large CBM is also supported
by asteroseismic observations (e.g. Bowman 2020; Pedersen et al.
2021).

The work presented in this paper introduces exciting prospects for
stellar modelling. We have shown that simulating an entire burning
phase in more than one dimension is now possible using the right
tools and enough computing resources. The next few years will
inevitably feature more simulations of significant fractions of the
stellar lifetime in multi-D. Since covering the entire stellar evolution
will probably never be possible in more than one dimension, the
1D stellar model will remain the main tool for predicting and
explaining stellar evolution. However, it is the interplay between 1D
and 3D models that really pushes forwards our knowledge of stellar
evolution, and we show here that an agreement in results between
the two is possible.

We recall here that the range of applications of stellar modelling
to other branches of astrophysics is large and various. This includes
the production of accurate progenitor models as initial conditions for
SN explosion studies (Miiller & Janka 2015; Yoshida et al. 2019;
Burrows & Vartanyan 2021) with possible deviations from spherical
symmetry, potentially solving the long-standing core-collapse SN
engine problems, but also comparison to asteroseismic measurements
(Aerts 2021; Pedersen et al. 2021), analysis and implementation of
magnetic fields and dynamo effects in stars (Varma & Miiller 2021;
Leidi et al. 2022), predictions on the nature of the different remnants
(white dwarfs, neutron stars, and black holes) with improvements to
the final—initial mass relation (Kaiser et al. 2020; Scott et al. 2021),
nucleosynthesis, and galactic chemical evolution. Furthermore, the
synergy of theoretical models and observations will help tackle
today’s open problems of stellar astrophysics, such as the red
supergiant problem (Smartt 2009) and the black hole mass gap
(Woosley & Heger 2021).
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