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Abstract

Hajek (Erkenntnis 70(2):211-235, 2009) argues that probabilities cannot be the lim-
its of relative frequencies in counterfactual infinite sequences. I argue for a different
understanding of these limits, drawing on Norton’s (Philos Sci 79(2):207-232, 2012)
distinction between approximations (inexact descriptions of a target) and idealizations
(separate models that bear analogies to the target). Then, I adapt Hijek’s arguments
to this new context. These arguments provide excellent reasons not to use hypotheti-
cal frequencies as idealizations, but no reason not to use them as approximations.

1 Introduction

This account of probability will be my target—I15 times over. Why so many
arguments? Is this an exercise in overkill? Or worse, is it an exercise in under-
kill, my deployment of so many arguments betraying a lack of faith that any one
actually does the job? On the contrary, as in Murder on the Orient Express, 1
think that many of the blows may well be fatal on their own (although in the
book, the victim received only twelve of them).

—Alan Hajek, “Fifteen Arguments against Hypothetical Frequentism”

If you are partial to frequentism, it pays to keep your guard up. It sometimes feels
like philosophers of probability have been sharpening their knives for the past sev-
eral decades, making increasingly pointed jabs at the view. Hajek (1997, 2009) col-
lects thirty of their most cogent and popular arguments, eloquently refining earlier
criticisms due to Fine (1973), Jeffrey (1992), and others while presenting wholly
new ones. Perusing these arguments, the average scientist might rush to insist that
frequentists use “approximations” or “idealizations” that Héjek is taking far too
seriously. But among philosophers of probability, a rough consensus has emerged
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that this response cannot save the view as a satisfactory analysis of the concept—an
explication of the term “probabilities” that tells us what the things it refers to really
are (La Caze, 2016; Rowbottom, 2015).

Very roughly, Hajek argues that frequentists face a fork in the road and crash in
the middle. On one horn of the supposed dilemma, frequentists could say that prob-
abilities really are the finite frequencies that we study empirically. He directs fifteen
of his arguments against this analysis, which he calls finite frequentism (FF):

(FF) The probability of an attribute A in a finite reference class B is the relative
frequency of actual occurrences of A within B.

One key argument is that FF fails to recover the full richness of the probability cal-
culus. Repeatedly measuring finite frequencies, Hajek argues, is a good method for
“approximating” irrational probabilities—but these frequencies do not recover irra-
tional probabilities on their own. Hence Hajek’s slogan, “Finite frequentism: good
methodology, bad analysis” (1997, p. 226). So, on the other horn of the supposed
dilemma, frequentists could recover the probability calculus by saying probabilities
really are limiting frequencies. Hajek (2009) thus points his remaining fifteen argu-
ments at the view he calls hypothetical frequentism (HF):

(HF) The probability of an attribute A in a reference class B is p if and only if the
limit of the relative frequency of occurrences of A within B would be p if B
were infinite.

He argues that it is not clear how one might view hypothetical frequencies as “ideali-
zations” and assert the truth of HF. So long as the frequentist believes HF, he thinks,
that frequentist must believe in bizarre and unempirical counterfactuals involving
infinite sequences. The roads to a frequentist analysis, then, seem closed for good.
La Caze (2016) offers one semi-recent endorsement of this moral, maintaining that
any attempt to save HF from one of Hijek’s arguments—including the appeal to
idealizations—Ieaves the view “exposed” to others among the remaining fourteen.
But are FF and HF the only roads to a frequentist analysis, or even the most
desirable? A reassessment seems warranted. On a von Mises-styled approach,
limiting frequencies are meant to account for the objective probabilities appear-
ing in scientific theories, with statistical mechanics serving as a paradigm. And
lately, philosophers of physics have become increasingly more attuned to the sub-
tleties of using infinite limits in various physical theories (Earman, 2019; Fletcher
et al., 2019; Palacios & Valente, 2021; Valente, 2019). Of particular importance
to this literature is Norton’s (2012) distinction between limits used as mere
approximations and those used to construct idealizations. Norton first introduces
a general distinction between an approximation, an inexact description of a target
system, and an idealization, a separate (real or fictitious) system that bears some
crucial analogy to the target. He then argues that scientists often use infinite lim-
its to give approximate descriptions of finite targets—rather than the other way
around, as Hajek’s approach to finite frequencies seems to suggest. Moreover,

@ Springer



Hypothetical Frequencies as Approximations

Norton argues that several approximating limits in physics do not support ide-
alized models. The idealization in question might fail to be well-defined, or it
might exhibit pathologies that are deeply misleading about the target. Plausibly,
the frequentist’s infinite limits are of precisely this latter sort: they are excellent
approximations that fail to support idealizations.

If that is right, two things about the structure of Hajek’s arguments start to
look a little strange. First, following Norton, we can use HF’s limits to give inex-
act descriptions of the finite relative frequencies of FF—and so the supposed
dilemma turns out to be a false one. Second, HF places undue emphasis on the
limit system. If it is right that we ought to use the frequentist’s limits as mere
approximations, then we should actively ignore the infinite system and focus
instead on the limiting value of the property p. This sort of thinking might prompt
one to take a rough pass at a different biconditional, one that addresses both of
these issues:

(AF) The probability of an attribute A in a finite reference class B is p if and only
if [a limit of a certain sort] yields a value of p that approximates the relative
frequency of actual occurrences of A within B.

AF stands for approximation-first frequentism; the bit in square brackets is yet
to be refined. AF offers a new kind of frequentist analysis of probability. Like
FF and HF, AF is an explicit definition that tells us what probabilities really are.
AF, however, does not say that probabilities are things in the world. It says that
probabilities are nothing more than approximate descriptions. There are roughly-
stable relative frequencies out in the world, and probability is the language that
we use to (partially) describe them. Since folks adopt this sort of attitude towards
many other limits in science, AF seems well worth considering.

This attitude also casts Hajek’s canonical arguments against HF in a new light.
Rather than sending frequentism to the grave, they pinpoint precisely why one
should not use the frequentist’s limits as idealizations. Consider, for example,
Héjek’s argument that the value of the limit depends on the ordering of the infi-
nite sequence, whereas a relative frequency in a finite sequence clearly does not.
Here, the infinite system (an infinite B) yields a pathology (p of A depends on
ordering) that misleads one about the nature of the target (a finite B). That is a
good reason to be wary of the infinite system! The approximation-first frequen-
tist takes this warning to heart by suggesting that only the limiting property p
should matter for the analysis. AF similarly recasts Hajek’s remaining fourteen
concerns about HF (and one more popular one about the Law of Large Numbers).
These knives become foils, exposing the pitfalls of treating limiting frequencies
as robust idealizations rather than mere approximations.

In Sect. 2, I review Norton’s distinction between approximations and idealiza-
tions. Then I consider several approximating limits in scientific theories, and I
argue that formulations analogous to HF make poor sense of them. Parallel rea-
soning motivates one to adopt something like AF. Section 3 uses von Mises’s fre-
quentism to give a more precise statement of AF, and it shows how AF explains

@ Springer



J. Steeger

Kolmogorov’s axioms as approximately true laws of nature. Section 4 adapts
Hajek’s fifteen arguments to this new context to demonstrate the importance of
interpreting limiting frequencies as mere approximations. Section 5 concludes.

2 Approximations and Idealizations

As flagged above, a von Mises-styled approach to frequentism has a narrow aim:
it seeks only to analyze the objective probabilities that appear in science.' Such an
analysis will fall short of Hajek’s aim to provide a univocal analysis—an analysis
that accounts for all uses of probability, from the weight of evidence in the court-
house to my confidence that it will rain tomorrow to the chance that a fair coin lands
heads. The sort of frequentist that I have in mind only seeks to analyze probabilities
of the last sort, probabilities describing roughly-stable relative frequencies of attrib-
utes in finite empirical trials of a given type. On this tack, frequentism looks more
or less like any standard scientific theory. It posits some universal generalizations
(i.e., Kolmogorov’s laws) governing regularities in the behavior (i.e., roughly-stable
relative frequencies) of empirical systems (i.e., finite sequences of trials of a given
type). So if the limits in the frequentist’s theory seem puzzling, it makes good sense
to look to the limits in that theory’s siblings.

How should the modern philosopher of science interpret these limits? It is tempt-
ing to take them at face value, in line with something like van Fraassen’s semantic
view of theories. Recall that van Fraassen (1980) takes his semantic view to be a
suitable response to the failure of logical positivism to recast theories in a strictly
empirical language. Instead of purging science of metaphysical terms, the thought
goes, we should take theories at their word and sort out the metaphysics later. And
since theories largely talk in terms of models of the world, the semantic view sug-
gests (very roughly) that we identify the content of a theory with its models. On this
view, it would seem that when a physicist says they take the number of particles in
their model to infinity, we should take them to be positing a different model. We get
something like the following picture:

take a limit of a parameter

target system limit system

' T do not claim that frequentism is the only viable or even the best analysis of objective probabilities in
science. I just argue that one version of it (AF) is a very good one. In fact, I take AF to be compatible
with various other accounts of objective probabilities, including propensity accounts. For further discus-
sion of this point, see my response to Hajek’s (12) in Sect. 4.3 and footnote 15.

Regarding whether this argument addresses Hajek’s concerns, note that Héjek readily acknowledges
that frequentism is “at best an analysis of objective probability” but he maintains that “it cannot even
be that” (1997, p. 209, emphasis his). Thus, one might read Hajek as challenging that any version of
frequentism can succeed by its own lights. In turn, I seek to defend that a particular version of frequent-
ism, AF, can succeed by its own lights. For more on the sense in which AF offers an analysis of objective
probability, see footnote 8.
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But Norton (2012) cogently argues that we should be a bit more subtle. As it
turns out, we can often precisely and usefully define the limit of a property of a
finite target system without introducing any new model. The limit property serves,
first and foremost, as an approximation, a partial description of the finite target. In
other words, Norton suggests that the following picture really ought to come first:

take a limit of a parameter

property of target system limit property

But then this limit property might or might not usefully hold of some limit sys-
tem. In other words, one might or might not be able to read the limit property as
a literal description of an idealization, some entirely novel (and possibly fictional)
system that bears crucial analogies with the target.”

Norton helpfully illustrates the difference by considering a simple geometric
property: the surface-area-to-volume ratio of a shape like a sphere or an ellipsoid.
Take, to start, a sphere of radius 7 in R3. Its surface area is 4772, and its volume is
4zr3 /3, yielding a ratio of 3/r. One can precisely define the limit of this property:
as we take the value of r to infinity, the ratio converges to zero. This limit prop-
erty works wonderfully as an approximate description of the ratio’s value for large-
but-finite spheres. But there is no infinite sphere! A bit more precisely: while we
can treat each of our finite spheres as sets of points in R3, the » = oo case does not
straightforwardly correspond to any particular subset of that space. The limit system
does not exist, but the limit property does—and it provides a useful approximation,
to boot.

Now imagine elongating a unit sphere into an ellipsoid with a semi-major axis of
length @ in R3. In the infinite limit, this ellipsoid becomes an infinitely-long cylin-
der—a new system that might or might not serve as a useful idealization. The ellip-
soid’s volume is 4za/3, and as it elongates, its surface area gets arbitrarily close
to w%a. Thus, in the infinite limit, the ratio of surface area to volume is given by
37z /4—and this limiting value is an excellent approximation of the ratio for ellip-
soids with large a. But can we reason the other way, from the infinite cylinder back
to an approximate description of the ellipsoid? Certainly not! The surface-area-
to-volume ratio of the infinite cylinder is ambiguous. We could obtain the infinite
cylinder by elongating a finite cylinder. And if we take this process to define the

2 The literature on approximations and idealizations in science is broad and rich, and it explores many
interesting distinctions beyond what Norton has in mind here. On the one hand, Frigg and Hartmann
(2020) introduce a general distinction between Aristotelian idealizations (models that strip details away)
and Galilean idealizations (models that deliberately distort); Weisberg (2007) differentiates three ver-
sions of the latter, while McMullin (1985) identifies at least six. Potochnik (2017, 2020) cogently argues
that these sorts of distinctions ought to center scientists’ many diverse and intertwining aims (such as
fidelity to causal structure, pedagogical clarity, and computational simplicity). On the other hand, Rue-
ger and Sharp (1998) restrict the notion of approximation to quantitative closeness—and while Norton’s
notion is a broader one, this idea plays a crucial role in his account. I do not want to police the vari-
ous uses of the terms “approximation” and “idealization” here and elsewhere; I think each of the above
accounts has its virtues. I only mean to adopt Norton’s definitions as a convention, as his core distinction
turns out to be particularly useful for thinking about frequentism.
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surface-area-to-volume ratio, we get a value of 2 instead! The limit system, in this
case, is too impoverished to serve as a good guide to finite behavior. However, this
failure of the limit system is not a reason to abandon the use of the limit property
(a surface-area-to-volume ratio of 3z /4) as an expedient description of arbitrarily-
large ellipsoids.

What happens if we pursue an HF-style approach to, say, the large-ellipsoid limit?
We might get something like the following biconditional:

(SV) The surface-area-to-volume ratio of an ellipsoid with large a is close to S/V
if and only if this ratio would equal S/V if a were infinite.

Given the ambiguity of the limit system, it is not clear how to evaluate the truth of
this claim. Specifically, this claim does not tell us how to take the large a limit. So,
for all SV tells us, we might expect the approximate value of the ratio to be 2—
and this value is a poor match for the ratio S/V of actual large ellipsoids. We can
even make the sense in which it is a “poor match” precise: specify (as a conven-
tional choice) an error tolerance ¢ > 0, such that if S/V is within € of our limit, we
deem the limit to be empirically correct. For a not-too-conservative choice of € (e.g.,
€ < .1) and a not-too-large choice of a (e.g., a > 10), the elongated-ellipsoid limit is
empirically correct and the elongated-cylinder limit is not.

One might try to wave this point away if it only concerned toy examples like the
sphere and the ellipsoid. Scientists, however, widely exploit these sorts of approxi-
mations. For example, Norton argues that the same thing happens in statistical
mechanics when taking the Boltzmann-Grad limit. This limit generates the Boltz-
mann equation, which approximately governs the time evolution of the distribution
of particles in an ideal gas. This approximation describes a gas consisting of N hard
spheres of diameter d, under two assumptions: (a) that the density of particles is low
enough to treat them independently and (b) that a typical particle undergoes on the
order of one collision per unit of time. Another way of putting (b) is that the mean
free path of a particle, given approximately by A = 1/(2zNd?), should be of order
one. The Boltzmann equation holds precisely in the Boltzmann-Grad limit, where
we take N to infinity and d to zero in such a way that Nd” remains a constant of order
one (Lanford, 1981, p. 72). However, it would be fatal to conclude that this limit
yields a well-behaved idealization.

Again, imagine an HF-like approach to this limit. We might get something like:

(BG) The density of particles in a macroscopic gas is p if and only if the particle
density of a suitable N-particle gas would be p if N were infinite (and were the
diameter d of the particles zero).

In the derivation of Boltzmann’s equation, we assume that d is non-zero to deter-
mine the state of particles after collisions. However, if d were truly equal to zero,
then there would be no preferred plane of collision—and so we could not determine
the post-collision state (Norton, 2012, p. 219). Thus, it is unclear how to evaluate
the truth of BG. A literal infinity of point particles is a poor guide to the behavior of
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finite systems. Only the behavior of the approximating limit matters for our descrip-
tion of the physics, for our account of the laws governing the gas’s dynamical
evolution.

Palacios and Valente (2021) provide another particularly elegant example: the
low-velocity limit of special relativity. As is well-known, one can recover the laws
of classical mechanics by taking the limit of relativistic laws as v/c approaches zero
(where c is the speed of light). Take, for example, momentum: a relativistic particle
has a momentum p = ymv, where my is the particle’s invariant mass, v is its veloc-
ity (in a given inertial frame), and y is the Lorentz factor,

oLy 1<z>2+ §<z>“+ i(z)"+...
2 2\c 8\c 16 \¢ ’
- (1)
p

where the second equality gives the first few terms of its Taylor series expansion. As
v/c approaches zero, y approaches one, and the momentum of the particle is given by
its classical definition, p = myv. So the conservation of relativistic momentum (in
the absence of a net external force) explains the conservation of classical momen-
tum when an object’s velocity is very small compared to c. Again, on an HF-style
approach, we might try to capture this recovery of classical momentum with the fol-
lowing claim:

(SR) The momentum of a classical particle is p if and only if the limit of the relativ-
istic momentum would be p if v/c were zero.

It is true that p = mv holds exactly when v = 0. But v = 0 is strictly false of any
moving target. And classical mechanics is useful for far more than describing sta-
tionary objects! Appeal to the approximating limit resolves this issue. For the veloc-
ities of everyday objects (like bikes or cars or trains), the second term of the series
expansion of y only makes a difference of about one in one hundred billion—and the
corrections offered by the following terms only get smaller from there. In this way,
special relativity suggests we can use a very small e to assert the empirical correct-
ness of classical laws of physics for everyday objects.

We could multiply examples indefinitely—and they need not be drawn from the
physical sciences, either! Strevens (2019) cogently argues that another example
comes from a standard justification of deterministic models in population genetics.
Following Strevens, we can use a straightforward model to illustrate the point. Con-
sider just two generations of a population B of monoploid organisms, i.e., organ-
isms containing just one set of chromosomes. Now suppose that each organism must
possess one of two alleles expressing variants of a given trait, A or A’, the former
of which provides an adaptive advantage over the latter. Our model’s input is the
proportion of the parent generation with A, and its output is a distribution predict-
ing how prevalent A will be in the next generation. Fix the size of the population at
an even number N for both generations. Next, suppose that our model maps a parent
generation with half A-organisms and half A’-organisms to the Gaussian approximat-
ing the binomial distribution for p with a sample size N. As N approaches infinity,
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the standard deviation of the Gaussian approaches zero. The proportion of next-gen-
eration organisms with A is thereby “fixed” as we approach the limit: if the mean of
the Gaussian for a half-A, half-A’ parent generation is p = 3/4, then three-fourths of
the next generation will have trait A with probability one. Thus, it seems that we can
replace our probabilistic model with a deterministic one for large enough popula-
tions.® But suppose we gloss this explanation in the HF-like way:

(GD) The proportion of the organisms that possesses trait A in the next generation of
B will be p if and only if that proportion would be p if B were infinite.

Once again, the limit system has a fatal flaw. The notion of “the proportion of a pop-
ulation with a given trait” only makes good sense for finite populations! As Abrams
(2006) notes, a close analog of Hajek’s problem of ordering applies directly to this
case: the value of p depends on the order of the sequence of members of the popula-
tion. Strevens infers from this fact that infinite-population models cannot serve as
idealizations in Norton’s sense. He argues for a weaker sense in which these models
provide idealizations, but he concedes that a merely-approximating limit solves the
paradox.* Such a limit says that the actual proportion of As will be at most € away
from p for any finite-but-large population B.

The frequentism case seems to be one more example of a merely-approximating
limit. It is the goal of the next section to substantiate this claim, but here is a quick
and rough sketch of the idea. Our target system is now some collection X of attrib-
utes A}, A,, and so on, associated with a reference class B describing some empiri-
cal setup. Suppose we have N repeated trials or runs of this setup, and we record
which attributes appear in which trials. We specify one way of taking the limit of
these attributes’ relative frequencies as N — oo. If we have chosen the right way,
then the resulting value should approximate the actual frequencies (for a not-too-
liberal choice of €). One can then derive that these approximate values must obey

3 One might roughly identify the variance of the Gaussian in this model with genetic drift. Then, one
could say that something like the above argument demonstrates why genetic drift is eliminated in large
populations, isolating effects due to other evolutionary forces. Gillespie’s (1998, §2.2) textbook presen-
tation, for example, seems to adopt this view. Nevertheless, this sort of causalist interpretation is not
required for the infinite-population idealization to pose an issue. The issue remains as long as we use the
deterministic model to explain actual genetic data, even if we only take this model to posit brute statisti-
cal facts. For an overview of the controversies surrounding causalist versus statisticalist interpretations
and the precise definition of genetic drift, see Pence (2021).

4 Strevens argues that deterministic models are asymptotic idealizations, useful models extrapolated
from the finite stochastic models discussed above, but not uniquely fixed by them in the N — oo limit.
This view preserves, e.g., Gillespie’s talk of deterministic models as “infinite population models,” if only
as a conventional choice of language. I find myself agreeing with what Strevens calls his “Nortonizing
voice”—a voice which, in short, suggests that we should not be wedded to such conventions (2019, p.
1727). But Strevens also gives good reasons to preserve infinity-talk in this particular context, and I do
not want to take a hard stance on this strand of the debate.

Abrams (2006), writing before Norton’s work on idealization, also argues for a different resolution of
the paradox: he claims that problem of ordering is not applicable because (a) the infinite-population limit
uses a prior notion of probability, and (b) the limit depends only on N rather than any particular speci-
fication of population members. Notably, (b) anticipates my response to Hajek’s (3), below (Sect. 4.1).
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Kolmogorov’s laws. Of course, HF makes poor sense of this explanation—just as
SV, BG, SR, and GD make poor sense of their respective explanations.

In sum, it seems that limits of relative frequencies explain laws that approxi-
mately govern empirical systems, just like the Boltzmann-Grad limit, the low-veloc-
ity limit, and the infinite-population limit. If one takes an HF-style approach to these
latter limits, we get accounts that make poor sense of well-regarded scientific expla-
nations. Parallel reasoning motivates us to take an approximation-first approach to
frequentism. But what, exactly, should this approach look like?

3 Approximation-First Frequentism

This section takes a stab at formally stating an approximation-first approach to fre-
quentism. I slightly modify von Mises’s definition of a collective in order to sharpen
my statement of AF (Sect. 3.1). Then I demonstrate how the resulting definition
of probability explains Kolmogorov’s axioms as approximately true laws of nature
(Sect. 3.2).

3.1 Getting Rid of Randomness

Von Mises provides an excellent starting point for our journey to an approximation-
first view. He famously asserts that the term “probability” only makes sense when
defined in terms a collective, an infinite sequence of attributes satisfying two formal
criteria. One of these states that the relative frequency of each attribute converges to
a fixed value. The other asserts that this value cannot change whenever one selects
a subsequence using some fixed rule or place selection. Many have criticized von
Mises on the grounds of the latter condition, which aims to fix a sense in which the
sequence of outcomes is random. In this vein, it is perspicuous to view collectives
as attempted—but failed—idealizations. To no avail, Von Mises tried to cook up an
analogy between the randomness of chancy events and some property of his limit
systems. Still, we might yet extract a fruitful approximation from his recipe.

To do so, let us unpack his formal definition. We start with a set X of arbitrary
size, the elements of which comprise all theoretically possible outcomes or attrib-
utes of a statistical experiment. Then we fix an algebra X of subsets of X that repre-
sent coarser-grained attributes, ones that we might discern in practice. So, for exam-
ple, if A = {x;,x,}, then x, and x, refer to the different states of affairs that might
underlie the observed attribute A. The requirement that Z is an algebra allows us to
talk about attributes using the familiar language of classical propositional logic. To
wit: £ must contain the empty set and X itself, corresponding to falsity and truth,
respectively; it must be closed under complements, corresponding to the “not” con-
nective of classical logic; and it must be closed under finite unions and intersections,
corresponding to the “or”” and “and” connectives, respectively.

Suppose, now, that K is an infinite sequence of elements of X. We let f, denote
the function returning the relative frequency of an attribute in the first N outcomes
of K. If x, and x, occur five times in the first seven elements of K, for instance,
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then f;(A) = % And if x, occurs just three of those five times and B = {x,, x5},
then f;(ANB) = ; And so on. In the infinite limit, these frequencies will become
our probabilities. Thus, the convergence requirement ensures that we can make
sense of probability talk for any logically-expressible attribute.

The randomness requirement is where the trouble comes in. To motivate it,
note that some convergent K have a glaring defect when viewed as idealizations:
the outcomes in K might follow some predictable rule, while actual chancy events
never do. A sequence that is intuitively not random helps to illustrate this point.
Consider, for instance, the sequence of coin tosses that lands heads-tails-heads-
tails forever:

HTHT HTHT ...

This sequence has a limiting frequency of one-half for heads. But gamblers can eas-
ily exploit it by betting heads on every other toss. That is a far cry from what gam-
blers can do with actual coins. Note, however, that we can easily define a rule that
selects every odd-numbered toss, and this rule picks out a subsequence where the
limiting frequency of heads is one. It seems, then, that we might be able to explain
the predictability of this sequence as follows: the limiting frequencies change under
an admissible place selection, one that is easily specifiable like the odd-number rule.
It will not do to allow for any place selection. Consider, for example, a rule that
depends on the outcome x,: the rule that selects all heads outcomes wherever they
appear, creating a sequence with a limiting frequency of one for heads regardless
of that limit’s original value. A hypothetical gambler might exploit this rule if they
could access some oracle who knew all the outcomes in advance. Actual gamblers,
however, are not so lucky! Thus, it seems that one might characterize admissible
rules as those rules that real gamblers could exploit, in some sense or another. Prima
facie, such a characterization might provide a fruitful analogy between infinite
sequences and finite sequences. This analogy would not do away with Hijek’s prob-
lem of ordering; the limiting frequencies of infinite sequences cannot be invariant
under re-orderings like the relative frequencies of finite ones. Nevertheless, the for-
mer sequences might still be random like the latter ones, in the sense that gamblers
could not exploit either.

Let us formalize this intuition. We say that a place selection is some formal
rule that picks out a subsequence of K to create a new infinite sequence, one that
might or might not yield new limiting frequencies for attributes like A. Let y be
the set of all and only the admissible rules, each of which specifies just one sub-
sequence of L. We now have the tools for a mathematically precise statement of
von Mises’s frequentism.

Von Mises’s frequentism. A collective K is an infinite sequence of ele-

ments of X satisfying the following criteria:

Convergence. For any A € X, the limit of fy(A) as N — oo exists.
Randomness. Each rule in y specifies a subsequence of K that preserves
these limiting frequencies.
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The probability p of A € X relative to a collective C is the limiting value of the
relative frequency of A in /C,

p(A) = lim f(A).

Note that this definition splits neatly into two halves. On the one hand, the condition
of convergence specifies a limiting property, the limit of the finite frequencies of our
target system. On the other, the condition of randomness pinpoints a property of the
limit system that, prima facie, might bear a fruitful analogy with the target.

However, while von Mises had high hopes for this analogy, most philosophers
of probability agree that its outlook is rather dim. In Diaconis and Skyrms’ (2017)
retelling, Per Martin-Lof nailed the coffin shut. Martin-L6f (1969) pinpoints an una-
voidable difficulty in using collectives to explain randomness: so long as we can enu-
merate all of the admissible place selections, it is impossible to rule out sequences
that a gambler can exploit. A bit more precisely, he cites the following result of Ville
(1939): as long as y is countable, there is a collective /C for the fair coin where, after
some finite initial segment, the relative frequency of heads approaches its limiting
value of one-half from above. A gambler can exploit this sequence. As long as they
always bet heads, they are sure to eventually end up with a net gain, at which point
they can walk away. If we want collectives to rule out these sorts of sequences, we
need to allow for an uncountable set of admissible place selections. This fact rules
out Church’s (1940) proposal to define admissible place selections using computable
functions, which are countable in number. Coming up with a principled characteri-
zation of admissibility now seems quite difficult, indeed.

Martin-Lof takes this issue to reveal a deep defect in von Mises’s program. How-
ever, it is worth stressing that these authors have different core concerns. Von Mises
seeks to explain as much about probability as he can—including probability func-
tions’ conformity to Kolmogorov’s rules—in terms of facts about relative frequen-
cies. Martin-Lof, on the contrary, chiefly aims to explicate the essential properties of
Bernoulli sequences, infinite sequences of independent and identically-distributed
two-valued random variables.” Perhaps accordingly, Martin-Lof is happy to take
Kolmogorov’s rules as an axiomatic definition of probability, one that does not
require explanation in terms of frequencies. He then constructs his own immensely
fruitful explanation of the randomness with Kolmogorovian probabilities already
in tow.® As Diaconis and Skyrms note, this account succeeds in characterizing the

5 While Martin-Lof (1966) presents his definition of a random sequence as a competitor to von Mises’s
definition of a collective, he arguably elides this difference between their projects’ aims. He seems to
identify collectives with Bernoulli sequences; he writes, for example, “Bernoulli sequences (Kollektivs,
in the terminology of von Mises) [...]” (Martin-Lof 1966, p. 618). But von Mises seems to have a more
flexible conception of what a collective can be, as evidenced by his discussion of “chance” (1981, p. 29).
6 Very roughly, Martin-Lof considers the probability of infinite sequences based on the binomial dis-
tribution, e.g., the probability of a sequence of outcomes for the tosses of a fair coin. He then approxi-
mates a definitively non-random infinite sequence by a nested series of ever-more improbable ones. So,
for example, if U, contains all sequences starting with “heads, ...” U, might contain all sequences starting
with “heads, tails, ...,” and so on, as long as the probability of U, is no greater than 1y Such a sequence
constitutes a Martin-Lof test; if a sequence lies in the intersection of all the U,,, it fails the test. Contrarily,
we say that a sequence that passes every such test is Martin-Lof random. One can precisely define a gam-
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randomness of an infinite sequence, but it does not offer a von Mises-style analysis
of probability (2017, pp. 163-164). It uses Kolmogorov’s axioms to explain a prop-
erty of an infinite system, rather than the other way around.

However, the von Mises-style frequentist should not throw in the towel just yet.
Von Mises himself suggests a live option (and one that is, in fact, compatible with
Martin-Lof’s strategy): we can remove the demand that our definition of probability
explicate randomness on its own. He notes that we can still make sense of a prob-
abilistic concept when an infinite sequence of outcomes satisfies convergence but
fails to satisfy randomness (although he prefers to use the term “chance” in this con-
text; 1981, p. 29).” Let us call such a sequence a chance collective. A chance collec-
tive allows for a weakened version of von Mises’s frequentism.

Von Mises’s frequentism (weakened form). A chance collective £ is an infi-
nite sequence of elements of X satisfying the following criterion:

Convergence. For any A € X, the limit of fy(A) as N — oo exists.
The probability p of A € T relative to a chance collective K is the limiting
value of the relative frequency of A in IC,

p(a) := lim fy(A).

Conveniently, this weakening leaves us with just the approximating limit from von
Mises’s original definition. So we are free to interpret chance collectives as mere
approximations, ways of precisely specifying a limit property that partially describes
a finite target.

This weakened frequentism embraces the “pathological” sequences described
above. Both the repeating heads-tails-heads-tails sequence and the converging-from-
above sequence are viable chance collectives. So one might object that my weak-
ened proposal does nothing to address the problem that Martin-Lof poses. I agree!
Chance collectives lack a property of randomness, and so frequentists cannot use
them to explain why gamblers cannot exploit chancy events. Still, I do not think
that frequentists need to give such an explanation, as long as they are upfront about
the fact that they are only giving partial descriptions of their targets. Frequentists
should view an account of randomness as icing on the cake, something nice to have
but not a tragedy to lose. At first, it might seem a shame that our limit systems pos-
sess an additional disanalogy with our finite targets. However, given the problem of
ordering, we were skeptical of these limit systems from the jump. What is crucial is
that our limit properties (the limiting frequencies) remain explanatorily powerful:
they suffice to explain all of Kolmogorov’s rules (as I will argue in the next section).

Footnote 6 (continued)

bling procedure, a computable martingale, that cannot win for a sequence if and only if that sequence is
Martin-Lof random. For more details, see Martin-Lof (1966) and Diaconis and Skyrms (2017).

7 Martin-Lof (1969) notes that the basic idea of getting rid of randomness also has precedent in the work
of Tornier (1936). However, Tornier couches this idea in a different mathematical formalism, one invok-
ing matrices of outcomes rather than sequences.
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Given the prevalence of mere approximations elsewhere in science, this much might
be enough.

This move is made all the more appealing by the work of Abraham Wald, which,
as even Martin-Lof is happy to admit, “did away with all purely mathematical objec-
tions” against von Mises’s collectives (1969, p. 30). Wald’s key result goes as fol-
lows: so long as X and y are countable, there exists, for any finitely additive prob-
ability measure p on X, a continuum of collectives where the limiting frequencies
are identical to the probabilities (1938, Theorem III, pp. 84-85). As a special case,
let y be the empty set (which is countable), so that every chance collective is a col-
lective by the lights of y. Thus, Wald’s result immediately implies that there exists
a continuum of chance collectives recovering any finitely additive p on any count-
able X. That means that we can use a chance collective to explain nearly any prob-
ability function we care to use in the sciences. It turns out that we can use a simple
and widespread assumption from physics to explain most of the rest—namely, the
assumption that the properties of empirical systems ought to be, in some relevant
sense, continuous.

I will make good on that last promise in the next section. First, I want to address
an issue with the above statement of the weakened form of von Mises’s frequent-
ism: right now, the role played by approximation is left wholly implicit. It would be
better to be direct about the relevant features of our target system. Let us do so with
the reference class B. B ought to specify the empirical setup that produces the stable
frequencies, and it ought to specify our desired error tolerance €. We can use these
facts about B to determine a chance collective, Ky, that suitably represents it. As
such, we now have one way of filling in the square brackets in the earlier statement
of AF to obtain a mathematically precise and philosophically transparent definition®
of probability:

(AF) The probability of an attribute A in a finite reference class B is p if and only if,
in the chance collective /Cy that represents B, the limiting frequency of A,

p(A) = lim fy(4),

yields a value of p(A) = p that approximates the relative frequency of actual
occurrences of A within B.
Just as before, we say that the limit approximates the relative frequency when it con-
verges to a value that is a good match for the empirical data—that is, when it is
empirically correct for a not-too-liberal choice of €.

8 In particular, AF is an “analysis” in the sense of Quine (2013, §53), which Gupta (2021) calls an
“explicative definition.” Recall that Quine, drawing on Carnap (1947, §2), rejects the idea that analy-
sis should “expose hidden meanings”; instead, he thinks that it should “fix on the particular functions
of the unclear expression that make it worth troubling about” (2013, p. 238). I think that AF does pre-
cisely this. It captures the essential uses of objective-probability talk in science (even though it does not
recover other uses of this talk). Hajek (2019) endorses Carnap-style explication as an approach to analyz-
ing probability, and he lists criteria of adequacy according to his view of which bits of probability talk
are essential. I do not want to claim that AF satisfies all of his criteria! I only want to claim that AF offers
a different and attractive Carnap-style explication (that still ends up satisfying many of them).
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I am leaving the matter of what it means for Ky, to represent B deliberately vague,
as many factors might justifiably play a role. B might include details about the physi-
cal laws governing the system in question, laws which might favor one choice of
limiting values over another. Or B might contain empirical facts about past stable
frequencies. Or it might contain both. In any case, what is crucial is that kCp is appro-
priate for the empirical setup and the error tolerance that B specifies.

To see how this works in practice, consider typical tosses of a fair coin. On AF,
the hypothesis that the coin is “fair” means that the observed frequency of heads in a
sequence of flips will differ from one-half by no more than some specified error tol-
erance, €. In this case, ~ might be the Boolean algebra generated by the propositions
H for “the coin lands heads” and T for “the coin lands tails,” and B might include
the claims that the coin is evenly-weighted and that agents toss it in the usual way.
B should also specify our error tolerance; say, € = .05. In this case, the symmetry of
the coin motivates our choice of a Cy with symmetrical limiting frequencies, one-
half for heads and one-half for tails. We could, instead, include past tosses of the
coin in B and use this fact to fix Ky instead. Either way, K approximates the data
well. Nevertheless, changes in the empirical setup might require a different choice. If
the coin is weighted unevenly or a pathological agent “tosses” the coin by dropping
it from a short height, we ought to specify a different reference class B’ and assign
it a new collective. Changes in our error tolerance might require a new collective,
too. Chance collectives are objective because they are grounded in the properties of
empirical systems, but they are free to grow and change along with our theories and
measurements of these systems.

Conveniently, typical coin tosses also offer a paradigm of this growth process.
Consider a slightly different X for these tosses: the Boolean algebra generated by the
propositions S for “the coin lands with the same side up as that which we flipped
it from” and D for “the coin lands on the other side.” Let B be the same as before.
One might think that it would suffice to take the old collective K and replace all
the Hs with Ss and all the Ts with Ds. But with regards to S and D, it turns out that
the usual way that agents toss fair coins is ever-so-slightly biased. Diaconis et al.
(2007) argue via both physical analysis and extensive empirical trials that such flips
tend to land on the same side on which they started, with a probability of about .51.
Suppose, then, that we were to decrease our error tolerance to ¢ < .01 and that the
number of coin flips were to be suitably large (in a sense that I will make precise in
the next section). Then the strategy of substituting the propositions in Cz would no
longer do. We would need a new collective yielding a limiting frequency for S that
is closer to .51.

In any of these cases, the bound ¢ introduces some unavoidable ambiguity in our
choice of chance collective. A IC;9 with limiting values of .5001 for heads and .4999
for tails, for example, will do just as well as Ky to define probabilities for B, accord-
ing to AF. So, to recover talk of unique probabilities, we fix by convention just one
suitable chance collective for any given reference class B (hence the reference to the
collective that represents B in AF). Of these, any of the continuously many Xy with
the same limiting values will do. Nevertheless, note well that convention plays a
minimal role in this account. The empirical setup and the error tolerance do the bulk
of the work.
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AF is quite the denuded frequentist definition of probability, to be sure! The sense
in which it says “objective probabilities” are “objective”—namely, that the appropri-
ate limiting values depend on the empirical setup—is thin. The error tolerance intro-
duces a hefty subjective element to it, too. Moreover, AF simply abandons the goal
of explaining the randomness of chance events. Can it do any explanatory work at
all? In the next section, I argue that AF, as meager as its commitments are, provides
a strikingly rich explanation of Kolmogorov’s axioms as approximate laws of nature
governing regularities in finite sequences.

3.2 Kolmogorov’s Axioms as (Approximate) Laws of Nature

As discussed above, the v/c — 0 limit of special relativity explains why the conser-
vation of classical momentum holds as an approximate law of nature. In short, when
v/c is small enough, this law yields predictions that are close enough to actual values
to be considered empirically correct. That is precisely the sort of explanation that
AF gives for Kolmogorov’s axioms, as I will now detail.

But first, a caveat. As Chakravartty (2007, 2010) notes, scientific realists have
formed a longstanding (albeit rough) consensus that strict truth is too much to
demand from scientific theories—but they still tend to disagree about what it means
for a theory to be “approximately true.” There are several well-developed theories of
approximate truth on offer (see, e.g., Popper, 1972; Oddie, 1986; Aronson, 1990).
However, Chakravartty is skeptical that any of them capture the qualitative nature of
the sort of approximate truth yielded by approximations and idealizations. Palacios
and Valente (2021) agree, and they suggest a minimal criterion for approximately
true theories; namely, just that the theory is empirically correct in the sense detailed
Sect. 2. That is, they take a theory to be approximately true when that theory pre-
dicts real values for properties of a system within a tolerable e of their empirically-
measured values. I consider this condition a good starting point for someone aiming
to develop an account of approximate truth suitable for the scientific realist. In other
words: whatever else it means for Kolmogorov’s laws to be approximately true, it
should at least mean that they are empirically correct.

Let us briefly review these laws, starting with what Kolmogorov (1956) calls the
“elementary” theory. This theory contains all the laws that any probability function
must satisfy, and collectives derive these laws exactly. We can state the first three of
these as follows, for a countable event algebra X defined on a sample space X and a
function p : £ - R.

Non-negativity. The probability of any A; € X is greater than or equal to zero;
P4 2 0.

Normalization. The probability of one of the possible states in X occurring is
one;

pX)=1.
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Finite additivity. Let / be a totally-ordered and finite set of indices. For any
subset {A; };; C X where A; C X'\ A; for alli # j,

P UA,- =ZP(A,~).

Like a host of other scientific theories (and especially physical theories), Kolmogo-
rov’s theory also has a system-subsystem relation. The relation here is just condi-
tional probability, the definition of which allows for modifications to the algebra of
events. For instance, suppose we wish to restrict our attention to only those attrib-
utes in X that are present when A, is present. Formally, these are elements A; such
that A; N A; = A;. These elements form a subalgebra, | A;. Via the usual definition of
conditional probability, the state p on X yields the following state on the subsystem
| A,, supposing that p(A,) is non-zero:

Conditional probability. When p(A,) > 0, the probability of A; € X condi-
tional on A, € X is equal to the joint probability of A, and A, over the prob-
ability of Aj:

p(A; NA,)
pAy)

If p(A, |A,) =p(A,), then we say that A, is independent of A,.” These four rules
exhaust Kolmogorov’s formal description of the core, elementary theory. He goes
on to strengthen the finite additivity for infinite cases but stresses that he “arbitrar-
ily” restricts his attention to functions that satisfy it (1956, p. 15, emphasis Kol-
mogorov’s). It is not hard to give a better justification for this move (as Kolmogorov
is probably well aware; more on that in a bit). But I think Kolomogorov is quite right
to stress, here, that the above four rules are the only hard and fast requirements on
probability.

AF provides a straightforward and exact derivation of these rules. Given that X is
countable, there are (continuously) many chance collectives Ky to choose from; let
us pick any one of these. Note first that each fy(A;) must be a rational, non-negative
number. If an infinite sequence of rational, non-negative numbers converges, it must
converge to a non-negative real number. So non-negativity is satisfied. Similarly, the

ifp(Ay)) >0, p(A, Ay =

° Note well that Kolmogorov’s definition of conditional probability in his elementary theory does not
allow one to conditionalize on probability-zero events! Fitelson and Héjek (2017) criticize the defini-
tion on these grounds. That being said, nothing requires the approximation-first frequentist to stop here.
As Meehan (2021) notes, Kolmogorov generalizes the definition when he extends his theory to infinite
algebras X, and the general definition recovers the elementary one as a special case. Contra Fitelson and
Hajek, Meehan cogently argues that we have good reasons to adopt Kolmogorov’s general definition of
conditional probability. It would be interesting to see if AF can naturally justify this definition, like how
it justifies countable additivity below. But I leave this matter for future work.
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relative frequency of some state obtaining, fy(X), must be one for every N. An infi-
nite sequence of ones converges to one, yielding normalization.

Finite additivity follows from the continuity of addition. Let A; and A, be
incompatible attributes; formally, this means that A; N A, = fJ. The relative fre-
quency of A; is the number of occurrences of A; over N (for i = 1,2). But when-
ever A; occurs in [Cy, A, cannot. So the relative frequency that one or the other
occurs in the initial N trials of ICp is just the frequency of the first added to that
of the latter: fy(A; UA,) =fy(A,) +fy(A,). Generalizing, if we have a finite set
{A;};c; of incompatible attributes whose disjunction is defined, then

p<UA,~> = lim (wa\») = 3 (lim 1)) = Y pa.

The second equality follows from the continuity of addition, while the first and third
follow from AF. So finite additivity is assured.

We obtain the definition of conditional probability by looking at appropriate
subsequences of g. To start, suppose we want to describe the relative frequen-
cies of attributes under the assumption that A, must occur. Let us restrict our
attention to the case where the limiting frequency of A, is greater than zero. In
this case, the selection rule picking out events in Kz where A, occurs yields a sub-
sequence, and this subsequence is a chance collective for | A,. Pick any A, € %,
and note that the limiting frequency of A, in this subsequence is equal to the limit
of the fraction of A,-events in Ky that also yield A,. In other words:

A NA,)
In(Ay)

where p(A, | A,) refers to the limiting frequency of A; in the subsequence of A,
-events in /Cp. Then, due to the continuity of quotients, we have

. _ o IWAINAY) limy o fy(A NAy) - p(A NAy)
P >0 P A = I Y = limyon /e P

if lim fy(4,) > 0, p(A;]4) = lim

s

That completes our derivation of Kolmogorov’s laws for countable algebras X. So
long as the empirical data verifies that the finite frequency of each fy(A) is tolerably
close to the limit value p(A), then these limits serve as reasonable approximations of
our target. Kolmogorov’s core axioms then come out as approximately true (i.e., at
least empirically correct) laws governing finite relative frequencies.

That might suffice, but I think AF also lends Kolmogorov’s strengthening of
additivity a compelling justification. To recover this strengthening, allow the [ in
our statement of finite additivity to be countably infinite. Notably, Kolmogorov
himself does not introduce this new condition—countable additivity—as a brute
posit. Rather, he derives it from an additional continuity assumption (1956, pp.
15-16). Selecting for continuity makes good sense on AF. AF directs us to find a
chance collective that represents B, and this choice can (and should) be sensitive
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to common modeling practices. One of these takes models of empirical systems
to obey something like Leibniz’s Law of Continuity—which, in slogan-form,
states that nature makes no leaps.

On the current pragmatic approach, it helps to think of this “law” as an empirically-
motivated constraint on models of physical systems. Our physical theories describe
many phenomena—from the transfer of heat to the generation of electricity to the
motion of pool balls—as the gradual change of continuous physical quantities. In par-
ticular, such theories usually assign a system some state ¢ in a space of states M, and
they represent an observable quantity with some continuous function f of g. Mathemat-
ically, fbeing continuous means that for any convergent sequence of g;s in M,

f<jlr?o Clj> =}Hgf(%)-

There are many ways to motivate this condition. For one, differential equations ele-
gantly and concisely describe the sorts of gradual changes mentioned above, and f
must be continuous if it is differentiable. Still, not all changes are gradual. Physicists
often use discontinuous functions to describe phase transitions, like the spontane-
ous magnetization of iron in an external magnetic field. In short, the continuity con-
straint is very helpful for describing some systems and less helpful for describing
others.

Here is how this story plays out for probability: if we think that our probabilis-
tic system makes no leaps, then attributes that grow ever-closer ought to have ever-
closer relative frequencies. In other words, our probabilities should obey an appro-
priate analog of the above equation for f. But what does it mean for attributes to be
“ever-closer”? One useful notion comes from set theory. Take an infinite sequence of
sets A; in X such that | J;A; = A, where we let I = N. One can rewrite this sequence
as a sequence of nested sets, A;, A UA,, A; UA, U A;, and so on. We can define the
limit of this sequence as the set of elements contained in all but a finite number of
sets in this sequence. Then we have

JVi>j.xe L]JAi =4,

i=1

j
lim | JA; := < x
Jooeo o

=

Now we can choose to require that our approximate descriptions of relative frequen-
cies respect this notion of continuity. In other words, we can require that p is con-
tinuous with regards to the set-theoretic notion of convergence defined above,

J J
p{ Jim (JA; ) = limp{ (4,
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Note that the expression on the right-hand side defines the infinite sum ), p(A,-). So
this expression is identical to the requirement of countable additivity.'’ If a prob-
ability function is countably additive, then it is finitely additive, and so there are Kpgs
that yield it. Countable additivity thus amounts to the condition that we restrict our
attention to approximations that make no leaps—a restriction that might make good
sense for some systems and less sense for others.

This much still leaves out some rather important probability functions, including
the Gaussian distribution that we used to justify deterministic models in population
genetics. Typically, when we define probability density functions like the Gaussian
directly on our sample space X, we let them fix the probabilities of subsets of X that
we take to be “measurable.” We usually designate the Borel sets as such. Recall
that the algebra of Borel sets is the o-algebra closure of the collection of open sets
of X, i.e., its closure under complements and countable unions and intersections. In
general, the algebra of Borel sets of X is uncountable. However, as long X is second-
countable (like, for example, R"), it has some countable basis B for its topology.
Let X(B) denote its algebraic closure, i.e., its closure under complements and finite
unions and intersections. Now let o(2(5)) denote the o-algebra completion of that
algebra. o(Z(B)) is the algebra of Borel sets for X. Now note that there is a chance
collective recovering any countably additive probability measure on X(53). By Car-
athéodory’s extension theorem, every such measure has a unique extension to one
on o(Z(B)). That suffices to recover the standard way that we use probability density
functions on R”. In short, AF recovers countably-additive measures on the Borel sets
of X as the continuous extensions of its continuous approximations.'!

10" Kolmogorov (1956) derives countable additivity from a slightly different (but mathematically equiva-
lent) continuity assumption; his condition asserts that the probabilities assigned to a nested sequence of
sets of decreasing size ought to converge to zero. Interestingly, Elliot (2020) reads Jaynes (2003) as giv-
ing an argument very similar to one that I present here. Jaynes, however, thinks that countable additivity
is a necessary condition, and Elliot is quite right to stress that the continuity is not mathematically neces-
sary. However, I only mean to assert that the condition jibes well with common modeling practices.

Moreover, I only mean to assert that continuity is a particularly perspicuous path to countable additivity
for frequentism. The issue, of course, arises anew in the Bayesian context. de Finetti (1974) is famously
skeptical of applying countable additivity in this context, but many have given excellent reasons to
reevaluate his arguments; see (among others) Seidenfeld and Schervish (1983), Williamson (1999), How-
son (2008), and Easwaran (2013) for further discussion.
' This basic strategy is originally due to Wald (1938). Note, however, that Wald uses the stronger condi-
tion of complete additivity (“Totaladditivitit™) that allows I to be uncountably infinite. Moreover, he does
not appeal explicitly to continuity to justify it. Perhaps accordingly, Martin-Lof asserts that Wald’s strat-
egy is “unmotivated” and “clearly unsatisfactory” without further comment (1969, p. 34).

van Fraassen (1977) offers a more interesting critique, which runs as follows. To start, note that the
Gaussian assigns probability zero to every Borel set of R containing countably many points. But then
note any collective IC defined on X comprises just such a Borel set. With this idea in mind, van Fraassen
asserts that because the probability function “assigns zero to every countable point-set, it is not identifi-
able with any relative frequency” (1977, p. 138). Of course, K is not included in the algebra Z(B). Still,
van Fraassen might mean to suggest that it is arbitrary to ignore the fact that the collective gives the
Borel set K a natural or intuitive limiting value of one. In my view, however, this suggestion amounts to a
different proposal for extending the limiting frequencies defined by a continuous collective. Van Fraassen
runs a similar argument against an example due to Reichenbach. That argument yields a different unde-
sirable generalization of the core, countable-X collectives. In both cases, van Frassen suggests that the
lack of a unique extension deprives limiting frequencies of their ability to represent probabilities. I view
this lack of uniqueness as a resource: it allows the frequentist to accommodate various modeling assump-
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As a bonus, we can use our definition of probability to help determine when N
is large enough for a very small €. The idea is to exploit the recursive structure of
repeatable trials. A trial is simply a test of the propositions in £, and we have much
flexibility as to what we put in . £ might be the Boolean algebra generated by a
single proposition A. Consider, then, N independent tests of . We can treat each test
as a new proposition: A; or its negation for the first test, A, or its negation for the
second, and so on. Let ¥’ be the Boolean algebra generated by those propositions.
Now pick a chance collective [ for X with a limiting frequency of p for A. Under
the assumption that the limiting frequencies for A,,A,, ..., A, in X’ are independent
and identical to p, we can derive what they must be from Kolmogorov’s rules. As it
turns out, they must agree with the binomial distribution. Thus, we can find limiting
values for seeing m instances of A in the N tests. Of course, the actual value of m/N
for any given trial of £’ will deviate from p. But a good measure of such deviations
is given by what we usually call the standard deviation,

_ [pd=p)
o= -
N

as it turns out that the binomial distribution specifies a limiting value of about .98
for m/N to fall within 30 of p. As N goes to infinity, ¢ approaches zero. So we can
use our theory to assess how large N needs to be to justify a small e. In particular,
the above expression supports Diaconis et al.’s (2007) claim that we need roughly a
quarter of a million typical coin tosses to reveal the dynamical bias they predict.

I take AF to be a ruthlessly pragmatic approach to frequentism. It says barely
anything about the world beyond what the empiricist holds sacred: those roughly-
stable finite frequencies that we observe really are there, and they really are well-
described by infinite limits. One might reasonably say more. In particular, one might
think that limiting frequencies being “close enough” to actual frequencies in large-
enough sequences of type B implies that the limiting frequency is, in some sense,
typical of B. Hubert (2021) makes this intuition rigorous with an account that he
calls typicality frequentism. By stipulating a typicality measure on the state space of
some physical theory with in-principle infinitely-repeatable measurements, Hubert
defines the probability of some state as the limiting value that its relative frequencies
typically approach. I like this analysis, but I want to stress that a simpler and weaker
one—approximation-first frequentism—is available. AF does not require any ante-
cedent physical theory or definition of typicality.

Moreover, I think that AF is particularly well-suited to address Hajek’s argu-
ments against HF. These arguments serve as excellent foils for the approximation-
first view. They help pinpoint the dangers of treating limiting frequencies as robust
idealizations.

Footnote 11 (continued)
tions, including (but not limited to) continuity. I elaborate on this idea in my discussion of Héjek’s (13),
below (Sect. 4.2).
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4 Fifteen Foils for the Approximation-First View

Hajek’s arguments against HF can be roughly split into three main themes: giv-
ing up on empiricism, technical difficulties, and issues with the explanation. There
is some overlap amongst these, but I group five arguments into each category (to
respect symmetry). I will discuss how AF recasts each group of arguments in turn
(Sects. 4.1-4.3) and close by considering a classic worry about “circular” appeals to
the Law of Large Numbers (Sect. 4.4).

4.1 Giving Up on Empiricism?

The giving-up-on-empiricism theme canvasses Héjek’s first four arguments and the
ninth: (1) “An abandonment of empiricism,” (2) “The counterfactuals appealed to
are utterly bizarre,” (3) “There is no fact of what the hypothetical sequences look
like,” (4) “The problem of ordering,” and (9) “Subsequences can be found converg-
ing to whatever value you like.”

(1) and (3) target higher-level reasons that one might take hypothetical frequen-
cies to depart from general empiricist commitments. As to (1): Hajek argues that
hypothetical frequencies are “unknowable in the strongest sense”—observers would
have to live forever to see them or otherwise measure events in increasingly-shorter
time intervals in some ‘“Zeno-like” nightmare (2009, p. 214). So, Hijek claims, a
particular sort of empiricist should balk. For example, a logical empiricist in the
style of Carnap ought to note that there is no reasonable observable vocabulary that
contains such entities.

That might well be so. Nevertheless, I think that scientific realists of the sort
described above comprise the best modern audience for frequentism. These realists
have broken definitively with the logical empiricism of Carnap. They have accepted
the need for approximate truth; they recognize the importance of idealizations and
approximations. And they are more than happy to assert that other limiting values,
such as instantaneous velocities, can be (at least) approximately true descriptions of
empirical systems.

Interestingly, Hajek also argues that there is a relevant difference between limit-
ing frequency and limiting velocity: one can know the value of the latter (but not
the former) “well enough,” he claims. But how so? An observer measures velocity
with rods and clocks, recording finite distances traversed in finite time (and dividing
the former by the latter). Perhaps an idealized observer might render these inter-
vals ever-shorter. But now Zeno’s ghost haunts us again—and in any case, ideal
observers are not actual observers. Actual observers seem better off sticking with
the approximation approach: they should treat the limiting value in question as an
approximation of a finite target. Then they know (at least) when that value is empiri-
cally correct. This last claim is also true of limiting frequencies.

Héjek offers another reason why one might not know limiting frequencies: he
subscribes to the view that knowledge is factive, and he argues (3) that there is no
fact of the matter about what the hypothetical sequences look like. As Jeffrey (1992)
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puts it, asking whether a coin lands heads on the tenth toss is like asking about the
mass of the tenth planet. In either case, there is no fact of the matter. Hajek claims
that the situation is even worse than this. He thinks that “it is consistent with the
concept of mass” to answer the planet question, but giving a fact about the tenth toss
denies the chanciness of the system.

This criticism, (3), is a fine one, as far as it goes—but the approximation-first
frequentist already takes it to heart. One chance collective yielding the empirically
correct limiting frequencies is as good as any other, and there are (continuously)
many sequences to choose from. In particular, one can find a gz and a IC; that both
yield the same limiting frequencies but give different outcomes for the tenth toss.
One only picks one of these to represent B to precisely and consistently define our
approximating limit. This choice of representation is a convention, and it does not
grant us knowledge of the outcome of the tenth toss (or any other) in advance. It
only grants us knowledge of the limiting frequencies, qua approximate descriptions
of finite frequencies. Hajek might want to deny that one can know these latter facts.
However, while this sort of response might hold water against HF, it begs the ques-
tion against AF.

Héjek’s (2) and (4) target more specific features of empirical practice that osten-
sibly do not jibe with hypothetical frequencies. In (2), Hijek argues that the frequen-
tist posits counterfactuals that are just too bizarre. In his words:

Consider the radium atom’s decay. We are supposed to imagine infinitely many
radium atoms: that is, a world in which there is an infinite amount of matter
(and not just the 10%° or so atoms that populate the actual universe, accord-
ing to a recent census). Consider the coin toss. We are supposed to imagine
infinitely many results of tossing the coin: that is, a world in which coins are
‘immortal’ [...] In short, we are supposed to imagine utterly bizarre worlds.
(2009, p. 216)

It is hard to take this concern very seriously in light of the above examples of
approximating limits in science. One does not ever intend to apply the Boltzmann
equation to a gas of, say, a centillion particles—a gas with far more than 10%° parti-
cles, by many orders of magnitude! Nonetheless, the Boltzmann-Grad limit alludes
to such systems on its way to an exact derivation of ideal-gas dynamics. In both this
case and the case of AF, the limiting property is true—approximately—of large sys-
tems whose size lies below a given threshold.

Let us turn to (4), the problem of ordering. As flagged in the introduction, Hajek’s
(4) is a paradigm case of an idealization distorting its target. The value of a limiting
frequency depends on the order of events, while the value of a finite relative fre-
quency never does. This fact locates a necessary dis-analogy between the idealiza-
tion and the target. It provides an excellent reason to think that infinite sequences
cannot serve as idealizations of chancy events. But it gives no reason not to use
these sequences as approximations.

Hajek appeals to (9), the fact that subsequences of outcomes can be found where
(non-trivial) relative frequencies converge to whatever value you like, to provide
another example that he means to support his arguments (3) and (4). If (4) makes
one wary of treating collectives as idealizations, then (9) should seal the deal: it is
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precisely the problem of defining admissible place selections. As discussed above
(Sect. 3.1), this issue panned out rather poorly for von Mises! However, the response
to this point is the same as for (3) and (4). Any suitable sequence of events will do
on the approximation-first view, whether that sequence comes from a subset of some
other model or not. Pathological subsequences are a problem for the idealization, not
the approximation.

4.2 Technical Difficulties?

A good chunk of Hajek’s arguments fall under the theme of technical difficulties.
These arguments mainly arise from HF being a particular sort of modal claim. These
issues disappear on the approximation-first view, as the limit merely describes one
actual, finite target. They include (5) “The limit may not exist,” (6) “The limit may
equal the wrong value,” (8) “The limit might exist when it should not,” (13) “Limit-
ing relative frequency violates countable additivity,” and (14) “The domain of limit-
ing relative frequencies is not a field.”

For (5), Hajek notes that one can specify infinite sequences of outcomes where
the limit of a relative frequency does not exist. Then he asserts that a fair coin might
yield the outcome

HT HHTT HHHHTTTT HHHHHHHHTTTTTTTT ...

of 2" heads followed by 2" tails. The relative frequency of heads does not converge
but instead oscillates endlessly. Nonetheless, Hajek asserts that this lack of conver-
gence does not contradict his claim that the coin is fair (and so has probability one-
half). He also claims that no principle rules out this sequence. On the one hand, this
claim seems a bit strange, as the same sort of counterfactual that Hajek labels as
“bizarre” in (2)—one in which a coin is “immortal”—is now meant to be “no more
impossible than your favorite ‘well-mixed” sequence” (2009, p. 220). On the other
hand, Hajek might mean to say that the truth of any modal claim about the above
sequence of tosses is far from obvious, and so one’s theory of probability should not
speak one way or the other on the matter.

In either case, this worry is strictly one for HF. By appealing to a chance collec-
tive, AF ensures that the limits exist, nullifying the technical worry raised by (5).
More to the point, AF does not, itself, make any modal claims: it asserts that the
infinite limit is an approximately true description of one actual finite target (of a
specific sort). While one might say more than this given a fully fleshed-out theory
of approximate truth, it is not clear that one needs to. Possible worlds need not ever
enter the frequentist’s picture. On its own, AF is strictly silent on Hajek’s “well-
mixed” infinite sequence, nullifying the philosophical worry raised by (5).

Similarly, Hajek claims in (6) that a fair coin might land heads forever. In (14),
he constructs a sequence where the relative frequencies converge for A and B but not
for A N B and suggests that this sequence might also be metaphysically possible. The
same response applies to both: AF gives a mere approximation of an actual system.
It does not itself take a stance for or against these modal claims.
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(8) pursues the reverse strategy of (5), asserting that a limiting frequency might
exist when it should not. Hijek gives three tentative examples of cases that might yield
undesirable convergent frequencies: whether a dart hits a non-measurable subset of the
dartboard; free acts like raising my hand on a Tuesday; and non-projectible predicates
like the grueness of a gemstone. Here, again, Hajek is suggesting that these conver-
gences might be actual modal possibilities. Whether they are or not might matter to
HF, but it makes no difference to AF, which describes finite systems. Let us see, how-
ever, if these examples hold more weight if one takes them to specify undesirable finite
frequencies rather than convergent ones. On this pass, the first example might still pose
a problem. A scientist could use non-measurable sets to represent features of an actual
dartboard, and they could take actual dart-throws to land inside or outside such sets
definitively. If the relative frequency of “inside” outcomes is stable, it might be hard to
build a good chance collective that approximates it. However, this choice of represen-
tation is, at the very least, questionable—measurable sets are called “measurable” for a
reason! They provide an abundance of excellent candidates for representing regions of
a dartboard where one can definitively say that the dart is in or out. Take, for example,
all of the closed and bounded regions of R%; these are all measurable, and they seem to
provide all of the descriptions we could need for regions of the dartboard that one can
measure with a ruler. The other two examples are easier to handle. If scientists want to
start recording my Tuesday hand-raises or my daily grueness when I am sick, they are
free to do so. If the results yield stable frequencies (which is admittedly unlikely), then
they are free to model them with chance collectives. But that is a feature, not a bug.
It demonstrates that the view can accommodate nearly any reference class B that one
deems worthwhile when doing science.

In (13), Hajek notes that limiting frequencies are not guaranteed to satisfy count-
able additivity.'” He asserts that this fact is a “serious blow” against the frequentist
“who holds sacred Kolmogorov’s full set of axioms of probability” (Hajek 2012, p.
229). As discussed above (Sect. 3.2), frequentists can easily secure countable addi-
tivity when they want by choosing to enforce the Law of Continuity. Perhaps more
to the point, it is not clear that scientists should hold sacred the full set of probabil-
ity axioms. Kolmogorov himself was hesitant to do so. More importantly, merely-
finitely-additive probabilities afford interesting representational options! Halvorson
(2001) provides one notable example, using such probabilities to explicate continu-
ous physical quantities in both classical and quantum mechanics. In particular, his
account shows how merely-finitely-additive probabilities can represent particles
with sharp position-values in both theories.'? Frequentism, then, accommodates

12 This criticism echoes earlier arguments made by van Fraassen (1977); for more on those, see foot-
note 11.

13 Halvorson pursues a roughly operational approach to continuous physical quantities, which goes as
follows. Typically, we take empirical measurements to pin down the values of such quantities to within
some fixed interval on the real number line. However, we do not think that we can tell the difference
between regions [a, b] and [a, b). One way to capture this intuition is to note that these sets differ only by
the singleton set {5}, which is of Lebesgue measure zero. Halvorson, then, considers the algebra B(R)/N
of equivalence classes of Borel sets that differ only by sets of Lebesgue measure zero, and he defines
probability functions directly on that algebra. This account allows for a sense in which a quantum parti-
cle might be said to have a precise position. Pick some point on the real number line, 4; for any equiva-
lence class A containing an open neighborhood of 4, let p,;(A) = 1. It turns out that p, extends to a prob-
ability function that gives a sure-fire response (either zero or one) for every equivalence class. However,
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various representational aims in various contexts: the frequentist-scientist is free to
decide that a precise position value is more important than continuity or vice versa.
Once again, AF shows how an ostensible bug is, in fact, a feature.

4.3 Issues with the Explanation?

The remaining third of Héjek’s arguments aim to find issues with the nature of the
explanation that frequentism offers. However, these arguments are recast by AF’s
narrow explanatory scope. They include (7) “The order of explanation is back-to-
front,” (10) “Necessarily single-case events,” (11) “Uncountably many events,” (12)
“Exchangeability, and independent, identically distributed trials,” and (15) ‘“No
infinitesimal probabilities.”

In (7), Hajek claims that von Mises explains the “regularities in the behavior” of
actual sequences of outcomes by positing that they are initial segments of collectives
(Hajek 2009, p. 225). This explanation is wrong, Hajek argues, because probability
ought to explain long-run behavior, not the other way around. Note, however, that
AF does not seek to explain the regularity of finite sequences. The data might or
might not be regular, and our theory of the system might or might not posit exploit-
able symmetries. So there might or might not be a suitable limiting frequency. If
the data is regular, then frequentism explains why it conforms (approximately) to
Kolmogorov’s laws. Hajek might argue for a different understanding of these laws.
However, the understanding of Kolmogorov’s axioms as approximate laws of nature
is the one that AF is after, and long-run behavior suffices to explain them as such.

What of (10), the infamous problem of necessarily single-case events? On the
one hand, it is tempting to point out that the sorts of empirical scenarios we set out
to analyze rarely, if ever, concern such events, so we can safely ignore them. On
the other hand, the approximation-first frequentist can helpfully say more: they can
give a natural account of correct, objective probabilities for necessarily single-case
events in terms of counterfactual (or, if need be, counter-possible) claims about finite
sequences of them. Take Hajek’s case of a “fair coin” that is only ever tossed once,
after which it is destroyed. What could justify the claim that the fair-coin chance col-
lective is better suited than any other to represent this case? A belief in a counterfac-
tual might do so. One might reasonably believe that were the soon-to-be-destroyed
coin instead flipped a large-but-finite number of times, the limiting frequencies of
the fair-coin chance collective would approximate the outcomes well. Indeed, one
uses similar reasoning when deriving the thermodynamic properties of a given gas
with a statistical ensemble. There is only ever one gas with one microstate! All the
other gases in the ensemble are counterfactual. Nevertheless, this finite collection of

Footnote 13 (continued)

this probability function is only finitely additive (Halvorson 2001, §2). We can recover this function by
suitably extending a chance collective K consisting of an infinite sequence of As and defined on a count-
able family of open neighborhoods of A.
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hypothetical gases justifies one’s beliefs about the original gas’s macrostate.'* Just
so with the ascription of even odds to the annihilated coin.

Hajek poses a converse problem in (11) by claiming that there might be interest-
ing cases with uncountably many events. His example is the probability that some
spacetime point x € R* is such that a given physical field F has a particular magni-
tude |F(x)| = s at that point. Hijek seems to suggest that what ought to play the role
of the collective, in this case, is something like a set of propositions |F(x)| = s or
|F(x)| # s for each x € R*. The problem is that this set is uncountable. However, it
is hard for me to imagine how to measure the magnitude of a field at a precise spa-
cetime point. There is a similar scenario that seems more plausible: namely, check-
ing whether the flux of F falls within some range As in a certain Borel set X of R*
(using, say, a Gauss-Meter in the case that F is a magnetic field). As I discuss above
(Sect. 3.2), AF can easily handle a case like this one by assigning a (continuous) col-
lective to some countable basis and extending the resulting probability function to
all the Borel sets. Still, Hijek suggests that nothing favors one countable sequence
of spacetime points (or, by extension, one countable sequence of spacetime regions)
as being more representative than any other. For AF, this concern returns us to the
question of when a chance collective represents a reference class. The matter of
which objective factors ought to fix this representation is subtle. Given the examples
above, however, it does not strike me as particularly mysterious.

In (12), Hajek argues that HF gets the explanandum wrong because not all tri-
als are independent and identically distributed. He imagines a dart-thrower repeat-
edly aiming for the bulls-eye; for each throw, there is a probability that the dart-
thrower hits it. Plausibly, the trials are not independent; a string of hits might give
the thrower a boost of confidence or psyche them out. Nor are they identically dis-
tributed, as the thrower presumably gets better with experience. On AF, the predict-
able response to this scenario is that one ought to account for factors that change the
applicable limit in the reference class B—e.g., by imagining a hypothetical sequence
with the thrower’s skill “frozen” at a given time. In a sense, this argument re-frames
the “reference class problem” that Héjek (1997) poses against finite frequentism.
There, he suggests that our “freezing” response amounts to radical eliminativism
about unconditional probabilities, as it makes all probabilities tacitly conditional on
some reference class B and “science seems to abound with statements of uncon-
ditional probability” (1997, p. 215). But I think that this argument reifies a bit of
technical ephemera. The unconditional probability statements that appear in sci-
ence are usually understood to be tacitly conditional to some reference class. When

14 At the very least, Gibbs (1902) seems to think about ensembles this way. He instructs his reader to
“imagine a great number of independent systems, identical in nature [macrostate], but differing in phase
[microstate]” (1902, p. 5). Regarding the use of continuous distributions to describe such ensembles,
he writes: “In strictness, a finite number of systems cannot be distributed continuously in phase. But by
increasing indefinitely the number of systems, we may approximate to a continuous law of distribution,
such as is here described. To avoid tedious circumlocution, language like the above may be allowed,
although wanting in precision of expression, when the sense in which it is to be taken appears sufficiently
clear” (1902, p. 5). While Gibbs’s use of the term “approximation” is similar Hajek’s, it seems clear that
he intends his target system to be a counterfactual and finite collection of gases.
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one assigns an unconditional probability directly to a projection on Hilbert space in
quantum mechanics or a function on a phase space in classical mechanics, one does
not mean that it is not relevant that we are, say, working in a non-relativistic regime.
Scientists omit such claims from their probability statements because all situations
in a given domain of study satisfy them—it is a matter of expediency, not meta-
physical scripture. In a somewhat similar vein, Hajek also argues that the “freez-
ing” move amounts to switching out frequencies for propensities, and frequencies
thereby become an “idle wheel” (2009, p. 229). However, the wheel is not idle, even
if propensities lurk around the corner.!> However one cashes out approximate truth,
AF still uses hypothetical frequencies to explain Kolmogorov’s rules as approximate
laws of nature.

I have saved the best for last: (15), the argument that hypothetical frequencies
cannot yield infinitesimal probabilities, in a sense made precise by nonstandard
analysis. On the one hand, I only intend AF to analyze scientists’ probability talk as
it currently stands. By and large, that talk occurs in R-valued language. On the other
hand, nothing stops this talk from changing! Moreover, as noted above, I do not
think that frequentists should hold technical ephemera sacred. They need not read
unconditional probabilities literally or impose countable additivity. Hijek’s “parting
offer” of a hyperfinite version of frequentism is an exercise that fully aligns with this
attitude.'® Indeed, it might find purchase on the nonstandard approach to quantum
mechanics recently illustrated by Barrett and Goldbring (2021).7

4.4 AVicious Circle?

While it is not one of his official fifteen, Hajek also tackles an infamous argument
having to do with the Law of Large Numbers (LLN). According to the strong ver-
sion of this law, the relative frequency of an attribute in a series of independent and
identically distributed trials converges to that attribute’s probability with probability
one. As Hajek notes, some frequentists argue that this law supports their analysis by
showing a sense in which non-converging sequences are pathological.

If one attempts to define probability as the number obtained in the LLN limit,
then one faces a vicious circle. However, as Hajek notes, LLN can also yield a vir-
tuous circle for the frequentist. To wit, LLN shows a sense in which frequentism
is self-consistent. It says that an infinite sequence of frequencies converges to the
correct value with the highest probability that it can—which means that an infinite

!5 This discussion points to how one might combine a propensity account with AF. To wit, propensities
can serve as the truth-makers of the approximately true partial descriptions that AF’s chance collectives
provide. Such propensities might provide a causal explanation of the sort of empirical pattern that AF
explicates. However, I will leave the further development of this view (and its alternatives) for future
work. Many thanks to an anonymous referee for raising this point.

16 The idea of using nonstandard analysis in the foundations of probability theory dates back at least to
Nelson (1987), although he did not work in an explicit frequentist context.

7 In particular, it might be interesting to combine Hajek’s proposal with Barrett and Goldbring’s
nonstandard version of Everett’s (1957) theorem on the convergence of relative frequencies in typical
branches. This version of the theorem follows quickly from results due to Raab (2004).
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sequence of infinite sequences of frequencies converges to the correct value with the
highest probability that it can, and so on. We have already seen one way that this
circle is virtuous. Just this sort of recursion guides our choice of e, via our appeal to
standard deviations from limiting values. Moreover, while probability theory cannot
prove that convergence obtains, it does not predict any deviations from the correct
value, either.

The approximation-first view gets off the boat here; a virtuous circle is good
enough. Like most mathematicians did for Peano arithmetic after Godel, we do not
fret too much that our theory cannot strictly prove its own consistency. Hajek sug-
gests that some frequentists are after something more, some further metaphysical
“comfort” (1997, p. 223). That might well be true. However, as flagged above, the
approximation-first view is ruthlessly pragmatic. It leaves metaphysically-hungry
frequentists out in the cold. I think, though, that that might be the price we have to
pay to get a perspicuous view of frequentism on the table—one that makes good
sense of its origins in and commitments to empirical practice.

5 Discussion

Starting from a careful reading of von Mises, I have pared away extraneous meta-
physical and mathematical concerns to arrive at what I think is the core of hypo-
thetical frequentism: the approximation-first view, AF. Hijek’s detailed tear-down of
HF provides fifteen valuable foils for this view. They help pinpoint why one should
use limiting frequencies as mere approximations rather than idealizations.

That’s the main moral that I want to draw from this discussion. It might also be
worthwhile to briefly discuss a couple of morals that I don’t want to draw. First, |
am not trying to feed the frequentist-fanatic. I know that philosophers and physi-
cists have clashed in a particularly abrasive way over frequentism in the past, and
will plausibly continue to do so in the future. The reader might be more or less
acutely aware of the following caricature: the stodgy old physicist who wields fre-
quentism as their philosopher-bashing-baton, waving it threateningly at any mention
of subjective Bayesianism. No one should aspire to this caricature. I hope to have
stressed that frequentism, even perspicuously interpreted, has a very narrow scope.
Many areas of scientific practice explicitly invoke subjective notions of probabil-
ity, and these areas either stand to benefit or are already benefiting from Bayesian
techniques. But one can use Bayesian subjective probability hand-in-hand with fre-
quentist objective probability. So it is still worth getting clear on the best way to use
frequentism.

Second, I recognize that my approach to this topic is putting me in serious run-
ning for the title of World’s Most Boring Cop. The thought goes: obviously, fre-
quentism is not dead; obviously, Hajek did not kill it; obviously, the view will never
die. Virtually every physicist and statistician appeals and will continue to appeal
to frequentist explanations of Kolmogorov’s rules (in more-or-less exactly the way
recited in Sect. 3) when they teach their undergraduates, and nothing that Hijek or
any other philosopher does is going to change that fact. That’s not the point of the
fifteen arguments. Their point is to interrogate whether limiting frequencies can do
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hefty metaphysical work. And I charge in on my pragmatic horse with my rote and
minimal desiderata to serve and protect the status quo, missing the deeper picture.

I do not want to dismiss the importance of this picture or the virtues it offers. As
the old Bishop Butler quote goes,

Probability is the Very Guide of Life.

And sketching a rich ontology with detailed counterfactuals is one way that a the-
ory can provide guidance. But it is just one way. A theory can distend and distort,
approximate and idealize, and still provide a helpful picture of the world. By setting
the record straight on frequentism, by bringing our understanding of it closer to our
understanding of similar scientific explanations, I think that we can help probability
serve as just a bit better of a guide.
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