
Published as a conference paper at ICLR 2023

NEURAL COMPOSITIONAL RULE LEARNING FOR
KNOWLEDGE GRAPH REASONING

Kewei Cheng ∗
Department of Computer Science, UCLA
viviancheng@cs.ucla.edu

Nesreen K. Ahmed
Intel Labs
nesreen.k.ahmed@intel.com

Yizhou Sun
Department of Computer Science, UCLA
yzsun@cs.ucla.edu

ABSTRACT

Learning logical rules is critical to improving reasoning in KGs. This is due to
their ability to provide logical and interpretable explanations when used for pre-
dictions, as well as their ability to generalize to other tasks, domains, and data.
While recent methods have been proposed to learn logical rules, the majority of
these methods are either restricted by their computational complexity and can-
not handle the large search space of large-scale KGs, or show poor generalization
when exposed to data outside the training set. In this paper, we propose an end-
to-end neural model for learning compositional logical rules called NCRL. NCRL
detects the best compositional structure of a rule body, and breaks it into small
compositions in order to infer the rule head. By recurrently merging compositions
in the rule body with a recurrent attention unit, NCRL finally predicts a single rule
head. Experimental results show that NCRL learns high-quality rules, as well as
being generalizable. Specifically, we show that NCRL is scalable, efficient, and
yields state-of-the-art results for knowledge graph completion on large-scale KGs.
Moreover, we test NCRL for systematic generalization by learning to reason on
small-scale observed graphs and evaluating on larger unseen ones.

1 INTRODUCTION

Knowledge Graphs (KGs) provide a structured representation of real-world facts (Ji et al., 2021),
and they are remarkably useful in various applications (Graupmann et al., 2005; Lukovnikov et al.,
2017; Xiong et al., 2017; Yih et al., 2015). Since KGs are usually incomplete, KG reasoning is a
crucial problem in KGs, where the goal is to infer the missing knowledge using the observed facts.

This paper investigates how to learn logical rules for KG reasoning. Learning logical rules is critical
for reasoning tasks in KGs and has received recent attention. This is due to their ability to: (1) pro-
vide interpretable explanations when used for prediction, and (2) generalize to new tasks, domains,
and data (Qu et al., 2020; Lu et al., 2022; Cheng et al., 2022). For example, in Fig. 1, the learned
rules can be used to infer new facts related to objects that are unobserved in the training stage.

Moreover, logical rules naturally have an interesting property - called compositionality: where the
meaning of a whole logical expression is a function of the meanings of its parts and of the way
they are combined (Hupkes et al., 2020). To concretely explain compositionality, let us consider the
family relationships shown in Fig. 2. In Fig. 2(a), we show that the rule (hasUncle← hasMother ∧
hasMother ∧ hasSon) forms a composition of smaller logical expressions, which can be expressed
as a hierarchy, where predicates (i.e., relations) can be combined and replaced by another single
predicate. For example, predicates hasMother and hasMother can be combined and replaced by
predicate hasGrandma as shown in Fig. 2(a). As such, by recursively combining predicates into
a composition and reducing the composition into a single predicate, we can finally infer the rule
head (i.e., hasUncle) from the rule body. While there are various possible hierarchical trees to
represent such rules, not all of them are valid given the observed relations in the KG. For example, in

∗work was done when author was an intern at Intel Labs

1

ar
X

iv
:2

30
3.

03
58

1v
1

 [c
s.A

I]
 7

 M
ar

 2
02

3

Published as a conference paper at ICLR 2023

a. Training Graph b. Test Graph

① hasGrandma(x,y)←hasMother(x,z)⋀hasMother(z,y)
+

② hasUncle(x,y)←hasGrandma(x,z)⋀hasSon(z,y)

hasUncle(Alice,Bob)←hasMother(Alice,Jane)⋀hasMother(Jane,Bess)
⋀hasSon(Bess,Bob)

③ hasUncle(x,y)←
hasMother(x, 𝒛𝟏)⋀hasMother(𝒛𝟏,

𝒛𝟐)⋀hasSon(𝒛𝟐,y)

hasGrandma(Ann,Amy)←hasMother(Ann,Sue)⋀hasMother(Sue,Amy)
hasUncle(Kate,Tom)←hasGrandma(Kate,Ava)⋀hasSon(Ava,Tom)

Figure 1: Illustration of how the compositionality of logical rules helps improve systematic generalization. (a)
logical rule extraction from the observed graph (i.e., training stage) and (b) Inference on an unseen graph (i.e.,
test stage). The train and the test graphs have disjoint sets of entities. By combining logical rules 1© and 2© we
can successfully learn rule 3© for prediction on unseen graphs.

Fig. 2(b), given a KG which only contains relations {hasMother, hasSon, hasGrandma, hasUncle},
it is possible to combine hasMother and hasSon first. However, there is no proper predicate to
represent it in the KG. Therefore, learning a high-quality compositional structure for a given logical
expression is critical for rule discovery, and it is the focus of our work.

Hierarchical Tree (a) ✓

Relations in KG: hasMother, hasSon, hasGrandma, hasUncle
Query: ? ← hasMother ⋀ hasMother ⋀ hasSon

Hierarchical Tree (b) ✗

Figure 2: Learning an accurate hierarchical
structure is significant for rule discovery: (a) a
good compositional structure; (b) an improper
compositional structure.

In this work, our objective is to learn rules that
generalize to large-scale tasks and unseen graphs.
Let us consider the example in Fig. 1. From
the training KG, we can extract two rules –
rule 1©: hasGrandma(x, y) ← hasMother(x, z) ∧
hasMother(z, y) and rule 2©: hasUncle(x, y) ←
hasGrandma(x, z) ∧ hasSon(z, y). We also ob-
serve that the necessary rule to infer the rela-
tion between Alice and Bob in the test KG is
rule 3©: hasUncle(x, y) ← hasMother(x, z1) ∧
hasMother(z1, z2)∧ hasSon(z2, y), which is not ob-
served in the training KG. However, using compo-
sitionality to combine rules 1© and 2©, we can suc-
cessfully learn rule 3© which is necessary for inferring the relation between Alice and Bob in the
test KG. The successful prediction in the test KG shows the model’s ability for systematic general-
ization, i.e., learning to reason on smaller graphs and making predictions on unseen graphs (Sinha
et al., 2019).

Although compositionality is crucial for learning logical rules, most of existing logical rule learn-
ing methods fail to exploit it. In traditional AI, inductive Logic Programming (ILP) (Muggleton &
De Raedt, 1994; Muggleton et al., 1990) is the most representative symbolic method. Given a col-
lection of positive examples and negative examples, an ILP system aims to learn logical rules which
are able to entail all the positive examples while excluding any of the negative examples. However,
it is difficult for ILP to scale beyond small rule sets due to their restricted computational complexity
to handle the large search space of compositional rules. There are also some recent neural-symbolic
methods that extend ILP, e.g., neural logic programming methods (Yang et al., 2017; Sadeghian
et al., 2019) and principled probabilistic methods (Qu et al., 2020). Neural logic programming si-
multaneously learns logical rules and their weights in a differentiable way. Alternatively, principled
probabilistic methods separate rule generation and rule weight learning by introducing a rule gener-
ator and a reasoning predictor. However, most of these approaches are particularly designed for the
KG completion task. Moreover, since they require an enumeration of rules given a maximum rule
length T , the complexity of these methods grows exponentially as max rule length increases, which
severely limits their systematic generalization capability. To overcome these issues, several works
such as conditional theorem provers (CTPs) (Minervini et al., 2020b), recurrent relational reasoning
(R5) (Lu et al., 2022) focused on the model’s systematicity instead. CTPs learn an adaptive strategy
for selecting subsets of rules to consider at each step of the reasoning via gradient-based optimization
while R5 performs rule extraction and logical reasoning with deep reinforcement learning equipped
with a dynamic rule memory. Despite their strong generalizability to larger unseen graphs beyond
the training sets (Sinha et al., 2019), they cannot handle KG completion tasks for large-scale KGs
due to their high computational complexity.

2

Published as a conference paper at ICLR 2023

In this paper, we propose an end-to-end neural model to learn compositional logical rules for KG
reasoning. Our proposed NCRL approach is scalable and yields state-of-the-art (SOTA) results for
KG completion on large-scale KGs. NCRL shows strong systematic generalization when tested
on larger unseen graphs beyond the training sets. NCRL views a logical rule as a composition of
predicates and learns a hierarchical tree to express the rule composition. More specifically, NCRL
breaks the rule body into small atomic compositions in order to infer the rule head. By recurrently
merging compositions in the rule body with a recurrent attention unit, NCRL finally predicts a single
rule head. The main contributions of this paper are summarized as follows:

• We formulate the rule learning problem from a new perspective and define the score of a logical
rule based on the semantic consistency between rule body and rule head.

• NCRL presents an end-to-end neural approach to exploit the compositionality of a logical rule in
a recursive way to improve the models’ systematic generalizability.

• NCRL is scalable and yields SOTA results for KG completion on large-scale KGs and demon-
strates strong systematic generalization to larger unseen graphs beyond training sets.

2 NOTATION & PROBLEM DEFINITION

Knowledge Graph. A KG, denoted by G = {E,R,O}, consists of a set of entities E, a set of
relations R and a set of observed facts O. Each fact in O is represented by a triple (ei, rk, ej).

Horn Rule. Horn rules, as a special case of first-order logical rules, are composed of a body of
conjunctive predicates (i.e., relations are called also predicates) and a single-head predicate. In this
paper, we are interested in mining chain-like compositional Horn rules 1 in the following form.

s(rh, rb) : rh(x, y)← rb1(x, z1) ∧ · · · ∧ rbn(zn−1, y) (1)

where s(rh, rb) ∈ [0, 1] is the confidence score associated with the rule , and rh(x, y) is called rule
head and rb1(x, z1) ∧ · · · ∧ rbn(zn−1, y) is called rule body. Combining rule head and rule body,
we denote a Horn rule as (rh, rb) where rb = [rb1 , . . . , rbn].

Logical Rule Learning. Logical rule learning aims to learn a confidence score s(rh, rb) for each
rule (rh, rb) in rule space to measure its plausibility. During rule extraction, the top k rules with
the highest scores will be selected as the learned rules.

3 NEURAL COMPOSITIONAL RULE LEARNING (NCRL)

In this section, we introduce our NCRL to learn compositional logical rules. Instead of using the fre-
quency of rule instances to measure the plausibility of logical rules, we define the score of a logical
rule as the probability that the rule body can be replaced by the rule head based on its semantic con-
sistency. The semantic consistency between a rule body and a rule head means that the body implies
the head with a high probability. An overview of NCRL is shown in Fig. 3. NCRL starts by sampling
a set of paths from a given KG, and further splitting each path into short compositions using a sliding
window. Then, NCRL uses a reasoning agent to reason over all the compositions to select one com-
position. NCRL uses a recurrent attention unit to transform the selected composition into a single
relation represented as a weighted combination of existing relations. By recurrently merging compo-
sitions in the path, NCRL finally predicts the rule head. Algorithm 1 outlines the learning procedure
of NCRL. Source code is available at https://github.com/vivian1993/NCRL.git.

3.1 LOGICAL RULE LEARNING WITH RECURRENT ATTENTION UNIT

As discussed in Section 1, while the rule body can be viewed as a sequence, it naturally exhibits a
rich hierarchical structure. The semantics of the rule body is highly dependent on its hierarchical
structure, which cannot be exploited by most of the existing rule learning methods. To explicitly
allow our model to capture the hierarchical nature of the rule body, we need to learn how the relations
in the rule body are combined as well as the principle to reduce each composition in the hierarchical
tree into a single predicate.

1An instance of rule body of chain-like compositional Horn rules is corresponding to a path in KG

3

https://github.com/vivian1993/NCRL.git

Published as a conference paper at ICLR 2023

𝑟!

𝑟" 𝑟#

𝑟"

𝑟$
𝑟"

𝑟%

𝑟%

𝑟$

Training Graph

𝑟&

Path Sampler

Sampled Path

𝑟! 𝑟" 𝑟% 𝑟$ 𝑟"

𝑟&

𝑟&

𝑟" 𝑟% 𝑟$

𝑟% 𝑟"

𝑟#

𝑟&

𝑟! 𝑟& 𝑟$null

Sliding Window Encoder

𝒓𝟏 𝒓𝟑 𝒓𝟒

Selection

Recurrent Attention Unit

𝜃' 𝜃! … 𝜃|)|

Key

Query

Cross
Attention

Value

(𝒓𝟑, 𝒓𝟒)

%(𝒓𝟑, 𝒓𝟒)

Sliding Window Encoder

Selection

Query

Target: 𝒓𝟔𝒓𝟓 𝒓𝟑

𝒓𝟏 …

𝒓|𝑹|

null

𝑟" 𝑟# 𝑟# 𝑟$ 𝑟$ 𝑟% 𝑟% 𝑟#

𝑟# 𝑟$

Recurrent Attention Unit

𝜃' 𝜃! … 𝜃|)|

Key Cross
Attention

Value
%((𝒓𝟑, 𝒓𝟒), 𝒓𝟓)

𝒓𝟏 …

𝒓|𝑹|

null …

𝒓𝟏 𝒓𝟓 𝒓𝟑

𝑟" (𝑟#, 𝑟$) 𝑟% 𝑟#

(𝒓𝟑, 𝒓𝟒)

(𝑟#, 𝑟$) 𝑟%

(𝑟#, 𝑟$) 𝑟%

…
((𝒓𝟑, 𝒓𝟒), 𝒓𝟓)

Sliding Window Encoder

Selection

Query

Recurrent Attention Unit

𝜃' 𝜃! … 𝜃|)|

Key Cross
Attention

𝒓𝟏 …

𝒓|𝑹|

null

𝒓𝟑 (((𝒓𝟑, 𝒓𝟒), 𝒓𝟓), 𝒓𝟑)

𝑟" (((𝑟#, 𝑟$), 𝑟%), 𝑟#)

𝑟" (((𝑟#, 𝑟$), 𝑟%), 𝑟#)

0 … 0 1

Final Prediction

Figure 3: An overview of NCRL. It samples paths from KG (e.g.,[r1, r3, r4, r5, r3]), and predicts the relations
that directly connect the sampled paths (e.g.,r6) based on the learned rules. NCRL takes the embeddings of
predicates in the sampled paths as the input and outputs θ as the probability of each relation to be the rule head.

3.1.1 HIERARCHICAL STRUCTURE LEARNING

The hierarchical structure of logical rules is learned in an iterative way. At each step, NCRL selects
only one composition from the rule body and replaces the selected composition with another sin-
gle predicate based on the recurrent attention unit to reduce the rule body. Although rule body is
hierarchical, when operations are very local (i,e., leaf-level composition), a composition is strictly
sequential. To identify a composition from a sampled path, we use a sliding window with different
lengths to decompose the sampled paths into compositions of different sizes. In our implementation,
we vary the size of the sliding window among {2, 3}. Given a fixed window size s, sliding windows
are generated by a size s window which slides through the rule body rb = [rb1 , . . . , rbn].

Sliding Window Encoder. When operations are over a local sliding window (i.e., composition),
the relations within a sliding window should strictly follow a chain structure. Sequence models can
be utilized to encode a sliding window. Considering the tradeoff between model complexity and
performance, we chose RNN (Schuster & Paliwal, 1997) over other sequence models to encode the
sequence. For example, taking i-th sliding window whose size is 2 (i.e., wi = [rbi , rbi+1

]) as the
input, RNN outputs:

[hi,hi+1] = RNN(wi) (2)
where hi ∈ Rd is a hidden-state of predicate rbi in wi. Since the final hidden-state hi+1 is usually
used to represent the whole sequence, we represent the sliding window as wi = hi+1.

Composition Selection. wi is useful to estimate how likely the relations in i-th window appear
together. If these relations always appear together, they have a higher probability to form a mean-
ingful composition. To incorporate this observation into our model, we select the sliding window by
computing:

µ = softmax([f(w1), f(w2), . . . , f(wn+1−s)]) (3)
where f is a fully connected neural network. It learns the probability of i-th window to be a mean-
ingful composition from its representation wi. wi with the highest µi will be selected as the input
to the recurrent attention unit.

3.1.2 RECURRENT ATTENTION UNIT

Note that rule induction following its underlying hierarchical structure is a recurrent process. There-
fore, we propose a novel recurrent attention unit to recurrently reduce the selected composition into
a single predicate until it outputs a final relation.

Attention-based Induction. The goal of a recurrent attention unit is to reduce the selected com-
position into a single predicate, which can be modeled as matching the composition with another
single predicate based on its semantic consistency. Since attention mechanisms yield impressive
results in Transformer models by capturing the semantic correlation between every pair of tokens in
natural language sentence (Vaswani et al., 2017), we propose to utilize attention to reduce the se-
lected composition wi. Note that we may not always find an existing relation to replace the selected
composition. For example, given the composition [hasBrother, hasWife], none of the existing rela-
tions can be used to represent it. As such, in order to accommodate unseen relations, we incorporate

4

Published as a conference paper at ICLR 2023

a “null” predicate into potential rule heads and denote it as r0. The embedding corresponding to
r0 is set as the representation of the selected composition wi. In this way, when there is no direct
link closing a sampled path (which means we do not have the ground truth about the rule head),
we use the representation of the selected composition to represent itself rather than replace it with
an existing relation. Let H ∈ R(|R|+1)×d be the matrix of the concatenation of all head relations,
where H0 = wi ∈ Rd is set as the selected composition. By taking wi as a query and H as the
content, the scaled dot-product attention θ 2 can be computed to estimate the semantic consistency
between the selected composition and its potential heads:

θ = softmax(
wiWQ(HWK)T√

d
) (4)

where WQ,WK ∈ Rd×d are learnable parameters that project the inputs into the space of query
and key. θ ∈ R|R|+1 is the learned attention, in which θj measures p(rj |wi) - the probability that
the selected composition can be replaced by the predicate rj based on their semantic consistency.
Given θ, we are able to compute a new representation for the selected composition as a weighted
combination of all head relations (i.e., values) each weighted by its attention weight:

ŵi = θHWV (5)

where ŵi ∈ Rd is the new representation of the selected composition. We project the key and value
to the same space by requiring WV = WK because the keys and the values are both embeddings
of relations in KG. As shown in Fig. 3, we can reduce the long rule body [rb1 , rb2 . . . , rbn] by
recursively applying the attention unit to replace its composition (rbi , rbi+1) with a single predicate.
In the final step of the prediction, the attention θ computed following Eq. 4 collects the probability
that the rule body can be replaced by each of the head relations.

3.2 TRAINING AND RULE EXTRACTION

NCRL is trained in an end-to-end fashion. It starts by sampling paths from an input KG and predicts
the relation which directly closes the sampled paths based on learned rules.

Path Sampling. We utilize a random walk (Spitzer, 2013) sampler to sample paths that connect two
entities from the KG. Formally, given a source entity x0, we simulate a random walk of max length
n. Let xi denote the i-th node in the walk, which is generated by the following distribution:

p(xi = ei|xi−1 = ej) =

{
1

|N (ej)| , if (ei, ej) ∈ E
0, otherwise

(6)

where |N (ej)| is the neighborhood size of entity ej . Different from a random walk, each time
after we sample the next entity xi, we add all the edges which can directly connect x0 and xi.
We denote the path connecting two nodes x0 and xn as p, where p = [rb1 , . . . , rbn], indicating
x0

r1−→ . . .
rn−→ xn. We also denote the relation that directly connects x0 and xn as rh. If none of

the relations directly connects the x0 and xn, we set rh as “null”. We control the ratio of non-closed
paths to ensure a majority of sampled paths are associated with an observed head relation.

Objective Function. Our goal is to maximize the likelihood of the observed relation rh, which
directly closes the sampled path p. The attention θ collects the predicted probability for p being
closed by each of the head relations. We formulate the objective using the cross-entropy loss as:

−
∑

(p,rh)∈P

|R|∑
k=0

yrh
k log θp

k (7)

where P denotes a set of sampled paths from a given KG, yrh ∈ {0, 1}|R|+1 is the one-hot encoded
vector such that only the rh-th entry is 1, and θp ∈ R|R|+1 is the learned attention for the sampled
path p. In particular, θp

0 represents the probability that the sampled path cannot be closed by any
existing relations in KG.

2θ is specific to the query composition wi.

5

Published as a conference paper at ICLR 2023

Algorithm 1: Learning Algorithm
Input: Observed triples in KG O
Output: Relation embeddings

1 P = SamplePaths(O)
2 for (p, rh) ∈ P do
3 while len(p) > s do
4 // Decompose p with a sliding window,

whose size is s
5 [w1, . . . , wn+1−s] = Decompose(p)
6 // Select a composition
7 [w1, . . . ,wn+1−s] =

RNN([w1, . . . , wn+1−s])
8 wi = Select([w1, . . . ,wn+1−s])
9 // Apply recurrent attention unit

10 ŵi = Attn(wi)
11 // Reduce the sampled path p
12 p = [rb1

, . . . ,wi, . . . , rbn]

13 end
14 // Final prediction
15 w = RNN(p)
16 Take w as the query and compute θ based on

Eq. 4
17 Minimize the loss in Eq. 7
18 end

Rule Extraction. To recover logical rules, we cal-
culate the score s(rh, rb) for each rule (rh, rb) in
rule space based on the learned model. Given a
candidate rule (rh, rb), we reduce the rule body
rb into a single head rh by recursively merge com-
positions in path rb. At the final step of the pre-
diction, we learn the attention θ = [θ0, . . . ,θ|R|],
where θk is the score of rule (rk, rb). The top
k rules with the highest score will be selected as
learned rules.

4 EXPERIMENTS

logical rules are valuable for various downstream
tasks, such as (1) KG completion task, which aims
to infer the missing entity given the query (h, r, ?)
or (?, r, t); (2) A more challenging inductive re-
lational reasoning task, which tests the systematic
generalization capability of the model by inferring
the missing relation between two entities (i.e., (h, ?, t)) with more hops than the training data. A
majority of existing methods can handle only one of these two tasks (e.g., RNNLogic is designed
for the KG completion task while R5 is designed for the inductive relational reasoning task). In this
section, we show that our method is superior to existing SOTA algorithms on both tasks. In addition,
we also empirically assess the interpretability of the learned rules.

4.1 KNOWLEDGE GRAPH COMPLETION

KG completion is a classic task widely used by logical rule learning methods such as Neural-
LP (Yang et al., 2017), DRUM (Sadeghian et al., 2019) and RNNLogic (Qu et al., 2020) to evaluate
the quality of learned rules. An existing algorithm called forward chaining (Salvat & Mugnier, 1996)
can be used to predict missing facts from logical rules.

Datasets. We use six widely used benchmark datasets to evaluate our NCRL in comparison to SOTA
methods from knowledge graph embedding and rule learning methods. Specifically, we use the
Family (Hinton et al., 1986), UMLS (Kok & Domingos, 2007), Kinship (Kok & Domingos, 2007),
WN18RR (Dettmers et al., 2018), FB15K-237 (Toutanova & Chen, 2015), YAGO3-10 (Suchanek
et al., 2007) datasets. The statistics of the datasets are given in Appendix A.3.1.

Evaluation Metrics. We mask the head or tail entity of each test triple and require each method to
predict the masked entity. During the evaluation, we use the filtered setting (Bordes et al., 2013) and
three evaluation metrics, i.e., Hit@1, Hit@10, and MRR.

Comparing with Other Methods. We evaluate our method against SOTA methods, including (1)
traditional KG embedding (KGE) methods (e.g., TransE (Bordes et al., 2013), DistMult (Yang et al.,
2014), ConvE (Dettmers et al., 2018), ComplEx (Trouillon et al., 2016) and RotatE (Sun et al.,
2019)); (2) logical rule learning methods (e.g., Neural-LP (Yang et al., 2017), DRUM (Sadeghian
et al., 2019), RNNLogic (Qu et al., 2020) and RLogic (Cheng et al., 2022)). The systematic general-
izable methods (e.g., CTPs and R5) cannot handle KG completion tasks due to their high complexity.

Results. The comparison results are presented in Table 1. We observe that: (1) Although NCRL
is not designed for KG completion task, compared with KGE models, it achieves comparable re-
sults on all datasets, especially on Family, UMLS, and WN18RR datasets; (2) NCRL consistently
outperforms all other rule learning methods with significant performance gain in most cases.

4.1.1 ABLATION STUDY

Performance w.r.t. Data Sparsity. We construct sparse KG by randomly removing a triples from
the original dataset. Following this approach, we vary the sparsity ratio a among {0.33, 0.66, 1}
and report performance on different methods over the KG completion task on Kinship dataset. As
presented in Fig. 4, the performance of NCRL does not vary a lot with different sparsity ratio a,
which is appealing in practice. More analysis of other datasets is given in Appendix A.3.2.

6

Published as a conference paper at ICLR 2023

Table 1: KG completion. The red numbers represent the best performances among all methods, while the blue
numbers represent the best performances among all rule learning methods.

Methods Models Family Kinship UMLS
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

KGE

TransE 0.45 22.1 87.4 0.31 0.9 84.1 0.69 52.3 89.7
DistMult 0.54 36.0 88.5 0.35 18.9 75.5 0.391 25.6 66.9
ComplEx 0.81 72.7 94.6 0.42 24.2 81.2 0.41 27.3 70.0

RotatE 0.86 78.7 93.3 0.65 50.4 93.2 0.74 63.6 93.9

Rule
Learning

Neural-LP 0.88 80.1 98.5 0.30 16.7 59.6 0.48 33.2 77.5
DRUM 0.89 82.6 99.2 0.33 18.2 67.5 0.55 35.8 85.4

RNNLogic 0.86 79.2 95.7 0.64 49.5 92.4 0.75 63.0 92.4
RLogic 0.88 81.3 97.2 0.58 43.4 87.2 0.71 56.6 93.2
NCRL 0.91 85.2 99.3 0.64 49.0 92.9 0.78 65.9 95.1

Methods Models WN18RR FB15K-237 YAGO3-10
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

KGE

TransE 0.23 2.2 52.4 0.29 18.9 46.5 0.36 25.1 58.0
DistMult 0.42 38.2 50.7 0.22 13.6 38.8 0.34 24.3 53.3
ConvE 0.43 40.1 52.5 0.32 21.6 50.1 0.44 35.5 61.6

ComplEx 0.44 41.0 51.2 0.24 15.8 42.8 0.34 24.8 54.9
RotatE 0.47 42.9 55.7 0.32 22.8 52.1 0.49 40.2 67.0

Rule
Learning

Neural-LP 0.38 36.8 40.8 0.24 17.3 36.2 - - -
DRUM 0.38 36.9 41.0 0.23 17.4 36.4 - - -

RNNLogic 0.46 41.4 53.1 0.29 20.8 44.5 - - -
RLogic 0.47 44.3 53.7 0.31 20.3 50.1 0.36 25.2 50.4
NCRL 0.67 56.3 85.0 0.30 20.9 47.3 0.38 27.4 53.6

† Neural-LP, DRUM, and RNNLogic exceed the memory capacity of our machines on YAGO3-10 dataset

0.33 0.66 1.00
Sparsity Ratio

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

DRUM
Neural-LP
MINERVA
RNNLogic
RLogic
Ours

Figure 4: Performance of KG
completion vs sparsity ratio on Kin-
ship.

10 20 40 60 80 100
Logical Rules

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

Empirical Precision
Neural-LP
Path Ranking
RNNLogic
RLogic
Ours

Figure 5: Performance of KG
completion vs # logical rules on
Kinship.

10 100 200 500 1000 2000
Embedding Dimension

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

RLogic
Ours

Figure 6: Performance of KG
completion vs embedding dimen-
sion on Kinship.

KG completion performance w.r.t. the Number of Learned Rules. We generate k rules with
the highest qualities per query relation and use them to predict missing links. We vary k among
{10, 20, 40, 60, 80, 100}. The results on Kinship are given in Fig. 5. We observed that even with
only 10 rules per relation, NCRL still givens competitive results. More analysis of other datasets is
given in Appendix A.3.2.

Performance w.r.t. Embedding Dimension. We vary the dimension of relation embeddings among
{10, 100, 200, 500, 1000, 2000} and present the results on Kinship in Fig. 6, comparing against
RLogic (Cheng et al., 2022). We see that the embedding dimension has a significant impact on
KG completion performance. The best performance is achieved at d = 1000.

4.2 TRAINING EFFICIENCY

Table 2: Training time (s) of rule learning
methods

NeuralLP DRUM RNNLogic NCRL
WN18RR 1,308 1,146 1,044 77

FB15k-237 23,708 22,428 - 410
YAGO3-10 - - - 190

To demonstrate the scalability of NCRL, we give the
training time of NCRL against other logical rule learning
methods on three benchmark datasets in Table 2. We ob-
serve that: (1) Neural-LP and DRUM do not perform well
in terms of efficiency as they apply a sequence of large
matrix multiplications for logic reasoning. They cannot
handle YAGO3-10 dataset due to the memory issue; (2)
It is also challenging for RNNLogic to scale to large-scale KGs as it relies on all ground rules to
evaluate the generated rules in each iteration. It is difficult for it to handle KG with hundreds of
relations (e.g., FB15K-237) nor KG with million entities (e.g., YAGO3-10); (3) our NCRL is on
average 100x faster than state-of-the-art baseline methods.

7

Published as a conference paper at ICLR 2023

Table 3: Results of inductive relational reasoning on CLUTRR dataset. Trained on path samples with hops
{2, 3, 4} and evaluated on path samples with hops {5, . . . , 10}. The red numbers represent the best perfor-
mances while the brown numbers represent the second best performances.

Model
Hops 5 Hops 6 Hops 7 Hops 8 Hops 9 Hops 10 Hops

RNN 0.93±0.06 0.87±0.07 0.79±0.11 0.73±0.12 0.65±0.16 0.64±0.16
LSTM 0.98±0.03 0.95±0.04 0.89±0.10 0.84±0.07 0.77±0.11 0.78±0.11
GRU 0.95±0.04 0.94±0.03 0.87±0.8 0.81±0.13 0.74±0.15 0.75±0.15

Transformer 0.88±0.03 0.83±0.05 0.76±0.04 0.72±0.04 0.74±0.05 0.70±0.03
GNTP 0.68±0.28 0.63±0.34 0.62±0.31 0.59±0.32 0.57±0.34 0.52±0.32
GAT 0.99±0.00 0.85±0.04 0.80±0.03 0.71±0.03 0.70±0.03 0.68±0.02
GCN 0.94±0.03 0.79±0.02 0.61±0.03 0.53±0.04 0.53±0.04 0.41±0.04
CTPL 0.99±0.02 0.98±0.04 0.97±0.04 0.98±0.03 0.97±0.04 0.95±0.04
CTPA 0.99±0.04 0.99±0.03 0.97±0.03 0.95±0.06 0.93±0.07 0.91±0.05
CTPM 0.98±0.04 0.97±0.06 0.95±0.06 0.94±0.08 0.93±0.08 0.90±0.09
RLogic 0.99±0.02 0.98±0.02 0.97±0.04 0.97±0.03 0.94±0.06 0.94±0.07

R5 0.99±0.02 0.99±0.04 0.99±0.03 1.0±0.02 0.99±0.02 0.98±0.03
NCRL 1.0±0.01 0.99±0.01 0.98±0.02 0.98±0.03 0.98±0.03 0.97±0.02

Table 4: Results of inductive relational reasoning on GraphLog datasets for robustness analysis.

CTP RLogic R5 NCRL
ACC Recall ACC Recall ACC Recall ACC Recall

World 2 0.685±0.03 0.80±0.05 0.726±0.02 0.95±0.00 0.755±0.02 1.0±0.00 0.774±0.01 1.0±0.00
World 3 0.624±0.02 0.85±0.00 0.737±0.02 1.0±0.00 0.791±0.03 1.0±0.00 0.797±0.02 1.0±0.00
World 6 0.533±0.03 0.85±0.00 0.638±0.03 0.90±0.00 0.687±0.05 0.9±0.00 0.702±0.02 0.95±0.00
World 8 0.545±0.02 0.70±0.00 0.605±0.02 0.90±0.00 0.671±0.03 0.95±0.00 0.687±0.02 0.95±0.00

4.3 SYSTEMATIC GENERALIZATION

We test NCRL for systematic generalization to demonstrate the ability of NCRL to perform reason-
ing over graphs with more hops than the training data, where the model is trained on smaller graphs
and tested on larger unseen ones. The goal of this experiment is to infer the relation between node
pair queries. We use two benchmark datasets: (1) CLUTRR (Sinha et al., 2019) which is a dataset
for inductive relational reasoning over family relations, and (2) GraphLog (Sinha et al., 2020) is a
benchmark suite for rule induction and it consists of logical worlds and each world contains graphs
generated under a different set of rules. Note that most existing rule learning methods lack system-
atic generalization. CTPs (Minervini et al., 2020b), R5 (Lu et al., 2022), and RLogic (Cheng et al.,
2022) are the only comparable rule learning methods for this task. The detailed statistics and the
description of the datasets are summarized in Appendix A.4.1.

Systematic Generalization on CLUTRR. Table 3 shows the results of NCRL against SOTA algo-
rithms. Detailed information about the SOTA algorithms is given in Appendix A.4.2. We observe
that the performances of sequential models and embedding-based models drop severely when the
path length grows longer while NCRL still predicts successfully on longer paths without significant
performance degradation. Compared with systematic generalizable rule learning methods, NCRL
has better generalization capability than CTPs especially when the paths grow longer. Even though
R5 gives invincible results over CLUTRR dataset, NCRL shows comparable performance.
Systematic Generalization on GraphLog. Table 4 shows the results on 4 selected worlds. We
observed that NCRL consistently outperforms other rule-learning baselines over all 4 worlds.

4.4 CASE STUDY OF GENERATED LOGICAL RULES

Finally, we show a case study of logical rules that are generated by NCRL on the YAGO3-10 dataset
in Table 5. We can see that these logical rules are meaningful and diverse. Two rules with different
lengths are presented for each head predicate. We highlight the composition and predicate which
share the same semantic meaning with boldface.

5 RELATED WORK

Inductive Logic Programming. Mining Horn clauses have been extensively studied in the Induc-
tive Logic Programming (ILP) (Muggleton & De Raedt, 1994; Muggleton et al., 1990; Muggleton,
1992; Nienhuys-Cheng & De Wolf, 1997; Quinlan, 1990; Tsunoyama et al., 2008; Zelle & Mooney,
1993). Given a set of positive examples and a set of negative examples, an ILP system learns logical

8

Published as a conference paper at ICLR 2023

Table 5: Top rules learned on YAGO3-10. We highlight the composition and predicate which share the same
semantic meaning with boldface.

isLocatedIn(x, y)← isLocatedIn(x, z) ∧ isLocatedIn(z, y)
isLocatedIn(x, y)← hasAcademicAdvisor(x, z1) ∧ isLocatedIn(z1, z2) ∧ isLocatedIn(z2, y)
isAffiliatedTo(x, y)← isKnownFor(x, z) ∧ isAffiliatedTo(z, y)
isAffiliatedTo(x, y)← isKnownFor(x, z1) ∧ isAffiliatedTo(z1, z2) ∧ isLeaderOf(z2, y)
playsFor(x, y)← isKnownFor(x, z) ∧ isAffiliatedTo(z, y)
playsFor(x, y)← isKnownFor(x, z1) ∧ playsFor(z1, z2) ∧ owns(z2, y)
influences(x, y)← isPoliticianOf(x, z) ∧ influences(z, y)
influences(x, y)← isPoliticianOf(x, z1) ∧ influences(z1, z2) ∧ influences(z2, y)

rules which are able to entail all the positive examples while excluding any of the negative examples.
Scalability is a central challenge for ILP methods as they involve several steps that are NP-hard. Re-
cently, several differentiable ILP methods such as Neural Theorem Provers (Rocktäschel & Riedel,
2017; Campero et al., 2018; Glanois et al., 2022) are proposed to enable a continuous relaxation
of the logical reasoning process via gradient descent. Different from our method, they require pre-
defined hand-designed, and task-specific templates to narrow down the rule space.

Neural-Symbolic Methods. Very recently, several methods extend the idea of ILP by simultane-
ously learning logical rules and weights in a differentiable way. Most of them are based on neural
logic programming. For example, Neural-LP (Yang et al., 2017) enables logical reasoning via se-
quences of differentiable tensor multiplication. A neural controller system based on attention is used
to learn the score of a specific logic. However, Neural-LP could learn a higher score for a meaning-
less rule because it shares an atom with a useful rule. To address this problem, RNNs are utilized in
DRUM (Sadeghian et al., 2019) to prune the potential incorrect rule bodies. In addition, Neural-LP
can learn only chain-like Horn rules while NLIL (Yang & Song, 2019) extends Neural-LP to learn
Horn rules in a more general form. Because neural logic programming approaches involve large
matrix multiplication and simultaneously learn logical rules and their weights, which is nontrivial
in terms of optimization, they cannot handle large KGs, such as YAGO3-10. To address this issue,
RNNLogic (Qu et al., 2020)) is proposed to separate rule generation and rule weight learning by
introducing a rule generator and a reasoning predictor respectively. Although the introduction of the
rule generator reduces the search space, it is still challenging for RNNLogic to scale to KGs with
hundreds of relations (e.g., FB15K-237) or millions of entities (e.g., YAGO3-10).

Systematic Generalizable Methods. All the above methods cannot generalize to larger graphs be-
yond training sets. To improve models’ systematicity, Conditional Theorem Provers (CTPs) is pro-
posed to learn an optimal rule selection strategy via gradient-based optimization. For each sub-goal,
a select module produces a smaller set of rules, which is then used during the proving mechanism.
However, since the length of the learned rules influences the number of parameters of the model, it
limits the capability of CTPs to handle the complicated rules whose depth is large. In addition, due
to its high computational complexity, CTPs cannot handle KG completion tasks for large-scale KGs.
Another reinforcement learning-based method - R5 (Lu et al., 2022) is proposed to provide a recur-
rent relational reasoning solution to learn compositional rules. However, R5 cannot generalize to the
KG completion task due to the lack of scalability. It requires pre-sampling for the paths that entail the
query. Considering that all the triples in a KG share the same training graph, even a relatively small-
scale KG contains a huge number of paths. Thus, it is impractical to apply R5 to even small-scale
KG for rule learning. In addition, R5 employs a hard decision mechanism for merging a relation
pair into a single relation, which makes it challenging to handle the widely existing uncertainty in
KGs. For example, given the rule body hasAunt(x, z) ∧ hasSister(z, y), both hasMother(x, y) and
hasAunt(x, y) can be derived as the rule head. The inaccurate merging of a relation pair may result
in error propagation when generalizing to longer paths. Although RLogic (Cheng et al., 2022) are
generalizable across multiple tasks, including KG completion and inductive relation reasoning, they
couldn’t systematically handle the compositionality and outperformed by NCRL.

6 CONCLUSION

In this paper, we propose NCRL, an end-to-end neural model for learning compositional logical
rules. NCRL treats logical rules as a hierarchical tree and breaks the rule body into small atomic
compositions in order to infer the head rule. Experimental results show that NCRL is scalable,
efficient, and yields SOTA results for KG completion on large-scale KGs.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

This work was partially supported by NSF 2211557, NSF 2303037, NSF 1937599, NSF 2119643,
NASA, SRC, Okawa Foundation Grant, Amazon Research Awards, Amazon Fellowship, Cisco re-
search grant, Picsart Gifts, and Snapchat Gifts.

REFERENCES

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in neural information
processing systems, pp. 2787–2795, 2013.

Andres Campero, Aldo Pareja, Tim Klinger, Josh Tenenbaum, and Sebastian Riedel. Logical rule
induction and theory learning using neural theorem proving. arXiv preprint arXiv:1809.02193,
2018.

Kewei Cheng, Jiahao Liu, Wei Wang, and Yizhou Sun. Rlogic: Recursive logical rule learning
from knowledge graphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 179–189, 2022.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Claire Glanois, Zhaohui Jiang, Xuening Feng, Paul Weng, Matthieu Zimmer, Dong Li, Wulong Liu,
and Jianye Hao. Neuro-symbolic hierarchical rule induction. In International Conference on
Machine Learning, pp. 7583–7615. PMLR, 2022.

Jens Graupmann, Ralf Schenkel, and Gerhard Weikum. The SphereSearch engine for unified ranked
retrieval of heterogeneous XML and web documents. In Proceedings of the 31st international
conference on very large data bases, pp. 529–540. VLDB Endowment, 2005.

Alex Graves. Long short-term memory. Supervised sequence labelling with recurrent neural net-
works, pp. 37–45, 2012.

Geoffrey E Hinton et al. Learning distributed representations of concepts. In Proceedings of the
eighth annual conference of the cognitive science society, volume 1, pp. 12. Amherst, MA, 1986.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
How do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795,
2020.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. A survey on knowledge
graphs: Representation, acquisition, and applications. IEEE Transactions on Neural Networks
and Learning Systems, 33(2):494–514, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Stanley Kok and Pedro Domingos. Statistical predicate invention. In Proceedings of the 24th inter-
national conference on Machine learning, pp. 433–440, 2007.

Shengyao Lu, Bang Liu, Keith G Mills, SHANGLING JUI, and Di Niu. R5: Rule discovery with
reinforced and recurrent relational reasoning. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/forum?id=2eXhNpHeW6E.

10

https://openreview.net/forum?id=2eXhNpHeW6E

Published as a conference paper at ICLR 2023

Denis Lukovnikov, Asja Fischer, Jens Lehmann, and Sören Auer. Neural network-based question
answering over knowledge graphs on word and character level. In Proceedings of the 26th inter-
national conference on World Wide Web, pp. 1211–1220. International World Wide Web Confer-
ences Steering Committee, 2017.

Pasquale Minervini, Matko Bošnjak, Tim Rocktäschel, Sebastian Riedel, and Edward Grefenstette.
Differentiable reasoning on large knowledge bases and natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 5182–5190, 2020a.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and Tim Rocktäschel.
Learning reasoning strategies in end-to-end differentiable proving. In International Conference
on Machine Learning, pp. 6938–6949. PMLR, 2020b.

Stephen Muggleton. Inductive logic programming. Number 38. Morgan Kaufmann, 1992.

Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods. The
Journal of Logic Programming, 19:629–679, 1994.

Stephen Muggleton, Cao Feng, et al. Efficient induction of logic programs. Citeseer, 1990.

Shan-Hwei Nienhuys-Cheng and Ronald De Wolf. Foundations of inductive logic programming,
volume 1228. Springer Science & Business Media, 1997.

Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua Bengio, and Jian Tang. Rnnlogic: Learn-
ing logic rules for reasoning on knowledge graphs. arXiv preprint arXiv:2010.04029, 2020.

J. Ross Quinlan. Learning logical definitions from relations. Machine learning, 5(3):239–266, 1990.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. Advances in neural
information processing systems, 30, 2017.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum: End-to-
end differentiable rule mining on knowledge graphs. arXiv preprint arXiv:1911.00055, 2019.

Eric Salvat and Marie-Laure Mugnier. Sound and complete forward and backward chainings of
graph rules. In International Conference on Conceptual Structures, pp. 248–262. Springer, 1996.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE transactions
on Signal Processing, 45(11):2673–2681, 1997.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L Hamilton. Clutrr: A
diagnostic benchmark for inductive reasoning from text. arXiv preprint arXiv:1908.06177, 2019.

Koustuv Sinha, Shagun Sodhani, Joelle Pineau, and William L Hamilton. Evaluating logical gener-
alization in graph neural networks. arXiv preprint arXiv:2003.06560, 2020.

Frank Spitzer. Principles of random walk, volume 34. Springer Science & Business Media, 2013.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference on World Wide Web, pp. 697–706, 2007.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on Continuous Vector Space Models and their
Compositionality, pp. 57–66, 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In International Conference on Machine Learning,
pp. 2071–2080. PMLR, 2016.

Kazuhisa Tsunoyama, Ata Amini, Michael JE Sternberg, and Stephen H Muggleton. Scaffold hop-
ping in drug discovery using inductive logic programming. Journal of chemical information and
modeling, 48(5):949–957, 2008.

11

Published as a conference paper at ICLR 2023

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Chenyan Xiong, Russell Power, and Jamie Callan. Explicit semantic ranking for academic search
via knowledge graph embedding. In Proceedings of the 26th international conference on world
wide web, pp. 1271–1279. International World Wide Web Conferences Steering Committee, 2017.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for knowledge
base reasoning. In Advances in Neural Information Processing Systems, pp. 2319–2328, 2017.

Yuan Yang and Le Song. Learn to explain efficiently via neural logic inductive learning. arXiv
preprint arXiv:1910.02481, 2019.

Wentau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic parsing via staged query
graph generation: Question answering with knowledge base. In IJCNLP, pp. 1321–1331, Beijing,
China, July 2015.

John M Zelle and Raymond J Mooney. Learning semantic grammars with constructive inductive
logic programming. In AAAI, pp. 817–822, 1993.

12

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 AN EXAMPLE TO ILLUSTRATE HOW NCRL LEARNS RULES

Fig. 3 in the main content gives an example to illustrate how our NCRL learns logical rules. In this
example, we consider a sampled path p = [r1, r3, r4, r5, r3], and predict the relations that directly
connect the sampled paths (i.e.,r6). First of all, we split path p into short compositions using a
sliding window with a size of 2. Then, NCRL reasons over all the compositions and select the second
window w2 = [r3, r4] as the first step. After that, NCRL uses a recurrent attention unit to transform
w2 into a single embedding ̂(r3, r4). By replacing the embedding sequence [r3, r4] with the single
embedding ̂(r3, r4), we reduce the p from [r1, r3, r4, r5, r3] to [r1, ̂(r3, r4), r5, r3]. Following the
same process, we continually reduce p into [r1, ̂((r3, r4), r5), r3] and [r1, ̂(((r3, r4), r5), r3)]. In the
final step of the prediction, we compute the attention θ following Eq. 4. θ collects the predicted
probability that the rule body can be closed by each of the head relations. We compared the learn θ
with the ground truth one-hot vector [0, 0, 0, 0, 0, 1] (i.e., one-hot encoded vector of r6) to minimize
the cross-entropy loss. Algorithm 1 in the main content also outlines the learning procedure of
NCRL.

A.2 EXPERIMENTAL SETUP

NCRL is implemented over PyTorch and trained in an end-to-end manner. Adam Kingma & Ba
(2014) is adopted as the optimizer. Embeddings of all predicates are uniformly initialized and no
regularization is imposed on them. To fairly compare with different baseline methods, we set the
parameters for all baseline methods by a grid search strategy. The best results of baseline methods
are used to compare with NCRL. All the experiments are run on Tesla V100 GPUs.

A.3 HYPERPARAMETER SETTINGS

Adam (Kingma & Ba, 2014) is adopted as the optimizer. We set the parameters for all methods by
a grid search strategy. The range of different parameters is set as follows: embedding dimension
k ∈ {128, 256, 512, 1024, 2048}, batch size b ∈ {500, 1, 000, 5, 000, 8, 000}, learning rate lr ∈
{0.00001, 0.000025, 0.00005, 0.0001, 0.0005} and epochs i ∈ {1, 000, 2, 000, 5, 000, 10, 000}. Af-
terward, we compare the best results of different methods. The detailed hyperparameter settings can
be found in Table 6. Both the relation embeddings are uniformly initialized and no regularization is
imposed on them.

Table 6: The best hyperparameter setting of NCRL on several benchmarks.

Dataset
Batch
Size

Open Paths
Sampling Ratio

Embedding
Dim Epoches

Maximum
Length

Learning
Rate

Family 500 0.1 512 1,000 3 0.0001
Kinship 1,000 0.1 1024 2,000 3 0.00025
UMLS 1,000 0.1 512 2,000 3 0.00025

WN18RR 5,000 0.1 1024 2,000 3 0.0001
FB15K-237 5,000 0.1 1024 5,000 3 0.0005
YAGO3-10 8,000 0.1 1024 5,000 3 0.00025

A.4 KNOWLEDGE GRAPH COMPLETION

A.4.1 DATASETS

The detailed statistics of three large-scale real-world KGs are provided in Table 7. FB15K237,
WN18RR, and YAGO3-10 are the most widely used large-scale benchmark datasets for the KG
completion task, which don’t suffer from test triple leakage in the training set. In addition, three
small-scale KGs are also included in our experiments. The Family dataset is selected due to better
interpretability and high intuitiveness. The Unified Medical Language System (UMLS) dataset is
from bio-medicine: entities are biomedical concepts, and relations include treatments and diagnoses.

13

Published as a conference paper at ICLR 2023

The Kinship dataset contains kinship relationships among members of the Alyawarra tribe from
Central Australia. Because inverse relations are required to learn rules, we preprocess the KGs to
add inverse links.

Table 7: Data statistics of widely used benchmark knowledge graphs.

Dataset # Data # Relation # Entity

Family 28,356 12 3007
UMLS 5,960 46 135
Kinship 9,587 25 104

FB15K-237 310,116 237 14,541
WN18RR 93,003 11 40,943

YAGO3-10 1,089,040 37 123,182

A.4.2 ABLATION STUDY

0.33 0.66 1.00
Sparsity Ratio

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
RR

DRUM
Neural-LP
MINERVA
RNNLogic
RLogic
Ours

Figure 7: KG completion per-
formance w.r.t. sparsity ratio on
UMLS dataset.

10 20 40 60 80 100
Logical Rules

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

Empirical Precision
Neural-LP
Path Ranking
RNNLogic
RLogic
Ours

Figure 8: KG completion perfor-
mance w.r.t. # logical rules on
WN18RR dataset.

288 1003 1617 3450 38816 411750
Sampled Paths

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce

MRR
Hit@1
Hit@10

Figure 9: KG completion perfor-
mance w.r.t. # sampled paths on
Family dataset.

Performance w.r.t. Data Sparsity We present more analysis about the performance of NCRL
against other baseline methods on UMLS dataset w.r.t. Data Sparsity in Fig. 7. We have a similar
observation as we did on Kinship dataset. The performance of NCRL does not vary a lot with
different sparsity ratios θ.

KG completion performance w.r.t. the Number of Learned Rules We present more analysis
about the performance of NCRL against other baseline methods on WN18RR dataset w.r.t. the
number of learned rules in Fig. 8. We have a similar observation as we did on Kinship dataset.

Performance w.r.t. # Sampled Paths To investigate how the number of sampled paths affects the
performance, we vary the number of sampled paths among {288, 1003, 1617, 3450, 38816, 411750}
and report performance in terms of KG completion task on Family dataset in Fig. 9. We observe that
the performances increase severely when the number of sampled closed paths increases from 288 to
1003. After that the performance stay steady. This is attractive in real-world application as a small
number of sampled closed paths can already gives great performance.

Hierarchical Structure Learning As stated earlier, learning an accurate hierarchical structure is
significant for rule discovering. To investigate how the hierarchical structure learning affects the
performance, we follows a random deduction order to induce rules and compare against NCRL
in term of KG completion performance. From Table 8, we can observe that the KG completion
performance drastically decreases if we didn’t follow a correct order to learn the rules.

Performance w.r.t. Randomness Caused by Random Sampling Since the random path sampling
may result in unstable performance, to investigate how the randomness affects the performance, we
report the results of different runs of the proposed NCRL in terms of KG completion task using the
same hyperparameter. From Table 9, we can observe that the KG completion performance is hardly
affected by the randomness caused by random sampling, which is attractive in practice.

Performance w.r.t. Size of Sliding Windows To investigate how the size of sliding windows affect
the performance, we set the window size to {2, 3} and present the performance of NCRL in term of

14

Published as a conference paper at ICLR 2023

Table 8: KG completion performance w.r.t. random deduction order v.s. hierarchical structure learning

Methods Family Kinship UMLS
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

NCRL w/o Hierarchical
Structure Learning 0.84 74.6 92.6 0.34 20.1 69.3 0.55 37.7 88.7

NCRL 0.92 85.6 99.6 0.65 49.4 93.6 0.78 66.1 95.2

Table 9: KG completion performance w.r.t. randomness caused by random sampling

Family Kinship UMLS
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

Mean 0.91 85.1 99.1 0.64 48.7 92.5 0.78 65.9 95.0
Standard Deviation 0.005 0.374 0.216 0.000 0.250 0.287 0.005 0.327 0.262

WN18RR FB15K-237 YAGO3-10
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

Mean 0.66 56.2 85.0 0.29 20.4 46.8 0.38 27.2 53.3
Standard Deviation 0.005 0.262 0.205 0.005 0.374 0.411 0.005 0.478 0.340

KG completion on Family, Kinship, and UMLS datasets in Table 10. We can see that we consistently
achieve the best performance by setting the window size as 2. The major reason is that we apply
rules with a maximum length of 3 for the KG completion task. In this case, NCRL cannot leverage
the compositionality by setting window size as 3 and thus results in worse performance.

Performance w.r.t. Different Types of Sliding Window Encoder To investigate how different
sliding window encoders affect the performance, in addition to RNN, we also encode the sliding
window using (1) a Transformer; and (2) a standard MLP, which takes the concatenation of all pred-
icates covered by the sliding window as the input and outputs a new embedding wi ∈ Rd. We
present the performance of NCRL with different sliding window encoders in terms of KG comple-
tion on Family, Kinship, and UMLS dataset in Table 11. We can observe that the RNN encoder, as
the most effective and efficient sequence model, gives the best performance due to the sequential
nature of the subsequences extracted by the sliding windows. Although Transformer is also a se-
quence model, it suffers from an overfitting issue caused by the large parameter space, which results
in bad performance.

A.5 SYSTEMATICITY

A.5.1 DATASETS

Clean Data CLUTRR Sinha et al. (2019) is a dataset for inductive reasoning over family relations.
The goal is to infer the missing relation between two family members. The train set contains graphs
with up to 4 hops paths, and the test set contains graphs with up to 10 hops path. The train and test
splits share disjoint set of entities. The detailed statistics of CLUTRR is provided in Table 12.

Noisy Data Graphlog Sinha et al. (2020) is a benchmark dataset designed to evaluate systematicity.
It contains logical worlds where each world contains graphs that are created using a different set
of ground rules. The goal is to infer the relation between a queried node pair. GraphLog contains
more bad examples than CLUTRR does. The detailed statistics of Graphlog is provided in Table 13.
When the ARL is larger, the dataset becomes noisier and contains more bad cases.

Table 10: KG completion performance w.r.t. size of sliding windows

Window Size Family Kinship UMLS
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

2 0.92 85.6 99.6 0.65 49.4 93.6 0.78 66.1 95.2
3 0.90 82.3 99.5 0.60 43.1 88.9 0.72 59.9 89.3

15

Published as a conference paper at ICLR 2023

Table 11: KG completion performance w.r.t. types of sliding window encoder

Encoder Family Kinship UMLS
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

MLP 0.88 80.2 98.0 0.56 38.0 84.9 0.69 55.8 87.4
Transformer 0.84 75.6 95.3 0.50 33.7 79.1 0.62 48.8 81.2

RNN 0.92 85.6 99.6 0.65 49.4 93.6 0.78 66.1 95.2

Table 12: Data statistics of CLUTRR datasets.

Dataset # Relation # Train # Test

CLUTRR 22 15,083 823

A.5.2 SYSTEMATIC GENERALIZATION ON CLUTRR

Baseline methods. We evaluate our method against several SOTA algorithms, including (1) logical
rule learning methods (e.g., CTP (Minervini et al., 2020b), R5 (Lu et al., 2022) and RLogic (Cheng
et al., 2022)); (2) sequential models (e.g., Recurrent Neural Networks (RNN) (Schuster & Paliwal,
1997), Long Short-Term Memory Networks (LSTMs) (Graves, 2012), GRU (Chung et al., 2014)
and Transformer (Vaswani et al., 2017)); (3) embedding-based models (e.g., GAT (Veličković et al.,
2017) and GCN (Kipf & Welling, 2016)); (4) neural theorem provers, including GNTP (Minervini
et al., 2020a).

A.5.3 INTERPRETABLE SELF-ATTENTION

This section discusses whether the attention correctly captures the semantic of relations. The visu-
alization of the attention learned over Family dataset and WN18RR dataset are given in Fig. 10 and
Fig. 11.

A.6 COMPLEXITY ANALYSIS

To theoretically demonstrate the superiority of our proposed NCRL in terms of efficiency, we
compare the space and time complexity of NCRL and backward-chaining methods - NeuralLP as
presented in Table 14. We denote |E|/|R|/|O|/l/a/d as the number of entities/relations/observed
triples/length of rule body/number of sampled paths/dimension of the embedding space. We can
observe that: (1) For space complexity, our proposed NCRL is more efficient compared to NeuralLP
since d� |E|2; (2) For time complexity, our proposed NCRL is also more efficient than NeuralLP.

Table 13: Data statistics of GraphLog datasets. NC: number of classes. ND: number of distinct resolution
edge sequences (distinct descriptors). ARL: average resolution length. AN: average number of nodes. AE:
average number of edges.

Dataset NC ND ARL AN AE #Train #Test

World 2 17 157 3.21 9.8 11.2 5000 1000
World 3 16 189 3.63 11.1 13.3 5000 1000
World 6 16 249 5.06 16.3 20.2 5000 1000
World 8 15 404 5.43 16.0 19.1 5000 1000

Table 14: Comparison of Space and Time Complexity for Model Training.

Method Space Complexity Time Complexity
NeuralLP O(|R||E|2 + 3|O|) O(|R|l|E|3(l−1))

NCRL O(|R|d+ al) O(2ad2)

16

Published as a conference paper at ICLR 2023

au
nt

br
ot

he
r

da
ug

ht
er

fa
th

er

hu
sb

an
d

m
ot

he
r

ne
ph

ew

ni
ec

e

sis
te

r

so
n

un
cle

wi
fe

aunt

brother

daughter

father

husband

mother

nephew

niece

sister

son

uncle

wife 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 10: Visualization of the attention learned on Family dataset.

17

Published as a conference paper at ICLR 2023

_h
yp

er
ny

m

_d
er

iv
at

io
na

lly
_r

el
at

ed
_f

or
m

_in
st

an
ce

_h
yp

er
ny

m

_a
lso

_s
ee

_m
em

be
r_

m
er

on
ym

_s
yn

se
t_

do
m

ai
n_

to
pi

c_
of

_h
as

_p
ar

t

_m
em

be
r_

of
_d

om
ai

n_
us

ag
e

_m
em

be
r_

of
_d

om
ai

n_
re

gi
on

_v
er

b_
gr

ou
p

_s
im

ila
r_

to

_hypernym

_derivationally_related_form

_instance_hypernym

_also_see

_member_meronym

_synset_domain_topic_of

_has_part

_member_of_domain_usage

_member_of_domain_region

_verb_group

_similar_to

0.2

0.4

0.6

0.8

Figure 11: Visualization of the attention learned on WN18RR dataset.

18

	1 Introduction
	2 Notation & Problem Definition
	3 Neural Compositional Rule Learning (NCRL)
	3.1 Logical Rule Learning With Recurrent Attention Unit
	3.1.1 Hierarchical Structure Learning
	3.1.2 Recurrent Attention Unit

	3.2 Training and Rule Extraction

	4 Experiments
	4.1 Knowledge Graph Completion
	4.1.1 Ablation Study

	4.2 Training Efficiency
	4.3 Systematic Generalization
	4.4 Case Study of Generated logical rules

	5 Related Work
	6 Conclusion
	A Appendix
	A.1 An Example to Illustrate How NCRL Learns Rules
	A.2 Experimental Setup
	A.3 Hyperparameter Settings
	A.4 Knowledge Graph Completion
	A.4.1 Datasets
	A.4.2 Ablation Study

	A.5 Systematicity
	A.5.1 Datasets
	A.5.2 Systematic Generalization on CLUTRR
	A.5.3 Interpretable Self-Attention

	A.6 Complexity Analysis

