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Hybrid Forecasting for Functional Time Series of Dissolved Oxygen Profiles

Luke Durella , J. Thad Scottb , and Amanda S. Heringa

aDepartment of Statistical Science, Baylor University, Waco, Texas, USA; bDepartment of Biology, Baylor University, Waco, Texas, USA

ABSTRACT
Hybridizing machine learning (ML) and traditional statistical modeling is an active area of research,
with evidence that integrating the two approaches may improve model performance. In lake ecol-
ogy, exploring such models is necessary because recent research shows that traditional hydro-
dynamic models often produce poor short-term forecasts. Thus, in this paper, we compare a
selection of hybrid, ML, and statistical models in functional forecasting of dissolved oxygen (DO)
profiles in a lake. Functional data have a unique structure wherein the observations are functions,
and several ML models for functional data have been recently proposed. The hybrid models in
this paper first obtain functional principal components (FPCs) to reduce the dimension, and FPC
scores are then forecast using a feed-forward neural network (NN), a recurrent NN, or a random
forest (RF). Purely ML NN and RF models forecast each measurement in the functions independ-
ently. A functional-statistical model and the persistence model are provided for reference. The
forecast performance of these seven models is compared, and prediction bands are built using a
subset of the training data to estimate the prediction uncertainty. The RF-based models forecast
the best, and the prediction bands of all models provide good average coverage.
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1. Introduction

Monitoring and forecasting freshwater lake ecosystem pat-
terns and processes is increasingly vital for informing
research and water management decisions. Several scenarios
that motivate forecast-driven decision-making are outlined
in Table 1. Recently, limnologists have focused on construct-
ing near-term (hourly to weekly) forecasts to capture high
frequency variation of water quality variables, either with
traditional hydrodynamic models (Thomas et al. 2020) or
data-driven methods (Woelmer et al. 2022). While deter-
ministic hydrodynamic modeling has been well-established
for forecasting on a monthly, annual, or multi-annual time-
scale, it can perform poorly when forecasting at single-day
horizons (Mesman et al. 2020). Thus, there is a need for
successful ecological forecasting systems to provide water
quality forecasts that (1) are short-term, (2) quantify uncer-
tainty, and (3) update in real-time (Carey et al. 2022).

Dissolved oxygen (DO) is a common water quality vari-
able of interest for water treatment and biological activity
monitoring. DO plays an important role in understanding
ecological behavior (Tengberg et al. 2006; Karakaya et al.
2011). High levels of DO can be related to algal blooms and
result in oxidative stress (da Rosa et al. 2005), and low levels
of DO can lead to extensive deterioration of ecosystems
(Siljic Tomic et al. 2018). Low DO can also cause metals to
precipitate in the water (Banks et al. 2012), requiring

additional expense for chemical treatment. If high-quality
forecasts of DO were available, then a water treatment utility
could either relocate the water intake to the depth at which
DO is the highest, or they may be able to draw a higher per-
centage of water from other sources in their water portfolio.

Durell et al. (2022) provided the first example of forecast-
ing vertical DO profiles within a functional paradigm and
compared an advanced statistical-functional model with
other statistical-functional methods, purely ML methods,
purely statistical methods, and a purely functional method.
They built their models using multiple water quality meas-
urements, including DO, that were taken at a monitoring
station in Eagle Mountain Lake northwest of Fort Worth,
Texas. This dataset is rare because every 2 hour, measure-
ments were taken every half-meter from the surface to 10 m
below the surface of the lake, making it high frequency over
time and vertically dense relative to other data collection
campaigns in lakes. Durell et al. (2022) found that the best
DO forecasting method in terms of root mean squared error
(RMSE) reduction relied on applying dimension reduction
with functional principal components (FPCs) followed by
fitting a vector autoregressive model with exogenous varia-
bles (VARX) to the FPC scores. The FPC-VARX model was
first proposed by Aue et al. (2015).

However, there are both statistical and ecological reasons
to suspect that further exploration of ML and hybrid ML-
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functional methods may result in improved forecasts. The
FPC-VARX method outperformed the method of Hyndman
and Ullah (2007), which treats each FPC score as a separate
univariate time series and forecasts each score with a separ-
ate autoregressive model. This suggests that in spite of the
additional parameters required, the FPC-VARX model is
able to utilize important information about the lagged score
cross-correlation. Because the relationship between lagged
FPC scores is likely to be complex and nonlinear, a hybrid
approach that incorporates ML methods may outperform
the FPC-VARX model for score forecasting. Applying ML
methods in ecological forecasting has also been proposed to
reduce forecast uncertainty (Thomas et al. 2020). This is
sensible as weather events can result in high short-term vari-
ability (e.g., Andersen et al. 2020). Thus, the present study
seeks to extend previous work by providing a new compari-
son of data-driven, hybrid models for short-term functional
forecasting of vertical DO profiles that quantify forecast
uncertainty with empirical prediction bands and are capable
of fast, real-time updates.

1.1. Review of Hybrid Functional ML Models

Hybrid models combine multiple techniques or methods in
order to leverage the strengths of more than one model.
Hybrid statistical-machine learning models have demon-
strated improved performance compared to purely statistical
or purely ML approaches across disciplines including energy
(e.g. Fard and Akbari-Zadeh 2014; Angamuthu
Chinnathambi et al. 2018), epidemiology (e.g. Chin et al.
2021), and environmental forecasting (e.g. Das et al. 2020;
Mohammadi et al. 2021). For example, in Newhart et al.
(2020), a Lasso-based forecast is fed into a neural network
(NN) for ammonia prediction in a wastewater treatment
facility, resulting in better overall forecasts for longer fore-
cast horizons than those from purely statistical or purely
ML models.

Hybrid statistical-functional-ML integrates ML with stat-
istical functional data analysis (FDA). Generally, statistical-
functional models are faster and simpler compared to ML
models, which can be highly accurate but tend to be slow
and require numerous and possibly arbitrary choices of
hyperparameters. ML techniques can also suffer from over-
fitting, which can require complicated early-stopping rules.
In functional settings where observations are typically

considered to be high-dimensional, vector-valued realiza-
tions of infinitely-dimensional, highly correlated processes,
statistical techniques can be employed to both reduce the
dimensionality of the vector-valued realizations and to
“smooth away” measurement error, revealing the pattern of
the underlying curve. Rao and Reimherr (2021) incorporate
regularization techniques to smooth functional parameters
in their functional neural network, reducing the tendency
for ML models to overfit and resulting in better prediction
performance. In this work, we employ penalized B-spline
smoothing as described in Chapter 5 of Kokoszka and
Reimherr (2017) on the input data in conjunction with the
dimension reduction technique of functional principal com-
ponent analysis (FPCA). Thus, the goal of a hybrid statis-
tical-functional-ML model would be to use statistical-
functional techniques to both reduce the dimension of the
data and the associated risk of overfitting before applying an
ML method to forecast vertical DO profiles.

The field of hybrid statistical-functional-ML is growing
yet under-explored. In particular, few examples of using
functions as both the model inputs and outputs (a.k.a., func-
tion-to-function modeling) exist, which is the focus of this
study. In the following, we outline common approaches
established in the literature, building upon the basic defin-
ition of an NN model. A traditional NN with a P-dimen-
sional input vector, xP�1, one hidden layer with M nodes,
and scalar output, y, can be defined as

y ¼
XM
m¼1

/ðbm þ w0
mxÞ þ e, (1)

where bm is a scalar valued bias, /ð�Þ is an activation func-
tion, wm is a P-dimensional weight vector, and e is a mean-
zero error term.

A functional extension of Equation 1 for a functional
input and a scalar output is the feedforward functional
neural network (FNN). In FDA, a functional observation,
Y(s) is defined over s 2 ½S1, S2� but is only observed at P dis-
crete points, so the observation can be represented as a P-
dimensional vector input, ðYðs1Þ, :::,YðsPÞÞ0: An FNN with
the P-dimensional vector input, ðYðs1Þ, :::,YðsPÞÞ0, one hid-
den layer with M nodes, and scalar output, y, can be defined
as

y ¼
XM
m¼1

/ bm þ 1
P

XP
p¼1

Fmðwm, spÞYðspÞ
0
@

1
Aþ e, (2)

where Fmð�Þ is a pre-defined parametric weight function,
and wm is a d-dimensional weight vector with d< P. Pre-
defining a functional weight results in fewer elements to
estimate in the parameter vector, wm: In FNNs, the typical
P-dimensional vector of weights in a given node is replaced
by a weight function that is controlled by a low-dimensional
weight vector.

FNNs and their properties are initially developed in Rossi
et al. (2002) and Rossi and Conan-Guez (2005) for scalar
prediction and classification. Wang, Zheng, Farahat, Serita,
and Gupta (2019a) specify the FNN weight functions as
functional principal components. Wang et al. (2019 b) and

Table 1. Examples of applications that can utilize short-term forecasting for
intervention.

Field Forecast-driven decisions

Water treatment Minimizing treatment costs by adaptively
managing chemical treatment needs with
advance knowledge of variation.

Relocating water intake (intake depth or
water source) based on forecasted
changes in quality.

Conservation Predicting stressors on sensitive or
critical species.

Research Developing models to predict harmful
algal blooms.

Modifying redox-sensitive biogeochemistry
predictions.
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Wang et al. (2021) preprocess sparse functional data using
FPCA before fitting an FNN. Both functional and scalar
inputs for deep feed-forward FNNs are explored in Thind
et al. (2022). Adaptive choices of weight functions are intro-
duced for FNNs in Yao et al. (2021). FNNs are applied to
spatio-temporal data in Rao et al. (2020). FNNs can be built
with all layers composed of functional nodes (e.g. Rao and
Reimherr 2021) or a single layer of functional nodes and
subsequent layers of traditional vector-valued nodes (e.g.
Wang, Zheng, Farahat, Serita, Saeki, et al. 2019). All of the
FNN approaches mentioned, except for that of Rao and
Reimherr (2021), are implemented for scalar outputs or
classification.

Another popular approach to FNNs uses functional pro-
jections to first reduce the dimension of the functional data
and then directly fit a traditional NN. A basis function
expansion NN with a d-dimensional input, c, of basis
expansion coefficients such that YðsÞ � Pd

j¼1 cjwjðsÞ, where
wjðsÞ is the jth B-Spline basis function, one hidden layer
with M nodes, and scalar output, y, is defined as

y ¼
XM
m¼1

/ðbm þ w0
mcÞ þ e: (3)

Both B-spline basis function coefficients and FPC scores are
used as the inputs into NNs in Rossi et al. (2005); Rossi and
Conan-Guez (2005); Perdices et al. (2021), and Yao et al.
(2021). The theory behind multilayer perceptrons with basis
function coefficients used as inputs is explored in Rossi and
Conan-Guez (2006). Other approaches include discretizing
the function and using it as an input to a multivariable NN
(Rossi and Conan-Guez 2005; Yao et al. 2021) or using
other projection methods instead of basis coefficients or
FPC scores (Ferr�e and Villa 2006). Similarly to FNNs, these
projection-based NN approaches output a scalar value or
perform classification, except for Wang et al. (2020), who
uses multivariate FPC scores as inputs to a multilayer per-
ceptron to forecast FPC scores, which are ultimately used to
estimate a functional output.

While NNs are the most common ML technique used for
functional data, a variety of other approaches exist in the lit-
erature. Nerini and Ghattas (2007) and Lane and Robinson
(2011) develop regression trees for functional responses by
using functional divergence measurements as splitting crite-
ria for non-functional covariates. Rahman et al. (2019) pro-
pose functional random forests (RFs) that split nodes based
on discretized functional responses. Ju and Salibi�an-Barrera
(2021) use projection coefficients as covariates in a boosted
tree for scalar prediction. Yu and Lambert (1999) use multi-
variate regression trees to predict spline coefficients and
FPC scores, which are subsequently used to build a forecast
curve. Others use traditional random forest methods with
FPC scores as inputs for the purpose of functional classifica-
tion (Meng et al. 2016; Lee et al. 2017; Lin and Zhu 2019;
Pesaresi et al. 2020; Barua et al. 2021). Support vector
machines are used for classification based on functional
covariates (Rossi and Villa 2006; L�opez et al. 2010; Li et al.
2014). A Bayesian additive regression tree extended for func-
tional responses is described in Starling et al. (2020).

Our interest is in modeling a functional output with both
lagged endogenous and exogenous functional inputs. This
setting is not commonly encountered in the ML literature.
The exceptions are Wang et al. (2020) and Rao and
Reimherr (2021) who explicitly investigate functional
responses. Wang et al. (2020) use function-to-function FPC-
ML with exogenous variables to both investigate the associ-
ation between functions and to forecast portions of future
functions rather than the entire function. Our hybrid models
use FPCs to reduce each functional observation to a low
dimensional vector of scores, forecast the scores with an ML
method, and then reconstruct a functional forecast with the
forecast scores. This is the same general framework outlined
in Wang et al. (2020), except that we use traditional FPCs
rather than multivariate FPCs, and we develop several exten-
sions, which, to our knowledge, are novel contributions to
the literature.

We focus on hybrid FPC-ML models over other types of
FNNs because traditional ML structures for vector-based
inputs can be directly used. Because ML methods already
require various tuning steps and hyperparameter selection,
using FPC-ML models can reduce the complexity of incor-
porating ML into applied ecological forecasting. Some
concerns with FPC-ML methods, such as the arbitrary pre-
selection of basis functions and the failure of FPC dimen-
sion reduction to incorporate information from the output
(Yao et al. 2021) are mitigated in our work by our use of a
saturated basis and lagged values of the independent vari-
able. Therefore, we compare FPC-based hybrid models
(FPC-NN, FPC-RNN, and FPC-RF) with the statistical-func-
tional approach (FPC-VARX) and purely ML models
(Direct-NN and Direct-RF). A purely functional Persistence
model serves as a baseline comparison. Figure 1 illustrates
the relationship between the models mentioned in this paper
and their respective paradigms.

From a data science perspective, this study investigates if
hybrid FPC-ML methods are capable of accounting for com-
plicated patterns and non-linearity in vertical DO profiles,
and in doing so, provides the first statistical comparison of
hybrid FPC-ML models with statistical-functional and pure
ML methods. From a limnological and ecological perspec-
tive, this work introduces a new use of hybrid statistical-ML
and RF models for DO lake profile functional forecasting,
with the goal of motivating future exploration of ML techni-
ques in the limnological community. This work is the first
hybrid statistical-ML study to (1) implement function-to-
function forecasting of complete profiles with exogenous
variables, (2) introduce RF and recurrent NN extensions
during the score forecast step, (3) provide simultaneous
comparison against both a statistical-functional approach
and purely ML approaches, and (4) build empirical predic-
tion bands for all approaches.

The remainder of this paper is organized as follows: In
Section 2, we outline the collection and pre-processing of
the DO case study data. In Section 3, we describe the mod-
els and the forecasting algorithm. In Section 4, we compare
the results of the models, and Section 5 offers concluding
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remarks regarding how to further improve models and how
these models may be used in practice.

2. Case Study Data

From April 25, 2019 to October 29, 2019, a Hydrolab HL7
Multiparameter Datasonde capable of measuring water tem-
perature, DO, pH, and electrical conductivity was utilized with
an automated profiling system near the dam of Eagle
Mountain Lake (EML). The percent saturation of DO was also
recorded, which is the percentage of DO in the water relative
to that expected in the atmosphere, and is the variable of inter-
est for forecasting. The profiler moved the sonde from the sur-
face (0.0m) to near-bottom (10.0m), collecting data every
0.5m every 2 hours, resulting in twenty-one discrete depths
measured per observation. The sonde was maintained every
1–2 weeks, depending on water temperature, with more fre-
quent maintenance required at warmer temperatures. Sensors
were assessed for instrument drift, cleaned, and recalibrated
during each maintenance event. More details on the data col-
lection, imputation of a small percentage of missing data (less
than 4%), and variable definitions can be found in Durell et al.
(2022). Figure 2 displays the location of EML and the profiler.

Forecasting DO profiles in EML has important ecological
implications. Tarrant Regional Water District (TRWD) man-
ages EML along with multiple other reservoirs in the Dallas
Fort-Worth area. Forecasting DO in each reservoir could
enable TRWD to adaptively draw water from different reser-
voirs based on forecast conditions. They could also make
water-body specific choices about depth and time of day for
collection. Furthermore, EML is a shallow, polymictic lake.
When the lake mixes, the entire lake becomes nearly hypoxic,
putting stress on the fish and other aquatic biota. Researchers
may be interested in studying this hypoxia-induced stress and
identifying the hypoxia threshold at which fish kills are initi-
ated in a specific water body. Because it is not known when

the lake will mix, DO profile forecasts could be used to identify
early mixing and trigger the collection of data.

For each variable recorded by the sonde, the 21-dimensional
vectors are smoothed using penalized, saturated B-spline basis
functions with a roughness penalty chosen by generalized cross
validation as outlined in Kokoszka and Reimherr (2017).
Figure 3 displays the results of this smoothing approach for DO.
The vertical axis designates lake depth where 0 m corresponds
to the surface and 10 m corresponds to the bottom of the lake.
Each panel shows twelve observations on a given day, with col-
ors ranging from dark purple at the beginning of the day (1 am
CST) to bright gold at the end of the day (11pm CST). Here,
each panel shows one full day's observations, selected from a
week in early summer, late summer, or fall. The points show
the observed measurements at each depth, and the correspond-
ing line is the smoothed approximation. Visually, it appears that
generalized cross validation provides a balance between a
smooth fit and interpolation of the points. The figure reveals
that the observations contain temporal dependence in that for a
given day, observations of similar color are closer together and
more similarly shaped. However, there is also clear seasonal vari-
ation in the data as the overall shape of the functions can differ
dramatically.

3. Methodology

3.1. Hourly Centering

To address the diurnal dependence demonstrated in
Figure 3, the observations are first centered by their corre-
sponding hourly sample means. As will be discussed in
Section 3.5, a rolling window is employed to minimize the
effect of seasonal variation. Thus, the hourly means are re-
estimated for each window. We present the methodology in
terms of centered data, but plot the forecasts and true curves
with the sample hourly means added back.

Pure Statistical
VAR

AR

Pure Functional
Persistence

Hybrid
FPC-NN

FPC-RNN

FPC-RF

FNN

Statistical-ML
Regression-NN

Pure ML
Direct-NN

Direct-RF

Statistical

Functional

Machine Learning

Statistical-
Functional

FPC-VARX

Figure 1. Schematic illustration of different categories of modeling approaches
and their overlap. Hybrid models are those models in the center that have ele-
ments of both statistical and machine learning that incorporate the functional
structure of the data.

Figure 2. Location of Eagle Mountain Lake in Texas. The red dot designates the
location of the profiler. Source: https://waterdatafortexas.org/reservoirs/individ-
ual/eagle-mountain/location.png.
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3.2. Functional Principal Component Analysis (FPCA)

Let YnðsÞ, n ¼ 1, :::,N denote a mean-zero, stationary func-
tional time series of square integrable functions such thatÐ
Y2
nðsÞds < 1 and s 2 ½S1, S2�: The goal is to obtain a fore-

cast for the unobserved h-step-ahead curve, YNþhðsÞ: One
established approach is to implement a truncated Karhunen-
Lo�eve approximation,

YnðsÞ �
Xd
j¼1

nn, j�jðsÞ, (4)

where �jðsÞ is the jth FPC, defined as the jth eigenfunction
of the covariance function, cðs, s0Þ ¼ E½YnðsÞYnðs0Þ�, ordered
by decreasing eigenvalues (Kokoszka and Reimherr 2017).
That is, �1ðsÞ describes the most variability among the set

fY1ðsÞ, :::,YNðsÞg; �2ðsÞ the second most; and so on. The jth
FPC score is denoted nn, j ¼ hYn, �ji ¼

Ð
YnðsÞ�jðsÞds: The

truncation level, d, is the number of FPCs chosen. When d
is allowed to approach infinity, the approximation in
Equation 4 is replaced with an equality.

In practice, a sample of centered curves, fY1ðsÞ, :::,YNðsÞg
can be used to compute the sample covariance function as
ĉðs, s0Þ ¼ 1

N

PN
n¼1 YnðsÞYnðs0Þ: Then, the d-dimensional vector

of empirical FPCs (EFPCs), me ¼ ð�e1, :::, �edÞ0, and d-dimen-
sional vectors of empirical scores, nen ¼ ðnen, 1, :::, nen, dÞ0 for
n ¼ 1, :::,N are computed. The N score vectors and any
exogenous variables, which can be scalar-valued, vector-val-
ued variables, or FPC scores from other functional variables,
can be fit with a suitable model to forecast the h-step ahead
vector of EFPC scores, neNþh: Finally, the forecast score
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Figure 3. Profile plots of the smoothed vertical measurements of DO, showing one day’s observations for a selection of weeks. The colors indicate the hour of the
day and progress from dark purple (1 am CST) to light gold (11 pm CST).
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vector, n̂
e
Nþh, can be used directly to construct a forecast for

YNþhðsÞ as follows
Ŷ NþhðsÞ ¼ ðn̂eNþhÞ0me: (5)

3.3. Models

For the FPC-based models, YnðsÞ denotes the nth smoothed
functional observation of DO with nen as the corresponding
EFPC score vector of dimension d. We denote the EFPC
score vectors for the three functional exogenous variables,
temperature, conductivity, and pH as cen, 1, c

e
n, 2, and cen, 3 of

dimension dc1 , dc2 , and dc3 , respectively. The choices of
d, dc1 , dc2 , and dc3 are critical, and many methods exist to
aid in selecting these values. One common approach is to
select the smallest dimension such that the cumulative vari-
ance explained meets a threshold (Wang et al. 2020). A
data-driven method based on a functional final prediction
error is presented in Aue et al. (2015). In the supplementary
materials of Durell et al. (2022), these strategies were com-
pared to a selection of d ¼ 10, dc1 ¼ 2, dc2 ¼ 2, and dc3 ¼ 3,
chosen by visual inspection. The visual selection resulted in
better forecasts for the EML data in terms of RMSE, so we
retain the same choice for this study.

In the following sections, we present the technical details of
all the models in terms of the dimensions and variables of the
EML data, with the hope of clearly outlining the fitting proce-
dures and encouraging reproducibility and adoption in similar
studies. They are a purely functional approach (Persistence);
two purely ML approaches (Direct-NN, Direct-RF); a statis-
tical-functional approach (FPC-VARX); and three hybrid FPC-
ML models: a basic feedforward NN (FPC-NN), a recurrent
NN (FPC-RNN), and an RF (FPC-RF). The process used to
select hyperparameters for the NN and RF-based methods is
discussed in the Supplementary Material for this article.

3.3.1. Persistence
The Persistence model selects the current, uncentered func-
tional observation of DO as the h-step-ahead forecast. This
is a common baseline model and can be thought of as a
“best guess” for future DO conditions that do not require
sophisticated modeling or expert knowledge.

3.3.2. Direct Neural Network (Direct-NN)
The purely ML Direct-NN model relies on the raw, 21-dimen-
sional vectors of DO, yn ¼ ðYnðs1Þ, :::,Ynðs21ÞÞ0, n ¼ 1, :::,N:
The Direct-NN takes as input a stacked vector, zn�h, of lag h
vector-valued observations of DO and any desired exogenous
variables. More than one lagged value can be used, but Durell
et al. (2022) found that in general, no improvement in forecast
RMSE resulted from including multiple lags, so we consider
the following methods with a single lagged input.

When no exogenous variables are included, zn�h ¼ yn�h:
Otherwise, if xn, 1, xn, 2, and xn, 3 are the 21-dimensional vec-
tors of temperature, conductivity, and pH, respectively, then
we have an 84-dimensional input vector, zn�h ¼
ðyn�h, xn�h, 1, xn�h, 2, xn�h, 3Þ0: For a Direct-NN with J layers,

the first hidden layer is defined as

hn�h, 1 ¼ /1ðW1zn�h þ b1Þ, (6)

the jth layer as

hn�h, j ¼ /jðWjhn�h, j�1 þ bjÞ, (7)

and the output layer as,

yn ¼ WJhn�h, J þ bJ þ en, (8)

where /jð�Þ is the jth activation function; the parameters to
be estimated with a gradient-descent-based optimizer are Wj

and bj for j ¼ 1, :::, J; and en is a 21� 1 mean-zero error
vector. This model is fit to z1, :::, zN to obtain a forecast,
ŷNþh: To compare this model’s forecasts with the functional
methods, penalized B-spline smoothing is applied to ŷNþh to
obtain a smooth functional forecast, Ŷ NþhðsÞ:

3.3.3. Direct Random Forest (Direct-RF)
A random forest model is built by averaging the results of a
collection of T decision trees. First, we denote a matrix of
inputs as Z with each row corresponding to an input vector as
defined in Section 3.3.2, zn, n ¼ 1, :::,N � h: If no exogenous
variables are used, the dimensions of Z are ðN � hÞ � 21 and
otherwise are ðN � hÞ � 84: We forecast one depth of the
function at a time. For a fixed depth, sp, p ¼ 1, :::, 21, we
define the output vector as yp ¼ ðYhþ1ðspÞ, :::,YNðspÞÞ0:

The tth decision tree for t ¼ 1, :::,T is fit by first creating
a bootstrapped data set denoted by Zt and yp, t , where Zt is
constructed by sampling N – h times with replacement from
the rows of Z, and yp, t are the corresponding resampled ele-
ments of yp: Then, recursive binary splitting as defined in
Hastie et al. (2009) is performed with a random subset of
the columns from Zt , typically of size equal to the square
root of the number of columns of Zt , to partition the 21-
dimensional or 84-dimensional input space into R regions,
Rr, r ¼ 1, :::,R: The choice of T, R, and the size of the sub-
set of inputs can be pre-specified based on computational
requirements or selected with cross validation.

We identify the constructed region, Rr, that corresponds
to values of the forecast input data, zN , and denote the
region Rz: Then, yp, t, iRz

denotes the ith element of an
NRz -dimensional vector, where NRz denotes the number of
elements of yp, t that have associated predictor variables that
fall into Rz: Then, we can define the tth forecast for the pth
depth as Ŷ

t
NþhðspÞ ¼ 1

NRz

PNRz
i¼1 yp, t, iRz

: The random forest is
obtained by repeating this process for T trees and obtaining
a forecast for the pth depth as Ŷ NþhðspÞ ¼ 1

T

PT
t¼1 Ŷ

t
NþhðspÞ:

A random forest is fit for each depth to obtain a final fore-
cast vector, ŷNþh ¼ ðŶ Nþhðs1Þ, :::, Ŷ Nþhðs21ÞÞ0: As with the
Direct-NN, penalized B-spline smoothing is used to smooth
ŷNþh to obtain Ŷ NþhðsÞ:

3.3.4. Vector Autoregressive with Exogenous Variables
(FPC-VARX)

The statistical-functional FPC-VARX model is a VARX of
order one applied to the FPC scores. The FPC-VARX model
incorporates the exogenous variables as a stacked vector of
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their scores, denoted c�n�h ¼ ðcen�h, 1, c
e
n�h, 2, c

e
n�h, 3Þ0, of

dimension
P3

i¼1 dci : The model is

nen ¼ cþ Anen�h þ Bc�n�h þ en, (9)

where c is a d� 1 vector of constants; A and B are d� d
and d�P3

i¼1 dci coefficient matrices, respectively; and en is
a d � 1 mean-zero random error vector.

The FPC-ML methods require the scores from all varia-
bles to be stacked into one vector, and the FPC-VARX
model can be rewritten in this same format. Let n�n�h be a
stacked vector of FPC scores from all variables. When tem-
perature, conductivity, and pH are used,
n�n�h ¼ ðnen�h, c

e
n�h, 1, c

e
n�h, 2, c

e
n�h, 3Þ0 ¼ ðnen�h, c

�
n�hÞ0, and when

no exogenous variables are included, n�n�h ¼ nen�h: Then, the
model in Equation 9 can be written as

nen ¼ cþ A�n�n�h þ en, (10)

where A� ¼ A when only DO is used, and A� ¼ ½A,B� is a
d � ðd þP3

i¼1 dciÞ coefficient matrix when exogenous varia-
bles are included. The parameters c and A� are both esti-
mated with ordinary least squares. The score forecast step
is n̂

e
Nþh ¼ ĉ þ Â

�
n�N :

3.3.5. FPC Feedforward Neural Network (FPC-NN)
The FPC-NN is a fully connected feedforward neural net-
work constructed as in Section 3.3.2 with the modification
that the input and output vectors are the FPC scores as
defined in Sections 3.2 and 3.3.4. That is, the FPC-NN is fit
using the stacked vectors n�1, :::, n

�
N�h as inputs and

nehþ1, :::, n
e
N as outputs. When using J hidden layers, the first

hidden layer is defined as

hn�h, 1 ¼ /1ðW1n
�
n�h þ b1Þ, (11)

the jth layer is given as in Equation 7, and the output layer
is,

nen ¼ WJhn�h, J þ bJ þ en: (12)

The fitted model then can be used to obtain a forecast,
n̂
e
Nþh, which can be directly used in Equation 5.

Graphically, the structure of the FPC-NN is shown in Figure
S1 of the Supplementary Material.

3.3.6. Recurrent Neural Network (FPC-RNN)
The FPC-RNN is a recurrent neural network that is very
similar to the FPC-NN, except that the first hidden layer
directly depends on past hidden layers. That is,

hn�h, 1 ¼ /1ðW1n
�
n�h þ Vhn�h�1 þ b1Þ: (13)

The only differences between Equations 11 and 13 are the
introduction of hn�h�1 and the weight matrix V, which is
estimated along with the other weight matrices and biases.
Incorporating previously hidden layers could allow the
model to better capture the temporal structure of the data.
Graphically, the structure of the FPC-RNN is shown in
Figure S2 of the Supplementary Material.

3.3.7. FPC Random Forest (FPC-RF)
The FPC-RF is a random forest constructed as in Section
3.3.3 except that the FPC scores, fn�1, :::, n�N�hg and
fnehþ1, :::, n

e
Ng, are used to construct the respective inputs

and outputs. The elements of neNþh ¼ ðneNþh, 1, :::, n
e
Nþh, dÞ0 are

forecast independently, compiled into a forecast score vector
n̂
e
Nþh, and used in Equation 5 to obtain a forecast of DO.

3.3.8. Discussion of the Proposed Models
While direct methods like Direct-NN and Direct-RF are
simpler to employ and understand than the FPC-based
methods, the high dimensional input collected with meas-
urement error could impair the performance of these meth-
ods. The FPC-based methods do require the additional pre-
processing step of FPCA, but otherwise they are attractive
for a variety of reasons. First, they result in a lower dimen-
sional input, which is particularly important because as the
technology for vertical profile data improves, the vertical
density of the data collected will increase. Furthermore,
transforming to the lower dimensional space will eliminate
some measurement error and noise. Second, the FPCA step
transforms each variable into a vector of independent ele-
ments, which may not be necessary for the ML-based meth-
ods, but it does typically simplify modeling. Finally, while
we have not explored this option, modeling the functions as
observations allows for potentially relevant first or second
derivatives of the functions to be included.

Statistical methods like FPC-VARX are desirable for their
speed and interpretability. Speed is a concern for short-term
limnological forecasting, and statistical approaches like FPC-
VARX are markedly faster than ML-based methods. In our
application, all of the methods can produce forecasts on the
order of seconds, but statistical methods may be needed if
prediction bands are desired, which take much longer to
compute. The VARX model and its special cases, such as
AR and ARX, are also well-established. They have the ability
to directly incorporate information across depths and tem-
poral lags in the empirical FPC scores.

Feedforward NNs have a history of good performance
and are a standard ML method in the scientific literature.
RNNs are less frequently employed, but they are important
for time-series forecasting because they take advantage of
lagged layers and allow historical information to propagate
through the fitting process. A major challenge with NNs
and RNNs is the need to select hyperparameters, which can
be overwhelming and arbitrary without expert knowledge.
For ecological practitioners to adopt ML methods, they
should provide insight on the process and also be computa-
tionally feasible. In light of this, we feel that RFs may be a
better standard model for ecological forecasting because they
involve fewer tuning decisions, have an intuitive structure,
and are straightforward to implement.

3.4. Functional Prediction Bands

Functional prediction bands for stationary data are com-
puted according to the method presented in Section 5.2 of
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Aue et al. (2015). In the following, we describe this
approach in terms of our notation. Scalar parameters, b1
and b2, must be estimated such that

PðŶ NþhðsÞ � b1sðsÞ � YNþhðsÞ � Ŷ NþhðsÞ þ b2sðsÞ
for all s 2 S1, S2½ �Þ ¼ 1� a,

(14)

for a given significance level, a 2 ð0, 1Þ, and positive func-
tion, sðsÞ:

For l ¼ L, :::,N � 1, the observations YlþhðsÞ are forecast
by fitting a model to the set of observations
fY1ðsÞ, :::,YlðsÞg where L is the smallest sample size used to
fit the model. After obtaining Ŷ lþhðsÞ for each l, the func-
tional residuals, êlþhðsÞ ¼ YlþhðsÞ � Ŷ lþhðsÞ, are computed.
Next, estimates of b̂1 and b̂2 are constructed such that
100� ð1� aÞ% of êlþhðsÞ satisfies

�b̂1ŝðsÞ � êlþhðsÞ � b̂2ŝðsÞ for all s 2 S1, S2½ �, (15)

where ŝðsÞ is the sample standard deviation of
fêLþhðsÞ, :::, êN�1þhðsÞg: Assuming YnðsÞ, n ¼ 1, :::,N, are
stationary, Aue et al. (2015) state that if L is large enough,
approximate stationarity for êlþhðsÞ, l ¼ L, :::,N � 1, can be
expected. By a law of large numbers,

1
N � L

XN�1

l¼L

I �b̂1ŝðsÞ � êlþhðsÞ � b̂2ŝðsÞ for all s 2 S1, S2½ �
� �

,

(16)

is approximately equal to Equation 14. Thus, the 100� ð1�
aÞ% prediction bands are constructed as ðŶNþhðsÞ �
b̂1ŝðsÞ, Ŷ NþhðsÞ þ b̂2ŝðsÞÞ: However, Aue et al. (2015) nei-
ther specify how to select L nor report empirical coverage
for this method, so we explore different values of L and
report the empirical coverages in Section 4.2 for all
seven models.

3.5. Forecast Approach

Here, we summarize the forecasting algorithm. To
address seasonal variation, we train models using a roll-
ing window, where 5 weeks worth of observations are
used to forecast a single h-step-ahead observation, and
then the window rolls forward by dropping the first
observation and adding the next observation. A window
of 5 weeks is used based on prior work (Durell et al.
2022). We are interested in forecasting both 2 hours
ahead (h¼ 1) and one day ahead (h¼ 12), which are both
useful horizons for environmental and water treatment
applications. Two different variable combinations are
used: models with only lagged values of DO and models
that also include all of the lagged exogenous variables:
temperature, conductivity, and pH. For each combination
of forecast horizon and variables (D or DTCpH, where D
corresponds to the model with DO alone, and DTCpH
refers to the model with all variables), we perform the
steps below for m ¼ 1, 2, :::,M windows, where m indexes
the current window.

3.6. Forecasting Algorithm

1. Set Window: Set m¼ 1.
2. Preprocess Data:

a. Smooth the observed data using penalized B-
spline smoothing.

b. Remove diurnal trends from the data by estimating
and subtracting the hourly means based on the
observations in window m to obtain the 21-dimen-
sional vectors fy1, :::, yNg and the smoothed
curves fY1ðsÞ, :::,YNðsÞg:

c. Perform FPCA on the detrended data to obtain me

and fne1, :::, neNg:
d. If using exogenous variables (DTCpH), perform

Steps 2a through 2c to obtain the EFPC scores of
the exogenous variable versions of fz1, :::, zNg
and fn�1, :::, n�Ng:

3. Fit Models:
a. Fit the Direct-NN and Direct-RF models using

fz1, :::, zNg to obtain a forecast vector, ŷNþh, for
each method. Smooth the resulting vector using
penalized B-spline smoothing to obtain Ŷ NþhðsÞ for
both methods.

b. Fit the FPC-VARX, FPC-NN, FPC-RNN, and FPC-
RF models to obtain a forecast score, n̂

e
Nþh, for

each method. Apply Equation 5 using the EFPCs
obtained in Step 2c to obtain ŶNþhðsÞ for
each method.

4. Build Prediction Bands: If desired, obtain prediction
bands according to Section 3.4.

5. Evaluate Models: For each model’s forecast, compute
and store the functional root mean squared error

as RMSEm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hYNþh � Ŷ Nþh,YNþh � Ŷ Nþhi

q
:

6. Cycle Through Windows: Update m ¼ mþ 1, and
repeat Steps 2 through 5 until m ¼ M.

7. Evaluate Overall Results: For each model, compute the
overall root mean squared error
RMSE ¼ 1

M

PM
m¼1 RMSEm:

4. Results

4.1. Forecast Comparison

A selection of the day-ahead forecast results for the seven
models using all exogenous variables can be viewed in
Figure 4. It demonstrates the following: (1) The forecasts
tend to do poorly when the true observation has sharp
bends. (2) The forecasts appear to do better in the fall
months due to the less variable profiles. (3) The bottom of
the lake corresponds to lower forecast variability. That is,
the forecast variability tends to increase as DO increases
closer to the surface of the lake.

The RMSE results are outlined in Table 2. The overall
RMSE is computed as well as seasonal RMSEs, where
RMSEs from forecasts in the early summer (May-June), late
summer (July-August), and early fall (September-October)
are averaged. Forecasts are most accurate in the early fall
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Figure 4. Profile plots of a selection of day-ahead forecasts using all exogenous variables and plotted with the corresponding true curve.
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and least accurate in the late summer. This is because in the
early fall, the lake begins to mix, and the profiles become
more vertical, making them easier to forecast.

Focusing first on the 2-hour-ahead forecasts (h¼ 1), we
see that incorporating exogenous variables results in a mar-
ginal loss of performance for all models except the
FPC-RNN and FPC-RF models. The FPC-VARX model is
superior to the the purely ML models and the hybrid stat-
istical-functional-ML models. In terms of overall RMSE,
the FPC-VARX model with variable D results in a 6.1%
reduction over the Persistence model, a 2.8% reduction
over the best purely ML model, Direct-RF, and a 6.7%
reduction over the best hybrid model, FPC-NN.

Next, for the day-ahead forecasts (h¼ 12), the RF-based
models outperform the FPC-VARX and the NN-based
models. In this case, including all of the exogenous varia-
bles improves forecasts, so for the variable set DTCpH, the
Direct-RF and the FPC-RF models reduce the overall
RMSE over the Persistence model by 28.9% and 23.7%,
respectively; over the FPC-VARX method by 17.9% and
11.9%, respectively; and over the best NN-based model,
FPC-NN, by 18% and 12.1%, respectively. The Direct-RF
reduced RMSE over the FPC-RF by 6.8%. For the Direct-
RF and FPC-RF models, incorporating exogenous variables
reduces the overall RMSE by 17.7% and 14.5%, respect-
ively, compared to the corresponding Direct-RF and FPC-
RF models without exogenous variables. This finding
agrees with the results in Durell et al. (2022) where
exogenous variables become more useful for longer fore-
cast horizons.

For both forecast horizons, the FPC-RNN and Direct-NN
models generally perform the worst, and they only outper-
form Persistence for day-ahead forecasts. These models have
the most parameters to estimate, so overfitting or poor
model fit may be to blame. For day-ahead forecasting, the
FPC-VARX model and the NN-based models are not
competitive.

The day-ahead forecast is particularly important because
it provides a larger window of time to mitigate any possible
water quality issues. For these data, the Direct-RF is the
model of choice for day-ahead forecasts in terms of RMSE
reduction, but the FPC-RF’s functional framework can nat-
urally address missing values and unequally spaced observa-
tions. Furthermore, the FPC-RF is equipped for direct
extension to more sophisticated methods, like multivariate
FPCs, which can easily incorporate exogenous variables
measured over different domains. Finally, in light of the eco-
logical goal to develop real-time forecasts, the FPC-RF may
be optimal under certain circumstances. With the current
selection of hyperparameters, the Direct-RF took twice as
long to run (approximately fourteen seconds per forecast
without prediction bands and two minutes with prediction
bands) compared to the FPC-RF (approximately seven sec-
onds per forecast without prediction bands and one minute
with prediction bands) on the 2019 6-core MacBook Pro
with 16GB RAM used for this study. While this difference
is negligible for our day-ahead forecasting application,
depending on the choice of hyperparameters, computational
machinery, and density of the measured data collected, the
dimension reduction occurring in the FPCA step for FPC-
RF could be an extremely important step in reducing train-
ing time.

4.2. Prediction Bands

Prediction band computation is vital in assisting lake man-
agement and researchers quantify forecast error. When a
practitioner plots the forecast with the functional prediction
band, it is clear that where the band is narrow, decisions
can be made more confidently. For example, water treat-
ment experts operating variable intake systems could use the
forecast curve and prediction bands to reliably collect water
at a depth with higher forecast DO. Computing prediction
bands for all models in this study according to Section 3.4
for all combinations of all forecasts is too computationally
intensive to implement. For example, if N � L ¼ 50, which
is the number of observations to forecast to estimate the
standard deviation, it would take forty-nine days to compute
prediction bands for every combination of models, variables,
and forecast horizons. However, computing prediction bands
for a single forecast takes at most five minutes, making it
plausible to construct prediction bands in real time for our
application.

In the following, 95% prediction bands are computed for
all models both for day-ahead forecasts with all variables
and 2-hour-ahead forecasts with D alone for the same set of
50 randomly selected forecasts. We consider the impact of
the initial sample size, L, by choosing three values of L such

Table 2. Forecasting results in terms of RMSE.

h
Variable
Set Model

Early
Summer

Late
Summer

Early
Fall

Overall
(Rank)

1 D Persistence 11.32 12.70 7.66 10.43 (4)
Direct-NN 11.16 12.18 8.22 10.41 (3)
Direct-RF 10.82 11.65 8.08 10.07 (2)
FPC-VARX 10.51 11.41 7.77 9.79 (1)
FPC-NN 11.40 12.19 8.31 10.49 (5)
FPC-RNN 14.66 15.01 11.31 13.46 (7)
FPC-RF 11.42 12.61 8.71 10.83 (6)

DTCpH Persistence 11.32 12.70 7.66 10.43 (2)
Direct-NN 11.77 12.87 8.98 11.11 (6)
Direct-RF 11.66 12.43 8.65 10.77 (4)
FPC-VARX 10.65 11.49 7.83 9.87 (1)
FPC-NN 11.48 12.33 8.33 10.57 (3)
FPC-RNN 13.88 14.08 10.93 12.78 (7)
FPC-RF 11.38 12.68 8.63 10.82 (5)

12 D Persistence 26.54 25.61 17.88 22.66 (7)
Direct-NN 22.45 24.63 17.43 21.36 (5)
Direct-RF 19.88 22.67 16.16 19.57 (1)
FPC-VARX 21.54 23.60 16.55 20.41 (3)
FPC-NN 21.56 23.43 17.15 20.58 (4)
FPC-RNN 22.65 24.30 17.70 21.36 (5)
FPC-RF 20.50 23.26 16.86 20.21 (2)

DTCpH Persistence 26.54 25.61 17.88 22.66 (7)
Direct-NN 21.46 21.53 15.81 19.21 (3)
Direct-RF 18.24 18.41 12.77 16.11 (1)
FPC-VARX 21.10 21.95 16.53 19.62 (4)
FPC-NN 21.53 22.47 15.90 19.66 (5)
FPC-RNN 22.67 22.68 16.76 20.29 (6)
FPC-RF 18.45 19.60 14.34 17.28 (2)

Bold values indicate the best overall and seasonal models. A lower rank in the
Overall column corresponds to a better model. The Persistence model is
identical across variable sets but is repeated for reference.
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that the respective number of forecasts to compute equals
N � L ¼ 20, N � L ¼ 50, and N � L ¼ 80 for all combina-
tions of models and horizons. As L increases, the number of
in-sample forecasts used per pair of prediction
bands decreases.

Three metrics are considered to evaluate prediction band
performance. The first metric, absolute coverage, is used to
define the prediction band confidence level in Equation 14,
and it measures the proportion of curves such that the true
curve is completely contained within the prediction bands
over the entire range. While an important metric, absolute
coverage fails to consider the magnitude of the error when a
curve exceeds the prediction bands. For example, the true
curve may only exceed the prediction bands over a small
range of depths, or the true curve may fall completely out-
side the entire prediction band range. In either case, the
absolute coverage metric will classify both curves as
“uncovered.” Thus, in order to further evaluate the predic-
tion band behavior, we introduce a second, less conservative
metric called the average coverage. This is defined as the
proportion of the range of the true curve that is contained
within the prediction bands, and then this value is averaged
across all forecasts. In addition to the two coverage metrics,
the overall width of the prediction bands is computed as the
integral of the difference between the upper and lower bands
and then averaged across all forecasts.

Table 3 displays the absolute coverage, the average cover-
age, and the average width of the prediction bands. The
absolute coverage is less than 0.95 in every case; however,
the average coverage indicates that the curves are only
exceeding the prediction bands for a small range of depths.
For both the absolute and average coverages, the day-ahead
prediction bands generally have higher coverage than the
2-hour-ahead prediction bands. The empirical coverage also
changes depending on L. For the day-ahead forecasts, N �
L ¼ 50 appears to result in the highest coverage. For the
width, as N – L increases, the interval width increases,
except for the one-step-ahead persistence model. As
expected, an increased width tends to correspond to higher
coverage; however, in the h¼ 12 case, the choice of N � L ¼

50 commonly results in both higher coverage and lower
width than N � L ¼ 80: This could imply that using a
smaller pool of only the most recent forecasts provides an
improved estimate of the standard deviation.

Figure 5 displays an example of 95% prediction bands
using N � L ¼ 50 for forecasts on August 8 at 7:00 pm. The
plot displays 2-hour-ahead forecasts with D (top row) and
day-ahead forecasts with DTCpH (bottom row). As expected,
the prediction bands for the day-ahead forecasts are wider.
Differences among models are more apparent for the day-
ahead forecasts, where the FPC-NN and FPC-RNN models
result in narrower bands, and the Persistence model results
in wide bands for this specific forecast. Because the Direct-
RF model has the best performance for day-ahead forecasts
with DTCpH, we show 95% prediction bands for a selection
of forecasts to investigate the seasonal prediction band
behavior in Figure 6. The bands are widest during the late
summer and most narrow during the fall. When the obser-
vation lies outside of the prediction band, such as the obser-
vation on September 3 at 7 pm, it is typically only over a
small portion of the curve.

5. Conclusion

This study seeks to both investigate the benefits of hybrid
FPC-ML methods and to contribute a detailed example of
incorporating data-driven ML methods for functional fore-
casting of vertical DO profiles. In doing so, we explore the
understudied framework of function-to-function forecasting
with exogenous variables and, to our knowledge, provide the
the first simultaneous comparison of hybrid FPC-ML meth-
ods with purely functional, purely ML, and functional-statis-
tical FDA methods, allowing important insights into the
strengths and weaknesses of the different approaches. It
does not appear that more advanced ML techniques beyond
fully connected feedforward NNs are frequently utilized in
the current FPC-ML literature, so describing the use of
RNNs and RFs in FPC-based functional time series forecast-
ing is a marked advance. While there are examples of using
RFs to predict DO, such as the use of monthly

Table 3. Prediction band empirical coverage based on a random sample of 50 forecasts.

Absolute coverage Average coverage Width

h Model 20 50 80 20 50 80 20 50 80

1 Persistence 0.66 0.76 0.80 0.95 0.97 0.98 999 1013 965
Direct-NN 0.72 0.80 0.84 0.94 0.97 0.98 574 712 782
Direct-RF 0.70 0.78 0.86 0.94 0.97 0.98 594 724 786
FPC-VARX 0.70 0.76 0.78 0.94 0.97 0.98 572 700 758
FPC-NN 0.72 0.82 0.90 0.92 0.98 0.99 586 712 776
FPC-RNN 0.76 0.84 0.84 0.95 0.97 0.97 691 807 860
FPC-RF 0.68 0.78 0.82 0.94 0.98 0.98 598 726 784

12 Persistence 0.80 0.88 0.80 0.92 0.96 0.95 1246 1484 1548
Direct-NN 0.76 0.86 0.90 0.94 0.97 0.99 932 1087 1170
Direct-RF 0.74 0.86 0.86 0.94 0.97 0.96 796 965 1032
FPC-VARX 0.80 0.88 0.88 0.96 0.98 0.98 986 1113 1173
FPC-NN 0.80 0.90 0.84 0.94 0.98 0.97 942 1090 1152
FPC-RNN 0.72 0.86 0.82 0.93 0.98 0.96 972 1148 1226
FPC-RF 0.76 0.84 0.86 0.95 0.97 0.97 827 1007 1058

The 2-hour-ahead forecasts use D, and the day-ahead forecasts use DTCpH. Absolute coverage measures the proportion of times the entire curve is contained
within the prediction bands. Average coverage measures the average proportion of the true curve contained within the prediction bands. Width is computed
as the average of the integral of the difference between each upper and lower band pair within a given model. The results are displayed for three choices of
N – L, namely 20, 50, and 80. Bold values indicate the L that results in highest coverage or lowest width.
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measurements of off-shore coastal vertical profiles (Valera
et al. 2020), according to our literature review, this is the
first application of a hybrid statistical-ML type of model and
specifically an RF model for functional forecasting of DO
lake profiles. Furthermore, prediction bands have not yet
been applied for FPC-ML applications, and they are vital for
decision making in water treatment and management. The
methods and results presented in this article suggest that
FPC-ML models may succeed in settings where traditional
process-based hydrodynamic models produce unreliable
forecasts of high-frequency time series data without predic-
tion bands.

To accomplish our objectives, we demonstrate the steps
needed to obtain forecast curves, including smoothing and
centering the data, obtaining FPCs, forecasting scores, and
computing functional prediction bands. Our results show
that in functional forecasting of DO, context is important.
As the forecast horizon increases, the performance of the
purely-ML methods improves. If a short forecast horizon in
terms of hours or minutes is desired, a simple and fast stat-
istical-functional model like FPC-VARX could be preferable,
and collection of exogenous data may not be needed. For
longer forecast horizons, incorporating exogenous variables
and ML methods may lead to improvement over the purely
statistical-functional approach. What constitutes a short or a
long horizon will be specific to the temporal dynamics of
the particular application. We also find that while empirical
absolute coverage for this prediction band method is low
and sensitive to the choice of L, high average coverage

suggests that the proportion of the observation that exceeds
the prediction bands is typically quite small.

The superiority of Direct-RF over the hybrid FPC-RF
model for the day-ahead forecasts in this application may be
due to complex nonlinear dynamics propagating through
the system as the horizon increases. It may be possible that
blending the statistical and ML approaches with hybrid
models results in optimal performance at some horizon
between 2 and 24 hours ahead. In favor of the hybrid mod-
els, the inherent smoothing and dimension reduction steps
could be particularly important in cases of large measure-
ment error, vertically dense data collection, or missing data.
Furthermore, as discussed in Section 4.1, the specific com-
putational tools available and the desired choice of hyper-
parameters will vary by scientific context and will impact
the speed and accuracy of the forecasts.

Interesting extensions to this work could explore the per-
formance of other types of ML methods for ecological fore-
casting, such as long-short-term memory NNs or boosted
trees. The multivariate functional principal components
developed and implemented in Chiou et al. (2014), Happ
and Greven (2018), and Wang et al. (2020) could be com-
bined with the FPC-ML methods to potentially improve the
impact of including exogenous variables. While this work
did not consider the forecasting problem from a Bayesian
paradigm, a variety of Bayesian methods could be explored.
After the smoothing and FPCA steps, Bayesian linear mod-
els could be applied to the FPC scores in the bayeslm or
rstanarm R packages (Gelman and Hill 2007; Gabry et al.

Figure 5. Profile plots of forecasts and prediction bands with the true curve for August 8, 2019 at 7 pm CST. The 2-hour-ahead forecasts (top row) use D alone and
the day-ahead forecasts (bottom row) use DTCpH.
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2022; He et al. 2022), but elicitation of a reasonable prior
distribution for the FPC scores may be nontrivial.
Furthermore, a hybrid Bayesian machine learning approach
could consider Bayesian additive regression trees (BART) as
applied to the FPC scores (Chipman et al. 2010). Other
non-hybrid modeling approaches would also be of interest
to explore, such as functional neural networks (Rao and
Reimherr 2021) and functional BART (Starling et al. 2020).

In terms of data quality, future modeling would benefit
from data that are measured over multiple years to incorp-
orate seasonal effects. Additionally, high frequency (meas-
ured very often in time) and high density (measured over a
fine grid spatially) data such as those used in this study are
preferred for forecasting water quality profiles to allow for
straightforward smoothing pre-processing. Lastly, future
work should seek to take advantage of relevant scalar

exogenous variables that measure atmospheric conditions,
such as wind speed, solar radiation, and temperature. We
hypothesize that incorporating these types of variables may
make the greatest improvements in data-driven forecasts for
DO lake profiles.

Acknowledgements

We would like to thank Dr. Alexander Aue, Professor, Department of
Statistics, UC Davis who shared R code from Aue et al. (2015).

Funding

This work was supported by the National Science Foundation
Harnessing the Data Revolution: Data Science Corps project
[#1924146] to ASH, with additional support from the Tarrant Regional
Water District to JTS for the collection of the EML data.

−100 −50 0 50 100 150 200 250

10
8

6
4

2
0

June 7, 2019, 1:00 am CST

DO

D
ep

th
 (m

)

True
Forecast
PB

−100 −50 0 50 100 150 200 250

10
8

6
4

2
0

July 3, 2019, 9:00 am CST

DO

D
ep

th
 (m

)

True
Forecast
PB

−100 −50 0 50 100 150 200 250

10
8

6
4

2
0

July 25, 2019, 9:00 pm CST

DO

D
ep

th
 (m

)

True
Forecast
PB

−100 −50 0 50 100 150 200 250

10
8

6
4

2
0

August 6, 2019, 9:00 am CST

DO

D
ep

th
 (m

)

True
Forecast
PB

−100 −50 0 50 100 150 200 250

10
8

6
4

2
0

August 20, 2019, 5:00 am CST

DO

D
ep

th
 (m

)

True
Forecast
PB

−100 −50 0 50 100 150 200 250

10
8

6
4

2
0

September 3, 2019, 7:00 pm CST

DO

D
ep

th
 (m

)

True
Forecast
PB

−100 −50 0 50 100 150 200 250

10
8

6
4

2
0

September 26, 2019, 3:00 am CST

DO

D
ep

th
 (m

)

True
Forecast
PB

−100 −50 0 50 100 150 200 250

10
8

6
4

2
0

October 16, 2019, 7:00 am CST

DO

D
ep

th
 (m

)

True
Forecast
PB

−100 −50 0 50 100 150 200 250

10
8

6
4

2
0

October 29, 2019, 9:00 am CST

DO

D
ep

th
 (m

)

True
Forecast
PB

Figure 6. Eight profile plots of the true curve with the day-ahead Direct-RF forecast model with DTCpH and 95% prediction bands overlaid.
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