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works. However, functional data analysis (FDA) is also an appropriate modeling
paradigm for measurements of DO taken vertically through the water column.
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1 | INTRODUCTION

Dissolved oxygen (DO) is the amount of free oxygen molecules in water, and predicting DO in lakes is necessary for both
environmental management and effective water treatment. High concentrations of DO can be related to harmful algal
blooms that can lead to widespread aquatic biota death (Seki et al., 1980). Conversely, aquatic ecosystems struggle to
sustain life under hypoxic (scarce DO) or anoxic (zero DO) conditions (e.g., King et al., 2012; Silji¢ Tomi¢ et al., 2018).
Hypoxic/anoxic conditions also lead to mobilization of reduced metals into the water column (Banks et al., 2012; Eggleton
& Thomas, 2004; Riedel et al., 1997), particularly manganese and iron (Atkinson et al., 2007), resulting in higher water
treatment costs and potential human health risks. If accurate forecasts of DO were available, then early warnings of either
high or low DO could be issued to reservoir managers.
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Forecasting DO can be complicated due to seasonality and variation across depths. We refer to a full measurement of
DO from the surface to the bottom of the water body as a profile. Some water bodies, especially deep ones, are stratified by
temperature year-round, where a thermocline separates the warmer surface layer from the cooler bottom layer, preventing
nutrients and dissolved substances from traveling across the thermocline (Boehrer & Schultze, 2008). Other water bodies
mix during the year. Thus, except for very shallow water bodies, or when the water body is mixing, surface measurements
are insufficient for forecasting an entire profile.

The traditional approach to predicting water quality variables is hydrodynamic modeling, a simulation technique that
involves specifying environmental conditions such as wind speed, wind direction, water inflows and outflows, approx-
imate surface heat, and bathymetry (Hodges et al., 2000; Istvanovics & Honti, 2018; Marti et al., 2011). This approach
requires complicated approximations and calibration/tuning steps for a given water body that are often not easily trans-
lated to other water bodies. The sheer number of environmental approximations required by these models can limit their
accuracy (Jin et al., 2019). By contrast, forecasting DO using data-driven approaches is increasingly common. For the
purpose of our application, we focus only on single-lake/reservoir studies. A summary of these single-lake, data-driven
approaches to predicting DO are outlined in Table 1. The papers assigned “P” for prediction in the “Model aim” column,
as opposed to “F” for forecast, are those that emphasize inter-variable relationships and estimation of in-sample values
rather than modeling with the purpose of forecasting future values of DO.

In reviewing the lake DO modeling literature, both the data structure and the collection methodology vary widely. Only
half of the studies in Table 1 have non-monthly measurements. All of the papers use some form of neural network (NN)
model to forecast DO. Chen and Liu (2015) and Karakaya et al. (2013) include multiple regression models in addition to
NNs in their studies. However, only our work and that of Saber et al. (2020) seek to reconstruct full-column water profiles.
While Saber et al. (2020) offer an excellent applied example of DO forecasting, our data have the most temporally dense
(measured every 2 hours) and vertically dense (measured every 0.5 m from the surface to 10 m below) full-column water
profile measurements. As high-frequency vertical profile measurement instruments become cheaper, this type of data
will become more common; hence, there is a pressing need for accurate examples of full-profile forecasting techniques.
We seek to use functional data analysis (FDA) to simultaneously forecast the entire water quality profile with one model,
which allows the DO across depths to contribute to the forecasts. While the FDA framework has been used for water
quality outlier detection (Sancho et al., 2016) and identifying water body differences (Henderson, 2006), to the best of our
knowledge, this is the first example of forecasting water quality profiles with FDA.

FDA is an established framework for modeling environmental data. For example, Fortuna et al. (2020) use basis
function expansions to estimate ecological diversity profiles; Qu et al. (2021) apply functional multivariate analysis of
variance to temperature curves and bivariate wind speed data; and Harris et al. (2022) detect change points in water vapor
profiles using functional principal component analysis (FPCA). The particular family of FDA that we use in this work
forecasts realizations from a functional time series (FTS) by estimating the functional principal components (FPCs) and
corresponding FPC scores from the data. The scores are then forecast using a nonfunctional method, and the forecast
functional observation is obtained as the product of the forecast scores and the estimated FPCs (Aue et al., 2015). Vari-
ations of this approach include the use of different score forecasting techniques (Beyaztas & Shang, 2019; Hyndman &
Ullah, 2007), functional quantile forecasting (Cabrera & Schulz, 2017), aggregation of individually forecast populations

TABLE 1 Summary of literature on single-lake, data-driven prediction of DO

Deepest

Authors Sites measured meaI;urement Depth freq. Duration Temporal freq. Model aim Model type
Chen and Liu (2014)  Multiple Not reported NA 19 mths Not reported P NN

Huo et al. (2013) Not reported Not reported NA 6 yrs Monthly P NN
Karakaya et al. (2013) 1 1.5m NA 3 mths 15 min P NN
Rankovié et al. (2010) 3 30 m 3-5m 3 yrs Monthly P NN
Rankovi¢ et al. (2011) 3 30 m 3-5m 3 yrs Monthly P NN

Saber et al. (2020) 1 116 m 5m 5.5 yrs 6 hours F NN

This article 1 10 m 0.5m 7 mths 2 hours F FDA

Note: Meters are designated by m. A model aim of P indicates prediction whereas an F indicates forecasting. Model type is either a neural network (NN) or a
purely statistical functional data analysis (FDA) approach.
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(Shang, 2020; Shang & Hyndman, 2017), sparse FPCA (Yao et al., 2005), and multivariate forecasting using vector error
correction models on the scores (Gao & Shang, 2017).

The specific modeling approach that we implement is that of Aue et al. (2015), which forecasts the empirical FPC
scores using a vector autoregressive (VAR) model. It has a history of adoption, modification, or comparison in numer-
ous papers (Cabrera & Schulz, 2017; Gao & Shang, 2017; Klepsch et al., 2017; Shang, 2017, 2019). There is evidence that
it is robust to model misspecification (Aue et al., 2015), which is important because the data vary widely across sea-
son, and it is difficult to capture all of the heterogeneity of the functional process. Additionally, incorporating functional
exogenous variables with the Aue et al. (2015) method is straightforward. Lastly, it has readily available computational
implementation in R.

The goal of this article is to present the first application of functional forecasting for vertical water quality profiles.
We will estimate and forecast FPC scores with a VAR model and compare this approach to nonfunctional statistical and
machine learning methods such as autoregressive (AR) and VAR models and NNs. Additionally, we will compare the fore-
cast performance with other functional approaches, such as using FPC scores with AR models, estimating dynamic FPCs
according to Hérmann et al. (2015), and utilizing functional autoregressive model of order 1 (FAR) models (Bosg, 2000).
In doing so, to the best of our knowledge, we provide the first simultaneous comparison of the FPC VAR method of Aue
et al. (2015) to purely statistical, purely machine learning, and functional-statistical methods. Further, this work provides
a case study and forecasting benchmark for the unique and growing area of forecasting vertical lake profiles. The remain-
der of this article is organized as follows: In Section 2, we provide a detailed description of the unique data used in this
study. Section 3 details the FPCA approach and primary forecasting strategy. Comparison models and all results are pre-
sented in Section 4 along with a discussion of outlying or poorly forecast profiles, and Section 5 offers some concluding
remarks.

2 | DATA DESCRIPTION

The data were collected from Eagle Mountain Lake (EML), a reservoir in North Texas that is used for recreation and as
a local water supply. EML mixes multiple times per year, resulting in similar temperatures from top to bottom during
mixing. At the EML Realtime Monitoring Platform, a measurement instrument was placed at the primary controlled
outflow of the reservoir. This location is both one of the deepest parts of the lake and where drinking water is drawn for
treatment. The data were collected every 2 hours at 21 depths, measured every 0.5 m starting from the surface (0.0 m) and
ending 10.0 m subsurface. The data set considered in this work contains 2252 vertical profiles of four variables between
April 25,2019 and October 29, 2019. To simplify computation, a small percentage of the data was imputed (less than 4%),
and that process is described in the Supplementary Materials.

The variables measured are as follows: (1) Temperature (T) is measured in degrees Celsius and is expected to be
warmer at the surface and cooler at the bottom, except in cases when EML is mixing. (2) Conductivity (C) measures how
easily electricity moves through the water and is reported in micro Siemens per centimeter (pS/c). (3) pH (pH) indicates
the alkalinity/acidity of the water from 0 (acidic) to 14 (alkaline). (4) DO %sat (D) is the percentage of DO relative to
the concentration in equilibrium with the atmosphere. D can vary from 0% to 200%, where D of 100% indicates that the
percentage of DO in the atmosphere is the same as the percentage of DO in the water. Values of D above 100% are caused
by wind turbulence above the lake and aquatic plant photosynthesis. Values below 100% are caused by aquatic animal
respiration, aquatic plants without access to light, and decomposition at the bottom of the lake. At the lake surface, D
may vary substantially, but in the absence of vertical mixing, it will generally be lower and more stable at the bottom.

Figure 1 displays smoothed vertical profile measurements of these four variables across Early Summer (April, May, and
June), Late Summer (July and August), and Early Fall (September and October), revealing that the profile patterns of each
variable vary notably by season. The purple/dark curves are the first observations of the season, and the gold/light curves
are the last observations of the season. The y-axis represents lake depth. Following convention (e.g., Saber et al., 2020), the
range is reversed so that the lake surface (0) is at the top of the vertical axis. D, C, and pH display the most variability in
Late Summer, and T displays the most variability in Early Fall. The apparent seasonal changes in these profiles indicate
that the forecasting method should account for seasonal nonstationarity.

To investigate temporal dependence and diurnal effects in the profiles, the curves are first centered by their respective
hourly mean curve (computed based on the entire data set), and then univariate autocorrelation functions (ACFs) at each
depth for each variable are computed for the centered profiles (Figure 2, top). The ACFs reveal that for D and pH, the
discrete measurements at the surface of the lake still contain some periodicity, even after centering by hourly mean curves.
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FIGURE 1 Smoothed vertical profile measurements of variables (columns) by season (rows). The colors progress from dark (first
observations in the season) to light (last observations in the season).
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FIGURE 2 Univariate ACF (top row) and PACF (bottom row) plots of each variable (columns) by depth
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This is not entirely unexpected because the detrending is performed across the entire data set and not by season. For D,
the values measured at the bottom of the lake have a stronger and more persistent autocorrelation than values measured
at the surface. T and C have relatively strong ACFs compared to D and pH because at 60 hours, the ACF of neither T nor
C drops below 0.85. The bottom row of Figure 2 shows that for the centered data, all four variables have similar partial
autocorrelation functions (PACFs) across depths. The PACF between two time points approaches zero rapidly, indicating
that an autoregressive type of model would be an appropriate choice in a univariate setting.

3 | METHODOLOGY

In the following, we consider an FTS of D profiles (W,, : n € Z) with realizations denoted Wy(s),n =1, ... , N, that can
be evaluated for any depth, s, in the functional domain, S = [0, 10]. In practice, we observe the discretized functional
realizations of D profiles as W, (s;) fori = 1, ... ,21. We are ultimately interested in forecasting the h-step ahead functional
realization, Wy.,(s). Our approach is to smooth the discretized curves, center the curves by their smooth hourly mean,
apply FPCA to obtain a vector of FPC scores, forecast the scores h-steps ahead, reconstruct h-step ahead centered forecasts
using the forecast scores, and add back the hourly mean curve.

In Section 3.1, the preliminary steps of smoothing and centering the curves are described. In Section 3.2, we describe
FPCA in the population sense and show how estimated FPCs and scores can be used for curve approximation. In
Section 3.3, we describe the method that we use for forecasting one-step-ahead curves without exogenous variables, which
is then expanded to include exogenous variables. Section 3.4 extends the forecasting to twelve steps ahead. Finally, in
Section 3.5, we summarize the steps needed to forecast h-step-ahead D profiles, including the use of a rolling window to
address the nonstationarity present in the data.

3.1 | Preliminary steps

Penalized smoothing with a set of cubic B-spline basis functions approximates W, (s) with
K
Wi(s) = ) cniBi(s). ey
k=1

Here, Bi(s) is the kth B-spline basis function, and ¢, is the kth coefficient that weighs the influence on WX(s) of the kth
basis function for the saturated choice of basis functions which, in our case, is K = 23. The smoothness of W,If (s)is ensured
by imposing a penalty on the second derivative, which is controlled by the parameter A. This smoothing parameter is
chosen by generalized cross validation within a window of observations, as described in Section 3.5.

Because of the diurnal patterns in the data, particularly for D as shown in Figure 2, we center the observations by
their corresponding estimated functional hourly means, fi,(s) for t = 0,2, ... , 22, prior to applying FPCA. The estimated
means are constructed as fi,(s) = ]% D (n) WX (s) where {n,} is the subset of indices from {1, ... , N} corresponding to
hour ¢, and N; is the total number of elements in {n,}. The observations of D centered by their hourly mean are denoted

Y (s) = Wi (s) = Ay(s)- ©)

The goal then becomes to obtain the h-step ahead, centered forecast of D, Yﬁw(s), and then construct the final forecast
as VAV;]{ )= Yﬁ n(8) + fi,(s) by adding back the corresponding hourly mean.

The functional observations of the exogenous variables T, C, and pH are similarly smoothed and centered by their
respective estimated hourly means. The nth hourly centered, smooth curve for the Zth exogenous variable obtained
with penalized smoothing with penalty A, is denoted Xfi ,(8). More details concerning smoothing can be found in the
Supplementary Materials.

3.2 | Functional principal component analysis

In the population sense, the covariance function, c(s, s’), of a mean-zero random function, Y(s) with s € S, is related to
the jth eigenfunction, or FPC, vj(s), and eigenvalue, f;, with
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/c(s,s’)vj(s’)ds’ = Bv;(s), 3)
s

where s,5' € S, and c(s,s’) = E[Y(5)Y(s")]. The random function can be expressed with the Karhunen-Loéve (KL)
expansion:

Y(s) = Y yvi(s), €)

j=1

where y; = (Y, ;) = f s Y(s)vj(s)ds is the FPC score.

Moving from the population sense to the sample case, we have an unobserved, mean-zero, stationary FTS,
Yu(s),n =1, ... ,N, assumed to be accurately approximated by YX(s),n =1, ... ,N. The sample covariance function is
o(s,s') = %Z;\LlYf (5)YX(s") from which g empirical FPCs (EFPCs), i(s),j =1, ... ,q, and empirical eigenvalues, ﬁj j=
1, ... ,q, are estimated. Under general dependence assumptions given in Hérmann and Kokoszka (2010), Hérmann and
Kokoszka (2012) prove that the product of a constant and a given EFPC is a root-n estimator of the corresponding popu-
lation FPC. Empirical scores corresponding to observation YX(s) can be constructed as v ;= (YK, 0;),j=1, ... ,q, where
the e in the superscript indicates that the score is empirical. Estimation of the FPCs and scores is performed with the
pca. £d function in the £da package (Ramsay et al., 2021) via a standard technique in the literature. Additional details
can be found in Héormann and Kokoszka (2012) and in Chapter 8 of Ramsay and Silverman (2005).

Based on the EFPCs and scores, a truncated KL expansion can be used to approximate YX(s) as,

d

Y (s) m Yi(s) = DY (). (5)
j=1

The truncation level is denoted by d where d < g and is the number of EFPC curves used to approximate YX(s). The
analogous centered exogenous variable with truncated KL curve is denoted Xi;(s) where d, represents the #th exogenous
variable’s truncation level.

The number of EFPCs, d and d;, are often selected with data-driven approaches, such as the cumulative variance
threshold or the functional final prediction error method of Aue et al. (2015). Based on our visual comparison of the recon-
structed curves, Y,‘f(s), and the smooth data, Y,If (s), these automatic approaches do not perform well. Instead, we select
fixed choices of d and d,, chosen as the maximum number of EFPCs such that at least two observations per parameter
are available in the most parameter-dense model. A small pilot study comparing the data-driven and fixed choices of d
and d, on forecasting results is outlined in the Supplementary Materials.

3.3 | Empirical score vector forecasting

We begin by considering one-step-ahead forecasting of D. FPCA is applied to the smoothed and centered observations,
YX(s),n =1, ... ,N to obtain N vectors of empirical scores, y* = 2,1’ e yfl’ d]’ and a single functional vector of EFPCs,
Vv =[01(5), ... , V4(s)]’. We seek to forecast the entire empirical score vector Yy 41 using a VAR model of order p (VAR(p)).
The VAR(p) model for the empirical score vectors can be written as

Yn=C+Ayy,  + - +Ay, ,+wW,, n=p+1 .. N, (6)

where cis a d x 1 vector of constants; Ay, ... , A, are d X d random matrices of coefficients; and wy, isa d X 1 error vector
of mean zero uncorrelated white noise. For a general treatment of VAR models, see Liitkepohl (2005).
The one-step-ahead score forecast can now be constructed as

A/ =C+Ayy+  +AYy 0 (7
where ¢ and A, ... ,Ap are ordinary least squares estimates of the corresponding parameters. Thus, the total number of

parameters to estimate in a VAR(p) model is d + pd?. The forecast score vector can be plugged directly into Equation (5)
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to obtain a centered one-step-ahead forecast curve,
Vi) = G V- ®

The final forecast curve can then be constructed as
Wi ()= Y& () + fs). 9)

The VAR(p) model allows for easy extension into a VARX(p) model that incorporates information through the score
vectors obtained by applying FPCA to the exogenous functional variables. When incorporating L exogenous variables, we

have L exogenous EFPC vectors, V4, ... , V1, of dimension d;, ... , dr, respectively. For the #th exogenous variable, we also
have N empirical score vectors, X! PRI b o P each of which are of dimension d,. The model in Equation (6) is updated to,
Yo=Cc+Ay,  + - +Ay, ,+BX  +w, n=p+1, .. ,N, (10)

where the d, X 1 dimensional empirical score vectors Xfl—l 1o e ’Xfl—l ; are stacked into the Zledf % 1 dimensional

vector, X¢ .. Then, the one-step-ahead score forecast that includes exogenous variables is
n—1 p g
Inar = €+ AL+ + Ay, + BXS 1)

The resulting forecast score vector can be directly incorporated into Equation (8) to obtain a one-step-ahead centered
forecast. The only new parameter to estimate is the coefficient matrix, B, which increases the number of parameters to
estimate to d + pd? + d X (Zi’:ldf)'

3.4 | Day ahead forecasting

In light of monitoring for ecosystem changes and water treatment, a longer forecast horizon than 2 hours (h = 1) is useful.
We introduce both a direct and an iterative day-ahead (h = 12) forecasting model for D. The direct day-ahead VARX model
is specified as,

Yo=C+Ay, ,+ - +ApY, , , +BX) ,+W,, n=p+12, ... ,N, (12)

with the only difference between Equations (10) and (12) being the lag in the subscripts. The day-ahead score forecast is
then constructed as

Ynez = C+ AL+ + Apyle\l—p+1 + BXS, (13)

which can be used in Equation (8) to obtain the direct, day-ahead, centered forecast curve, denoted Y]‘\if+12, 4ir -

An alternative approach is an iterative day-ahead forecast that fits a VAR model with Equation (6) and computes
one-step-ahead score forecasts, which are iteratively plugged back into Equation (7) until the day-ahead forecast score is
obtained. The day-ahead forecast score is then used in Equation (8) to produce the iterative, day-ahead, centered forecast
curve, denoted 171‘3] 120 S)- The iterative day-ahead forecast does not incorporate exogenous variables because this would
require separate forecasts of each exogenous variable.

3.5 | Forecasting scheme summary

The methodology outlined in the preceding sections will be referred to as functional principal components with vec-
tor autoregressive model and exogenous variables (FPC VARX). We perform a rolling window forecasting approach
where we first fix a training window size of 28, 35, or 42 days, corresponding to 4, 5, or 6 weeks. This is a vital
component of our forecasting approach because both the KL expansion and the VAR(p) models assume stationarity,
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which is violated by the observed seasonality in the data (see Figure 1). Because multiple years of data are not avail-
able, the seasonal components cannot be estimated, so the use of rolling windows allows us to reasonably address
this nonstationarity. We fix the first forecast date to be the same for each window size and forecast horizon (h) to
facilitate comparisons. After a curve is forecast, the window rolls one step ahead, incorporating the next smooth
function and dropping the oldest smooth function in the window, thereby keeping N observations in the rolling
window.

Steps 1-3 below are performed for all eight combinations of exogenous variables. For window size 42, which provides
enough observations to fit more complex models, the steps are repeated for p = 1 and p = 2; otherwise, only p =1 is
used in the VAR model. When the only input variable included is D, all three model schemes (iterative day-ahead, direct
day-ahead, and one-step-ahead) are used, but for all models that include exogenous variables, only the direct day-ahead
forecast and the one-step-ahead forecast are computed.

In summary, the FPC VARX is implemented as follows:

1. Fix the rolling window size, N, to be 28, 35, or 42 days.

2. Let mindicate the window preceding the profile being forecast form =1, ... , M, for a total of M windows. For each m,
(a) Smooth and center the N curves of D and any needed exogenous variables in window m according to Section 3.1.
(b) Perform FPCA on D and any exogenous variables, as described in Section 3.2.

(c) For a given value of p, fit a VAR or a VARX model to the score vectors in the training window, as described in
Section 3.3.

(d) Forecastyy +, using Equations (7), (11), or (13). Construct the centered h-step-ahead forecast as Yngrh(s) =y )V
and obtain the final forecast Wi, (s) = Y3, () + f,(s).

(e) Calculate the forecast’s functional RMSE metric, computed as

_ K 57d K 47d
RMSEym = \/<WN+h - WN+h’ WN+h - WN+h>’ (14)
and what we term the direct RMSE metric,
1 21
_ ) — vd .
RMSE,,, = ﬁl;(ww,(sl) Wi (s)2. (15)

RMSEy 1, is a functional measure of the distance between W:Drh(s) and W§+h(s). RMSE, ,,, is a measure of the direct
squared distance between the forecast curve evaluated at the twenty-one measured locations and the true observed
values.
(f) Roll the window forward by one observation, and repeat the steps (a) through (e) until the last window, M, is
reached.
3. For the M forecast curves produced by each window, compute RMSE; = A%ZI,\::IRMSELM and RMSE; =

= Y e RMSE .
4 | RESULTS
After obtaining forecasts for every combination of variables, window sizes, lags, and forecast horizon, we discuss the fore-
cast performance of FPC VARX in Section 4.1. In Section 4.2, we compare the best FPC VARX specification against a suite
of other methodologies. Section 4.3 explores functional visualization and outlier detection, focusing on the performance
of FPC VARX.

4.1 | Initial forecasting results

The one-step-ahead and the day-ahead results with RMSE; are shown in Tables 2 and 3, respectively. Results for
RMSE, are very similar and are reported in the Supplementary Materials. Each table displays the seasonal RMSEs,
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TABLE 2 RMSE; for FPC VARX one-step-ahead forecasting models of various p, window sizes, and exogenous variables

p Win. size Variable(s)
1 28 D
DC
DCpH
DpH
DT
DTC
DTCpH
DTpH

DC
DCpH
DpH
DT
DTC
DTCpH
DTpH

DC
DCpH
DpH
DT
DTC
DTCpH
DTpH

2 42 D
DC
DCpH
DpH
DT
DTC
DTCpH
DTpH

Early Summer

10.57
10.62
10.66
10.62
10.66
10.72
10.77
10.74
10.41
10.47
10.51
10.50
10.55
10.55
10.54
10.54
10.37
10.48
10.47
10.43
10.52
10.60
10.50
10.47
10.47
10.58
10.59
10.56
10.62
10.69
10.63
10.60

Late Summer

11.50
11.49
11.52
11.46
11.59
11.56
11.47
11.54
11.29
11.31
11.36
11.31
11.47
11.41
11.37
11.40
11.19
11.16
11.23
11.19
11.31
11.24
11.28
11.27
11.22
11.17
11.22
11.20
11.27
11.23
11.26
11.25

Early Fall Overall
7.79 9.85
7.88 9.89
7.95 9.94
7.91 9.89
7.78 9.90
7.79 9.90
7.87 9.90
7.82 9.90
7.72 9.70
7.80 9.76
7.90 9.82
7.87 9.79
7.68 9.78
7.68 9.76
7.78 9.78
7.76 9.78
7.80 9.69
7.86 9.71
7.92 9.76
7.89 9.73
7.81 9.76
7.77 9.73
7.87 9.77
7.88 9.77
7.71 9.68
7.77 9.70
7.85 9.75
7.80 9.72
7.74 9.74
7.73 9.73
7.82 9.77
7.81 9.75

Note: The best overall model and RMSE; by season are in bold for each combination of p and window size. The best seasonal models are italicized.

corresponding to the model performance in Early Summer, Late Summer, and Early Fall. The “Overall” col-
umn is the total RMSE; across all forecasts. Prediction band computation is discussed with examples in the

Supplementary Materials.

We found that for the one-step-ahead forecast, the overall best model across all window sizes and choices of p is the
model with D alone, the 42-day window, and p = 2. This model performed similarly to the model with window size 35 and
p = 1 with an overall RMSE; of 9.68 compared to 9.70, respectively. Using a smaller lag (p = 1 rather than p = 2) would
be preferred as it reduces the number of parameters to estimate. It appears that in the Late Summer, for some model
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TABLE 3 RMSEs for FPC VARX day-ahead forecasting models of various p, window sizes, and exogenous variables
P Win. size Fore. type Variable(s) Early Summer Late Summer Early Fall Overall
28 Direct D 22.00 23.23 16.62 20.36
DC 21.80 23.33 16.39 20.27
DCpH 20.99 23.11 16.50 20.08
DpH 21.51 22.37 16.64 19.92
DT 22.00 23.03 16.79 20.34
DTC 21.89 23.38 16.45 20.33
DTCpH 21.18 23.32 16.80 20.33
DTpH 21.26 22.75 17.16 20.24
Iterative D 22.69 25.36 18.54 22.16
1 35 Direct D 21.37 23.44 16.40 20.25
DC 22.02 23.41 16.44 20.36
DCpH 21.03 21.87 16.51 19.57
DpH 21.73 22.38 16.67 19.97
DT 2291 23.04 16.93 20.56
DTC 22.11 22.89 16.59 20.22
DTCpH 21.02 21.97 16.68 19.68
DTpH 21.68 22.36 17.29 20.20
Iterative D 22.08 25.10 19.13 22.18
1 42 Direct D 21.28 23.63 16.99 20.55
DC 21.39 23.20 17.38 20.54
DCpH 21.31 22.36 17.29 20.14
DpH 22.11 22.53 17.25 20.33
DT 22.66 23.21 17.44 20.79
DTC 21.71 22.69 16.88 20.18
DTCpH 21.38 22.34 17.13 20.08
DTpH 22.00 22.58 17.77 20.54
Iterative D 21.96 25.27 20.00 22.58
2 42 Direct D 21.72 23.79 17.20 20.78
DC 21.77 23.34 17.49 20.72
DCpH 21.63 22.39 17.37 20.24
DpH 22.57 22.60 17.39 20.49
DT 23.22 23.29 17.69 21.02
DTC 22.05 22.78 17.01 20.33
DTCpH 21.69 22.41 17.30 20.23
DTpH 22.47 22.66 18.04 20.77
Iterative D 21.56 25.12 18.93 22.02

Note: Both direct and iterative forecasting models are also included. The best overall model and RMSE; by season are in bold for each combination of p and

window size. The best seasonal models are italicized.
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combinations, the inclusion of some exogenous variables becomes helpful in reducing forecast error, particularly C and
pH.

For the day-ahead forecasts, the direct model with variables DCpH, window size of 35 days, and p = 1 has the lowest
RMSE;. The iterative forecasting models do not perform as well as the direct models, and it is possible that this occurs
because the exogenous variables in the direct model begin to improve the forecasts for the longer horizon. Indeed, for
the direct models, different combinations of T, C, and pH all appear to improve forecasts for various model combinations
and seasons. The iterative forecasting results are explored in more depth in the Supplementary Materials.

In terms of the best window size across forecast horizons, the 35-day window seems to provide a good balance for the
application. The smaller, 28-day window may not contain enough observations for good parameter estimation, and the
larger, 42-day window spans multiple months, potentially introducing nonstationarity into the training window. Based
on these considerations, we fix p = 1 and the window size at 35 days to further investigate the FPC VARX method results
for the following four model combinations: (1) one-step-ahead with D, (2) one-step-ahead with DTCpH, (3) day-ahead
with D, and (4) day-ahead with DTCpH.

4.2 | Comparison methods

To evaluate the performance of the FPC VARX method, we compare it with several alternative types of models for which
brief descriptions are given here:

1. Persistence: W} (s) directly forecasts Wﬁ+h(s).

2. FPC ARX: The EFPC scores are forecast by treating each one as a univariate time series, specifically an AR(p) with or
without exogenous variables. Then, the forecast function is constructed using Equation (8) (Hyndman & Ullah, 2007).

3. DFPCX: Dynamic FPCs (DFPC) are derived from the eigenfunctions of the spectral density operator of
YlK ), ..., Yg () as described in Hérmann et al. (2015) and are uncorrelated at all leads and lags, a property that regu-
lar FPCs do not possess. The goal is to obtain empirical DFPC (EDFPC) curves and scores that account for dependence
in the observations. EDFPC scores are then forecast using a VAR model. Default settings from the £ regdom package
(Hormann & Kidzinski, 2017) are used.

4. VAR: A VAR(1) model is fit on the original 21-dimensional vector-valued observations of D.

5. AR: One univariate AR(1) model is fit for observations at each of the 21 depths of the2+-valaes-ef D that correspond
to the 21 measurement depths.

6. FAR: The functional autoregressive model is the functional extension of the classic AR(p) model. An estimate of a
functional autocovariance operator is obtained analogously to the univariate estimated autocovariance function. A
useful overview is given in Kokoszka and Reimherr (2017). This method has been extended to incorporate exogenous
variables (Damon & Guillas, 2005), but the software functionality does not allow lagged exogenous variables, restricting
our use to the models with D alone.

7. NN: Neural network models for the 21-dimensional input vectors of D are fit with the keras package in R (Falbel
et al., 2021). In each window, a model is fit with 750 epochs and one hidden layer for models using D alone and two
hidden layers for models using DTCpH. Hyperbolic tangent activation functions are used between layers, and a linear
activation function is applied for the output layer. The NN outputs a vector of 21 values of D corresponding to each
depth. Details on the architecture selection can be found in the Supplementary Materials.

The performance of the methods is evaluated with either the RMSE; metric, the RMSE,; metric, or both, depend-
ing on whether the method produces a forecast in the form of a smooth function, a 21-dimensional vector, or
both, respectively. RMSE; alone is computed for FPC ARX; RMSE, alone is computed for DFPCX, VAR, AR, FAR,
and NN; and both are computed for Persistence and FPC VARX. The RMSE; and RMSEy metrics are not directly
comparable.

Results are displayed in Table 4. Within the overall column, the best performing method is clearly FPC VARX,
with the lowest overall RMSE; and RMSE;y for every horizon and variable combination except the one-step-ahead fore-
casts with all exogenous variables. FPC VARX reduces the overall RMSE; over the baseline persistence method by
5% for the one-step-ahead forecasts with and without exogenous variables and by 10% and 12% for the day-ahead
forecasts without and with exogenous variables, respectively. Compared to the industry-standard NN, the FPC
VARX method reduces overall RMSE; by 28% and 39% for one-step-ahead forecasts and 3% and 7% for day-ahead
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TABLE 4 Comparison of eight methods with two choices of forecast horizon and two choices of variables (no exogenous variables or all

exogenous variables)

Horizon Variable(s)
1 D

1 DTCpH

12 D

12 DTCpH

Method Metric
Persistence RMSEy
FPC VARX
FPC ARX
Persistence RMSE,
FPC VARX

DFPCX

VAR

AR

FAR

NN

Persistence RMSEy
FPC VARX
FPC ARX
Persistence RMSE,
FPC VARX

DFPCX

VAR

AR

NN

Persistence RMSE;
FPC VARX
FPC ARX
Persistence RMSE,
FPC VARX

DFPCX

VAR

AR

FAR

NN

Persistence RMSE;
FPC VARX
FPC ARX
Persistence RMSE,
FPC VARX

DFPCX

VAR

AR

NN

Early Summer
11.16
10.41
10.41
11.92
11.17
13.08
11.47
11.74
11.42
14.99
11.16
10.54
10.46
11.92
11.30
19.85
11.76
11.87
17.22
26.44
21.37
21.28
26.98
21.90
22.20
22.49
22.03
22.72
22.54
26.44
21.02
21.12
26.98
21.58
35.08
2291
22.61
23.51

Late Summer
12.52
11.29
11.33
13.08
11.79
13.09
11.99
12.54
12.07
15.76
12.52
11.37
11.30
13.08
11.87
16.07
12.10
12.58
18.45
25.49
23.44
23.53
25.79
23.70
24.12
24.15
24.26
25.62
24.18
25.49
21.97
21.93
25.79
22.28
27.04
22.69
23.04
24.50

Early Fall
7.58
7.72
7.93
7.91
8.03
10.39
8.15
8.64
8.28
12.18
7.58
7.78
7.68
7.91
8.06
11.92
8.22
8.41
15.04
17.84
16.40
16.85
18.13
16.73
17.04
17.02
17.34
20.30
17.67
17.84
16.68
16.78
18.13
17.03
21.28
17.69
17.19
17.89

Overall
10.30
9.70
9.80
10.80
10.17
12.00
10.36
10.83
10.44
14.19
10.30
9.78
9.70
10.80
10.24
15.05
10.48
10.78
16.87
22.57
20.25
20.45
2291
20.58
20.94
20.99
21.09
22.98
21.28
22.57
19.68
19.72
2291
20.04
26.10
20.71
20.61
21.67

Note: All methods use a window size of 35 days and p = 1. Some methods are evaluated with the RMSE; metric and some with RMSE,. The best overall model
by season is in bold for each combination of horizon, model, and metric. The best seasonal models are italicized.
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forecasts with D and DTCpH, respectively. The closest method to FPC VARX in terms of performance is FPC ARX. If
one method and variable combination were to be chosen for each forecast horizon, it would be FPC VARX with no
exogenous variables for one-step-ahead forecasting and FPC VARX with all exogenous variables for day-ahead fore-
casting. In the remainder of the article, these models will be referred to as the optimal h =1 and h = 12 FPC VARX
models.

The inclusion of exogenous variables affects the one-step-ahead and day-ahead models differently. For the
one-step-ahead results, the inclusion of exogenous variables results in an overall performance decrease for all methods
except those relying on univariate autoregressive methods: FPC ARX and AR, which improve with exogenous variables.
For the day-ahead results, the inclusion of exogenous variables results in an overall performance improvement for all
methods except for the DFPCX and NN methods, which worsen with exogenous variables.

4.3 | Band depth analysis

Functional boxplots (Genton & Sun, 2020) of the forecast errors are shown in Figure 3. The solid central line is the median
curve, the dark gray envelope is the 50% region, the solid lines extending from the 50% region are the functional whiskers,
and any dashed lines are outlier curves. Not surprisingly, the one-step-ahead errors are less variable than the day-ahead
errors. The day-ahead model had its most variable forecast errors at the lake surface in the Early Fall. Several unusually
shaped forecast errors are also identified.

Profiles of D with extreme values or unusual shapes are of interest for environmental and water quality monitoring.
The outlying forecast errors identified in Figure 3 fall into one of two categories: either a shift in the shape or magnitude
of the entire process occurs at that point in time or a “traditional” outlier occurs where the curve is distinct from both the
preceding and subsequent curves. These traditional outliers may occur due to a short-duration stormy weather event or
some other significant atmospheric variation (Andersen et al., 2020). Some examples of both types of outliers can be seen
in the Supplementary Materials.

To understand how the FPC VARX method performs in forecasting curves of relatively high or low values of D, we
order the observations by band depth, and split them into deciles from smallest (most extreme/outlying) to largest (most
central) band depth. For each decile, we compute the decile’s mean forecast RMSE;. Figure 4 reveals that the extreme
functional observations with the lowest values of band depth are more difficult to forecast, while the more typically
shaped functions correspond to lower forecast error, most notably in Early Fall. The persistence forecasts that are shown
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FIGURE 3 Functional boxplots for the one-step-ahead (top row) and day-ahead (bottom row) forecasting models’ forecast errors by
season (columns)
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FIGURE 4 RMSE; for the one-step (top row) and day-ahead (bottom row) forecasting models, based on the deciles of a profile’s band
depth

for reference most nearly match the FPC VARX forecasts during the Early Fall. In the Early Summer, the day-ahead FPC
VARX method performs increasingly better than persistence moving from central to smaller deciles (and more unusual
curves).

5 | CONCLUSION

This work represents the first example of FDA applied to forecasting profiles of DO in a lake. We first use B-spline basis
functions combined with penalized estimation to smooth the discrete observations into curves. We center the data by
hourly mean curves to account for the diurnal cycle and apply FPCA to obtain score vectors and FPCs. We use a rolling
window to estimate parameters in each model and to make forecasts. The FPC VARX method is the best method among
those compared in almost all cases, for both one-step-ahead and day-ahead overall forecasts.

The work in this article illustrates the complexities of forecasting functional data, such as accounting for nonstationar-
ity, implementing a smoothing step, and choosing d. One challenge we encounter is the increase in parameters to estimate
due to the incorporation of exogenous variables or from increasing d. While our analysis does establish that exogenous
variables improve the day-ahead forecasts, the model specifications require that d, remain so low that the exogenous KL
approximations can differ from their penalized smoothed counterparts.

Overall, the FPC-based techniques outperform models that first treat the values from each depth as a vector or a
univariate time series and then apply non-FTS analysis. Additionally, the comparison of FPC VARX to NN methods is
valuable as NNs are the current models of choice for data-driven approaches to water quality modeling (Chen & Liu, 2014;
Huo et al., 2013; Karakaya et al., 2013; Saber et al., 2020). More work could be done in this area to apply NNs or other
machine learning methods directly to the FPC scores, resulting in a hybrid statistical-machine learning model.

Future research could include incorporating robust methods to address outlying curves and extreme values, possibly
considering the approach of Shang and Xu (2021). Additionally, as more full-profile water quality data are collected,
models could be improved in multiple ways. For example, seasonal patterns could be modeled directly, thereby reducing
the need for a rolling window and increasing the sample size. Higher or variable VAR orders could be incorporated, which
could improve the modeling of variable dynamics in the data. More sophisticated dynamic FPCA approaches could be
explored for forecasting water quality profiles, such as Elayouty et al. (2022) who address nonstationarity in the functional
covariance structure. Finally, larger sample sizes would allow for higher dimensionality used in the exogenous variable
FPCA as well as comparison with more complex NNs and other parameter-rich approaches.
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