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ABSTRACT

Taxonomies, which organize knowledge hierarchically, support
various practical web applications such as product navigation in
online shopping and user profile tagging on social platforms. Given
the continued and rapid emergence of new entities, maintaining a
comprehensive taxonomy in a timely manner through human anno-
tation is prohibitively expensive. Therefore, expanding a taxonomy
automatically with new entities is essential. Most existing methods
for expanding taxonomies encode entities into vector embeddings
(i.e., single points). However, we argue that vectors are insufficient
to model the “is-a” hierarchy in taxonomy (asymmetrical relation),
because two points can only represent pairwise similarity (sym-
metrical relation). To this end, we propose to project taxonomy
entities into boxes (i.e., hyperrectangles). Two boxes can be "con-
tained", "disjoint" and "intersecting", thus naturally representing an
asymmetrical taxonomic hierarchy. Upon box embeddings, we pro-
pose a novel model BoxTaxo for taxonomy expansion. The core of
BoxTaxo is to learn boxes for entities to capture their child-parent
hierarchies. To achieve this, BoxTaxo optimizes the box embed-
dings from a joint view of geometry and probability. BoxTaxo also
offers an easy and natural way for inference: examine whether the
box of a given new entity is fully enclosed inside the box of a candi-
date parent from the existing taxonomy. Extensive experiments on
two benchmarks demonstrate the effectiveness of BoxTaxo com-
pared to vector based models.

KEYWORDS

Taxonomy, Box Embeddings, Geometry, Representation Learning

ACM Reference Format:

Song Jiang, Qiyue Yao, Qifan Wang, and Yizhou Sun. 2023. A Single Vector
Is Not Enough: Taxonomy Expansion via Box Embeddings. In Proceedings of
the ACM Web Conference 2023 (WWW °23), April 30-May 04, 2023, Austin, TX,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3543507.
3583310

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW 23, April 30-May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583310

2467

Qiyue Yao
University of California, Los Angeles
Los Angeles, CA
qiyueyao@g.ucla.edu

Yizhou Sun
University of California, Los Angeles
Los Angeles, CA
yzsun@cs.ucla.edu

Existing Computer Science
Taxonomy
Pi ing L Machi New
rogramming Language .. Machine Computel o
Lea‘m'y \VISEW ERbEs
[} ® ~~@ Diffusion }
) Model i
Python Graph Rep Objective
* Neural Network ™ Learning Detection

()

Vector Embeddings
Y

i Box Embeddings
i Y| [Computer Science

® Computer Science i)
° Machine Learning Language

) : Pyth
Computer Science : ython)
[ ] H ® Computer Vision H RL

iDiffusion

lode

® o) X

Figure 1: Comparison of taxonomy expansion using vector
embeddings and box embeddings. (a) An example of tax-
onomy expansion. A new entity “Diffusion Model” is to be
attached to its appropriate category “Computer Vision”. (b)
Vector (point) embeddings of taxonomy. Two points can only
represent similarity (distance). (c) Box embeddings of taxon-
omy. Two boxes can represent the taxonomic “is-a” relation.

1 INTRODUCTION

A taxonomy is a schema of hierarchical classification, which is
used to organize conceptual entities into a tree-like structure ac-
cording to their semantics. Taxonomies have been widely adopted
to support various web services because of the effectiveness of
indexing and organizing knowledge. For example, Amazon has a
product taxonomy to facilitate online shopping [22], and Pinterest
uses taxonomy to enhance content understanding and recommen-
dation [11, 21]. Many taxonomies were initially curated by domain
experts, however, due to the constant and rapid growth of new con-
cepts, automatically expanding existing taxonomies with these new
entities is necessary to avoid their obsolescence. Fig. 1 (a) shows an
example of taxonomy expansion: a new research direction “Diffu-
sion Model” is appended to its category “Computer Vision”, forming
a child-parent hierarchy. For consistency with existing literature,
we follow [33, 42] and refer to a child as query, and a parent as
anchor. The terms are interchangeable throughout this paper.
Existing approaches for taxonomy expansion focus on captur-
ing the child-parent hierarchies. Early efforts learn the hierarchies
by exploiting the semantic relatedness between two entities. The
semantics can be represented by lexical patterns [12, 35] or later
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the more powerful distributional word embeddings [3, 9, 26]. Be-
yond semantics, recent works have further explicitly modeled the
tree structure of taxonomy. They use various structural summaries,
including paths [13, 18, 42] and local graphs [22, 33, 39], as addi-
tional signals to enhance the learning of child-parent hierarchies.
Representing hierarchies is more in line with the geometric proper-
ties of hyperbolic space [10, 27]. Several works [2, 20] model the
child-parent relations by learning hyperbolic representations.

The core methodology of most aforementioned approaches is
to learn vector embeddings for entities in taxonomy. The child-
parent relation is then inferred by computing the relatedness of a
pair of entities upon their vector embeddings. However, the vec-
tor embeddings, i.e., points in geometric space, can only represent
the pairwise similarity, which is a symmetrical relation (Similarity
is usually measured by distance — either Euclidean or geodesic !
- of two points). The taxonomic child-parent hierarchies, on the
contrary, are naturally asymmetrical. Therefore, the vector based
embeddings are not sufficient to represent the hierarchies in taxon-
omy, limiting their effectiveness in taxonomy expansion.

To overcome this insufficiency, instead of vectors, we propose
to use boxes to represent the entities in the taxonomy. A box is
an axis-aligned hyperrectangle in geometric space, which can be
characterized by two points. Unlike a single point, the benefit of a
box is that box has a geometric region, which enables it to repre-
sent the more complicated asymmetrical pairwise relations such
as “enclose”, “disjoint” and “intersect”. Fig. 1 (b) and Fig. 1 (c) show
this superiority of box embeddings over vector embeddings. Specif-
ically, a child box is entirely enclosed inside its parent box (e.g.,
“Graph Neural Network” and “Machine learning”). Two entities
are fully separated if they are not in a child-parent hierarchy (e.g.,
“Programming Language” and “Machine learning”). The boxes of
two entities overlap if they share common children in taxonomy
(e.g., “Computer Vision” and “Machine learning”).

Despite the natural and intuitive representation of taxonomic
hierarchies, the box embeddings for taxonomy expansion still face
three main challenges. First, limited taxonomy annotation is avail-
able for new entities, making it difficult to learn accurate boxes
and infer their positions in the taxonomy in a supervised manner.
Second, most existing box embeddings approaches optimize boxes
by capturing probabilistic properties, which have proven difficult to
train in practice [16, 38]. The reason is box pairs that are supposed
to “enclose” or “intersect”, but are wrongly disjoint during training,
will never be corrected because the gradients from the probabilistic
loss function are zero in this case. [7, 16] mitigate this issue by
representing the edges of boxes as probabilistic density distribu-
tions, i.e., making the box “soft”. However, such “soft” boxes lose
the intuitive interpretability of normal “hard” boxes. Third, differ-
ent from reasoning in the existing structure, taxonomy expansion
requires learning boxes for new entities. Therefore, a desired model
should be generalizable, which is able to generate box embeddings
compatible with existing taxonomies for new entities.

In this paper, we propose BoxTaxo, a self-supervised model that
expands taxonomy with box embeddings. With self-supervised
learning, our model does not require annotated labels, but creates

'We note there are studies on asymmetric geodesic distance in certain spaces [24, 25],
but most current non-Euclidean embeddings are in common spaces, such as hyperbolic
space. Thus, we still focus on symmetric geodesic distances in common spaces.
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training samples from the existing taxonomy. Specifically, each
(child, parent) pair in the existing taxonomy is treated as a positive
sample. The entities that are not the ancestors of each child are
collected as negative samples. To optimize the box embeddings, we
propose a joint loss function that guides the boxes to capture the
taxonomic hierarchies from both the geometric view and the prob-
abilistic view. The joint view loss function can avoid the gradient
missing issue mentioned above and still ensure the boxes are intu-
itive and interpretable to humans. The box embeddings are encoded
via a pre-trained language model to ensure the generalizability to
new entities. At inference time, box embeddings offer an easy and
natural way to find an appropriate anchor for a query, by checking
whether the box of a candidate parent fully contains the box of the
query. We implement this from the probabilistic view in BoxTaxo.

Our main contributions are summarized as follows: 1) We pro-
pose to use box embeddings for taxonomy expansion, which can
accurately represent the hierarchies in taxonomy. 2) We develop a
self-supervised model that optimizes the box embeddings through
joint learning of geometry and probability. 3) We conduct an exten-
sive set of experiments on two real-world taxonomies. Experimental
results demonstrate the effectiveness of BoxTaxo compared to vec-
tor based representations. We also provide various ablation studies
and analyses to understand how BoxTaxo works.

Scope and Limitation. This work is an early attempt to use
box embeddings for representing and expanding an existing taxon-
omy. Our main focus is to study whether box embeddings are more
suitable than single vectors for this task. We would like to keep the
model as simple as we can in this step. Therefore we only model the
(child, parent) pairs and do not utilize the complicated structural
signals, such as paths [13, 18, 42] and local graphs [22, 33, 39], or
check more contexts to enhance the anchor representation [40, 44].
We are aware that such advanced structures have the potential to
further boost the box embeddings learning and thus improve the
taxonomy expansion task. However, how to facilitate box embed-
dings with structure signals is out of the scope of this paper. We
hope this work can inspire future studies in these directions.

2 RELATED WORK

2.1 Taxonomy Expansion

Expanding existing incomplete taxonomies with new entities has
been studied from several perspectives. Early efforts to extend a tax-
onomy are by detecting the hypernym relation of a (query, anchor)
pair. They exploit the semantic relatedness between the query and
anchor concepts, either by lexical patterns [12, 35] or distribu-
tional word representations [3, 9, 26]. However, these approaches
usually fail to sufficiently explore the taxonomic hierarchies that
encode structural semantics and knowledge. Recent works attempt
to capture these hierarchies with the help of various structural
summaries. A commonly used structural summary is path, a list of
nodes connected by taxonomic edges. One state-of-the-art of using
path is [42]. They first sample a set of top-down paths from the
taxonomy. When predicting the true parent for a query, beyond just
a candidate anchor, the classifier also has access to the semantic fea-
tures of its structural contexts along the paths. Paths in taxonomy
are further enhanced by a dynamic margin loss that compares the
similarity between two paths in [18], and by language models that



Taxonomy Expansion via Box Embeddings

formalize a taxonomy path as a pseudo linguistic sentence in [13].
Because an entity could have multiple parents or children, a set of
sampled paths may not cover all the surroundings of an entity node
in taxonomy. Therefore, [33] uses local ego-graph, which contains
an entity with all its parents and children, to capture the local struc-
tures. They use graph neural networks[14, 36] to encode the local
ego graph to boost the representation of the central entity. [39]
extends the local ego-graphs to the root node and forms sub-trees,
preserving more structural contexts. Recent works hay~ &~~~ o
view a taxonomy from richer perspectives, including
heterogeneous semantics and relations [21, 40], repres
onomy in non-euclidean spaces [2, 10, 20, 27], examinin
parents and candidate children simultaneously for a
and generating new concepts to fulfill the taxonomy [¢

However, almost all of these works represent entit
high-dimensional vectors (i.e., points), which are only ¢
sure the symmetrical similarity (i.e., distance) betwe
entities. Yet the hierarchies in taxonomy are inherently
cal, such as the child-parent relation. Vector embeddi:
sufficient to differentiate the parent and child nodes in a
limits their abilities to represent and expand a taxonomy
instead learns box embeddings (i.e., high-dimensional
for entities, which naturally represent the asymmetrice
cal relations and is more appropriate for taxonomy ex

2.2 Representation Learning with Box

Different from the vector based embedding approach

beddings represent objects or entities using geometric

offers a more natural and intuitive way to model asyuuucuica
relations, such as hierarchies [15, 30] and transitive closure in di-
rected graphs [15]. Box embeddings are initially established from
the probabilistic perspective in [38], in which the box embeddings
are learned by optimizing the conditional probability of two enti-
ties that form a hypernym. Despite the progress, optimizing the
conditional probability upon the exact box edges has been shown
to easily lead to training failure. [16] discloses the reason is that
disjointed box pairs are difficult to optimize due to the lack of gra-
dients. Therefore, the exact “hard” box edges are changed to “soft”
by representing them with Gaussian density functions in [16] and
Gumbel distributions in [7]. These “soft” boxes offer gradients for
all training samples, enabling easier training, although are not in-
tuitively interpretable to humans. Beyond the probabilistic view,
box embeddings are also learned by capturing the geometric prop-
erties. [32] defines a geodesic distance between a vector and a box,
and optimizes the box generator with a loss function designed upon
this distance. Different from these works, we propose to learn the
box embeddings from a joint view of geometry and probability. The
core advantage of this joint view is that it provides an alternative
approach to address the gradients missing problem, but still pre-
serves the interpretability of exact “hard” boxes. We also show the
joint view outperforms any single one empirically in Sec. 5.4.

Box embeddings have a wide range of applications. [16] detects
hypernym upon the entailment of boxes; [4] uses the intersection
of boxes to measure the uncertainty in knowledge graphs; [28]
models both entity mentions and types as boxes to allow probabilis-
tic fine-grained entity typing. Box embeddings have also shown
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success in word representation [6], knowledge base completion [1]
and ranking [23]. In terms of application, to the best of our knowl-
edge, our work is a very early attempt to expand taxonomy with
geometrically-inspired embeddings. Different from many other
tasks, one challenge of taxonomy expansion is to learn box embed-
dings for new entities that are compatible with existing taxonomy.

3 PRELIMINARY

maximum

corner
T bx =
—
/
center bx bx =4
by by bY
minimum
corner e .
(a) box (b) enclose (c) disjoint (d) intersect

Figure 2: Illustration of box embeddings. (a) Characterization
of a box. Note the offset is a 2-Dimensional vector in this
example. (b) Enclosure relation: one box is fully contained
within the other. (c) Disjoint relation: one box is fully outside
the other. (d) Intersect relation: two boxes share overlap.

Box Characterization. A box (hyperrectangle) can be described
by two vectors (points). Following [32], we use the center point
and a positive offset vector to represent a box (Fig. 2 (a)). Denote
by b = (c, 0) a d-dimensional box, where c € RY is the center and
0 € R? is the offset that is positive at all coordinates, we can then
derive the minimum corner point as [ = ¢ — 0 and maximum corner
pointasr = c+ o, wherel € R4 and r € R?. Note that a minimum
and maximum corners pair can also define a box [28].

Volume. The volume of a box is the product of its segment in
each dimension, formalized as Vol(b) = ]_[;.71:1 (rf = I'), where i is
the indicator of dimension. If the entire box space’s volume is 1,
then the volume of a box can be modeled as its marginal probability.

Pairwise Relations. We elaborate on three pairwise relations
between two boxes. Denote by (by, by) a pair of boxes, we have:

o Enclose (Fig. 2 (b)): a box by is completely contained inside the
other box by, denoted by, by N by = by.
o Disjoint (Fig. 2 (c)): a box by is completely outside the other box

by, denoted by bx N by = 0.

o [Intersection (Fig. 2 (d)): a box by shares some overlap with the

other box by, denoted by by N by + 0.

The N operator will return the intersection box b, of the two
boxes (by, by), denoted by b, = by N by. Note that the N oper-
ator is performed on the minimum and maximum corners, i.e.,
N : I = max(ly,ly), rz = min(rx,ry). The N operator also en-

ables the calculation of conditional probability between two boxes.
P(by,b Vol(bynb
Formally, P(by|bx) = I(D(bx)y) = (;/él(bx)y)

3.2 Taxonomy Expansion

Definition 3.2. (Taxonomy [33, 42]) A taxonomy 7 = (&, H) is
a tree structure, where each node e € & is an conceptual entity, and
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each edge h € H represents the “is-a” relation between the two
nodes connected by it.

Taxonomy is usually incomplete, and new entities are constantly
created, therefore, how to attach the new entities to an existing
taxonomy is essential and the focus of this study. We formally
define the taxonomy expansion problem as:

Definition 3.3. (Taxonomy Expansion [33, 42]) Given an existing
taxonomy 70 = (8% H°) and a new conceptual entity set A,
taxonomy expansion aims to create a new taxonomy 7' = (&', H'),
where & = EUN and H’ = HOUR. R is the set of newly created
edges between ° and N.

4 PROPOSED METHOD: BOXTAXO

4.1 Overview

The core idea of BoxTaxo is to learn box embeddings for entities
in taxonomy. Box embeddings are more natural and powerful in
representing the asymmetrical taxonomic hierarchies, and thus
can more accurately expand the taxonomy with new entities. As
illustrated in Fig. 3, BoxTaxo first projects entities to box embed-
dings from natural language via the pre-trained language model
(Sec. 4.2). During training, BoxTAxX0 optimizes the boxes from both
the geometric view and the probabilistic view to precisely repre-
sent the hierarchies (Sec. 4.3). During inference, BoxTaxo encodes
new query entities to boxes and finds the appropriate anchors in a
probabilistic manner (Sec. 4.4).

Geometric View Probabilistic View

parent E Projection b Pleyle) =
€ - ff_ " Layer bp ~ b @ Vol(b, N b,)
= o+ 2 L+ Vo)
child _, E __ Projection_, | p i [ N—
R Layer ¢
T b, Pleyle) =
i B Vol(b, N b,
negative & _ projection [ |/ b, Yollbynb _
p R Layer P Lo P L- Vol(b,)
T g »
(a) Training
s i
query rojection _ : 0ss
€, - § " Layer 4’ \P(Ea|eq) = : Yol fi
: olume of :
B / w =9 Vol o Box
anchor___ E Projection Vol(b,) o :
e, ff_ " Layer by B > b,nb, |

(b) Inference

Figure 3: The overview of BoxTaxo. The entities in taxonomy
are first projected to boxes based on Bert. (a) Training: the box
embeddings are optimized from a joint view of geometry and
probability, in order to accurately represent the taxonomic
hierarchies. (b) Inference: check whether a query’s box is
enclosed by the candidate anchor’s box in a probabilistic way.
Note that the boxes shown in this figure are 2D, but they can
be in higher dimension spaces, i.e., hyperrectangles.

4.2 Box Projection

The nodes in taxonomy are conceptual entities. To represent each
entity as a box in the latent space, BoxTaxo uses a two-stage pro-
jection process. In specific, an entity is first encoded as numeric
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embeddings from natural language via an entity encoder, and then
converted into a rectangular lattice by a box projector. We now
introduce these two operators in detail.

Entity Encoder. The pre-trained language models (PTMs) have
shown promising achievements in many natural language tasks [31].
Encouraged by their success, we use PTMs to encode the entities
into embeddings. Without loss of generality, we use Bert [8] as the
entity encoder in this paper. Formally, for the i-th entity e;, Bert
converts it into k-dimensional representation n; € Rk:

n; = Bert(e;). (1)

The entities in taxonomy are usually curated and thus could have
definition sentences. Therefore, for such a definition sentence s;,
we concatenate it with its entity e; and build the input of Bert as
“LCLS]e;, s; [SEP]”. We then use the output embeddings of “[CLS]”
in the final Bert layer as the representation n; of entity e;. The
representation n; encodes the contextual semantics of the entity.
Please note other pre-trained language models, such as Roberta [17]
and ELECTRA [5], are flexible to be replaced as the encoder.

Box Projector. We then project the entity representation n; into
box embeddings. A box can be defined by two points (i.e., vectors).
We therefore use the center point ¢; € R? and the offset vector
0; € R to represent a box b; € RY ie., b; = (¢i,04), where d is
the dimension of box embeddings. Note that c¢; and o; are just two
vector embeddings. To represent an entity e; as box embeddings
b;, we project the entity representation n; into the center ¢; and
offset o;, separately. Specifically, because this projection is only a
dimension transformation between two embeddings, we simply use
two multilayer perceptrons (MLPs) as the projectors, formalized as:

¢i = MLPc(n;), 0; = MLPo(n;), (2

where MLP. and MLP,, are the projection layers for center c; and
offset o;, respectively. To ensure the learned box b; is a valid rec-
tangle, we further apply an exponential operator to the offset o;, so
that every dimension of o; is guaranteed to be larger than 0.

4.3 Box Training

We now seek to optimize the box embeddings such that they can ac-
curately represent the taxonomic hierarchies, i.e., the child-parent
relations. Because each (child, parent) pair in the taxonomy is a
natural “label”, we propose to fine-tune the entity encoder and box
projector in a self-supervised manner. Specifically, we utilize all the
immediate (child, parent) pairs in the taxonomy as positive samples.
Negative samples have been demonstrated to be crucial in optimiz-
ing box embeddings [15]. Therefore, for each child node in such a
pair, we collect its “siblings”, “uncles” and “cousins” as the negative
samples against the child-parent relations. Compared to vectors,
box embeddings are more powerful in representing child-parent
relations. We show how boxes achieve this advantage from two
views: the geometric view and the probabilistic view. Accordingly,
we design two training objective functions, the geometric loss and
the probabilistic loss, to jointly optimize the box embeddings.
Geometric View. We first show how the child-parent relation
can be represented with box embeddings in geometric language. A
box with d-dimensional center and offset vectors is a d-dimensional
hyperrectangle in Euclidean space. A (child, parent) pair can be
semantically interpreted as “child is-a parent” or “child is-one-of
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parent” [12]. Therefore, we let the child hyperrectangle be fully
enclosed by the parent hyperrectangle, indicating the child entity
is one kind of parent. Formally, for a d-dimensional child box b, =
(ce, 0¢), since o, is regularized to be positive, we denote by I, =
cec — 0¢ and r¢ = c¢ + 0 the minimum and maximum corner points
of the hyperrectangle, respectively. Similarity, for parent box by, =
(cp,0p), denote by I, = ¢p —0p and rp, = cp + 0 the minimum and
maximum corner points. Then the “enclose” relation has:
li > li ri < rl'

Pen i<l Vie{l2..d), 3)

where i denotes the i-th dimension of the embeddings. We derive
a loss function L} to ensure boxes satisfy this geometric enclose
relation (Eq. (3)) for pair (e, ep), formalized as:

d d
1 . ) ) .
== [ > max (0,1, 1L +8) + ) max(0,ri ~rh+ 5)], @)
i=1 i=1

where § is a hyper-parameter across all d dimensions that controls
the geometric margin between the child and parent boxes.
Oppositely, for a negative pair (child, parent’), denoted by
(ec ep), the child hyperrectangle should be disjoint with the neg-
ative parent hyperrectangle. We implement this “disjoint” rela-
tionship by enforcing the intersection between the child box and
the negative parent box to be empty. Formally, for such a box
pair(b, by’ ), their intersection b, = b N by is formalized as:

Iy = max(lc,ly), 1z =min(re,rpr). (5)

An empty intersection, i.e., b, = 0, essentially means every dimen-
sion of the intersection b, is less than or equal to 0. Based on this
property, we derive a loss function L; to minimize the offset o, of
the intersection, formalized as:

1 &
Iy =5 (0k-e? ©)
i=1

where € is a hyper-parameter to adjust the margin of intersection.
If € > 0, we allow some intersection between two boxes, and when
€ < 0, we force the two boxes to be separated. Note that the offset
can be derived by o, = (r; — I)/2.

Probabilistic View. We now introduce how the child-parent
relation is represented by box embeddings from a probabilistic
perspective. We first define taxonomic probability:

Definition 4.1. (Taxonomic Probability) Taxonomic probability
P(ey |ex) is the likelihood of event “from a given entity ey, another
entity ey can be reached along a given 1-length edge” occurring.

For a (child, parent) pair (e, ep) in taxonomy, the taxonomic
probability P(eplec) = 1, because given a child, its exact parent can
always be retrieved along the edge connecting them. If a child has
multiple parents, we define the taxonomic probability as 1 for all
parents. Similarly, for a negative pair (child, parent’), denoted by
(ec, epr), since the negative parent can not be directly reached given
the child, the taxonomic probability P(ey|ec) = 0. Desired box em-
beddings should satisfy these conditions of taxonomic probability
for both positive and negative pairs, so that they can accurately
represent the child-parent hierarchies in taxonomy.

Similar to using diagrams of sets to describe probabilities (i.e.,
Venn diagram [37]), box embeddings provide a natural graphical
way to calculate the taxonomic probability. Following [16, 28, 38],
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we use the volume of the intersection between child box and parent
box, divided by the volume of child box, to represent the taxonomic
probability P(ep|ec), formalized as:

Vol(bp N be)
Vol(be)
where the Vol(-) is the volume of a box. On this basis, we propose a
probability loss function for each positive child-parent pair (e, ep),

denoted by L}, which is formalized as:

L} = (P(eplec) - 1)%, ®)

and also a probability loss function for each negative pair (ec, ey ),
denoted by L; , which is formalized as:

Pleplec) = , 7)

Ly = (P(eplec) = 0)*. )

Box Regularization. In both geometric and probabilistic views,
we design loss functions that minimize the intersection of two
negative box embeddings, i.e., the negative geometric loss Ly and
the negative probabilistic loss L. Actually, if a box is near zero in
all its embedding dimensions, or its volume is close to zero, these
two losses are also able to be minimized. In this case, however, the
learned box embeddings are meaningless and can hardly represent
the taxonomic hierarchies. To avoid this “cheating” during training,
we regularize that box embeddings can not be too small in all
dimensions. For box embeddings b, of entity e, we implement this
constraint by regularizing the offset o, with regularization loss L,:

d
_1 ; i 2 .
L=~ ; min(0,0L — §)%,  Vie {12, ...d}, (10)

where ¢ controls the minimum length of boxes in each dimension.

Joint Loss. Finally, we combine the geometric losses, the proba-
bilistic losses and the regularization loss to jointly train the model.
Formally, the final loss function is:

L=a(Ly+L;)+p(Ly+Ly) +yLy, (11)

where the @, § and y are hyper-parameters to control the contribu-
tions of each single loss function.

Benefit of Joint View. Most box embeddings studies build the
training objective from only the probabilistic view, where the core
is to compute the volume of two boxes’ intersection [4, 7, 16, 28, 38].
Following [16], denote by b, = b. N by, the intersection of a {child,
parent) pair’s boxes, then we rewrite its volume of as:

d
Vol(b,) = ]_[ max (0, (min(rt, rp) — max (I, rl))).  (12)

i=1
Eq. (12) is a hinge loss, where the (sub)-gradient is 0 when two
boxes are disjoint, i.e. min(rl, r;,) — max(I%,rl) < 0. This leads to
a serious issue, namely that if two boxes of a true (child, parent)
pair are accidentally disjoint during training, these incorrect boxes
will never be optimized if only the probabilistic view is included in
the loss function. [7, 16] propose to represent the edges of a box as
probabilistic density functions, so that the gradients always exist
even the two boxes are disjoint. However, making boxes “soft” will
lose their natural and intuitive interpretability to humans. Our joint
view of geometry and probability is an alternative approach to this
“zero gradients” issue but still preserves the interpretability of “hard”
boxes. Specifically, for child-parent pairs that are falsely disjoint,
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the geometric loss Eq. (4) will provide gradients for optimization,
because at least one of I} — I + § and r} — rliJ + 4 is greater than 0.
Note Eq. (4) is for positive pairs. For negative pairs, the two boxes
are expected to be disjoint, so there is no gradient issue.

In conclusion, the core benefit of the joint view of geometry and
probability is to ensure that gradients are always available during

optimization without losing the natural interpretability of boxes.

4.4 Inference with Box

During inference, our goal is to find an appropriate parent entity,
i.e., an anchor, from the taxonomy for a given new query. In con-
trast to vector embeddings that measure the distance between two
points, box embeddings are more intuitive and natural to determine
whether a candidate parent is suitable: by checking to what extent
the box of anchor encloses the box of the query. We implement this
idea in a probabilistic way as shown in Fig. 3 (b). Specifically, for
query eg, we first project it into a box by and then compare it with
each candidate anchor e;’s box b,2. Formally, we rank the candi-
dates by their taxonomic probabilities P(eq|eq). A higher P(eqleq)
indicates that anchor e, is more likely to be an appropriate parent
for the query eq4. In some cases, the taxonomic probability values
of many anchors could be the same. For example, if the query box
is enclosed by the box of a leaf anchor node, then it is also enclosed
by all ancestors (until the root) of this leaf anchor, i.e., P(eqleg) = 1
for the leaf anchor and all its ancestors. In this case, we return this
leaf anchor as the predicted parent, since it is the finest-grained
and more precisely describes the query. We note this leaf anchor
should have the smallest volume because it is enclosed by all an-
cestors. Therefore, for candidate anchors with the same taxonomic
probability, we perform a second ranking according to the volume
of their boxes, so that finer-grained anchors can be placed higher.

social science —— politics
—— demography

sociology
—— realpolitik ~—— geopolitics

AN\
B VAN

(b) Box Embeddings (c) Reconstructed Taxonomy

—— sociometry

AN\
S vd N

(a) Existing Taxonomy

Figure 4: Case study of reconstructing the existing taxonomy
from the learned box embeddings. A sub-tree rooted in “so-
cial science” from the Science dataset is shown.

5 EXPERIMENTS
5.1 Setup

Datasets. Following [42], to evaluate how BoxTaxo works in tax-
onomy expansion, we use two public datasets from SemEval-16
taxonomy construction tasks. The taxonomy entities are scientific
concepts in the environment field and in general science, respec-
tively. The human-curated hierarchies represent the category of
each entity. We use the same data splitting protocol as [42], i.e., 20%
of the leaf nodes are randomly sampled as the test set, while the

?Here we use all entities in the existing taxonomy as the candidate anchor set.
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remaining are in the training set. Definitions for each entity are
also provided in both datasets. We simply combine entity names
and their definitions as input to the model.

Experimental Settings. We compare BoxTaxo with five vector
based baselines for taxonomy expansion. We introduce the details
of baselines in Appendix. A.1. We use three metrics, Accuracy
(ACC), Mean reciprocal rank (MRR) and Wu & Palmer similarity
(Wu&P) [41], to measure the performance of BoxTaxo compared
to baselines. We present the details and formalization of all metrics
in Appendix. A.2. We also list the key parameters used in BoxTaxo
for reproducibility in Appendix. A.3.

5.2 Can the Learned Box Embeddings
Reconstruct the Existing Taxonomy?

One motivation for this paper is that box embeddings are better
at representing the hierarchies in taxonomy. To verify this, we
reconstruct the existing (training) taxonomy, i.e., predict the child-
parent relations, from the learned box embeddings. Overall, the
hierarchies are well preserved by box embeddings: we achieve 82.2%
on Environment dataset and 60.9% on Science dataset in terms of
reconstruction accuracy. To intuitively show how the learned boxes
capture the taxonomic hierarchies, we sample a sub-tree rooted
in “social science” from the Science dataset, and show the learned
boxes in Fig. 4. We notice the two branches are fully separated and
every child is enclosed by their parents, indicating the hierarchies
are fully captured. With such hierarchy-aware boxes, we then study
how taxonomy expansion benefits from them in the following.

Table 1: Results of BoxTaxo on taxonomy expansion com-
pared to vector based methods. We use the same experimen-
tal setting as [42] and the baseline results are from [42]. We
report the averages of ten runs of BoxTaxo. The best results
are in boldface, and the second-best results are underlined.
The “N/A” indicates that MRR is not applicable to TAXI.

Dataset Environment Science

Metric ACC MRR Wu&P ACC MRR Wu&P

TAXI 16.7 N/A 44.7 13.0 N/A 32.9
HypeNet 16.7  23.7 55.8 154 226 50.7
Bert+MLP 11.1  21.5 47.9 11.5 157 43.6

TaxoExpan 11.1 323 54.8 27.8 4438 57.6
STEAM 36.1 469 69.6 36.5 48.3 68.2

BoxTaxo 38.1 47.1 75.4 31.8 453 64.7

5.3 Are Box Embeddings Better than Vector
Embeddings for Taxonomy Expansion?

We compare BoxTaxo with vector based embeddings baselines
for taxonomy expansion and report the results in Table. 1. We
include two lines of baselines: 1) Because BoxTaxo only models
the simple (child, parent) pairs during training, we first compare
BoxTaxo with vector based counterparts that also focus on such
pairs, i.e., TAXI, HypeNet and Bert+MLP. BoxTaxo outperforms
them with significant gains, indicating the effectiveness of box
embeddings against vectors for taxonomy expansion. 2) We also
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compare BoxTaxo with vector based baselines that use advanced
structural summaries, including local graphs (TaxoExpan) and paths
(STEAM). Despite not explicitly modeling such structural signals,
BoxTaxo still achieves a clear improvement over TaxoExpan and
shows comparable results with STEAM. We are encouraged by these
results as it shows the potential to facilitate box embeddings with
advanced structures to further boost taxonomy expansion. Interest-
ingly, we notice that compared to baselines, BoxTaxo shows better
accuracy on the Environment dataset than on the Science dataset.
Actually, the edge-to-node ratio is 1 on the Environment dataset
and 1.05 on the Science dataset, indicating that some nodes in the
Science dataset have multiple parents. We find these “multi-parent”
nodes may bring all nodes that are associated with their parents
closer in the box embeddings space, causing incorrect predictions.
We did not identify an adequate solution to address this issue and
thus leave it as a topic for future investigation.

5.4 Ablation Study: Does BoxTaxo Benefit from
the Joint Loss of Geometry and Probability?

BoxTaxo optimizes box embeddings from both geometric and prob-
abilistic views. To examine the benefits of this joint objective, we
perform an ablation study that learns box embeddings only with
each single view. The results are reported in Table. 2. We note that
learning boxes with the joint view shows clear superiority in tax-
onomy expansion. These results echo our discussion in Sec. 4.3
that the joint view objective function can ensure that gradients for
optimization are always available, thereby enhancing box learning.

Table 2: Ablation study of the joint view optimization, i.e.,
Eq. (11). “No Geo” means learning box embeddings only with
the probabilistic loss, while “No Prob” is only with the geo-
metric loss. “Joint” stands for optimizing with both losses.
We fix the box dimensions as 12 for both datasets.

Dataset Environment Science

Metric ACC MRR Wu&P ACC MRR Wu&P

No Geo 12.8 30.6 58.4 7.7 21.5 50.4
NoProb 158 258 59.2 30.1  41.1 64.4

Joint 353 44.8 74.2 31.8 453 64.7

5.5 Can Box Embeddings Capture Implicit
Hierarchical Relations in Taxonomy?

Beyond the basic (child, parent) pairs, a taxonomy also includes
implicit hierarchical structures. We study two common implicit
relations: transitivity and overlap. Transitivity refers to “the par-
ent of a child’s parent is also this child’s parent (ancestor)”, e.g.,
in “natural science—physics—mechanics”, we know that “natural
science—mechanics” also holds. Overlap refers to “two parents
share common children”, e.g., “morphology” is an entity both in “bi-
ology” and “grammar” fields. We sample a sub-structure for each of
these two implicit relations from Sciecne dataset and visualize their
corresponding learned boxes in Fig. 5. We note that for transitivity,
a child’s box is always enclosed by the boxes of all its ancestors.
For overlap, the common child’s box is enclosed in the intersection
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natural science

. X = morphology
— physics mechanics .
—— fluid mechanics —— hydrostatics biology grammar
Taxonomy Box Embeddings Taxonomy Box Embeddings
(a) Transitivity (b) Overlap

Figure 5: Two implicit hierarchical relations in taxonomy
(sampled from Science dataset) and how the learned box
embeddings preserve them. (a) Transitivity, (b) Overlap.

area of its two parents. Both indicate the box embeddings learned
by BoxTaxo well preserve the implicit hierarchical relations. The
capability of representing such implicit relations goes along with
the advantage of boxes over vectors in taxonomy representation.

Child-Parent (Science) Non Child-Parent (Science)

1.0 1.0
astronomy (child) astronomy

0.8 physics (parent) 0.8 I economics
5 \
o 0. .

2 0.6 0.6 ] .
30.4 0.4 - - =
[ “ami E EEE L]

0.2 0.2 o [

0.0 2 4 6 8 10 12 0.0 2 4 6 8 10 12

1.0 Child-Parent (Environment) 1.0 Non Child-Parent (Environment)

- -

0.8 0.8 | ;
506 06 - - =
E=] - . -
Soa 0.4 - =

0.2 renewable resources (child) | 0.2 renewable resources

natural resources (parent) n protected species

0.0 0.0

2 4 6 8 10 12 2 4 6 8 10 12
Dimension Dimension

Figure 6: Comparison of two boxes in each of the 12 dimen-
sions. A (blue, ) is a child-parent pair in taxonomy,
while a (blue, red) is not. Overlap means two boxes intersect
in a dimension. Upper row: Science; lower row: Environment.

5.6 How BoxTaxo Works in High-Dimensional
Space?

Child-Parent Learning in High-Dimensional Space. We then
analyze whether the learned boxes can still preserve the taxonomic
hierarchies in higher dimensions. A box is a hyperrectangle in
high-dimensional space, where its edge in each dimension is a line
segment. We plot the edges of a box pair in each dimension to
study their overlap in Fig. 6. Specifically, we sample a positive and
a negative child-parent pair for both datasets. We observe that,
for the positive pairs of the two datasets, the edge of the child
box is enclosed by the edge of the parent box in each dimension,
indicating the child-parent relations are well captured. While for
the negative pairs, we note the edges of the two boxes are separated
in Environment dataset, but still overlap in some dimensions in
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Science dataset. This overlap indicates that the negative pairs are
not completely disjoint as we expect, which might explain why
BoxTaxo performs worse in Science than in Environment dataset.

Environment Science
0.8 0.7
0.6
0.6
] 305
2 2
o o
> >
o 0.4 o 0.4
g 803
= 0.2 =
Best: 4D space — ACC 0.2 Best: 6D space — ACC
MRR MRR
0.0 il 0.1 — Wu&P
2 4 6 8 12 16 32 64 128 2 4 8 12 16 32 64 128
Dimension Dimension

Figure 7: Three metrics ACC, MRR and Wu&P with nine dif-
ferent dimensions of box space on both datasets. Solid curves
indicate mean, and ribbons show the standard derivation.
The red vertical lines indicate the dimensional space where
BoxTaxo works best. Left: Environment; Right: Science.

Taxonomy Expansion in High-Dimensional Spaces. To un-
derstand how boxes learned in different dimensions affect taxon-
omy expansion in BoxTaxo, we vary the box dimensions and report
the corresponding taxonomy expansion metrics in Fig. 7. For both
datasets, as the dimension increases, the metrics first get better and
then slowly decrease. We speculate that BoxTaxo needs enough
space to hold the entity, so the dimensions can not be too small.
However, an excessively large dimension can lead to optimization
difficulties and thus downgrade taxonomy expansion.

5.7 Case Study: When BoxTaxo Makes Mistakes?

To intuitively understand the predictions made by BoxTaxo and
analyze when BoxTaxo fails, we sample two correct and two wrong
predictions from the Science dataset in Table. 3. For correct cases,
as we expect, the child’s box is tightly enclosed by its true parent.
For query “neuroanatomy”, we speculate that our top-2 predictions,
“neuroscience” and “neurobiology”, lean more towards the semantics
of the "neuro" part. However, we believe they are also reasonable
anchors, though not listed in the dataset. This suggests the poten-
tial of BoxTaxo to discover multiple parents for cross-category
entities. However, for query “marine archeology”, we speculate it
shares some semantic similarity with the wrongly predicted parent
“zoology”. Thus they are encoded closely in the box space. Yet, we
note the true anchor “archeology” is the second prediction, we
think BoxTaxo also can be used in applications where the goal is
to retrieve several anchor candidates, e.g., the search engines.

5.8 How Hypermeters Affect BoxTaxo?

Finally, we study the impacts of hyperparameter §, € and ¢ on taxon-
omy expansion. We vary each hyperparameter with nine different
values and report their corresponding metrics in Fig. 8. We notice
BoxTaxo is sensitive to the margins of geometric loss functions
d and €, i.e., they can not be too large. But a larger ¢ generally
increases the performance of BoxTaxo, especially on the Science
dataset, demonstrating the necessity of volume regularization.
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Table 3: Case studies of BoxTaxo on Science dataset. Entities

and their boxes are in a one-to-one correspondence by color.

Query and Anchor Top3 Prediction Box (2-Dimensional)
Q: linear algebra W
A: anthropology,
pure mathematics a2
Q: celestial mechanics x4 o
A: physics,
medicine

Q: neuroanatomy neuroscience, X

A: neurobiology,
mechanics
Q: marine archeology  zoology, X
A : I
geology
Environment-6 08 Environment-& Environment-¢
. 0.8
Boel e
3 0.6 0.6 0.6
o
> 4
Co.4 o 0.4
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s mer_ | 0-2 MRR | 0.2 MRR
0.2 — wesp | —— WU&P — Wu&P
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Figure 8: Three metrics ACC, MRR and Wu&P with different
values of hyperparameter §, ¢ and ¢ on both datasets. Solid
curves indicate mean, and ribbons show the standard deriva-
tion. Upper row: Environment; Lower row: Science.

6 CONCLUSION

In this paper, we propose BoxTaxo, a novel self-supervised model
for expanding an existing taxonomy with new entities. Since the tax-
onomic hierarchies are naturally asymmetrical relations, BoxTaxo
learns box embeddings, instead of the traditional vector embed-
dings, to represent and expand a taxonomy. We propose to optimize
the box embeddings from both geometric and probabilistic views
to capture the taxonomic hierarchies. Extensive experiments show
BoxTaxo is able to well preserve the hierarchical structures in tax-
onomy and outperforms the vector based baselines clearly. We also
realize that incorporating lexical features, as demonstrated in [42],
and structural signals such as paths and local graphs, has great po-
tential to further enhance box embeddings learning and taxonomy
expansion, which we leave to future works.
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A APPENDIX

A.1 Baselines

The scope of this work is to study whether box embeddings are
more appropriate than vector embeddings for representing and
expanding taxonomic hierarchies. Therefore, we mainly choose
the vector based models. We also include two baselines that use
advanced structural signals. We hope to learn whether BoxTaxo
could achieve comparable results compared to structure-induced

vectors, even without explicitly modeling those complex structures.

The baselines we choose are:

e TAXI [29]. A hypernym detection based method. It constructs
the taxonomy by determining hypernym between entity pairs
on the basis of lexical patterns.

e HypeNet [34]. A vector based method using LSTM to encode
dependency paths for entity pairs embeddings.

e Bert+MLP [42]. A vector based method using a pre-trained
language model (Bert [8]) to generate entity embeddings.

e TaxoExpan [33]. A vector based method using graph neural
networks (GNN5s) to encode local ego-graphs in taxonomy to
enhance entity representation.

e STEAM [42] A vector based method using paths sampled from
taxonomy to improve anchor entity representation.

A.2 Evaluation Metrics

Now we introduce the metrics used in this paper for evaluating the
performance of taxonomy expansion. For a new query, we can view
the output of BoxTaxo and baselines as a ranking of all candidate
entities in the existing taxonomy, according to their suitability to
be anchors. Denote by g; the true anchor for the i-th query, and
denote by d; the top-1 predicted anchor. We use three metrics to
compare the performance of BoxTaxo with the baseline:
Accuracy (ACC): the precision of predicted anchors.

1 N
ACC= ; I(a; = a).

2476

Jiang et al.

Mean reciprocal rank (MRR): measures the position of the
true anchor in the ranked output
N
1 1
MRR=— ) —— .
N ; rank(a;)
Wu & Palmer similarity (Wu&P) [41]: a similarity measure
that captures semantics in taxonomy

N ~
1 1 2 x depth(LCA(dj, a;))
Wu&P = — :
v N ; depth(d;) + depth(a;)

The LCA(., ) stands for the least common ancestor of two inputs,
and the depth(-) is the depth of an anchor in taxonomy. N is the
number of test queries for all metrics.

A.3 Reproducibility

The parameters of BoxTaxo are as follows. We use one hidden
layer in box projection with dimension 64. The dimension of box
embeddings is 4 for the Environment dataset and 12 for the Science
dataset, respectively. For margins in loss functions, we set § = 0.05,

€ = —0.03, and ¢ = 0.03. For the weights of each single loss, we
seta =1, # = 0.1 and y = 1. For the hyper-parameters in training,

we use AdamW [19] to optimize our model with the learning rate
2e-5 for Bert and 1e-3 for the box projection MLP layers. The ep-
silon of AdamW is set to 1e-8. We train BoxTaxo on both datasets
100 epochs with batch size 100. The training hyperparameters are
default values to ensure model convergence. All experiments are
done on a server with Nvidia A100 GPUs.

A.4 Additional Experimental Results

In Sec. 5.3, we follow the data splitting protocol used in [42] to
ensure a fair comparison. In this section, we also present tax-
onomy expansion results of BoxTaxo with a new dataset split:
train/validation/test = 7/1/2. Under this new setting, BoxTaxo has
ACC/MRR/Wu&P/=36.2/47.3/73.0 on Environment dataset, while on
Science dataset, we have ACC/MRR/Wu&P/=29.2/40.1/62.2, which
are still comparable to baselines. Note that compared to Table. 1,
the results have decreased due to a reduced size of the training set.
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