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ABSTRACT 
Taxonomies, which organize knowledge hierarchically, support 
various practical web applications such as product navigation in 
online shopping and user profle tagging on social platforms. Given 
the continued and rapid emergence of new entities, maintaining a 
comprehensive taxonomy in a timely manner through human anno-
tation is prohibitively expensive. Therefore, expanding a taxonomy 
automatically with new entities is essential. Most existing methods 
for expanding taxonomies encode entities into vector embeddings 
(i.e., single points). However, we argue that vectors are insufcient 
to model the “is-a” hierarchy in taxonomy (asymmetrical relation), 
because two points can only represent pairwise similarity (sym-
metrical relation). To this end, we propose to project taxonomy 
entities into boxes (i.e., hyperrectangles). Two boxes can be "con-
tained", "disjoint" and "intersecting", thus naturally representing an 
asymmetrical taxonomic hierarchy. Upon box embeddings, we pro-
pose a novel model BoxTaxo for taxonomy expansion. The core of 
BoxTaxo is to learn boxes for entities to capture their child-parent 
hierarchies. To achieve this, BoxTaxo optimizes the box embed-
dings from a joint view of geometry and probability. BoxTaxo also 
ofers an easy and natural way for inference: examine whether the 
box of a given new entity is fully enclosed inside the box of a candi-
date parent from the existing taxonomy. Extensive experiments on 
two benchmarks demonstrate the efectiveness of BoxTaxo com-
pared to vector based models. 
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Figure 1: Comparison of taxonomy expansion using vector 
embeddings and box embeddings. (a) An example of tax-
onomy expansion. A new entity “Difusion Model” is to be 
attached to its appropriate category “Computer Vision”. (b) 
Vector (point) embeddings of taxonomy. Two points can only 
represent similarity (distance). (c) Box embeddings of taxon-
omy. Two boxes can represent the taxonomic “is-a” relation. 

1 INTRODUCTION 
A taxonomy is a schema of hierarchical classifcation, which is 
used to organize conceptual entities into a tree-like structure ac-
cording to their semantics. Taxonomies have been widely adopted 
to support various web services because of the efectiveness of 
indexing and organizing knowledge. For example, Amazon has a 
product taxonomy to facilitate online shopping [22], and Pinterest 
uses taxonomy to enhance content understanding and recommen-
dation [11, 21]. Many taxonomies were initially curated by domain 
experts, however, due to the constant and rapid growth of new con-
cepts, automatically expanding existing taxonomies with these new 
entities is necessary to avoid their obsolescence. Fig. 1 (a) shows an 
example of taxonomy expansion: a new research direction “Difu-
sion Model” is appended to its category “Computer Vision”, forming 
a child-parent hierarchy. For consistency with existing literature, 
we follow [33, 42] and refer to a child as query, and a parent as 
anchor. The terms are interchangeable throughout this paper. 

Existing approaches for taxonomy expansion focus on captur-
ing the child-parent hierarchies. Early eforts learn the hierarchies 
by exploiting the semantic relatedness between two entities. The 
semantics can be represented by lexical patterns [12, 35] or later 

2467

https://doi.org/10.1145/3543507.3583310
https://doi.org/10.1145/3543507.3583310
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543507.3583310
mailto:yzsun@cs.ucla.edu
mailto:qiyueyao@g.ucla.edu
mailto:wqfcr@meta.com
mailto:songjiang@cs.ucla.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583310&domain=pdf&date_stamp=2023-04-30


WWW ’23, April 30–May 04, 2023, Austin, TX, USA Jiang et al. 

the more powerful distributional word embeddings [3, 9, 26]. Be-
yond semantics, recent works have further explicitly modeled the 
tree structure of taxonomy. They use various structural summaries, 
including paths [13, 18, 42] and local graphs [22, 33, 39], as addi-
tional signals to enhance the learning of child-parent hierarchies. 
Representing hierarchies is more in line with the geometric proper-
ties of hyperbolic space [10, 27]. Several works [2, 20] model the 
child-parent relations by learning hyperbolic representations. 

The core methodology of most aforementioned approaches is 
to learn vector embeddings for entities in taxonomy. The child-
parent relation is then inferred by computing the relatedness of a 
pair of entities upon their vector embeddings. However, the vec-
tor embeddings, i.e., points in geometric space, can only represent 
the pairwise similarity, which is a symmetrical relation (Similarity 
is usually measured by distance – either Euclidean or geodesic 1 

– of two points). The taxonomic child-parent hierarchies, on the 
contrary, are naturally asymmetrical. Therefore, the vector based 
embeddings are not sufcient to represent the hierarchies in taxon-
omy, limiting their efectiveness in taxonomy expansion. 

To overcome this insufciency, instead of vectors, we propose 
to use boxes to represent the entities in the taxonomy. A box is 
an axis-aligned hyperrectangle in geometric space, which can be 
characterized by two points. Unlike a single point, the beneft of a 
box is that box has a geometric region, which enables it to repre-
sent the more complicated asymmetrical pairwise relations such 
as “enclose”, “disjoint” and “intersect”. Fig. 1 (b) and Fig. 1 (c) show 
this superiority of box embeddings over vector embeddings. Specif-
ically, a child box is entirely enclosed inside its parent box (e.g., 
“Graph Neural Network” and “Machine learning”). Two entities 
are fully separated if they are not in a child-parent hierarchy (e.g., 
“Programming Language” and “Machine learning”). The boxes of 
two entities overlap if they share common children in taxonomy 
(e.g., “Computer Vision” and “Machine learning”). 

Despite the natural and intuitive representation of taxonomic 
hierarchies, the box embeddings for taxonomy expansion still face 
three main challenges. First, limited taxonomy annotation is avail-
able for new entities, making it difcult to learn accurate boxes 
and infer their positions in the taxonomy in a supervised manner. 
Second, most existing box embeddings approaches optimize boxes 
by capturing probabilistic properties, which have proven difcult to 
train in practice [16, 38]. The reason is box pairs that are supposed 
to “enclose” or “intersect”, but are wrongly disjoint during training, 
will never be corrected because the gradients from the probabilistic 
loss function are zero in this case. [7, 16] mitigate this issue by 
representing the edges of boxes as probabilistic density distribu-
tions, i.e., making the box “soft”. However, such “soft” boxes lose 
the intuitive interpretability of normal “hard” boxes. Third, difer-
ent from reasoning in the existing structure, taxonomy expansion 
requires learning boxes for new entities. Therefore, a desired model 
should be generalizable, which is able to generate box embeddings 
compatible with existing taxonomies for new entities. 

In this paper, we propose BoxTaxo, a self-supervised model that 
expands taxonomy with box embeddings. With self-supervised 
learning, our model does not require annotated labels, but creates 
1We note there are studies on asymmetric geodesic distance in certain spaces [24, 25], 
but most current non-Euclidean embeddings are in common spaces, such as hyperbolic 
space. Thus, we still focus on symmetric geodesic distances in common spaces. 

training samples from the existing taxonomy. Specifcally, each 
⟨child, parent⟩ pair in the existing taxonomy is treated as a positive 
sample. The entities that are not the ancestors of each child are 
collected as negative samples. To optimize the box embeddings, we 
propose a joint loss function that guides the boxes to capture the 
taxonomic hierarchies from both the geometric view and the prob-
abilistic view. The joint view loss function can avoid the gradient 
missing issue mentioned above and still ensure the boxes are intu-
itive and interpretable to humans. The box embeddings are encoded 
via a pre-trained language model to ensure the generalizability to 
new entities. At inference time, box embeddings ofer an easy and 
natural way to fnd an appropriate anchor for a query, by checking 
whether the box of a candidate parent fully contains the box of the 
query. We implement this from the probabilistic view in BoxTaxo. 

Our main contributions are summarized as follows: 1) We pro-
pose to use box embeddings for taxonomy expansion, which can 
accurately represent the hierarchies in taxonomy. 2) We develop a 
self-supervised model that optimizes the box embeddings through 
joint learning of geometry and probability. 3) We conduct an exten-
sive set of experiments on two real-world taxonomies. Experimental 
results demonstrate the efectiveness of BoxTaxo compared to vec-
tor based representations. We also provide various ablation studies 
and analyses to understand how BoxTaxo works. 

Scope and Limitation. This work is an early attempt to use 
box embeddings for representing and expanding an existing taxon-
omy. Our main focus is to study whether box embeddings are more 
suitable than single vectors for this task. We would like to keep the 
model as simple as we can in this step. Therefore we only model the 
⟨child, parent⟩ pairs and do not utilize the complicated structural 
signals, such as paths [13, 18, 42] and local graphs [22, 33, 39], or 
check more contexts to enhance the anchor representation [40, 44]. 
We are aware that such advanced structures have the potential to 
further boost the box embeddings learning and thus improve the 
taxonomy expansion task. However, how to facilitate box embed-
dings with structure signals is out of the scope of this paper. We 
hope this work can inspire future studies in these directions. 

2 RELATED WORK 
2.1 Taxonomy Expansion 
Expanding existing incomplete taxonomies with new entities has 
been studied from several perspectives. Early eforts to extend a tax-
onomy are by detecting the hypernym relation of a ⟨query, anchor⟩ 
pair. They exploit the semantic relatedness between the query and 
anchor concepts, either by lexical patterns [12, 35] or distribu-
tional word representations [3, 9, 26]. However, these approaches 
usually fail to sufciently explore the taxonomic hierarchies that 
encode structural semantics and knowledge. Recent works attempt 
to capture these hierarchies with the help of various structural 
summaries. A commonly used structural summary is path, a list of 
nodes connected by taxonomic edges. One state-of-the-art of using 
path is [42]. They frst sample a set of top-down paths from the 
taxonomy. When predicting the true parent for a query, beyond just 
a candidate anchor, the classifer also has access to the semantic fea-
tures of its structural contexts along the paths. Paths in taxonomy 
are further enhanced by a dynamic margin loss that compares the 
similarity between two paths in [18], and by language models that 
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formalize a taxonomy path as a pseudo linguistic sentence in [13]. 
Because an entity could have multiple parents or children, a set of 
sampled paths may not cover all the surroundings of an entity node 
in taxonomy. Therefore, [33] uses local ego-graph, which contains 
an entity with all its parents and children, to capture the local struc-
tures. They use graph neural networks[14, 36] to encode the local 
ego graph to boost the representation of the central entity. [39] 
extends the local ego-graphs to the root node and forms sub-trees, 
preserving more structural contexts. Recent works have begun to 
view a taxonomy from richer perspectives, including capturing 
heterogeneous semantics and relations [21, 40], representing tax-
onomy in non-euclidean spaces [2, 10, 20, 27], examining candidate 
parents and candidate children simultaneously for a query [44], 
and generating new concepts to fulfll the taxonomy [43]. 

However, almost all of these works represent entity nodes as 
high-dimensional vectors (i.e., points), which are only able to mea-
sure the symmetrical similarity (i.e., distance) between the two 
entities. Yet the hierarchies in taxonomy are inherently asymmetri-
cal, such as the child-parent relation. Vector embeddings are not 
sufcient to diferentiate the parent and child nodes in a pair, which 
limits their abilities to represent and expand a taxonomy. Our study 
instead learns box embeddings (i.e., high-dimensional rectangles) 
for entities, which naturally represent the asymmetrical hierarchi-
cal relations and is more appropriate for taxonomy expansion. 

2.2 Representation Learning with Box 
Diferent from the vector based embedding approaches, box em-
beddings represent objects or entities using geometric regions. It 
ofers a more natural and intuitive way to model asymmetrical 
relations, such as hierarchies [15, 30] and transitive closure in di-
rected graphs [15]. Box embeddings are initially established from 
the probabilistic perspective in [38], in which the box embeddings 
are learned by optimizing the conditional probability of two enti-
ties that form a hypernym. Despite the progress, optimizing the 
conditional probability upon the exact box edges has been shown 
to easily lead to training failure. [16] discloses the reason is that 
disjointed box pairs are difcult to optimize due to the lack of gra-
dients. Therefore, the exact “hard” box edges are changed to “soft” 
by representing them with Gaussian density functions in [16] and 
Gumbel distributions in [7]. These “soft” boxes ofer gradients for 
all training samples, enabling easier training, although are not in-
tuitively interpretable to humans. Beyond the probabilistic view, 
box embeddings are also learned by capturing the geometric prop-
erties. [32] defnes a geodesic distance between a vector and a box, 
and optimizes the box generator with a loss function designed upon 
this distance. Diferent from these works, we propose to learn the 
box embeddings from a joint view of geometry and probability. The 
core advantage of this joint view is that it provides an alternative 
approach to address the gradients missing problem, but still pre-
serves the interpretability of exact “hard” boxes. We also show the 
joint view outperforms any single one empirically in Sec. 5.4. 

Box embeddings have a wide range of applications. [16] detects 
hypernym upon the entailment of boxes; [4] uses the intersection 
of boxes to measure the uncertainty in knowledge graphs; [28] 
models both entity mentions and types as boxes to allow probabilis-
tic fne-grained entity typing. Box embeddings have also shown 

success in word representation [6], knowledge base completion [1] 
and ranking [23]. In terms of application, to the best of our knowl-
edge, our work is a very early attempt to expand taxonomy with 
geometrically-inspired embeddings. Diferent from many other 
tasks, one challenge of taxonomy expansion is to learn box embed-
dings for new entities that are compatible with existing taxonomy. 

3 PRELIMINARY 
3.1 Box Embeddings 

Defnition 3.1. (Box Embeddings [7, 16, 38]) A box embedding is 
a pair of vector embeddings that form a valid axes-aligned hyper-
rectangle in �-dimensional space. 

minimum
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center
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bx
by
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bx
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Figure 2: Illustration of box embeddings. (a) Characterization 
of a box. Note the ofset is a 2-Dimensional vector in this 
example. (b) Enclosure relation: one box is fully contained 
within the other. (c) Disjoint relation: one box is fully outside 
the other. (d) Intersect relation: two boxes share overlap. 

Box Characterization. A box (hyperrectangle) can be described 
by two vectors (points). Following [32], we use the center point 
and a positive ofset vector to represent a box (Fig. 2 (a)). Denote 
by � = (�, �) a �-dimensional box, where � ∈ R� is the center and 
� ∈ R� is the ofset that is positive at all coordinates, we can then 
derive the minimum corner point as � = � � � and maximum corner 
point as � = � + � , where � ∈ R� and � ∈ R� . Note that a minimum 
and maximum corners pair can also defne a box [28]. 

Volume. The volume of a box is the product of its segment in 
each dimension, formalized as ��� (�) = 

Î�
�=1 (� � � �� ), where � is 

the indicator of dimension. If the entire box space’s volume is 1, 
then the volume of a box can be modeled as its marginal probability. 

Pairwise Relations. We elaborate on three pairwise relations 
between two boxes. Denote by ⟨�� , �� ⟩ a pair of boxes, we have: 
• Enclose (Fig. 2 (b)): a box �� is completely contained inside the 
other box �� , denoted by, �� ∩ �� = �� . 

• Disjoint (Fig. 2 (c)): a box �� is completely outside the other box 
�� , denoted by �� ∩ �� = ∅. 

• Intersection (Fig. 2 (d)): a box �� shares some overlap with the 
other box �� , denoted by �� ∩ �� ≠ ∅. 

The ∩ operator will return the intersection box �� of the two 
boxes ⟨�� , �� ⟩, denoted by �� = �� ∩ �� . Note that the ∩ oper-
ator is performed on the minimum and maximum corners, i.e., 
∩ : �� = ��� (�� , �� ), �� = ���(�� , �� ). The ∩ operator also en-
ables the calculation of conditional probability between two boxes. 

� (�� ,�� ) � �� (�� ∩�� )Formally, � (�� |�� ) = 
� (�� ) = 

� �� (�� ) . 

3.2 Taxonomy Expansion 
Defnition 3.2. (Taxonomy [33, 42]) A taxonomy T = (E, H) is 

a tree structure, where each node � ∈ E is an conceptual entity, and 
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each edge ℎ ∈ H represents the “is-a” relation between the two 
nodes connected by it. 

Taxonomy is usually incomplete, and new entities are constantly 
created, therefore, how to attach the new entities to an existing 
taxonomy is essential and the focus of this study. We formally 
defne the taxonomy expansion problem as: 

Defnition 3.3. (Taxonomy Expansion [33, 42]) Given an existing 
taxonomy T 0 = (E0 , H0) and a new conceptual entity set N , 

′taxonomy expansion aims to create a new taxonomy T = (E′ , H′), 
′where E′ = E0 ∪N and H = H0 ∪R. R is the set of newly created 

edges between E0 and N . 

4 PROPOSED METHOD: BOXTAXO 
4.1 Overview 
The core idea of BoxTaxo is to learn box embeddings for entities 
in taxonomy. Box embeddings are more natural and powerful in 
representing the asymmetrical taxonomic hierarchies, and thus 
can more accurately expand the taxonomy with new entities. As 
illustrated in Fig. 3, BoxTaxo frst projects entities to box embed-
dings from natural language via the pre-trained language model 
(Sec. 4.2). During training, BoxTaxo optimizes the boxes from both 
the geometric view and the probabilistic view to precisely repre-
sent the hierarchies (Sec. 4.3). During inference, BoxTaxo encodes 
new query entities to boxes and fnds the appropriate anchors in a 
probabilistic manner (Sec. 4.4). 
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Figure 3: The overview of BoxTaxo. The entities in taxonomy 
are frst projected to boxes based on Bert. (a) Training: the box 
embeddings are optimized from a joint view of geometry and 
probability, in order to accurately represent the taxonomic 
hierarchies. (b) Inference: check whether a query’s box is 
enclosed by the candidate anchor’s box in a probabilistic way. 
Note that the boxes shown in this fgure are 2D, but they can 
be in higher dimension spaces, i.e., hyperrectangles. 

4.2 Box Projection 
The nodes in taxonomy are conceptual entities. To represent each 
entity as a box in the latent space, BoxTaxo uses a two-stage pro-
jection process. In specifc, an entity is frst encoded as numeric 

embeddings from natural language via an entity encoder, and then 
converted into a rectangular lattice by a box projector. We now 
introduce these two operators in detail. 

Entity Encoder. The pre-trained language models (PTMs) have 
shown promising achievements in many natural language tasks [31]. 
Encouraged by their success, we use PTMs to encode the entities 
into embeddings. Without loss of generality, we use Bert [8] as the 
entity encoder in this paper. Formally, for the �-th entity �� , Bert 
converts it into �-dimensional representation �� ∈ R� : 

�� = Bert(�� ) . (1) 

The entities in taxonomy are usually curated and thus could have 
defnition sentences. Therefore, for such a defnition sentence �� , 
we concatenate it with its entity �� and build the input of Bert as 
“[CLS]�� , �� [SEP]”. We then use the output embeddings of “[CLS]” 
in the fnal Bert layer as the representation �� of entity �� . The 
representation �� encodes the contextual semantics of the entity. 
Please note other pre-trained language models, such as Roberta [17] 
and ELECTRA [5], are fexible to be replaced as the encoder. 

Box Projector. We then project the entity representation �� into 
box embeddings. A box can be defned by two points (i.e., vectors). 
We therefore use the center point �� ∈ R� and the ofset vector 

∈ R� �� ∈ R� to represent a box �� , i.e., �� = (�� , �� ), where � is 
the dimension of box embeddings. Note that �� and �� are just two 
vector embeddings. To represent an entity �� as box embeddings 
�� , we project the entity representation �� into the center �� and 
ofset �� , separately. Specifcally, because this projection is only a 
dimension transformation between two embeddings, we simply use 
two multilayer perceptrons (MLPs) as the projectors, formalized as: 

�� = MLPc (�� ), �� = MLPo (�� ), (2) 

where MLPc and MLPo are the projection layers for center �� and 
ofset �� , respectively. To ensure the learned box �� is a valid rec-
tangle, we further apply an exponential operator to the ofset �� , so 
that every dimension of �� is guaranteed to be larger than 0. 

4.3 Box Training 
We now seek to optimize the box embeddings such that they can ac-
curately represent the taxonomic hierarchies, i.e., the child-parent 
relations. Because each ⟨child, parent⟩ pair in the taxonomy is a 
natural “label”, we propose to fne-tune the entity encoder and box 
projector in a self-supervised manner. Specifcally, we utilize all the 
immediate ⟨child, parent⟩ pairs in the taxonomy as positive samples. 
Negative samples have been demonstrated to be crucial in optimiz-
ing box embeddings [15]. Therefore, for each child node in such a 
pair, we collect its “siblings”, “uncles” and “cousins” as the negative 
samples against the child-parent relations. Compared to vectors, 
box embeddings are more powerful in representing child-parent 
relations. We show how boxes achieve this advantage from two 
views: the geometric view and the probabilistic view. Accordingly, 
we design two training objective functions, the geometric loss and 
the probabilistic loss, to jointly optimize the box embeddings. 

Geometric View. We frst show how the child-parent relation 
can be represented with box embeddings in geometric language. A 
box with �-dimensional center and ofset vectors is a �-dimensional 
hyperrectangle in Euclidean space. A ⟨child, parent⟩ pair can be 
semantically interpreted as “child is-a parent” or “child is-one-of 
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parent” [12]. Therefore, we let the child hyperrectangle be fully 
enclosed by the parent hyperrectangle, indicating the child entity 
is one kind of parent. Formally, for a �-dimensional child box �� = 
(�� , �� ), since �� is regularized to be positive, we denote by �� = 
�� � �� and �� = �� + �� the minimum and maximum corner points 
of the hyperrectangle, respectively. Similarity, for parent box �� = 
(�� , �� ), denote by �� = �� � �� and �� = �� + �� the minimum and 
maximum corner points. Then the “enclose” relation has: 

� � ��
� ≥ �� � ≤ � � ∀� ∈ {1, 2, ..., �}, (3)� , � , 

where � denotes the �-th dimension of the embeddings. We derive 
a loss function �+ to ensure boxes satisfy this geometric enclose � 
relation (Eq. (3)) for pair ⟨�� , �� ⟩, formalized as: 

1 � � h∑ ∑ i 
�� 
+ = ��� (0, ��� � ��

� + �) + ��� (0, ��� � ��
� + �) , (4)

� 
�=1 �=1 

where � is a hyper-parameter across all � dimensions that controls 
the geometric margin between the child and parent boxes. 

Oppositely, for a negative pair ⟨child, parent′⟩, denoted by 
⟨�� , �� ′ ⟩, the child hyperrectangle should be disjoint with the neg-
ative parent hyperrectangle. We implement this “disjoint” rela-
tionship by enforcing the intersection between the child box and 
the negative parent box to be empty. Formally, for such a box 
pair⟨�� , �� ′ ⟩, their intersection �� = �� ∩ �� ′ is formalized as: 

�� = ��� (�� , �� ′ ), �� = ���(�� , �� ′ ). (5) 

An empty intersection, i.e., �� = ∅, essentially means every dimen-
sion of the intersection �� is less than or equal to 0. Based on this 
property, we derive a loss function �� to minimize the ofset �� of� 
the intersection, formalized as: ∑ 

�� 
� = 

1 � 
(��� � �)2 , (6)

� 
�=1 

where � is a hyper-parameter to adjust the margin of intersection. 
If � > 0, we allow some intersection between two boxes, and when 
� ≤ 0, we force the two boxes to be separated. Note that the ofset 
can be derived by �� = (�� � �� )/2. 

Probabilistic View. We now introduce how the child-parent 
relation is represented by box embeddings from a probabilistic 
perspective. We frst defne taxonomic probability: 

Defnition 4.1. (Taxonomic Probability) Taxonomic probability 
P(�� |�� ) is the likelihood of event “from a given entity �� , another 
entity �� can be reached along a given 1-length edge” occurring. 

For a ⟨child, parent⟩ pair ⟨�� , �� ⟩ in taxonomy, the taxonomic 
probability � (�� |�� ) = 1, because given a child, its exact parent can 
always be retrieved along the edge connecting them. If a child has 
multiple parents, we defne the taxonomic probability as 1 for all 
parents. Similarly, for a negative pair ⟨child, parent′⟩, denoted by 
⟨�� , �� ′ ⟩, since the negative parent can not be directly reached given 
the child, the taxonomic probability � (�� ′ |�� ) = 0. Desired box em-
beddings should satisfy these conditions of taxonomic probability 
for both positive and negative pairs, so that they can accurately 
represent the child-parent hierarchies in taxonomy. 

Similar to using diagrams of sets to describe probabilities (i.e., 
Venn diagram [37]), box embeddings provide a natural graphical 
way to calculate the taxonomic probability. Following [16, 28, 38], 

we use the volume of the intersection between child box and parent 
box, divided by the volume of child box, to represent the taxonomic 
probability � (�� |�� ), formalized as: 

��� (�� ∩ �� )
� (�� |�� ) = , (7)

��� (�� )
where the ��� (·) is the volume of a box. On this basis, we propose a 
probability loss function for each positive child-parent pair ⟨�� , �� ⟩, 
denoted by �� 

+, which is formalized as: 

�+ = (� (�� |�� ) � 1)2 , (8)� 

and also a probability loss function for each negative pair ⟨�� , �� ′ ⟩, 
denoted by �� 

� , which is formalized as: 

�� = (� (�� ′ |�� ) � 0)2 . (9)�

Box Regularization. In both geometric and probabilistic views, 
we design loss functions that minimize the intersection of two 
negative box embeddings, i.e., the negative geometric loss �� and� 
the negative probabilistic loss �� 

� . Actually, if a box is near zero in 
all its embedding dimensions, or its volume is close to zero, these 
two losses are also able to be minimized. In this case, however, the 
learned box embeddings are meaningless and can hardly represent 
the taxonomic hierarchies. To avoid this “cheating” during training, 
we regularize that box embeddings can not be too small in all 
dimensions. For box embeddings �� of entity � , we implement this 
constraint by regularizing the ofset �� with regularization loss �� : ∑ 1 � 

�� = ���(0, ��� � �)2 , ∀� ∈ {1, 2, ..., �}, (10)
� 

�=1 

where � controls the minimum length of boxes in each dimension. 
Joint Loss. Finally, we combine the geometric losses, the proba-

bilistic losses and the regularization loss to jointly train the model. 
Formally, the fnal loss function is: 

� = � (�� 
+ + �� 

�) + � (�� 
+ + �� 

�) + ��� , (11) 

where the � , � and � are hyper-parameters to control the contribu-
tions of each single loss function. 

Beneft of Joint View. Most box embeddings studies build the 
training objective from only the probabilistic view, where the core 
is to compute the volume of two boxes’ intersection [4, 7, 16, 28, 38]. 
Following [16], denote by �� = �� ∩ �� the intersection of a ⟨child, 
parent⟩ pair’s boxes, then we rewrite its volume of as: 

�Ö 
��� (�� ) = ��� (0, (���(��� , ��� ) � ��� (��� , ��� ))). (12) 

�=1 

Eq. (12) is a hinge loss, where the (sub)-gradient is 0 when two 
boxes are disjoint, i.e. ���(��� , ��� ) � ��� (��� , ��� ) ≤ 0. This leads to 
a serious issue, namely that if two boxes of a true ⟨child, parent⟩ 
pair are accidentally disjoint during training, these incorrect boxes 
will never be optimized if only the probabilistic view is included in 
the loss function. [7, 16] propose to represent the edges of a box as 
probabilistic density functions, so that the gradients always exist 
even the two boxes are disjoint. However, making boxes “soft” will 
lose their natural and intuitive interpretability to humans. Our joint 
view of geometry and probability is an alternative approach to this 
“zero gradients” issue but still preserves the interpretability of “hard” 
boxes. Specifcally, for child-parent pairs that are falsely disjoint, 
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the geometric loss Eq. (4) will provide gradients for optimization, 
because at least one of ��� � ��� + � and ��� � ��� + � is greater than 0. 
Note Eq. (4) is for positive pairs. For negative pairs, the two boxes 
are expected to be disjoint, so there is no gradient issue. 

In conclusion, the core beneft of the joint view of geometry and 
probability is to ensure that gradients are always available during 
optimization without losing the natural interpretability of boxes. 

4.4 Inference with Box 
During inference, our goal is to fnd an appropriate parent entity, 
i.e., an anchor, from the taxonomy for a given new query. In con-
trast to vector embeddings that measure the distance between two 
points, box embeddings are more intuitive and natural to determine 
whether a candidate parent is suitable: by checking to what extent 
the box of anchor encloses the box of the query. We implement this 
idea in a probabilistic way as shown in Fig. 3 (b). Specifcally, for 
query �� , we frst project it into a box �� and then compare it with 
each candidate anchor �� ’s box �� 2. Formally, we rank the candi-
dates by their taxonomic probabilities � (�� |�� ). A higher � (�� |�� )
indicates that anchor �� is more likely to be an appropriate parent 
for the query �� . In some cases, the taxonomic probability values 
of many anchors could be the same. For example, if the query box 
is enclosed by the box of a leaf anchor node, then it is also enclosed 
by all ancestors (until the root) of this leaf anchor, i.e., � (�� |�� ) = 1 
for the leaf anchor and all its ancestors. In this case, we return this 
leaf anchor as the predicted parent, since it is the fnest-grained 
and more precisely describes the query. We note this leaf anchor 
should have the smallest volume because it is enclosed by all an-
cestors. Therefore, for candidate anchors with the same taxonomic 
probability, we perform a second ranking according to the volume 
of their boxes, so that fner-grained anchors can be placed higher. 

(a) Existing Taxonomy (b) Box Embeddings (c) Reconstructed Taxonomy

Figure 4: Case study of reconstructing the existing taxonomy 
from the learned box embeddings. A sub-tree rooted in “so-
cial science” from the Science dataset is shown. 

5 EXPERIMENTS 
5.1 Setup 
Datasets. Following [42], to evaluate how BoxTaxo works in tax-
onomy expansion, we use two public datasets from SemEval-16 
taxonomy construction tasks. The taxonomy entities are scientifc 
concepts in the environment feld and in general science, respec-
tively. The human-curated hierarchies represent the category of 
each entity. We use the same data splitting protocol as [42], i.e., 20% 
of the leaf nodes are randomly sampled as the test set, while the 
2Here we use all entities in the existing taxonomy as the candidate anchor set. 

remaining are in the training set. Defnitions for each entity are 
also provided in both datasets. We simply combine entity names 
and their defnitions as input to the model. 

Experimental Settings. We compare BoxTaxo with fve vector 
based baselines for taxonomy expansion. We introduce the details 
of baselines in Appendix. A.1. We use three metrics, Accuracy 
(ACC), Mean reciprocal rank (MRR) and Wu & Palmer similarity 
(Wu&P) [41], to measure the performance of BoxTaxo compared 
to baselines. We present the details and formalization of all metrics 
in Appendix. A.2. We also list the key parameters used in BoxTaxo 
for reproducibility in Appendix. A.3. 

5.2 Can the Learned Box Embeddings 
Reconstruct the Existing Taxonomy? 

One motivation for this paper is that box embeddings are better 
at representing the hierarchies in taxonomy. To verify this, we 
reconstruct the existing (training) taxonomy, i.e., predict the child-
parent relations, from the learned box embeddings. Overall, the 
hierarchies are well preserved by box embeddings: we achieve 82.2% 
on Environment dataset and 60.9% on Science dataset in terms of 
reconstruction accuracy. To intuitively show how the learned boxes 
capture the taxonomic hierarchies, we sample a sub-tree rooted 
in “social science” from the Science dataset, and show the learned 
boxes in Fig. 4. We notice the two branches are fully separated and 
every child is enclosed by their parents, indicating the hierarchies 
are fully captured. With such hierarchy-aware boxes, we then study 
how taxonomy expansion benefts from them in the following. 

Table 1: Results of BoxTaxo on taxonomy expansion com-
pared to vector based methods. We use the same experimen-
tal setting as [42] and the baseline results are from [42]. We 
report the averages of ten runs of BoxTaxo. The best results 
are in boldface, and the second-best results are underlined. 
The “N/A” indicates that MRR is not applicable to TAXI. 

Dataset Environment Science 

Metric ACC MRR Wu&P ACC MRR Wu&P 

TAXI 
HypeNet 
Bert+MLP 

16.7 
16.7 
11.1 

N/A 
23.7 
21.5 

44.7 
55.8 
47.9 

13.0 
15.4 
11.5 

N/A 
22.6 
15.7 

32.9 
50.7 
43.6 

TaxoExpan 
STEAM 

11.1 
36.1 

32.3 
46.9 

54.8 
69.6 

27.8 
36.5 

44.8 
48.3 

57.6 
68.2 

BoxTaxo 38.1 47.1 75.4 31.8 45.3 64.7 

5.3 Are Box Embeddings Better than Vector 
Embeddings for Taxonomy Expansion? 

We compare BoxTaxo with vector based embeddings baselines 
for taxonomy expansion and report the results in Table. 1. We 
include two lines of baselines: 1) Because BoxTaxo only models 
the simple ⟨child, parent⟩ pairs during training, we frst compare 
BoxTaxo with vector based counterparts that also focus on such 
pairs, i.e., TAXI, HypeNet and Bert+MLP. BoxTaxo outperforms 
them with signifcant gains, indicating the efectiveness of box 
embeddings against vectors for taxonomy expansion. 2) We also 
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compare BoxTaxo with vector based baselines that use advanced 
structural summaries, including local graphs (TaxoExpan) and paths 
(STEAM). Despite not explicitly modeling such structural signals, 
BoxTaxo still achieves a clear improvement over TaxoExpan and 
shows comparable results with STEAM. We are encouraged by these 
results as it shows the potential to facilitate box embeddings with 
advanced structures to further boost taxonomy expansion. Interest-
ingly, we notice that compared to baselines, BoxTaxo shows better 
accuracy on the Environment dataset than on the Science dataset. 
Actually, the edge-to-node ratio is 1 on the Environment dataset 
and 1.05 on the Science dataset, indicating that some nodes in the 
Science dataset have multiple parents. We fnd these “multi-parent” 
nodes may bring all nodes that are associated with their parents 
closer in the box embeddings space, causing incorrect predictions. 
We did not identify an adequate solution to address this issue and 
thus leave it as a topic for future investigation. 

5.4 Ablation Study: Does BoxTaxo Beneft from 
the Joint Loss of Geometry and Probability? 

BoxTaxo optimizes box embeddings from both geometric and prob-
abilistic views. To examine the benefts of this joint objective, we 
perform an ablation study that learns box embeddings only with 
each single view. The results are reported in Table. 2. We note that 
learning boxes with the joint view shows clear superiority in tax-
onomy expansion. These results echo our discussion in Sec. 4.3 
that the joint view objective function can ensure that gradients for 
optimization are always available, thereby enhancing box learning. 

Table 2: Ablation study of the joint view optimization, i.e., 
Eq. (11). “No Geo” means learning box embeddings only with 
the probabilistic loss, while “No Prob” is only with the geo-
metric loss. “Joint” stands for optimizing with both losses. 
We fx the box dimensions as 12 for both datasets. 

Dataset Environment Science 

Metric ACC MRR Wu&P ACC MRR Wu&P 

No Geo 12.8 30.6 58.4 7.7 21.5 50.4 
No Prob 15.8 25.8 59.2 30.1 41.1 64.4 

Joint 35.3 44.8 74.2 31.8 45.3 64.7 

5.5 Can Box Embeddings Capture Implicit 
Hierarchical Relations in Taxonomy? 

Beyond the basic ⟨child, parent⟩ pairs, a taxonomy also includes 
implicit hierarchical structures. We study two common implicit 
relations: transitivity and overlap. Transitivity refers to “the par-
ent of a child’s parent is also this child’s parent (ancestor)”, e.g., 
in “natural science→physics→mechanics”, we know that “natural 
science→mechanics” also holds. Overlap refers to “two parents 
share common children”, e.g., “morphology” is an entity both in “bi-
ology” and “grammar” felds. We sample a sub-structure for each of 
these two implicit relations from Sciecne dataset and visualize their 
corresponding learned boxes in Fig. 5. We note that for transitivity, 
a child’s box is always enclosed by the boxes of all its ancestors. 
For overlap, the common child’s box is enclosed in the intersection 

Figure 5: Two implicit hierarchical relations in taxonomy 
(sampled from Science dataset) and how the learned box 
embeddings preserve them. (a) Transitivity, (b) Overlap. 

area of its two parents. Both indicate the box embeddings learned 
by BoxTaxo well preserve the implicit hierarchical relations. The 
capability of representing such implicit relations goes along with 
the advantage of boxes over vectors in taxonomy representation. 

Figure 6: Comparison of two boxes in each of the 12 dimen-
sions. A (blue, yellow) is a child-parent pair in taxonomy, 
while a (blue, red) is not. Overlap means two boxes intersect 
in a dimension. Upper row: Science; lower row: Environment. 

5.6 How BoxTaxo Works in High-Dimensional 
Space? 

Child-Parent Learning in High-Dimensional Space. We then 
analyze whether the learned boxes can still preserve the taxonomic 
hierarchies in higher dimensions. A box is a hyperrectangle in 
high-dimensional space, where its edge in each dimension is a line 
segment. We plot the edges of a box pair in each dimension to 
study their overlap in Fig. 6. Specifcally, we sample a positive and 
a negative child-parent pair for both datasets. We observe that, 
for the positive pairs of the two datasets, the edge of the child 
box is enclosed by the edge of the parent box in each dimension, 
indicating the child-parent relations are well captured. While for 
the negative pairs, we note the edges of the two boxes are separated 
in Environment dataset, but still overlap in some dimensions in 
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Science dataset. This overlap indicates that the negative pairs are 
not completely disjoint as we expect, which might explain why 
BoxTaxo performs worse in Science than in Environment dataset. 

Figure 7: Three metrics ACC, MRR and Wu&P with nine dif-
ferent dimensions of box space on both datasets. Solid curves 
indicate mean, and ribbons show the standard derivation. 
The red vertical lines indicate the dimensional space where 
BoxTaxo works best. Left: Environment; Right: Science. 

Taxonomy Expansion in High-Dimensional Spaces. To un-
derstand how boxes learned in diferent dimensions afect taxon-
omy expansion in BoxTaxo, we vary the box dimensions and report 
the corresponding taxonomy expansion metrics in Fig. 7. For both 
datasets, as the dimension increases, the metrics frst get better and 
then slowly decrease. We speculate that BoxTaxo needs enough 
space to hold the entity, so the dimensions can not be too small. 
However, an excessively large dimension can lead to optimization 
difculties and thus downgrade taxonomy expansion. 

5.7 Case Study: When BoxTaxo Makes Mistakes? 
To intuitively understand the predictions made by BoxTaxo and 
analyze when BoxTaxo fails, we sample two correct and two wrong 
predictions from the Science dataset in Table. 3. For correct cases, 
as we expect, the child’s box is tightly enclosed by its true parent. 
For query “neuroanatomy”, we speculate that our top-2 predictions, 
“neuroscience” and “neurobiology”, lean more towards the semantics 
of the "neuro" part. However, we believe they are also reasonable 
anchors, though not listed in the dataset. This suggests the poten-
tial of BoxTaxo to discover multiple parents for cross-category 
entities. However, for query “marine archeology”, we speculate it 
shares some semantic similarity with the wrongly predicted parent 
“zoology”. Thus they are encoded closely in the box space. Yet, we 
note the true anchor “archeology” is the second prediction, we 
think BoxTaxo also can be used in applications where the goal is 
to retrieve several anchor candidates, e.g., the search engines. 

5.8 How Hypermeters Afect BoxTaxo? 
Finally, we study the impacts of hyperparameter � , � and � on taxon-
omy expansion. We vary each hyperparameter with nine diferent 
values and report their corresponding metrics in Fig. 8. We notice 
BoxTaxo is sensitive to the margins of geometric loss functions 
� and � , i.e., they can not be too large. But a larger � generally 
increases the performance of BoxTaxo, especially on the Science 
dataset, demonstrating the necessity of volume regularization. 

Jiang et al. 

Table 3: Case studies of BoxTaxo on Science dataset. Entities 
and their boxes are in a one-to-one correspondence by color. 

Query and Anchor Top3 Prediction Box (2-Dimensional) 

Q: linear algebra algebra, ✓ 
A: algebra anthropology, 

pure mathematics 

Q: celestial mechanics astronomy, ✓ 
A: astronomy physics, 

medicine 

Q: neuroanatomy neuroscience, ✗ 
A: anatomy neurobiology, 

mechanics 

Q: marine archeology zoology, ✗ 
A: archeology archeology, 

geology 

Figure 8: Three metrics ACC, MRR and Wu&P with diferent 
values of hyperparameter � , � and � on both datasets. Solid 
curves indicate mean, and ribbons show the standard deriva-
tion. Upper row: Environment; Lower row: Science. 

6 CONCLUSION 
In this paper, we propose BoxTaxo, a novel self-supervised model 
for expanding an existing taxonomy with new entities. Since the tax-
onomic hierarchies are naturally asymmetrical relations, BoxTaxo 
learns box embeddings, instead of the traditional vector embed-
dings, to represent and expand a taxonomy. We propose to optimize 
the box embeddings from both geometric and probabilistic views 
to capture the taxonomic hierarchies. Extensive experiments show 
BoxTaxo is able to well preserve the hierarchical structures in tax-
onomy and outperforms the vector based baselines clearly. We also 
realize that incorporating lexical features, as demonstrated in [42], 
and structural signals such as paths and local graphs, has great po-
tential to further enhance box embeddings learning and taxonomy 
expansion, which we leave to future works. 
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A APPENDIX 
A.1 Baselines 
The scope of this work is to study whether box embeddings are 
more appropriate than vector embeddings for representing and 
expanding taxonomic hierarchies. Therefore, we mainly choose 
the vector based models. We also include two baselines that use 
advanced structural signals. We hope to learn whether BoxTaxo 
could achieve comparable results compared to structure-induced 
vectors, even without explicitly modeling those complex structures. 
The baselines we choose are: 
• TAXI [29]. A hypernym detection based method. It constructs 
the taxonomy by determining hypernym between entity pairs 
on the basis of lexical patterns. 

• HypeNet [34]. A vector based method using LSTM to encode 
dependency paths for entity pairs embeddings. 

• Bert+MLP [42]. A vector based method using a pre-trained 
language model (Bert [8]) to generate entity embeddings. 

• TaxoExpan [33]. A vector based method using graph neural 
networks (GNNs) to encode local ego-graphs in taxonomy to 
enhance entity representation. 

• STEAM [42] A vector based method using paths sampled from 
taxonomy to improve anchor entity representation. 

A.2 Evaluation Metrics 
Now we introduce the metrics used in this paper for evaluating the 
performance of taxonomy expansion. For a new query, we can view 
the output of BoxTaxo and baselines as a ranking of all candidate 
entities in the existing taxonomy, according to their suitability to 
be anchors. Denote by �� the true anchor for the �-th query, and 
denote by �̂� the top-1 predicted anchor. We use three metrics to 
compare the performance of BoxTaxo with the baseline: 

Accuracy (ACC): the precision of predicted anchors. ∑ 
ACC = 

1 � 
I(�̂� = �� ). 

� 
�=1 

Jiang et al. 

Mean reciprocal rank (MRR): measures the position of the 
true anchor in the ranked output ∑ 1 � 1

MRR = . 
� ���� (�� )�=1 

Wu & Palmer similarity (Wu&P) [41]: a similarity measure 
that captures semantics in taxonomy 

�∑ 1 2 × depth(LCA(�̂� , �� )) Wu&P = . 
� depth(�̂� ) + depth(�� )�=1 

The ���(·, ·) stands for the least common ancestor of two inputs, 
and the ����ℎ(·) is the depth of an anchor in taxonomy. � is the 
number of test queries for all metrics. 

A.3 Reproducibility 
The parameters of BoxTaxo are as follows. We use one hidden 
layer in box projection with dimension 64. The dimension of box 
embeddings is 4 for the Environment dataset and 12 for the Science 
dataset, respectively. For margins in loss functions, we set � = 0.05, 
� = �0.03, and � = 0.03. For the weights of each single loss, we 
set � = 1, � = 0.1 and � = 1. For the hyper-parameters in training, 
we use AdamW [19] to optimize our model with the learning rate 
2e-5 for Bert and 1e-3 for the box projection MLP layers. The ep-
silon of AdamW is set to 1e-8. We train BoxTaxo on both datasets 
100 epochs with batch size 100. The training hyperparameters are 
default values to ensure model convergence. All experiments are 
done on a server with Nvidia A100 GPUs. 

A.4 Additional Experimental Results 
In Sec. 5.3, we follow the data splitting protocol used in [42] to 
ensure a fair comparison. In this section, we also present tax-
onomy expansion results of BoxTaxo with a new dataset split: 
train/validation/test = 7/1/2. Under this new setting, BoxTaxo has 
ACC/MRR/Wu&P/=36.2/47.3/73.0 on Environment dataset, while on 
Science dataset, we have ACC/MRR/Wu&P/=29.2/40.1/62.2, which 
are still comparable to baselines. Note that compared to Table. 1, 
the results have decreased due to a reduced size of the training set. 
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