
Received: 1 December 2022 / Accepted: 31 July 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

	
 Lara Perez-Felkner
lperezfelkner@fsu.edu

1	 Department of Educational Psychology and Learning Systems, Florida State University, 
Tallahassee, United States

2	 Department of Educational Leadership and Policy Studies, Florida State University, 
Tallahassee, United States

3	 Center for Postsecondary Success, Florida State University, Tallahassee, United States
4	 Knowli Data Science, Tallahassee, United States

Gender Differences in Motivational and Curricular Pathways 
Towards Postsecondary Computing Majors

Jinjushang Chen1,3  · Lara Perez-Felkner2,3  · Chantra Nhien3  · Shouping Hu2,3  · 
Kristen Erichsen4  · Yang Li2,3

Research in Higher Education
https://doi.org/10.1007/s11162-023-09751-w

Abstract
Gender disparities persist in postsecondary computing fields, despite improvements in 
postsecondary equity overall and STEM fields as an aggregate. The entrenchment of this 
issue requires a comprehensive, longitudinal lens. Building on expectancy-value theory, 
the present study examines the relationships among students’ gender-ability stereotypes, 
attainment values, course-taking, and major choices. Using data from the High School 
Longitudinal Study of 2009 (HSLS: 2009), we applied weighted t-tests and multiple-group 
structural equation modeling to investigate how motivational beliefs (i.e., gender-ability 
stereotypes, attainment values) and course-taking patterns in math and science may predict 
major choice in computing. Overall, we find gender differences in identity-based math-
ematics and science motivational beliefs have long-term effects. Gender-ability stereo-
types in math and science shape attainment values in each domain, whereby stereotypes 
suppress girls’ attainment values and enhance boys’ attainment values (p < 0.001), in turn 
shaping course-taking and major decisions. Math- and sciencerelated motivational and 
curricular factors affect “other” STEM more than computing major outcomes. Specifically, 
computer science course-taking is completed more by boys (d = 0.21), but girls’ chances of 
declaring computing majors are especially enhanced by completing these courses in high 
school. Advanced science course-taking and science attainment value positively predict 
boys’ but not girls’ likelihood of declaring computing majors. We discuss the implications 
of these findings for research, policy, and practice.
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Despite women’s overall advancements in postsecondary educational attainment, certain 
science, technology, engineering, and mathematics (STEM) fields continue to be charac-
terized by gender segregation (Chen & Soldner, 2014; Snyder & Dillow, 2011). Gender 
gaps1 in postsecondary education are particularly wide in computing fields, including high-
demand and high-paying majors such as information technology, computer programming, 
and computer science. Indeed, the U.S. Bureau of Labor Statistics (2022) projects a 15% 
increase in computer and information technology employment opportunities over the next 
decade, with a median wage of $97,430. Importantly, the varying trends over the past few 
decades indicate potential change in response to evolving social norms. The share of women 
in computing professions increased between 1990 and 2013; it then declined from 35 to 
26% (Corbett & Hill, 2015) and dropped further to 24% in 2019 (National Center for Sci-
ence and Engineering Statistics, 2021). Gender disparities are even more pronounced at 
the beginning of college. Women constitute only 19.9% of first-year college students who 
intend to major in computer and information sciences (down from 27.0% to 1998), despite 
comprising 56.6% of undergraduates (NCSES, 2021). This is partially attributed to the lim-
ited exposure of women and girls to computing experiences prior to college (Beyer, 2014; 
Lehman et al., 2020). These acute and persistent postsecondary gender disparities require a 
comprehensive, longitudinal lens.

Therefore, this study aims to examine gender differences in computing pathways from 
secondary school through college relative to alternative STEM major pathways. Building 
upon expectancy-value theory, this study focuses on two explanatory factors: motivational 
beliefs and course-taking. We investigate two identity-based motivational beliefs—gender-
ability stereotypes and perceived alignment of tasks with one’s own identity (referred to as 
attainment value)—that are closely associated with one’s gender identity (Eccles, 2009). 
We analyze high school course-taking specifically in advanced mathematics/science and in 
computer science. Computer and information science courses are now available in 53% of 
U.S. high schools (Roberts et al., 2022) but are regrettably understudied, even in research 
focused on postsecondary computing outcomes (e.g., Blaney and Wofford, 2021). It is 
important that we consider the motivational and curricular factors in both mathematics and 
science domains, as both domains play influential roles in students’ achievement and pursuit 
of STEM-related fields (Robinson et al., 2022; Sadler et al., 2014; Sahin et al., 2017).

Despite well-documented gender disparities in computing fields, limited knowledge 
exists regarding the factors that uniquely contribute to students’ choice of a computing 
major. Previous research too often aggregates STEM domains, which may have distinct 
motivational profiles; this tendency can hinder our understanding of why gender differ-
ences in postsecondary computing outcomes persist. Instead, this study delves into a more 
nuanced exploration of students’ STEM motivation and choices, focusing on variables spe-
cifically related to computing.

This study leverages restricted-use data from the High School Longitudinal Study of 
2009 (HSLS:09), the most recent nationally representative U.S. panel tracking students 

1  We recognize distinctions between gender and sex, whereby the latter typically refers to binary and biologi-
cal notions of male/female in distinction to gender which is developed through socialization and realized via 
gendered behavior, performance, and identity. This manuscript is constrained by the binary nature of data 
procured by the federal government from U.S. high schools., Wherever possible, we refer to boys/girls and 
men/women and use the term “gender” because of our focus on gender stereotypes, gender-role identities, 
and other constraints from socialization into the gender system. See also Perez-Felkner et al. (2023) and 
Ridgeway and Smith-Lovin (1999).
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from high school to college. Specifically, we examine the longitudinal relationship between 
two domain-specific exploratory factors, namely motivational beliefs and course-taking, 
and their effects on college students’ decisions to major in computing, using structural equa-
tion modeling. Our findings suggest that students’ subscription to gender stereotypes shapes 
the evaluation of their attainment values in these domains and indirectly shapes their high 
school course-taking through the mediation of their attainment values, ultimately influenc-
ing their major choice in college.

Theoretical Framing and Literature Review

Two major predictors of students’ intention to enter STEM-related fields of study in college 
are: (1) students’ motivational beliefs – specifically, mathematics/science gender-ability ste-
reotypes and attainment values (e.g., Musu-Gillette et al., 2015; Wang and Degol, 2013) 
– and (2) secondary school course-taking in STEM-related subjects (Wang, 2013; Zhao 
and Perez-Felkner, 2022). Students’ domain-specific motivational beliefs can further predict 
their major choices via the mediation of course-taking in corresponding domains (Jiang et 
al., 2020). Drawing on expectancy-value theory, we discuss these two major predictors in 
terms of identity-based motivational beliefs, course-taking (in mathematics, science, and 
computer science), and their gendered effects on computing majors. Empirical studies have 
identified gender gaps in students’ motivational beliefs in math and science domains, while 
fewer gender differences are observed in students’ math- and science course selection. To 
better understand the gender patterns within computing fields, we discuss variations in moti-
vational and curricular paths associated with gender identity and unique to computing fields 
of study.

Expectancy-Value Theory: The Role of Identity-Based Motivational Beliefs

Our study is guided by a well-established social-cognitive theoretical framework. Expec-
tancy-value theory views individual motivational beliefs as conditioned by social and cul-
tural contexts, with a focus on two primary factors: expectancy of success and subjective 
task value—the value individuals attach to a task (Eccles et al., 1983). This theory has 
explained the relationships between motivational beliefs and academic outcomes such as 
performance, engagement, and persistence (e.g., Durik et al., 2006; Fielding-Wells et al., 
2017; Lauermann et al., 2017), while subjective task values appear to be particularly pred-
icative of students’ educational and occupational choices (Eccles & Wigfield, 2020). Sub-
jective task values include: intrinsic value (i.e., enjoyment), utility value (i.e., instrumental 
value) and attainment value (i.e., relevance to one’s identity) (Eccles, 2009). Among these 
categories, attainment value is a crucial component of one’s motivation that is associated 
with their gender-role identity and predicts their academic choices (Eccles, 2009; Eccles & 
Wigfield, 2020).

Attainment Value and Identity

Eccles (2005, 2009) has proposed that gender differences in the participation of certain 
activities are partially explained by the fact that girls and boys acquire different attainment 
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values of these activities during social identity development, which informs their percep-
tions of who they are and what they would like to be, shaping their personal and social 
identities. These identities are posited to have the strongest effect on the attainment value an 
individual attaches to distinct educational and vocational activities. The concept of attain-
ment value, inherently associated with identities, aligns with research on the relationship 
between girls’ and young women’s social identities and their disciplinary (STEM) identities 
(see Kim et al., 2018; Starr et al., 2020; Steinke, 2017).

Prior empirical studies on students’ subjective task values is often focused on utility and 
intrinsic value (Andersen & Ward, 2014; Jiang et al., 2020) – research on attainment value is 
scarce. Recent research has provided insights about the development of students’ attainment 
value in mathematics. For example, Musu-Gillette et al. (2015) grouped students’ perceived 
importance/relevance of mathematics from 6th grade through the first year of college into 
three categories: those showing a slow decline (49% of the sample), those with relatively 
stable perceptions (39%), and those with a fast decline (13%). Regarding science attainment 
value, Robinson et al. (2022) observed that chemistry students’ attainment value was stable 
over a 13-week semester. Accordingly, domain-specific attainment values may explain gen-
der differences in students’ achievement-related choices during their secondary and postsec-
ondary pathways to careers, particularly in highly gender-segregated fields like computing.

Gender-Ability Stereotypes, Attainment Value, and Academic Choices

Applying expectancy-value theory, Eccles (2005, 2009) has explained that when individu-
als’ perceived engagement in a task is consistent with their personal and/or social identities 
(i.e., high attainment value), their likelihood of choosing this task increases. Cvencek et 
al. (2014) found that the association between gender-ability stereotype (e.g., boy = math) 
and domain-specific self-concept or identity (e.g., me = math) based on gender identity (i.e., 
me = boy) remains stable across cultures, reflecting a culturally universal cognitive con-
sistency where individuals tend to balance their personal and social identities. Similarly, 
Cech (2013) argues that stereotypic norms positing men and women excel in different fields 
of study are maintained in structural and cultural contexts; these in turn induce individu-
als to internalize the social identity embedded with gender-ability stereotypes as their own 
identity, resulting in gendered individualist self-expression being reflected in their career 
choices.

Gender-role identity is shaped by the attitudes, behaviors and norms associated with a 
gender category, which is socially and culturally constructed rather than an inherent trait 
(Butler, 2011; Risman, 2018). Empirical research suggests that internalized gender ste-
reotypes about mathematics and science abilities biases students’ evaluation of their own 
competence in these domains. Indeed, girls typically report lower self-ratings of math and 
science competence-related beliefs than boys, despite performing similarly or better in math 
and science classes and tests (Correll, 2001; Ertl et al., 2017; Robnett, 2016). Yet, little is 
known about how gender stereotypes shape subjective task values— especially attainment 
values that children attach to mathematics and science domains. Prior research suggests 
that students’ stereotype endorsement favoring a certain gender group indirectly predicts 
their course grades and career intentions, and is mediated by their beliefs about expectancy 
of success and utility value (Plante et al., 2013). This knowledge gap leaves unresolved 
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an important understanding about how gender stereotypes on subjective task values affect 
student’s educational and vocational choices.

Expectancy-value theory suggests that group differences in STEM-related motivations 
and behaviors can arise during gender-role socialization, as students internalize gender ste-
reotypes present in their immediate social contexts such as schools and families and the 
broader socio-cultural environments (Eccles, 2009; Wigfield et al., 2015). Differences in 
gender-role identity can lead to (a) mean-level differences across gender groups (i.e., girls 
and boys varying in their motivational beliefs and course completion), and (b) process-level 
differences, showing that the effect of certain motivational and curricular factors vary in 
strength by gender. In sum, expectancy-value theory states that the gender differences in stu-
dents’ educational and occupational choices can be explained by variation in girls’ and boys’ 
motivations towards STEM tasks, which are influenced by individuals’ social environments. 
Our analyses thus focus on whether girls’ and boys’ gender stereotypes affect their math/
science attainment values, whether these attainment values predict course-taking in math, 
science, and computer science and subsequent major declaration of computing, and whether 
these relationships vary by gender.

Gendered Relationships Between Course-Taking and Major Choice

Rigorous high school mathematics and science course completion strongly predicts STEM 
achievement as well as overall postsecondary academic success (Adelman, 2006; Wang, 
2015). Indeed, completing these courses function as academic momentum that propels stu-
dents toward pursuing degrees in STEM fields (Wang, 2015). Numerous studies have found 
associations between the rigor and number of high school math and/or science courses 
taken and students’ college aspirations and subsequent achievements in STEM-related fields 
(Bozick & Ingels, 2008; Riegle-Crumb, 2006; Wang, 2013). Although gender gaps in sec-
ondary math and science course-taking and performance have largely decreased (Hyde et 
al., 2008; Riegle-Crumb et al., 2012; Tyson et al., 2007), additional evidence is needed to 
explain the gender differences in curricular preparation for some STEM fields such as com-
puting. Thus, we examined gender patterns within advanced math and science course-taking 
and its effects on major choice using the most recent national dataset with a special focus 
on computing.

Meanwhile, comparatively little is known about the gender differences in computer-sci-
ence coursework and how it is associated with gender gaps in computing fields. Students’ 
high school experiences with programing and/or computer science are shown to positively 
predict their performance in computer science courses in college (Bottia et al., 2015; Wilson 
& Shrock, 2001). These high school computing-related activities provide opportunities for 
students to develop personal connections to and direct knowledge about computing fields 
(President’s Council of Advisors on Science and Technology (PCAST), 2010). Empirical 
findings suggest that pre-college computing experiences may have particular benefits for 
girls and help alleviate the gender gap in computing majors in college (Taylor & Moun-
field, 1994; Weston et al., 2020). For example, Weston et al. (2020) found that students’ 
involvement in high school programming and in computer science AP exams predicted 
girls’ intention to major in computing. Thus, we particularly investigated computer science 
course-taking as a mediator of STEM-related motivations and as a predictor for students’ 
interest in entering computing fields.
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Current Study

Overall, our study aimed to examine the longitudinal relationships among students’ motiva-
tional beliefs and course-taking during high school and how these experiences shaped their 
declaration of postsecondary majors in computing and other STEM fields. We were also 
interested in the direct relationship between students’ motivational beliefs and their course-
taking. Drawing from expectancy-value theory, we hypothesized that students’ motivational 
beliefs shaped their decisions on course-taking and major declaration. Figure 1 shows the 
conceptual model which we describe below.

Our study incorporates mathematics and science motivational and curricular factors in 
an explanatory SEM model, with a theoretical emphasis on the role of identity-based moti-
vational beliefs (i.e., gender-ability stereotypes and attainment values), and an application 
of mean- and process-level analyses on gendered differences in computing pathways with 
a nationally representative longitudinal database. Detailed hypotheses are presented below:

H1  Students’ gender stereotypes about math and science abilities shape the evaluation of 
their attainment values of these subjects based on their gender identity. Gender stereotypes 
favoring males will enhance boys’ attainment value and undermine girls’ attainment value 
in the corresponding domain, and vice versa.

H2  Math attainment values have a positive effect on mathematics course-taking, and sci-
ence attainment values on science course-taking [H2.1]. Math attainment values have a 
weak positive effect on science course-taking, and science attainment values on mathemat-
ics course-taking [H2.2]. Both math and science attainment values have a weak positive 
effect on course-taking in computer science subjects [H2.3].

Fig. 1  The Hypothesized Model
Source. High School Longitudinal Study, Student Surveys, 2009 to 2016. N = 10,710.
Note. Totals are rounded to the nearest 10 to comply with IES restricted data restrictions
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H3  Both students’ attainment values and course-taking in high school positively predict 
their choices of computing as well as other STEM majors in college [H3.1]. Students’ 
course-taking in computer science particularly predicts their choice of computing majors 
[H3.2].

H4  H4. Math and science attainment values fully mediates the effects of their gender ste-
reotypes of math and science abilities on subsequent computing-related course-taking (i.e., 
advanced math and science course-taking and computer science course-taking) and major 
declaration in computing and other STEM fields.

Method

Data Sources and Sample

To investigate the above hypotheses, we used restricted-use data from the High School 
Longitudinal Study of 2009 (HSLS:09). Administered by the U.S. National Center for Edu-
cation Statistics (NCES), HSLS:09 tracks a cohort of 9th grade students from 2009 through 
high school and transitions to and through college. This most recent nationally represen-
tative U.S. longitudinal study used a stratified, two-stage random sampling design. First, 
940 schools were drawn into the sample from 10 states. Second, students were randomly 
selected from these schools. Study variables were drawn from the baseline-year (2009) 
through the second follow-up (2016) surveys. From the original sample of 25,210 partici-
pants, we excluded students who did not pursue a postsecondary education by February 
2016 (n = 12,260), and those who did not indicate their gender – most of which had addi-
tional missing information on other relevant indicators (n = 980). Data missing from exog-
enous observed variables (i.e., variables that are not affected by any other variables in the 
model) were deleted listwise for structural equation modeling (n = 1,260). As a result, our 
final analytic sample included 10,710 students.

Measures

Gender Stereotyped Beliefs of Mathematics and Science Abilities

Gender math/science stereotypes were derived from 9th grade students’ self-rating of the 
item, “how would you compare boys and girls in each of the following subjects.” These 
items were on five-point Likert scales (1 = females are much better; 5 = males are much bet-
ter; 3 = neutral stance).2 Higher ratings indicated students’ attitudes favored males in math/
science, and lower ratings suggested students’ attitudes favored females. Table 1 presents 
descriptive statistics for students’ gender-stereotyped beliefs about math and science, by 
gender. For further information on all variables, see Supplemental Table S1.

2  While we generally avoid using male/female in this manuscript (see also footnote 1), we do here and in the 
corresponding results discussion use “males” and “females” when it refers to the language used in the gender 
stereotype items described here.

1 3



Research in Higher Education

Ta
bl

e 
1 

de
sc

rib
es

 fo
ca

l v
ar

ia
bl

es
, i

nc
lu

di
ng

 w
ei

gh
te

d 
an

d 
un

w
ei

gh
te

d 
m

ea
ns

, s
ta

nd
ar

d 
de

vi
at

io
ns

, w
ei

gh
te

d 
t-t

es
ts

, a
nd

 e
ffe

ct
 si

ze
s. 

O
ve

ra
ll,

 b
oy

s h
ad

 h
ig

he
r g

en
de

r-m
at

h 
an

d 
ge

nd
er

-s
ci

en
ce

 st
er

eo
ty

pe
s f

av
or

in
g 

bo
ys

 o
ve

r g
irl

s. 
B

oy
s a

ls
o 

ha
d 

si
gn

ifi
ca

nt
ly

 h
ig

he
r r

at
in

gs
 o

f m
at

h 
an

d 
sc

ie
nc

e 
at

ta
in

m
en

t v
al

ue
s t

ha
n 

gi
rls

 (d
 =

 0.
12

 a
nd

 d
 =

 0.
18

, r
es

pe
ct

iv
e-

ly
) w

he
n 

th
ey

 e
nt

er
ed

 h
ig

h 
sc

ho
ol

. T
he

re
 w

er
e 

no
 si

gn
ifi

ca
nt

 g
en

de
r d

iff
er

en
ce

s i
n 

th
e 

nu
m

be
r o

f c
re

di
ts

 e
ar

ne
d 

in
 A

P/
IB

 m
at

h 
an

d 
sc

ie
nc

e 
co

ur
se

s, 
ye

t b
oy

s e
ar

ne
d 

co
ns

id
er

ab
ly

 
m

or
e 

cr
ed

its
 in

 c
om

pu
te

r s
ci

en
ce

 c
ou

rs
es

 th
an

 g
irl

s d
ur

in
g 

hi
gh

 sc
ho

ol
 (d

 =
 0.

21
)

Va
ria

bl
es

A
na

ly
tic

 S
am

pl
e

A
na

ly
tic

 S
am

pl
e 

by
 G

en
de

r
G

irl
s

B
oy

s
M (S

D
)

W
td

 M
(W

td
SD

)
M

in
M

ax
M (S

D
)

W
td

 M
(W

td
SD

)
M (S

D
)

W
td

 M
(W

td
SD

)
T-

Te
st

Eff
ec

t 
Si

ze
St

er
eo

ty
pe

 B
el

ie
fs

G
en

de
r s

te
re

ot
yp

e:
 M

at
h

3.
01

(0
.8

4)
2.

98
(0

.8
5)

1
5

2.
88

(0
.7

9)
2.

85
(0

.8
1)

3.
16

(0
.8

7)
3.

12
(0

.8
6)

-7
.7

1*
**

-0
.3

2

G
en

de
r s

te
re

ot
yp

e:
 S

ci
en

ce
3.

06
(0

.7
7)

3.
05

(0
.7

7)
1

5
2.

98
(0

.7
2)

2.
98

(0
.7

5)
3.

17
(0

.8
1)

3.
13

(0
.7

8)
-5

.5
7*

**
-0

.2
0

Se
lf-

C
on

ce
pt

 B
el

ie
fs

M
at

h 
at

ta
in

m
en

t v
al

ue
2.

68
(0

.8
3)

2.
65

(0
.8

4)
1

4
2.

62
(0

.8
4)

2.
59

(0
.8

5)
2.

74
(0

.8
3)

2.
72

(0
.8

4)
-4

.2
4*

**
-0

.1
2

Sc
ie

nc
e 

at
ta

in
m

en
t v

al
ue

2.
43

(0
.8

0)
2.

38
(0

.7
9)

1
4

2.
36

(0
.7

8)
2.

31
(0

.7
8)

2.
51

(0
.8

1)
2.

45
(0

.8
1)

-5
.7

3*
**

-0
.1

8

H
ig

h 
Sc

ho
ol

 C
ou

rs
e-

Ta
ki

ng
C

re
di

ts
 e

ar
ne

d 
in

 A
P 

m
at

h 
cl

as
se

s
0.

31
(0

.6
1)

0.
26

(0
.5

5)
0

4
0.

28
(0

.5
8)

0.
24

(0
.5

1)
0.

33
(0

.6
4)

0.
28

(0
.5

9)
-1

.8
4

-0
.0

7

C
re

di
ts

 e
ar

ne
d 

in
 A

P 
sc

ie
nc

e 
cl

as
se

s
0.

35
(0

.7
4)

0.
28

(0
.6

3)
0

7
0.

35
(0

.7
2)

0.
27

(0
.6

0)
0.

35
(0

.7
5)

0.
29

(0
.6

6)
-0

.5
9

-0
.0

3

C
re

di
ts

 e
ar

ne
d 

in
 c

om
pu

tin
g 

cl
as

se
s

0.
50

(0
.7

3)
0.

52
(0

.7
5)

0
9

0.
42

(0
.6

0)
0.

45
(0

.6
2)

0.
60

(0
.8

5)
0.

61
(0

.8
7)

-5
.2

1*
*

-0
.2

1

So
ur

ce
. H

ig
h 

Sc
ho

ol
 L

on
gi

tu
di

na
l S

tu
dy

, S
tu

de
nt

 S
ur

ve
ys

, 2
00

9 
to

 2
01

6.
 N

 =
 10

,7
10

N
ot

e.
 N

um
be

rs
 re

po
rt

ed
 h

er
e 

re
su

lt 
fr

om
 u

nw
ei

gh
te

d 
an

d 
w

ei
gh

te
d 

da
ta

. W
td

 =
 w

ei
gh

te
d.

 T
-te

st
 a

nd
 e

ffe
ct

 si
ze

 c
al

cu
la

tio
n 

ar
e 

ba
se

d 
on

 w
ei

gh
te

d 
st

at
is

tic
s. 

Eff
ec

t s
iz

es
 a

re
 

C
oh

en
’s

 d
: s

m
al

l e
ffe

ct
 0

.1
0,

 m
od

er
at

e 
eff

ec
t 0

.3
0,

 la
rg

e 
eff

ec
t 0

.8
0.

 T
ot

al
s 

ar
e 

ro
un

de
d 

to
 th

e 
ne

ar
es

t 1
0 

to
 c

om
pl

y 
w

ith
 I

ES
 d

at
a 

re
st

ric
tio

ns
. *

**
 p

 <
 0.

00
1,

 *
* 

p <
 0.

01
, *

 
p <

 0.
05

1 3



Research in Higher Education

Mathematics and Science Attainment Values

Students’ math and science attainment values were represented by the mean score of two 
items that measured students’ perceived relevancy of math and science domains to their own 
identity. These two items were on a four-point Likert scale, which asked about students’ 
endorsement of the statements, “you see yourself as a math/science person” and “other 
people see you as a math/science person” (1 = strongly agree; 4 = strongly disagree). Items 
were reverse-coded so that the higher ratings indicate higher levels of attainment value. The 
Cronbach’s alpha for both math and science attainment value measures were 0.84.

High School Course-Taking in Mathematics, Science and Computer Science

Drawn from 2013 high school transcripts, we used total credits earned in AP and IB Math-
ematics/Science courses as indicators of students’ advanced math/science course-taking. 
Advanced mathematics courses include AP Calculus, AP Statistics and IB Mathematics 
courses. Advanced science courses include AP/IB Biology, AP/IB Chemistry, AP/IB Phys-
ics, AP Environmental Science, IB Physical Science, IB Design Technology, and IB Envi-
ronmental Systems. Credits earned in Computer and Information Sciences were used to 
operationalize students’ computer science course-taking. A credit is equivalent to a one-year 
academic course taken one period a day, five days a week.

College Major Declaration

Major declaration was coded from the NCES-generated indicator of the primary major or 
field of study that students declared, designated as their reference degree field as of the sec-
ond follow-up interview wave (2016). Majors were classified using the U.S. Department of 
Education’s Classification of Instructional Programs, 2010 edition (CIP 2010) and then clas-
sified as STEM using the definition used by the SMART grant. We first used the collapsed 
variable of STEM majors, X4RFDGMJSTEM, which only indicated whether one’s choice 
of major was STEM or non-STEM. Then we used X4RFDGMJ12 to specify computing 
majors with all other majors within the STEM category of X4RFDGMJSTEM being coded 
as other-STEM majors. Therefore, we recoded computing major declarations into three cat-
egories: 0 = Non-STEM, 1 = Other-STEM, 2 = Computing.

Analytic Methods

The analyses leveraged weighted t-tests to examine the mean-level group differences in 
motivational and curricular factors, and multiple-group structural equation modeling to 
examine the longitudinal effects of motivational and curricular factors on pursuit of comput-
ing major (i.e., process-level group differences) with gender as a moderator. We used Stata 
16 to produce unweighted and weighted descriptive statistics, and to conduct independent 
sample weighted t-tests on the mean-level comparisons of motivational and curricular vari-
ables. The t-test scores and effect sizes are reported in Table 1.

We then used MPlus 8.4 to conduct structural equation modeling on the conceptual 
model (Muthén & Muthén, 2012). We tested the relationships among motivational beliefs 
(i.e., math and science gender stereotype beliefs and attainment values), course-taking fac-
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tors (i.e., math and science advanced course-taking and computer science course-taking), 
and major declaration (computing vs., other STEM, and the non-STEM reference category). 
Students’ race/ethnicity, family socioeconomic status (SES), 9th grade math achievement 
and institution type they first attended were included as individual-characteristic controls. 
Urbanicity and type of high school were used as school-context controls for the variables 
shown in Fig. 1. To evaluate the validity of the structural model, we used log-likelihood 
ratio test (i.e., chi-square difference test) and compared the hypothesized model and satu-
rated model (Jamshidian & Mata, 2007). A Satorra-Bentler (2001) scaled chi-square differ-
ence test was computed for the model comparison. Due to the large sample size, we set the 
significance level at α = 0.01 to increase the bounds on type I error.

After finalizing the structural equation model, we then conducted a multiple-group 
analysis to determine if the relationships among motivational variables, course-taking and 
major declaration varied by gender. Further, we used the forward method to test whether 
the parameter estimates were equivalent across gender groups (Jung & Yoon, 2016). The 
forward method used one data analysis phase for the multiple-group analysis where the dif-
ference between each set of corresponding parameters were tested against zero. Lastly, we 
used Z-tests to identify significant differences in parameter estimates across gender.

Estimator, Missing Data, and Weights

To analyze the conceptual model, we used a robust maximum likelihood (MLR) estimator. 
MLR yields robust estimates when data is non-normally distributed (Curran et al., 1996), 
which was the case with all three course-taking variables. MPlus removes missing informa-
tion in exogenous variables listwise before estimation and employs Full Information Maxi-
mum Likelihood (FIML) to adjust for other missingness. We did not observe significant 
distribution differences in key variables before and after these missing data adjustments. To 
correct for the standard errors from the stratified design of this study, we used the stratifica-
tion ID and primary sampling unit (i.e., schools) variables, and specified TYPE = COMPLEX 
command for model estimation. The panel weight W4W1STU was selected to adjust for 
differential selection probability and nonresponse patterns from the base year wave (2009) 
up to the second follow-up interview (2016). Bootstrap replicate weights (W4W1STU001-
W4W1STU200) were applied with Balanced Repeated Replication method to adjust for 
standard errors of the descriptive statistics for focal variables.

Results

Descriptive Analyses

Table 2 displays statistics describing all variables by major declared. The proportion of girls 
who declared any STEM major was small (37.5%) compared with that of boys (62.5%). The 
gender ratio was even wider with respect to declaring a computing major, with only 21.46% 
for girls and 78.54% for boys. Students who declared a computing major had gender-math 
and gender-science stereotypes favoring boys at a higher level than students who declared 
other STEM and non-STEM majors. Students who declared any non-computing STEM 
major had the highest math and science attainment values; they also had the most credits 
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earned in AP/IB math and science classes. Students who declared a computing major earned 
the most credits in computer science classes. Correlations among all variables are presented 
in supplemental Table S2.

SEM and Multiple-Group Analysis

The chi-square difference test suggests that the hypothesized model fit the data as well as the 
saturated model (Δ χ2(12) = 22.15, p = 0.04). We then proceeded with the more parsimoni-
ous model (i.e., the original hypothesized model) and conducted multiple-group analysis. 
We identified three sets of parameters that varied significantly by gender: the relationships 
between gender-math stereotype and math attainment value (Δβ = -0.42, p < 0.001), gender-
science stereotype and science attainment value (Δβ = -0.31, p < 0.001), science attainment 
value and computer science course-taking (Δβ = -0.10, p = 0.003). The parameter estimates 
of the multiple-group SEM and group-equivalence test (Z-test) results were shown in 
Table 3.

The multiple-group SEM results confirmed that students’ gender stereotypes about math 
and science abilities biased their perceived math and science attainment values [H1 sup-
ported; see Table 3]. Boys who agreed with the statement that males perform better than 
females in mathematics had higher math attainment values (β = 0.20, p < 0.001), whereas 
girls who held this stereotype belief had lower math attainment values (β = -0.22, p < 0.001). 
Similarly, stereotypes that favored males in science were positively associated with boys’ 
science attainment values (β = 0.13, p < 0.001), and negatively associated with girls’ science 
attainment values (β = -0.18, p < 0.001).

Regarding the relationships between attainment values and course-taking (Table 3 shows 
the path coefficient for both girls and boys), math attainment value positively predicted 
advanced math course-taking (β = 0.05, p < 0.001 for both girls and boys), and science 
attainment value positively predicted advanced science course-taking, similarly for girls 
(β = 0.08, p < 0.001) and boys (β = 0.07, p < 0.001) [H2.1 supported]. Additionally, science 
attainment value had a positive but weak prediction on course-taking in advanced math-
ematics (βgirls = 0.04, p < 0.001; βboys = 0.02, p = 0.10); Math attainment value did not predict 
course-taking in advanced science [H2.2 partially confirmed]. Importantly, science-attain-
ment value was a significant predictor of computer science course-taking, and only for boys 
(β = 0.05, p = 0.01) [H2.3 partially confirmed].

Regarding the predictions of attainment values and course-taking on major declaration, the 
parameter estimates were based on multinomial logistic regression. Table 3 shows both the 
path coefficients and relative risk ratios by gender. Having higher levels of math attainment 
values increased the likelihood of declaring a non-computing STEM major (RRR = 1.36, 
p < 0.001 for both girls and boys), but not a computing major; Science attainment values also 
showed the same pattern, with girls (RRR = 1.79, p < 0.001) and boys (RRR = 1.46, p < 0.001) 
experiencing an increased likelihood of choosing a non-computing STEM major rather than 
a computing major [H3.1 partially confirmed]. Taking more advanced math courses did not 
increase the chances of choosing any STEM major in college, while taking more advanced 
science classes enhanced the likelihood of declaring a non-computing STEM major rather 
than declaring a computing major (RRR girls= 1.83, p < 0.001; RRR boys = 1.59, p < 0.001) 
[H3.1 partially confirmed]. Computer science course-taking was a predictor for comput-
ing major declaration, such that for each credit that students earned in a computer science 
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course, their chances of declaring a computing major would increase two-fold (RRR = 2.16, 
p < 0.001 for girls; RRR = 1.92, p < 0.001 for boys) [H3.2 confirmed].

Hypothesis 4  was also confirmed: the full mediation model (i.e., gender-ability stereotypes 
indirectly predicted course-taking and major declaration via attainment values) fit the data 
better than the partial mediation model (Δ χ2(10) = 22.16, p = 0.01). Specifically, mathemat-
ics attainment values fully mediated gender stereotypes of math abilities and subsequent 
computing-related course-taking, while science attainment values fully mediated gender 

Table 3  Parameter Estimates of Final Multiple-Group SEM
Girls Boys Z-Test Score

Model and Effect Unstd. SE Std. Unstd. SE Std.
Math attainment value ON
Gender stereotype: Math -0.22*** 0.03 -0.21 0.20*** 0.02 0.21 -11.44***
Science attainment value ON
Gender stereotype: Science -0.18*** 0.02 -0.17 0.13*** 0.02 0.13 -11.00***
Advanced math course-taking ON
Math attainment value 0.05*** 0.01 0.09 0.05*** 0.01 0.07 0.38
science attainment value 0.04*** 0.01 0.06 0.02 0.01 0.03 1.17
Advanced science course-taking 
ON
Math attainment value 0.01 0.01 0.01 0.02 0.01 0.03 -0.66
Science attainment value 0.08*** 0.02 0.10 0.07*** 0.02 0.09 0.47
Computer science course-taking 
ON
Math attainment value 0.05 0.03 0.06 0.01 0.02 0.01 1.12
Science attainment value -0.05 0.04 -0.05 0.05* 0.02 0.06 -2.93**

Girls Boys Z-Test Score
Unstd. SE RRR. Unstd. SE RRR.

Computing major ON
Advanced math course-taking 0.18 0.29 1.20 -0.08 0.19 0.92 0.75
Advanced science course-taking 0.15 0.26 1.17 0.41** 0.15 1.51 -0.85
Computer science course-taking 0.77*** 0.17 2.16 0.65*** 0.09 1.92 0.60
Math attainment value 0.22 0.25 1.25 0.21 0.12 1.23 0.05
Science attainment value 0.54 0.31 1.71 0.28* 0.12 1.32 0.78
Other STEM major ON
Advanced math course-taking 0.27* 0.13 1.31 0.10 0.11 1.11 0.92
Advanced science course-taking 0.61*** 0.09 1.83 0.46*** 0.10 1.59 1.27
Computer science course-taking 0.02 0.12 1.02 0.18 0.09 1.19 -0.94
Math attainment value 0.31*** 0.09 1.36 0.31*** 0.08 1.36 0.01
Science attainment value 0.58*** 0.09 1.79 0.38*** 0.10 1.46 1.49
Source. High School Longitudinal Study, Student Surveys, 2009 to 2016. N = 10,710.
Note. Totals are rounded to the nearest 10 to comply with IES restricted data procedures. The reference 
group for the outcome variable is non-STEM major. The unstandardized parameter estimates for paths 
towards major declaration are logits, which are not as intuitive as suggesting liner relationships. Relative 
risk ratios are used for interpretations. Unstd. = unstandardized coefficients. SE = standard error. Std. 
standardized coefficient. RRR. = relative risk ratio. Estimates of the correlations between math and science 
attainment values are 0.19 for girls and 0.24 for boys. Estimates of the correlations between advanced math 
and science course-taking are 0.36 for girls and 0.42 for boys. Z-test scores are used to identify gender 
differences between parameter estimates. *** p < 0.001, ** p < 0.01, * p < 0.05.
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stereotypes of science abilities and subsequent course-taking. When taking into account 
the effect of math and science attainment values, students’ gender stereotype of math and 
science abilities no longer significantly predicted their computing-related course-taking (β 
ranged from 0 to 0.02, p value ranged from 0.99 to 0.07) and major declaration (relative risk 
ratios were close to one).

Gender Differences in Predictions on Computing Outcomes

We identified a significant gender pattern in terms of the association between students’ sci-
ence attainment value and computer science course-taking (Z = -2.93). Boys’ science attain-
ment value was positively associated with their computer science course-taking (β = 0.05, 
p = 0.01), while girls’ science attainment value had no association with their computer sci-
ence course-taking (β = -0.05, p = 0.17). Boys’ advanced science course-taking (RRR = 1.51, 
p = 0.01) and science attainment value (RRR = 1.32, p = 0.02) positively affects their choice 
to major in computing, but the same is not true for girls. Girls’ advanced science course-
taking and science attainment value had no effect on their choice to major in computing. 
In sum, we found evidence of process-level gender effects on students’ academic choices 
within computing pathway.

Discussion

The gender pattern of the computing major selection aligns with national workforce trends: 
women are acutely underrepresented in computing as compared to other STEM fields 
(Cheryan et al., 2015); indeed, only 26% of professional computing occupations in 2021 and 
22% of all computer and information sciences degrees in 2020 are held by women (National 
Center for Women & Information Technology (NCWIT), 2022). The present study revealed 
mixed findings on the motivational and curricular factors that might contribute to such 
gender differences within computing pathway. The mean-level results suggest that gender 
differences exist in students’ motivational beliefs in math and science and course-taking 
in computer science but not in students’ advanced math and science course-taking. The 
process-level results show that the relationships between motivational beliefs, course-taking 
and major declaration do not vary by gender, except for the relationship between science 
attainment value and computer science course-taking. Gender gaps in entry to computing 
fields are particularly associated with gender differences in computer science course-taking 
results we observe. Still, gender disparities in math and science motivational beliefs carry 
long-term effects, including on students’ postsecondary major selection.

Gender Patterns in Motivational Beliefs

Gender stereotypes are salient in students’ views towards competence of gender groups 
in math and science. Consistent with Heymand and Legare’s (2004) findings, we found 
that both girls and boys held ingroup preferences for math and science competence. This 
suggests that endorsement of gender-ability stereotypes might not be the major cause for 
the gendered motivation to study math and science and to persist within STEM pathways. 
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Recent research suggests that gender-interest stereotypes presented in children’s school 
environments as early as elementary education may contribute to the growing gender dis-
parities in computing pathways (Cheryan et al., 2015). Their experimental follow-up study 
indicated that the presence of gender-interest stereotypes decreased girls’ interest in partici-
pating in computer science activities, while boys’ field interest remained intact (Master et 
al., 2021). Additionally, the slightly higher gender stereotype favoring males in math and 
science in the computing major group might suggest potential direction of self-selection. 
Past research did not find significant gender stereotypes regarding job opportunities in com-
puting among major and non-major students (Beyer et al., 2003). However, there is a scar-
city of literature exploring the appealing factors for computing-major students in relation to 
gender stereotypes.

The findings also suggest that gender disparities in math- and science-related motivations 
exist before high school – we found that boys perceived tasks in math and science domains 
as more aligned with their personal identity than girls did when they entered high school. 
While gender differences in the perceived math and science attainment values might not be 
as strong at the beginning of high school, students’ gender stereotypes of math and science 
abilities indeed biased their math and science attainment values. This study support prior 
studies in highlighting the importance of students’ identity-based motivations in fostering 
college students’ long-term commitment to pursuing STEM and computing (Estrada et al., 
2018; Wofford et al., 2022). Therefore, it is important to consider the gender differences 
within these STEM-domain-specific motivational beliefs in order to understand the factors 
that contribute to the reproduction and reinforcement of the gender gap in students’ comput-
ing and other STEM pathways.

Gender Differences in Prediction of Motivational Beliefs

Consistent with prior findings (Else-Quest et al., 2013; Perez-Felkner et al., 2019; Jiang et 
al., 2020), the relationship between math attainment value and math-related choices and 
achievement did not vary by gender. On the other hand, science attainment value positively 
predicted computer science course-taking for boys but showed no effect for girls. While 
girls hold similarly high values of science attainment as boys, these motivations may show 
weaker associations with course-taking decisions for girls in computing and subsequently 
affect their pathways into college computing. These differences extend to postsecondary 
pursuits and may be attributed to classroom experiences within male-dominated majors 
where women have more difficulty connecting with peers and professors when compared to 
men or find less enjoyment or comfort within these spaces (Lawson, 2021).

Another explanation for the differential predictions of science attainment value on major 
declaration may be attributed to the distinctiveness of each STEM subfield. Students could 
hold differing perceptions of their personal values in physics, chemistry, biology as well 
as other technology-related science fields. Prior research has suggested that there may be 
nuanced gender differences in motivational beliefs by STEM subfield. For example, Jansen 
et al. (2014) measured high school students’ science self-concept multi-dimensionally in 
terms of physics, chemistry, and biology. They found that girls tended to have lower phys-
ics and chemistry self-concepts which did not correspond to their actual achievement when 
compared to boys. Further, Sáinz and Eccles (2012) found that computing-specific self-con-
cept rather than math self-concept mediated the relationship between gender and intention 
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to pursue computing careers. Future research focusing on field-specific motivational beliefs 
should further examine gender patterns within distinct STEM fields.

Gendered Motivational and Curricular Pathways Towards Computing Majors

This study found distinct motivational and curricular paths towards declaring a comput-
ing major when compared to other STEM majors. Neither motivational beliefs nor high 
school course-taking in math and science domains predicts students’ decision to major in 
computing during college. On the contrary, both motivational beliefs and course-taking 
significantly predicted students’ declaration of non-computing STEM majors—except for 
advanced math course-taking. The insignificant effect of AP math course-taking on interest 
in both computing and these other STEM majors aligns with previous research, where tak-
ing AP mathematics courses (other than AP Calculus) were insufficient to increase students’ 
interest in entering STEM-related fields (Sadler et al., 2014; Warne et al., 2019).

In contrast, the present study shows that students’ computer science course-taking in 
high school increased their probability of selecting a computing major in college. Johnson 
and Muse (2017) found that women who passed high school calculus tended to pursue a 
“realistic” field of study (such as computing) but tended to choose such fields less than their 
otherwise similar men. Notably, women enrolled in postsecondary computing courses are 
more likely to continue to pursue more computing courses when they perceive themselves 
to be skilled and challenged in these courses (Milesi et al., 2017). Finally, given that girls 
took fewer computer science courses than boys in high school, but these courses enhanced 
computing major declaration, gender disparities in college computing might be alleviated 
by promoting girls’ participation in high school computer science curriculum.

Limitations

Our study has several limitations. Firstly, the longitudinal nationally representative data 
used does not include computing-related motivational beliefs (i.e., gender-ability stereo-
types and attainment values) that might be more important for postsecondary computing 
outcomes; observable data existed only for mathematics and science beliefs. Related, we 
can only assess how gender shapes high school students’ postsecondary pathways for those 
identifying as boys or girls, yet students identifying outside this binary do engage in com-
puting education and careers (Casper et al., 2022). Finally, this quantitative study investi-
gates the consequences of stereotypes which can preclude girls’ and women’s motivation to 
pursue computing careers (see Cheryan and Plaut, 2010); the environments which perpetu-
ate those stereotypes—and the effects of gender-computing stereotypes—are beyond the 
scope of this study because of data limitations.

Future Directions

The present study suggests that domain—i.e., computing vs. mathematics—matters in how 
students associate their mathematical, science, and computing-related motivational beliefs 
with their behaviors. Scholars should attend to how gendered ability-related stereotypes 
and motivational patterns in a specific domain may shape gender disparities within a male-
dominated STEM field like computing (Ehrlinger et al., 2018; Friend, 2015). Interventions 
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developed to enhance students’ science-related motivational beliefs might not be as effec-
tive in reducing gender disparities in these fields if they do not tap into students’ motivations 
for and associations with computing specifically. For example, students’ motivations may be 
less tied to mathematics versus creativity, as computing continues to evolve as a field (Sax et 
al., 2015, 2017). Indeed, future research may investigate the influence of computing-specific 
motivational beliefs, along with other dimensions associated with computing motivation, as 
well as the role of high school computing course-taking, on students’ subsequent decision 
to major in computing.

Theoretical and Methodological Directions

While this study contributes to our understanding of how identity-based motivational 
beliefs during high school relate to college students’ declared majors, future research could 
elucidate the extent to which these associations persist throughout college and shape degree 
completion. Additionally, future studies could investigate the factors that shape these beliefs 
and values during the gender-role socialization process prior to high school. One-third of 
our nationally representative analytic sample initially enrolled in two-year colleges, which 
are increasingly a focus in postsecondary research on STEM but less so on specific fields 
like computing nor to gender equity in these fields3. Emerging work on the experiences of upward transfer 

computing students suggests promising directions for future research (Blaney & Barrett, 2022; 
Blaney & Wofford, 2021). Accordingly, subsequent studies may also attend to outcomes 
including associates’ degree field, completion, and upward transfer (Park et al., 2021; Wang 
et al., 2018).

Intersectionality

We recognize that gender does not function in isolation but rather intersectionally with other 
social identities which may experience at times multiple and compounding forms of margin-
alization in STEM fields (see Ireland et al., 2018; Perez-Felkner et al., 2019). For example, 
Chan et al. (2020) observed that students’ experiences of race and social class together affect 
their engagement in out-of-school STEM programs and STEM aspirations. Moreover, Afri-
can American women interested in STEM fields navigate stereotyped computing environ-
ments in middle school (e.g., Thomas et al., 2017) and continue to encounter challenges in 
postsecondary curricular environments (e.g., Rankin et al., 2019; Ross et al., 2020). McGee 
and Martin (2011) found that while Black mathematics and engineering students may be 
motivated to counter negative stereotypes, stereotype management can shift towards more 
intrinsic motivations to continue their career pathways. Future research may examine the 
effects of stereotypes and role identities on postsecondary STEM major choice—and com-
puting major choice specifically—while considering the multiple intersections between 
gender and race/ethnicity, socioeconomic status, and other social characteristics and identi-
ties (see Lehman et al., 2017; Rodriguez and Lehman, 2017).

3 Perez-Felkner et al. (2019) investigated the relationship between gender, institutional type, and STEM clus-
ters but not distinct conceptual framing, data, and methodology.
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Policy and Practice

Reducing postsecondary gender disparities in computing is not possible without first attend-
ing to pre-college experiences and specifically the structural issues that drive gender-ability 
stereotypes within these fields prior to college (see e.g., Flores et al., 2017 on the explanatory 
power of pre-college factors on postsecondary racial disparities). Within secondary schools, 
enhancing gender-inclusive computer science learning may involve capacity building for 
computer science educators and engagement of students’ teachers, counselors, and parents/
guardians. Postsecondary institutions—via their faculty, STEM teacher training programs, 
and community partnerships—may be well positioned to leverage outreach and recruitment 
resources by implementing and/or supporting programs that support development of com-
puting skills and encourage computer science course-taking, to alleviate gender disparities 
in computing fields across student demographic backgrounds (e.g., COMPUGIRLS, etc. 
(Scott & White, 2013) (see Perez-Felkner et al., under review). Breaking down gender bar-
riers at the secondary level may support women’s computing-related identity development 
and motivations to pursue postsecondary computing degrees.
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