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ABSTRACT
With the enhancement of people’s living standards and the rapid
evolution of cyber-physical systems, residential environments are
becoming smart and well-connected, causing a signi�cant raise in
overall energy consumption. As household appliances are major
energy consumers, their accurate recognition becomes crucial to
avoid unattended usage and minimize peak-time load on the smart
grids, thereby conserving energy and making smart environments
more sustainable. Traditionally, an appliance recognition model is
trained at a central server (service provider) by collecting electricity
consumption data via smart plugs from the clients (consumers),
causing a privacy breach. Besides that, the data are susceptible to
noisy labels that may appear when an appliance gets connected to
a non-designated smart plug. While addressing these issues jointly,
we propose a novel federated learning approach to appliance recog-
nition, called FedAR+, enabling decentralized model training across
clients in a privacy-preserving way even with mislabeled train-
ing data. FedAR+ introduces an adaptive noise handling method,
essentially a joint loss function incorporating weights and label
distribution, to empower the appliance recognition model against
noisy labels. By deploying smart plugs in an apartment complex,
we collect a labeled dataset that, along with two existing datasets,
are utilized to evaluate the performance of FedAR+. Experimental
results show that our approach can e�ectively handle up to 30% con-
centration of noisy labels while outperforming the prior solutions
by a large margin on accuracy.

CCS CONCEPTS
• Computing methodologies! Supervised learning by clas-
si�cation; • Hardware! Energy metering.
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1 INTRODUCTION
Energy consumption in residential buildings is increasing rapidly
with the growth of electrical household appliances. According to
the United States Energy Information Administration (US EIA) [32],
22% of the total energy consumption in 2020 is accounted by resi-
dential buildings, requiring dedicated e�orts to reduce the usage
of electricity. A practical solution is encouraging consumers to use
electric appliances e�ciently, which involves recognizing the ap-
pliances uniquely based on their consumption patterns recorded
via appliance-wise smart plugs [26, 29, 34]. By having information
about currently running appliances, the consumers can minimize
the electricity usage by restricting high power appliances (e.g.,
electric heater, air conditioner) during peak hours [4]. Moreover,
the utility company (service provider) may also incentivize the
consumers by o�ering direct monetary bene�t through a dynamic
pricing policy [4, 11] and indirect bene�t through an appliance-wise
breakage of consumption bill. Literature indicates that appliance
recognition has been a building block in wide range of impor-
tant cyber-physical applications such as load forecasting [2, 37],
occupancy detection [13], and energy management in smart build-
ings [20, 24, 28]. However, the current appliance recognition ap-
proaches have disregarded the following two practical issues.

(i) Privacy preservation of consumers’ data – As recognition model
is essentially a machine learning model, it requires a large amount
of labeled training data which, in general, collected from many
consumers at a central server (service provider). Sharing of data
brings in a privacy concern to the consumers as the data may be
misused by adversaries via theft or burglary, and by detecting home
occupancy [1, 13]. Hence, the consumers may be reluctant to upload
the data and as a consequence, the existing approaches [5, 19, 29,
33, 34, 39] would fail to train the recognition model, indicating a
need of a model that can be trained collaboratively at the consumer
side without sharing any data.

(ii) Mislabeled training data – Some data samples may appear
with wrong (noisy) labels when an appliance is mistakenly con-
nected to a non-designated smart plug.1 Moreover, a compromised
consumer may also �ip the labels in its local dataset with an intent
to poison the model and to receive monetary bene�ts from a rival
service provider. As prior studies [19, 29, 33, 34] do not incorporate
any noisy-label handling mechanism, they can not withstand mis-
labeled training data. Slightly on a di�erent track, learning with
noisy labeled data has been a topic of great interest in computer

1Assuming that each smart plug, during deployment, is designated to a speci�c appliance
to collect the labeled data automatically.
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vision; however, the proposed solutions [6, 8, 16, 31, 35, 36] mainly
relied upon visual features, thus their applicability to time series
data (generated from smart plugs) is discouraged.

Although there exist some works [25, 28] on privacy-preserving
appliance recognition using Federated Learning (FL), they do not
consider the presence of noisy labels in training data. In this paper,
we address this important challenge by building an appliance recog-
nition model in a collaborative manner using mislabeled training
data while preserving consumers’ privacy. To the best of our knowl-
edge, this is the �rst work to tackle the practical issues of privacy
preservation and mislabeled training data jointly for appliance
recognition in residential environments.
Contributions: Major contributions of this paper are given below:

• With a goal to train an appliance recognition model across
distributed consumers using their local private data, we pro-
pose a novel federated learning approach, called FedAR+,
in presence of a coordinating server (service provider). The
server initializes the training by broadcasting the model (i.e.,
weights) to all the clients (consumers); each client re-trains
the model using its local data and dispatches the updated
model back to the server for aggregation. By repeating the
above steps for some iterations, FedAR+ produces a general-
ized model without exposing the consumers’ data.

• FedAR+ incorporates an innovative aggregation function to
deal with the biasing problem caused due to non independent
and identically distributed (non-iid) data across clients.

• We propose an adaptive noise handling method that strategi-
cally exploits a joint loss function, incorporating the weight
parameters and label distributions, to enable the learning
with mislabeled training data.

• Finally, we collect real data by deploying smart plugs in three
houses in an apartment complex, to experimentally validate
the performance of FedAR+. Moreover, to demonstrate its
e�cacy, we also employ two widely used datasets from the
same domain. The overall results show that FedAR+ outper-
forms prior solutions by a large margin while achieving an
accuracy of more than 86% even when the concentration of
noisy labels in training data is as high as 30%.

The paper is organized as follows. Section 2 reviews the related
work while Section 3 proposes our federated learning approach,
FedAR+. Section 4 discusses the dataset preparation steps and elab-
orates the causes for the presence of noisy labels. Section 5 builds
the underlying appliance recognition model with a noise handling
method. Section 6 evaluates the performance of FedAR+ and com-
pares with prior solutions. Finally, Section 7 concludes the paper.

2 RELATEDWORK
This section discusses the notable and relevant existing works to
position our proposed approach.

2.1 Appliance recognition
Many works exist on appliance recognition as it has been a build-
ing block to energy monitoring applications. For example, in [20],
a lightweight appliance recognition model is developed for en-
ergy management in smart buildings. The authors in [5] attempted
to identify a malfunctioning appliance and its operating states

by leveraging electricity consumption patterns. While a line of
works [19, 34, 39] involved in distinguishing the appliances from
one to another, the work in [29] aimed to identify load pro�le as
intermittent, continuous, or phantom, for energy management in
smart home settings. Slightly di�erent from above works, Codispoti
et al. [3] presented a -active neighbors based appliance recognition
approach to learn from unlabeled data.

Although the aforementioned prior approaches achieve good
performance using machine learning and deep learning algorithms,
their performance heavily relies on the assumption that the training
data are correctly labeled and do not contain any noisy labels.
However, in practice, satisfying this assumption requires additional
care from the consumers during data collection (via smart plugs [3, 5,
34, 39]), restricting their �exibility and thereby the consumers may
be reluctant to adopt such solutions. Besides that the recognition
model should not fully rely upon the consumers’ actions rather it
should be robust enough to leverage mislabeled training data.

2.2 Learning with noisy labels
Learning with mislabeled (noisy labeled) data has been a widely
studied problem in computer vision and image processing because
the manual labeling is time consuming and costly [17, 30]. The
work in [8] presented an iterative learning approach to re-label
the noisy-labeled training samples while in another work [31] the
authors estimated correct labels against noisy ones during training
by jointly optimizing the model parameters and intermediary cor-
rected labels. In [35], a symmetric learning approach is proposed
to simultaneously address the presence of noisy labels and over-
�tting problem of Deep Neural Networks (DNNs). A distillation
process leveraging knowledge graph is introduced in [16] to learn
with noisy labels. Recently, a meta-learning approach is developed
in [36] to directly learn correct labels from the training data. How-
ever, as these approaches mostly work around visual features, they
can not o�er an accurate solution to mislabeled time series data.

2.3 Federated learning
In last few years, a new learning paradigm, Federated Learn-
ing (FL) [22] has received an unprecedented attention because
it facilitates collaborative model training without compromising
clients’ privacy. Prior works illustrate the e�ectiveness of FL in
real-world applications such as next word prediction [9], keyword
spotting [14], and visual object detection [18]. However, FL is yet to
be explored for the appliance recognition models that are otherwise
trained at the central server by collecting data from multiple clients
(consumers) and revealing the client’s privacy. FL o�ers an e�ective
solution to this problem by keeping the data locally with the clients
while allowing participation in collaborative training. Recently, a
few studies [25, 40] have also attempted to apply FL in smart energy
management to enable load forecasting and load disaggregation at
consumer side. In another work [28], the authors presented an FL
approach to identify o�ce plug load, however they do not consider
the presence of noisy labels in the training data, which we aim to
address in this work. Besides all, the application of FL to appliance
recognition needs to be investigated from robustness perspective
in the presence of noisy labels.
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3 FedAR+ APPROACH
This section presents an overall setup of our FL approach, FedAR+,
with multiple clients2 and a common remote server, as depicted in
Figure 1. In appliance recognition scenario, the consumer acts as a
client and the service provider works as a remote server. A client
may have many appliance-speci�c smart plugs, each connected
to a designated appliance to measure the appliance’s electricity
consumption and transfer that data to a local in-house computing
device. To initialize training, the server dispatches an appliance
recognition model to all the clients. Each client retrains the model
using its local data and sends the weight updates to the server for
aggregation. Next, the aggregated (or global) model is sent back to
the clients. By repeating these steps for a certain number of global
rounds, the model eventually converges to an optimal solution.

In FedAR+, we build a deep learning model for appliance recog-
nition which requires a large amount of data for training. At the
beginning of the deployment, the clients may not have su�cient
data and thereby the model would need �rst few rounds to get
stabilized. To avoid �ow disruption, we discuss dataset preparation
steps using the power consumption data (generated from smart
plugs) in Section 4; and in subsequent Section 5, we present appli-
ance recognition model with noise handing method. We formulate
an aggregate function to alleviate the bias that might be introduced
by the clients having substantially larger dataset than the others.

Server

Client 1 Client 2 Client K

 

Updated model  : Aggregator

Local updates

data
local

data
local local

data

: Smart plug

Figure 1: Overview of FedAR+. At each client, a noise handling method is
incorporated to enable the model learn with mislabeled data.

Let  denote the number of clients collaborating in the learning
to build the recognitionmodel. LetD 9 = {X ,Y} be the local dataset
with 9C⌘ client, which is collected over a �xed period of time, where
1  9   . At each update round, the objective of the remote server
is to learn optimal weight parameters \\\ by minimizing an empirical
loss function as

argmin
\\\

n
F (\\\ ) =  

⇣
{5 9 (\\\ )}1 9 

⌘o
, (1)

where  (·) is an aggregate function and 5 9 (·) is the local objective
function used by the 9C⌘ client. We also propose a noise handling
method, in Section 5.2, to facilitate learningwithmislabeled training
data at the client.

2A client refers to a low-end computing device (e.g., personal computer) installed at
consumer’s house to collect data from smart plugs.

3.1 Local model update at client
FedAR+ uses second-order method to perform local updates at the
client. Particularly, we adopt canonical Newton’s method of the
form �r2 (5 9 )�1r5 9 [23] as it improves the convergence rate and
reduces the accumulation of errors. Given the weight parameters
\\\ [C ] of the global model at update round C , the client 9 �rst computes
the local gradient as

6 9[C ] = r5
9 �\\\ [C ] � . (2)

The client next computes the second-order gradient (Hessian ma-
trix) at \\\ [C ] as follows

⌘ 9[C ] = r
2 5 9

�
\\\ [C ]

�
. (3)

Now, the local model at the client 9 is updated as

\\\ 9[C+1] = \\\
9
[C ] � [ (⌘

9
[C ] )
�16 9[C ] (4)

and [ is the learning rate. Finally, the local updates are sent back to
the server for aggregation.

3.2 Global model update at server
The problem of aggregation at the server becomes quite simple if we
assume that all the clients have independent identically distributed
(iid) data, and it can be easily solved by using FedAvg [22] as

 
⇣
{5 9 (\\\ )}1 9 

⌘
def=

 ’
9=1

# 9

# C>C0;
\\\ 9[C+1] , (5)

where # 9 is the size of D 9 and # C>C0; = # 1 + # 2 + · · · + #⌘ . How-
ever, this assumption is unrealistic for applying FL to appliance
recognition as the clients may have di�erent number of appliances
(essentially non-iid data). With FedAvg, the model may be biased to-
wards the clients who have substantially larger dataset than others.
To deal with this situation, we introduce an aggregation function

 
⇣
{5 9 (\\\ )}1 9 

⌘
def=

 ’
9=1

1
 

· \\\ 9[C+1] . (6)

With the new aggregation function, each client would receive an
unbiased model regardless of number of appliances the client pos-
sesses. Algorithm 1 summarizes the major steps of FedAR+ with  
clients for ) number of global rounds.

Algorithm 1: FedAR+
Initialization:

1 The server builds and broadcasts a recognition model to all  clients.
2 for C  1 to) do

Local model update at round C :
3 for each client 9 2 {1, 2, · · · , } do

/* \\\ 9[C ] is the weight parameters of local model */

4 Obtain \\\ 9[C+1] using Eq. 4. // the underlying loss function is
formulated in Section 5.2.

5 Dispatch \\\ 9[C+1] to the server.

Global model update using aggregation at round C :
6 \\\ [C+1] =

Õ 
9=1

1
 · \\\ 9[C+1] , using Eq. 6.

7 Broadcast \\\ [C+1] to the clients
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• Model convergence: The global recognition model (at the server)
advances as the training progresses and it is said to be converged
when stops improving. We study the model convergence, under
the standard assumptions on the function F (·) [22], in terms of
the optimality gap X = F (\\\ [) ] ) � F (\\\⇤), where ) denotes the
maximum number of rounds and \\\⇤ denotes the weights of the
optimal model. Ideally, X ⇡ 0 for a su�ciently large ) . Assuming
 clients, FedAR+ can achieve $ ( 1p

 )
) convergence for our DNN

model (i.e., non-convex optimization problem). Our experimental
results, reported in Section 6.4.1, show that the global model con-
verges in ) = 30 rounds (with 50 local iterations on each clients at
each round) with 10 clients even when there exist 30% noisy labels.

4 DATASET PREPARATION
In this section, we discuss data collection and preprocessing for
creating a labeled dataset. We utilize the power consumption data
for recognizing appliances such as refrigerator, electric kettle, tele-
vision, etc. The data are collected by connecting the appliance to
power socket through a designated smart plug that provides a se-
quence of time stamped readings at a preset sampling rate.

4.1 Data collection
We collect power consumption data from three di�erent households
(within an apartment complex) for six common household appli-
ances: refrigerator, microwave oven, television, washing machine,
air conditioner, and mixer grinder. Each appliance is connected to
a designated smart plug that transmits the readings to a in-house
data collector (e.g., personal computer) at 1Hz. As we collected the
data for a period of one month from each house, we got total 18
time series (i.e., six time series from each of the three households).

D��������� 1 (T��� S����� �� C����������). It is a tem-
poral sequence of data points collected over a period of time. Let
- = {G1, G2, · · · , G=} denote the Time Series of power Consumption
(TSC) readings from a designated smart plug, where = is the total
number of data points collected during the entire experiment; and G8
denotes a reading taken at time C8 , where 1  8  = and C8�1 < C8 .

We construct the dataset using TSCs of di�erent appliances.
As the appliance can change its state from ON to OFF or vise-
versa several times, each TSC (denoted by - ) includes readings
corresponding to both the states. We �rst separate out only the
subsequences (of - ) that correspond to ON states occurred at dis-
tinct time steps along - . Then for each separated subsequence, an
appliance footprint is computed and stored as an instance of the
respective appliance.

4.2 Data Preprocessing
Let us �rst discuss the terminologies for a better illustration of data
preprocessing.
• Switch point: For a TSC - = {G1, G2, · · · , G=}, a time instance C is
said to be a switch point if the following conditions hold: (i) The
di�erence X (C) = |- (C) � - (C � 1) | > q1, a prede�ned threshold,
where - (C) and - (C � 1) denote the power consumption readings
at time C and C � 1, respectively; and (ii) The rate of change in
power readings XA (C) = X (C)/- (C) > q2, another threshold. For
setting an appropriate value for q1 and q2, we visualized several

time series for di�erent appliances including both low power (e.g.,
television) and high power (e.g., air conditioner). We observed that
with q1 = 30 watts and q2 = 0.2 (i.e., 20%) jointly, the switch points
can be detected correctly for most commonly available appliances.
Further, as the thresholds are set empirically, their values are subject
to change according to the appliance’ operating environment (such
as brand and power rating standards of di�erent countries). With
small thresholds, wemay get frequent false positive; on the contrary,
some ON states may get lost with large thresholds.
• Steady point: A time point C along the time series - is said to be
steady if XA (C) < q2.
• Steady period: Given a time series - , a steady period is a subse-
quence -C :< = {GC+1, GC+2, · · · , GC+<} if all of its time points are
steady. Here, C and< respectively denote a switch point and the
length of the steady period, where C < (= �<).

D��������� 2 (A�������� F��������). For a given steady
period -C :< , corresponding to the ON state of the appliance, we de�ne
the appliance footprint as:

-05 = {-C :< (8) � -C :< (8 � 1) | 1  8  <}, (7)

where -C :< (8) denotes the 8C⌘ data point of steady period.

We compute single-order di�erences between the consecutive
data points to capture subtle �uctuations, revealing better identi�-
able patterns than those with higher-order statistics. Moreover, the
single order di�erence automatically scales down the values to a
smaller range, eliminating the need of normalization. The appliance
footprint essentially represents the power consumption pattern of
the appliancewhen it is active. For a given TSC- = {G1, G2, · · · , G=},
the extraction of footprints includes following three steps:

(1) Identify switch points in - under thresholds q1 and q2.
(2) For each identi�ed switch point C , follow two sub-steps: (a)

search for a steady period of length < after C . Let -C :< =
{GC+1, GC+2, · · · , GC+<} be a steady period obtained after the
switch point C . (b) if - (C) � - (C +<) < 0, then the steady
period -C :< corresponds to ON state of the appliance; other-
wise OFF state.

(3) The steady periods corresponding to ON states, are used to
obtain appliance footprints; each of which along with its
label (name of the appliance) is stored as an instance.
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Figure 2: Illustrating switch points, steady points, and steady period, in a TSC
of a refrigerator for a window of 15minutes.
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Figure 2 illustrates a TSC of a refrigerator with identi�ed switch
points, steady points, and steady period. The obtained steady peri-
ods are used to compute the appliance footprints. Upon obtaining
the footprints by processing TSCs of all the appliances, we perform
padding on shorter instances to make all the instances of equal
length and store them in the dataset.

4.3 Presence of noisy labels
During local data collection at the client, some TSCs may get asso-
ciated with noisy (wrong) labels due to following reasons:

• From deployment perspective: An appliance (say �1) mistak-
enly got connected to a non-designated smart plug that was
marked to connect with some other appliance (say �2). Con-
sequently, the generated TSC receives a noisy label�2, creat-
ing several mislabeled instances (wrong appliance footprints)
in the training dataset. It is true that such noisy labels may be
avoided at the cost of additional care from the consumers, how-
ever it is not preferable rather the model should be robust
against mislabeled training data.

• From security perspective: A malicious consumer (or compro-
mised client) may attempt to inject a wrong label intention-
ally, to gain some incentive from a rival service provider.
As a consequence, the client’s local model would generate
corrupted local updates, which eventually would diminish
the performance of global model.

D��������� 3 (N���� �����). Let D = {(X ,Y)} be a dataset
where X 8 2 X is the 8C⌘ instance associated with a class label Y8 2
Y = {~1,~2, · · · ,~⇠ }, the set of all⇠ classes (appliances). The labelY8

is said to be noisy if either of the following holds: (i) Y8 is mislabeled
as other class label, i.e., Y8 2 {Y � ~2 }, where ~2 denotes the correct
class label of X 8 , or (ii) Y8 is an arbitrary class label, i.e., Y8 8 Y.

5 APPLIANCE RECOGNITION MODEL
This section presents a deep neural network (DNN) for appliance
recognition that trains collaboratively on locally collected data. The
choice of DNN is inspired by its success at recognition tasks with
a rich set of learnable features. The network (model) learns from
a training dataset and predicts the class label of a new instance.
Additionally, we propose an adaptive noise handling method to
enable the model learning with mislabeled data at the clients.

5.1 Base model overview
We build a DNN with three convolutional layers (connected se-
quentially) followed by a �atten and a Fully Connected (FC) layer,
as shown in Figure 3. Let D = {X ,Y} be a local training dataset
available with a client. The model takes a training dataset D and
yields a set of class probabilities using a softmax function. The
convolutional layers are all one-dimensional, each consisting of 128
�lters of size 1 ⇥ 1 with input shape (1,<), where< denotes the
number of data points in each instance (i.e., appliance footprint).
Considering there exist total⇠ labels inD, we use⇠ neurons at the
FC layer. Finally, a softmax function is applied on the output of FC
layer to get the class probabilities.

Now, we present mathematical formulation of our base model
(i.e., excluding the noise handling method). Given the datasetD, the
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Figure 3: An overview of the appliance recognition model in FedAR+.

recognitionmodel mainly attempts to learn amappingH : X ! Y ,
which usually expressed as

H(X ,\\\ ) = fY (\\\X ), (8)

where f (·) is a softmax function and Y = {~1,~2, · · · ,~⇠ } is a set of
di�erent class labels inD. The function f (·) can transform a vector
into probability distribution over its elements. For a vector I 2 R⇠ ,
the softmax function is:

f2 (I) =
eI2Õ⇠
2=1 eI2

= ? (2 |I) 82 2 {1, 2, · · · ,⇠}.

Rewriting Eq. 8,

H(X ,\\\ ) = ? (Y|X ,\\\ ) . (9)

To this end, the appliance recognition problem with base model,
at the client, can be observed as a local optimization problem

5 (\\\ ) = argmin
\\\

�
L

�
Y,H(X ,\\\ )

� 
, (10)

whereL(·) is an underlying empirical loss function. The base model
employs cross-entropy loss function as widely used in DNNs for
solving recognition problems [7]. The cross-entropy loss function
for D with # instances, is given as

L
�
Y,H(X ,\\\ )

�
= � 1

#

#’
8=1

⇠’
2=1
I(Y8 , ~2 ) log H

�
X
8 ,\\\

�
,

= � 1
#

#’
8=1

⇠’
2=1
I(Y8 , ~2 ) log ?

�
Y
8 = ~2

��X 8 ,\\\
�
, (11)

where I(Y8 ,~2 ) = 1 if Y8 is ~2 , and 0 otherwise.

5.2 Noise handling method
To enable the base model learning from mislabeled training data,
this section proposes a noise handling method that learns correct
labels by iteratively updating the label distributions probabilistically,
which is signi�cantly di�erent from the existing approaches [6, 15,
38] where constant distributions were used in all the iterations.
In our method, the model optimizes label distributions along with
weight parameters during training, and therefore the local objective

82



ICCPS ’23, May 9–12, 2023, San Antonio, TX, USA Ashish Gupta1 , Hari Prabhat Gupta2 , and Sajal K. Das1

function (i.e., Eq. 10) can be written as

5 (\\\ ) = argmin
\\\ ,Y3

�
L

�
Y3 ,H(X ,\\\ )

� 
, (12)

where Y3 denotes the label distributions among ⇠ classes for all #
instances of the dataset D. To solve Eq. 12, we introduce a noise
handling method consisting of three steps explained below.

5.2.1 Learn weight parameters \\\ . First, we train the base model
with cross-entropy loss function (Eq. 11) on the training dataset
D. By optimizing the loss function, the model learns the weight
parameters \\\ . Due to noisy labels, the learned weights may be far
from optimality; nevertheless, they can certainly be used for the
initial estimation of the label distributions over the training data.

5.2.2 Estimate label distributions Y3 : Given the trained model,
the label distributions Y3 can be estimated for all instances of D
through validation as Y3 = H(X ,\\\ ). For each instance, the model
provides probability distribution of labels using learned\\\ . The label
with highest probability is assigned to the instance. In general, if the
assigned label is the same as true, then its probability should di�er
substantially from that of other labels. However, this statement
holds only if the training dataset does not contain any noisy label.
Hence, our method utilizes the distribution instead of only the
highest probable label while computing the loss.

5.2.3 Optimize \\\ and Y3 : This step aims to optimize Y3 using
Kullback-Leibler (KL) divergence [21] and subsequently �ne-tuning
the parameters \\\ with optimized version of Y3 . Thus, the loss
function of the base model, de�ned Eq. 11, can be replaced by

L
�
Y3 ,H(X ,\\\ )

�
=

1
#

#’
8=1
 !(Y83 k H(X 8 ,\\\ )), (13)

where  !(Y83 k H(X 8 ,\\\ )) =
⇠’
2=1

Y
8,2
3

log

 
Y
8,2
3

H2 (X 8 ,\\\ )

!
.

Let us �rst compute the gradient of L(·) for all 8 and 2 as

3L
�
Y3 ,H(X ,\\\ )

�
3Y8,2

3

= 1 +
⇠’
2=1

log

 
Y
8,2
3

H2 (X 8 ,\\\ )

!
, (14)

and then update Y3 by

Y3 = Y3 � [
3L

�
Y3 ,H(X ,\\\ )

�
3Y3

, (15)

where [ is the learning rate. Once Y3 stabilizes, the model stops
learning. With learned Y3 , the weight parameters \\\ are then �ne
tuned for a �xed number of local iterations usually preset by the
server before initializing the training. Finally, the updated weights
\\\ are collected by the server from all the clients for aggregation.
Note that the proposed noise handling method is adaptive as it
automatically adapts to mislabeled training data without requiring
any additional mechanism to correct the labels beforehand.

5.3 Recognition
Given the trained model and a testing TSC (generated from the
smart-plug), we �rst need to extract appliance footprints using the
preprocessing steps (discussed in Section 4.2) to prepare input to
the model. Let \\\⇤ be the optimized model, obtained after ) global
rounds, dispatched from the server to all the clients to predict the

class label (or recognize an appliance) using the footprint. Figure 4
illustrates the recognition process using DNN-based model.

model
Extract

footprints

Optimized

oven,
e.g., refrigerator, 

Appliance

(power usage readings)
TSC

· · ·

Figure 4: Appliance recognition using the optimized recognition model \\\ ⇤.

Let X 0 8 D be a testing instance (an appliance footprint) for
which the class label is to be predicted. The client utilizes the model
with \\\⇤ to �rst compute the posterior class probabilities and then
assigns the highest probable class label to X

0 as expressed below

Y
0 = argmax

~2
{f~2 (\\\⇤X 0)}. (16)

Time complexity of our appliance recognition model mainly de-
pends on the operations at the convolutional layers. As the model
comprises three layers with identical con�gurations, the time com-
plexity is$

�
<(Õ3

8=1 ?8�1 · B28 · 58 ·>28 )
�
[10], where< is the length of

the instance (i.e., appliance footprint), ?8�1 is the number of input
channels, B8 and 58 are respectively the number and size of �lters,
and >8 is the spatial size of output feature vector at 8C⌘ layer. As
the model is trained across di�erent clients, which can be done in
parallel, FedAR+ would impose some communication overheads
due to aggregation after each FL round.

6 PERFORMANCE EVALUATION
We evaluate the performance of FedAR+ on a dataset collected
from three di�erent households, and also on two existing datasets,
namely UK-DALE [12] and Tracebase [27], using accuracy, preci-
sion, recall, and �1-score. To demonstrate the superiority of our
proposed approach, we compare it with three existing ones and
report the results using the considered metrics and execution time.

6.1 Datasets
6.1.1 Collected dataset. Data collection is done by deploying
appliance-speci�c smart plugs in three di�erent houses for a pe-
riod of one month. The power consumption data are collected at a
sampling rate 1Hz. After preprocessing (discussed in Section 4.2),
we get a dataset of 840 instances for six di�erent appliances in-
cluding refrigerator, microwave oven, television, washing machine,
air conditioner, and mixer grinder. Each instance corresponds to a
footprint of a particular appliance. We call this dataset as appliance
footprints in residential buildings (Res-AF).

6.1.2 UK-DALE dataset [12]. It contains power consumption data
of various household appliances from �ve houses for a period of
one year. The data are recorded at a sampling rate 1/6 Hz. For
the experiments, we selected �ve appliances including refrigerator,
washing machine, kettle, dishwasher, and boiler.

6.1.3 Tracebase dataset [27]. It contains more than 1000 power
consumption traces collected from 15 di�erent houses. One trace
corresponds to a time series of readings taken for one particular
appliance over a window of 24 hours. The readings are reported at
an average sampling rate of 1 Hz. In [27], a Measurement and Ac-
tuation Unit (MAU) is developed to collect the power consumption
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traces of the appliances. MAU is installed between wall mounted
power outlet and power plug of the appliance. For experimental
evaluation, we selected �ve appliances having su�cient number of
traces (instances) in the dataset. The �ve selected appliances are
refrigerator, microwave oven, kettle, television, and dishwasher.
• Preprocessing: In the existing datasets, the readings are collected
for a continuous period and thus the resulting time series include
both ON and OFF states of the appliances. We therefore preprocess
these datasets to prepare them for training and testing the proposed
recognition model. By following the preprocessing steps described
in Section 4.2, we obtained 1, 860 and 930 instances (i.e., appliance
footprints) in UK-DALE and Tracebase datasets, respectively.

6.2 Experimental setup
Prior to conducting experiments, we split each dataset into two
parts: training with 80% and testing with 20% instances. The train-
ing data are further split into 10 non-iid chunks using Dirichlet
distribution with parameter U = 0.9 and 20% overlapping. These
chunks are then provided to  = 10 clients. It is to note that each
client may have di�erent number of instances per class due to non-
iid data. Further, to produce noisy labels in the training datasets,
we �ip the labels of a �xed percentage (indicated in the respective
results) of instances across all class labels.

We simulated the FedAR+ algorithm with a server and 10 clients
in Python programming language through Tensor�ow libraries. In
the implementation, we chose the following parameters: optimizer =
‘sgd’, activation = ‘relu’ with each convolutional layer, and learning
rate [ = 0.1. The number of FL global rounds are set based on the
results obtained after rigorous experiments (see Section 6.4.1). Since
our recognition model consists of only three convolutional layers,
each with 128 �lters, it does not over�t with small training datasets.

6.3 Performance metrics
The following metrics evaluate the performance of FedAR+.

• Precision (P): It is the ratio of the number of correctly clas-
si�ed instances of an appliance G to the total number of
instances classi�ed as G . Precision indicates a quality aspect
of the appliance recognition model.

• Recall (R): It is the ratio of the number of correctly classi�ed
instances of an appliance G to the total number of instances
actually belonging to G . Recall measures the completeness
and relevance of the recognition model.

• F1 score: It is a harmonic mean of precision and recall, and is
computed as 2⇥P⇥R

P+R .
• Accuracy: It is the percentage of correctly classi�ed instances
of the testing dataset.

6.4 Experimental results
Through experiments, we seek answers to the following six ques-
tions: (1) How does the accuracy of the model improve over rounds
in FedAR+? (2) How does the concentration of noisy labels in-
�uence the testing performance? (3) What is the appliance-wise
performance of the model? (4) How does FedAR+ scale to the num-
ber of clients? (5) How e�ciently does FedAR+ outperform the
prior approaches? The results are presented below.

6.4.1 Training accuracy over FL rounds. At �rst, we analyze the
training accuracy of the recognition model over 35 rounds with
di�erent concentrations (from 5% to 30%) of noisy labels in the
training dataset. We set the local epochs to 50 at the clients in
all the experiments. Figure 5 demonstrates the results for 5% and
30% cases. The results clearly indicate that the model is able to
achieve more than 92% of training accuracy at 30C⌘ round, even
when 30% training instances are mislabeled. As initial model is far
from the optimality in �rst few rounds, it shows low accuracy for all
datasets. The accuracy increases rapidly up to 15C⌘ rounds and starts
stabilizing afterwards. As no change is observed in the accuracy
between 30C⌘ and 35C⌘ rounds, we report all the subsequent results
with 30 FL rounds and 50 local epochs at the clients.
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Figure 5: Training accuracy of the proposed appliance recognition model with
the noise handling method in FedAR+.

6.4.2 Testing performance with varying concentration of noisy labels.
In Figure 6, we report the impact of noisy labels with varying con-
centrations on the performance of the model. As the concentration
of noisy labels increases, the accuracy and F1 score decrease, which
seems bit obvious but, such a drop is substantial for the base model
compared to the one with noise handling method. For instance,
in case of Tracebase dataset, with just 5% noisy labels, the base
model immediately loses more than 4% accuracy. On the �ip side,
for Res-AF dataset with 30% noisy labels, the model gains 14.2% on
accuracy by utilizing the proposed noise handling method, indicat-
ing the e�ectiveness of the proposed approach. For all the datasets,
FedAR+ achieves an accuracy of more than 84% and F1 score of
above 81% up to 30% of noisy labels; however, the performance
drops sharply afterwards, signaling the noise handling upper limit
of our approach. With higher concentrations, the reason for such
a drop is the increase in confusion while di�erentiating between
correct and noisy labels. Similar observations can be made from F1
score, shown in parts (b), (d) and (f) of Figure 6.

6.4.3 Appliance-wise performance of the recognition model. Next,
we analyze the appliance-wise performance results of the model
with noise handling method for Res-AF and Tracebase datasets in
Tables 1 and 2, respectively. The results are reported using precision,
recall, and F1 score evaluation metrics for 5% and 30% concentration
of noisy labels. The results indicate that the appliances “television”
and “refrigerator” were identi�ed with more than 90% of recall even
when the concentration of noisy labels is 30%, witnessing the level
of robustness of FedAR+.We also observed that the precision values
are marginally (1 ⇠ 4 approx.) di�er from the recall ones, indicating
the ability of FedAR+ to manage the good balance between the
relevance and completeness of the appliance recognition model.
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(c) Accuracy for UK-DALE dataset
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(e) Accuracy for Tracebase dataset
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Figure 6: Performance results of FedAR+ using the recognition model with
and without noise handling method.

Table 1: Appliance-wise performance of themodelwith noisy handlingmethod
for Res-AF dataset using precision (P), recall (R), and F1 score (F).

5% Noisy labels 30% Noisy labels
P (%) R (%) F (%) P (%) R (%) F (%)

Refrigerator 90.4 94.0 90.8 90.2 89.8 90.0
Microwave oven 92.8 92.7 93.5 85.3 85.5 85.4

Television 93.1 94.4 94.7 90.5 90.8 90.6
Washing machine 89.0 91.4 89.1 87.2 80.4 87.8
Air conditioner 89.3 92.7 90.7 80.1 82.4 81.2
Mixer grinder 91.3 90.0 90.5 83.8 85.2 84.5

Average 90.8 92.5 91.5 85.8 87.3 86.5

Table 2: Appliance-wise performance of themodel with noise handlingmethod
for Tracebase dataset using precision (P), recall (R), and F1 score (F).

5% Noisy labels 30% Noisy labels
P (%) R (%) F (%) P (%) R (%) F (%)

Refrigerator 91.1 94.2 92.6 86.3 91.5 88.6
Microwave oven 88.4 91.2 89.7 81.2 89.1 84.9

Kettle 86.7 88.2 87.4 80.3 85.2 82.6
Television 88.1 93.2 90.5 85.3 92.1 88.5
Dishwasher 87.2 90.1 88.6 81.1 87.9 84.3
Average 88.3 91.4 89.8 82.8 89.2 85.7

6.4.4 Scalability analysis. The scalability of our FedAR+ algorithm
can be measured in terms of the number of clients it can support
without a�ecting the performance of the model. We investigate
the scalability by increasing the number of clients. Figure 7 shows
the training loss of the global model over FL rounds for di�erent
number of clients. The model converges (i.e., loss stabilizes) after
20 rounds when only 50 clients exist, however it needs 10 more

rounds with 100 to 500 clients because of higher diversity with
more number of clients. It indicates that by increasing the number
of FL rounds, our approach can be easily scaled to large number of
clients without a�ecting the convergence.
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Figure 7: Training loss of the model in FedAR+ with 0% noisy labels.

Furthermore, we conducted some experiments with 0% and 30%
noisy labels and reported the accuracy (obtained by the model
trained for 30 rounds) in Table 3 for both Res-AF and Tracebase
datasets. The results demonstrate the scalability of FedAR+ to 500
clients with a marginal drop in accuracy that cab be easily recovered
by training the model for more FL rounds.

Table 3: Accuracy results for the model trained over 30 rounds.

No. of
Clients

Res-AF dataset Tracebase dataset
0% Noisy
labels

30% Noisy
labels

0% Noisy
labels

30% Noisy
labels

10 93.9 88.1 93.5 87.3
50 94.1 87.9 92.1 86.2
100 91.8 85.2 91.2 84.8
500 92.5 84.7 91.1 83.3

6.5 Comparison with existing approaches
We compare FedAR+ approach with three state-of-the-art solu-
tions including two best performing plug-load identi�cation models
from [28] and Household Appliance Recognition through Bayes
classi�cation (HARB) [39]. The work [28] leverages FL to train
four di�erent deep learning models; we pick two best performers,
long-short term memory (LSTM) and convolutional neural network
(CNN), named as LSTM-AR and CNN-AR for the convenience. Sim-
ilar to the proposed approach, LSTM-AR and CNN-AR models are
also trained across 10 clients (possessing non-iid data) over 30 FL
rounds with aggregation at every 50 local epochs. On the other
hand, HARB [39] follows a central learning paradigm. As the exist-
ing solutions do not incorporate any noise handling method, we
consider two variants of the proposed approach: 1) FedAR: without
noise handling and 2) FedAR+: with noise handling, to make fair
comparison. Table 4 shows the comparison results using precision,
recall, �1 score, and accuracy. We make following observations:

• Both FedAR and FedAR+ gain over the existing solutions on
all the evaluation metrics by a large margin (approximately
15% ⇠ 27%) even in the presence of 30% noisy labels.

• Prior FL models, LSTM-AR and CNN-AR, perform much
worse than HARB, indicating their inability to learn from
non-iid data. On the contrary, our FL approach FedAR out-
performs HARBwith a substantial margin of more than 5% in
case of no noisy label and more than 12% in case of 30% noisy
labels, showing the e�ectiveness of learning with non-iid
data using the aggregation function (de�ned in Eq. 6).
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Table 4: Performance comparison of the proposed approach with the existing ones using accuracy (in %). [P: Precision, R: Recall, F: �1 score, A: Accuracy]

Datasets Approaches
Concentration of noisy labels in training data

0% 10% 20% 30%
P R F A P R F A P R F A P R F A

Res-AF

HARB [39] 84.2 87.2 85.7 89.5 81.2 83.1 82.1 84.9 72.4 67.2 69.7 70.2 56.1 60.1 58.0 58.6
LSTM-AR [28] 60.2 59.2 59.7 60.5 59.2 55.2 57.1 60.9 52.2 50.2 50.7 51.1 43.2 45.7 44.4 46.6
CNN-AR [28] 55.2 53.4 54.2 57.3 52.4 52.3 52.3 50.8 45.1 44.1 43.6 47.3 48.2 41.1 42.1 41.7

FedAR (Proposed) 92.4 93.8 93.1 94.4 90.1 87.5 88.8 89.1 82.1 79.5 80.8 81.5 73.6 72.4 73.0 73.4
FedAR+ (Proposed) 93.1 95.1 94.1 94.8 91.2 89.5 90.3 92.3 88.5 87.1 87.8 89.5 87.2 85.7 86.4 88.4

UK-DALE

HARB [39] 87.6 89.5 88.5 90.5 85.7 81.2 83.4 83.5 70.2 68.6 69.4 72.5 60.2 56.1 58.1 59.2
LSTM-AR [28] 59.1 58.9 59.0 60.5 56.3 59.4 57.8 58.9 45.6 47.3 45.9 43.2 43.2 41.1 42.1 43.6
CNN-AR [28] 56.1 50.1 53.0 54.8 50.6 59.2 59.9 51.2 43.5 43.2 41.3 42.2 36.4 38.1 37.7 41.9

FedAR (Proposed) 92.4 91.2 91.8 94.9 87.2 89.2 88.2 90.3 75.2 76.1 75.6 81.1 76.2 70.3 73.1 74.2
FedAR+ (Proposed) 94.1 90.5 92.3 95.1 94.8 90.2 92.4 93.5 86.4 87.7 87.0 90.8 84.2 80.9 82.5 87.2

Tracebase

HARB [39] 87.4 88.1 87.7 90.8 78.6 82.1 80.3 80.3 71.5 68.2 69.8 70.3 58.2 52.1 55.0 57.4
LSTM-AR [28] 56.2 60.3 58.2 59.5 58.2 60.2 59.2 59.9 50.5 51.2 49.3 51.2 45.2 45.4 45.0 42.6
CNN-AR [28] 49.2 50.8 50.0 51.2 48.7 52.4 50.5 50.5 43.6 38.7 41.1 43.3 37.4 36.9 40.1 39.2

FedAR (Proposed) 94.2 92.8 93.5 93.5 91.7 90.7 91.2 90.2 80.5 78.7 79.6 80.8 70.1 71.9 71.0 72.7
FedAR+ (Proposed) 94.6 91.4 93.0 93.8 93.7 90.5 92.1 92.9 89.2 86.3 87.7 88.9 87.5 84.3 85.9 86.1

• Evenwith 30%mislabeled data, FedAR+ secured the accuracy
and F1 of more than 85% on all the datasets, validating the
success of our noise handling method. It is worth to notice
that the performance gain of FedAR+ over other methods
increases signi�cantly with the surge in noisy labels.

6.5.1 IID versus non-IID data. Considering 10 clients in FL setup,
we now report the test accuracy results in Figure 8 with iid (or
uniformly) and non-iid data (simulated using Dirichlet distribution).
To make fair comparison, this experiment does not include noisy
labels. For both datasets, FedAR+ shows its capability to learn with
non-iid data by achieving almost equal accuracy as with iid data,
however it is not true for prior approaches; for instance, LSTM-AR
loses 16.4% accuracy when clients possess non-iid training data.
Although the performance of prior approaches seem to improve
signi�cantly with iid data, they could never reach beyond 81%,
which is easy to observe from part (b) of the results.
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Figure 8: Comparing accuracy results obtained with iid and non-iid data (with
0% noisy labels) across clients in FL based approaches.

6.5.2 Execution time. Finally, we compare the execution time of
FedAR+ with the existing approaches. Here, the execution time
indicates the total time taken by an approach to classify the entire
testing dataset. To better understand the comparison, we compute
the percentage di�erence ()38 5 5 ) in the execution times of any
existing approach from FedAR+, as follows:

)38 5 5 =
)G �)�43�'+

)G
⇥ 100,

where )G denotes the execution time of an existing approach G .
Figure 9 shows the comparison results in terms of )38 5 5 , which is
an average over 50 executions. It is apparent that )38 5 5 is positive

in all the cases, indicating that FedAR+ is faster (10.5% to 16.8%)
than the existing approaches.
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Figure 9: Comparison results using percentage di�erence in the execution
time of the existing approaches from FedAR+.

7 CONCLUSION AND DISCUSSIONS
This paper proposed an FL approach, FedAR+, for identifying house-
hold appliances using their electricity consumption patterns. The
approach dealt with two important issues related to the appliance
recognitionmodel: 1) presence of noisy labels in the training dataset,
and 2) model building at the client (consumer) side without sharing
local data to the server. By employing deep learning and incorporat-
ing a noise handling method, we developed an accurate appliance
recognition model that can learn from mislabeled training data. By
deploying smart plugs in an apartment complex, we collected a
real world dataset to validate the e�ectiveness of FedAR+. Through
rigorous experimental analysis, we demonstrated the superiority
of FedAR+ over existing ones and showed that it can e�ectively
accommodate up to 30% noisy labels while compromising the accu-
racy only slightly. Considering the availability of su�cient training
data, FedAR+ can be scaled to large number of clients, enabling its
adoption to real-world energy monitoring applications.

In future, we plan to work on theoretical guarantees of FedAR+
and scale the solution to distinguish di�erent operating states of
the appliances. We will also explore the robustness aspects of the
model under the presence of alien and malicious clients.

Alien appliance: An alien (unseen) appliance is one for which
there exists no instance in the training dataset to build the recogni-
tion model. Identifying alien appliances is an interesting problem
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as it gives �exibility to the consumer to introduce new household
appliances without providing any additional information to the
service provider. We plan to develop e�ective strategies for extract-
ing semantic information, thereby enhancing the capability of our
recognition model in FedAR+.

Malicious client: A client with wrong intention may try to attack
the model by altering its weight parameters when transmitted from
the client to server. Such malicious client can a�ect the performance
of the global model in FedAR+. We plan to detect the malicious
clients who send incorrect parameters by either adding random-
noise or backdoor patterns in the dataset. Our idea is to exploit
the history of each client’ gradients with an appropriate similarity
measures (e.g., cosine distance) to distinguish malicious clients from
the normal ones and exclude their parameters from the aggregation.
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