
Learning Motion Trajectories from Phase Space Analysis of the

Demonstration

Paul Gesel1, Momotaz Begum1, Dain La Roche2

Abstract— A major goal of learning from demonstration
is task generalization via observation of a teacher. In this
paper, we propose a novel framework for learning motion
from a single demonstration. Our approach reconstructs the
demonstrated trajectory’s phase space curve via a linear piece-
wise regression method. We approximate dynamics of trajectory
segments with linear time invariant equations, each yielding
closed form solutions. We show convergence to desired phase
space states via an energy-based analysis. The robustness of
the model is evaluated on a robot for a sequential trajectory
task. Additionally, we show the advantages that the phase space
model has over the dynamic motion primitive for a kinematic
based task.

I. INTRODUCTION

Learning motion trajectories from demonstration data is

probably the most matured area in robotics research on

learning from demonstration (LfD) [5], [3]. The major goal

of trajectory LfD is robust generalization: encoding motion

data in such a way that a similar motion can be generated in

new contexts. A robust trajectory learning algorithm should

have the following properties: 1) be able to learn from

few demonstrations, 2) be robust against spatial perturba-

tion (e.g change in goal and/or starting position, obstacle

avoidance) and temporal perturbations (e.g. an unplanned

obstacle prevents reaching the goal position [9]), and 3) be

able to satisfy various kinematic constraints of the demon-

strated trajectory (e.g. certain velocities need to be achieved

at certain positions). These properties enable a model to

adapt learned trajectories to different environmental contexts,

while preserving the key characteristics of the demonstrated

motion. A flurry of research has been done on learning

complex motions from human demonstrations [1], [15], [14],

[2]. None of the existing trajectory LfD algorithms, however,

exhibits all three properties mentioned above.

This paper proposes a novel approach of motion learning

from a single demonstration that we name the phase space

model (PSM). The PSM approximates second order trajec-

tory dynamics via a linear piece-wise method. The core of

the PSM is the phase space transition function (PSTF) that,

given an initial phase space state (position, velocity), always

converges to a specified phase space state. This enables the

PSM to learn various kinematic constraints in the demon-

strated trajectory. We develop and implement the necessary

conditions to ensure that the PSTF converges to the desired

phase space state. Through a piece-wise combination of

1 Computer Science Department, University of New Hampshire,
Durham, USA {pgesel,mbegum}@cs.unh.edu 2 Department
of Kinesiology, University of New Hampshire, Durham, USA
{Dain.LaRoche}@unh.edu

PSTFs, an approximation of the demonstration is reproduced.

We expand the PSM to multiple dimensions and propose a

method to achieve trajectory synchronization. The PSM is

inherently a time-independent method (since all analysis are

performed in the phase space) capable of dealing with spatial

and temporal perturbations.

II. BACKGROUND

Two methods of encoding low-level motion data have

gained tremendous popularity in the LfD literature: a prob-

abilistic approach [17] and a dynamic system approach [7],

[8].

The probabilistic approach of trajectory learning in [17]

creates a statistical representation of the demonstrated mo-

tion trajectories through Gaussian-mixture modeling (GMM).

This approach learns a time-dependent trajectory distribution

from several demonstrations of the task. The model and its

variants have been used in teaching skills to robots, such as

goal-directed pick-n-place actions [17], [4] and pouring from

cups [2]. The common criticisms of GMM-based trajectory

learning are: the requirement for multiple demonstrations,

the inability to adapt to different goal positions and avoid

obstacles online, and the inherent time-dependence. Being

a time-dependent approach, GMM-based trajectory learning

requires a heuristic to re-index time to generate a new tra-

jectory in the presence of temporal perturbations [9]. Stable

Estimator of Dynamical Systems (SEDS) is dynamic system

theory variant of the GMM-based trajectory learning that

demonstrates robustness in temporal and spatial perturbations

[10]. However, in the SEDS framework, learning a new

motion requires solving a constrained optimization problem.

Additionally, like GMM-based trajectory learning, SEDS

requires multiple trajectory demonstrations.

The dynamic motion primitive (DMP) exploits the stable

point-attractor dynamics of a spring-mass system to en-

code motion data [8]. The stable dynamics naturally enable

generalization in new contexts, such as on-line trajectory

adaptation and obstacle avoidance [7], [8], [18]. DMPs have

been used to teach various skills to LfD-powered robots, e.g.

locomotion [13], T-ball batting [16], playing tic-tac-toe [14],

and drumming [6]. DMPs can encode joint trajectory motion

from a single demonstration. The phase variable, however,

in the DMP is a function of time, which implicitly makes

DMP a time dependent approach. Accordingly, the issue of

temporal re-indexing, as discussed earlier in this section,

occurs when reproducing trajectories learned with DMPs.

Another critical limitation of DMP in learning trajectories

is that DMP only considers the temporal constraint of the

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

978-1-5386-6027-0/19/$31.00 ©2019 IEEE 7055

Authorized licensed use limited to: University of New Hampshire. Downloaded on September 22,2023 at 20:01:33 UTC from IEEE Xplore. Restrictions apply.

task (i.e., it tries to reach the goal within a specified time).

There are many tasks, however, that require other kinematic

constraints to be satisfied. For example, learning to throw

a ball a specific distance requires a specific velocity and

position combination. Modifications of the original DMP for-

mulations have been proposed to model such behavior [12],

[11]. These modifications, however, will fail if a trajectory

needs to execute multiple instances of such behavior.

The PSM proposed in this paper overcomes several short-

comings of existing trajectory LfD algorithms. The PSM

learns trajectories from only one demonstration. Goals in

the proposed PSM are defined in the phase space and the

PSTF ensures stable transition between any two phase space

states. This enables the model to inherently learn kinematic

constraints in the demonstrated trajectory. Finally, the model

is able to deal with spatial and temporal perturbations (e.g.

change in start position, online obstacle avoidance, and goal

adaptation).

This paper describes the theoretical foundation of the PSM

model along with validation results for two tasks: learning

to feed a person and learning to roll a cylinder a certain

distance.

III. THE PROPOSED APPROACH

The proposed PSM employs linear time invariant systems

to model segmented trajectory dynamics via a phase space

analysis.

A. Fundamental of phase space

Phase space is an n-dimensional manifold that represents

all possible states of a dynamical system. Each point in the

phase space indicates the state of the system at a specific

time. Tracing the time evolution of the state variables from

an initial state generates a phase space curve. The direction

traveled in phase space at any given state is determined by

the velocity function. d~η /dt = V (~η) = (dx/dt, dv/dt)
The velocity function is a vector field in the phase space that

is defined for all possible states.

Fig. 1 shows a phase space representation of two dynamic

systems: an under damped and a critically damped spring-

mass system. Both are models of second order mechanical

systems. In this case, a three dimension phase space is plotted

Fig. 1: Phasemap of two mechanical dynamical systems. On

the left is under damped and on the right is critically damped

with position, velocity, and acceleration. The position and

velocity are independent state variables, while the accelera-

tion is depended. Thus, a second order dynamic system of n
independent variables can be fully represented in a (n + 1)
dimensional phase space.

B. Phase space transition function

We define a PSTF as a dynamic system that reaches

a desired phase space state (position, velocity), given an

initial state. We exploit the properties of conservative vector

fields to develop such a function. A Conservative dynamic

system is a special type of system that conserves certain

properties along its phase space curve, e.g. second order

mechanical systems, without damping, conserve energy. A

potential function exists for these types of systems,

∇f = F

where f is the system’s potential function and F is a

conservative vector field. Given a potential function, the

gradient theorem shows that the work input from the vector

field is path independent.

W =

∫

b

a

F · ds =
∫

b

a

∇f · ds = f(b)− f(a) (1)

The work, W , is the system’s energy input. For a one

dimensional unit mass point particle, (m = 1), the energy

input is stored in the form of kinetic energy (KE) according

to equation (2).

KE =
1

2
ẋ2 (2)

In equation (1), F could be any conservative vector field.

We chose a linear model in the following form,

ẍ = kx+ c (3)

where k, and c are constants. Equation (1) is evaluated with

F = kx + c over the interval [xc, xn] to find the kinetic

energy input.

KE = k

(

x2
n
− x2

c

)

2
+ c (xn − xc) +

ẋ2
c

2
(4)

Here, ẋc is the current velocity, xc is the current position,

and (ẋn, xn) is the next phase space state to be reached. We

chose a value for c such that the velocity boundary condition

ẋn is met at x = xn.

c =
ẋ2
n
− ẋ2

c

2 (xn − xc)
+ k

x2
n
− x2

c

2 (xn − xc)
(5)

Since equation (3) is a linear second order system, a closed

form solution exists. Applying the boundary condition that

x = xc and ẋ = ẋc at t = 0, generates the following closed

form solution.

x =

(

xc +
ẋc√
k
+ c

k

2

)

e
√
kt+





˙−xc√
k
+ xc +

c

k

2



 e−
√
kt− c

k

(6)

It should be noted that equation (6) meets boundary condi-

tions only if the ẋn has the same sign as (xn−xc) or is zero.

It doesn’t make sense to reach xn coming from xc with a

velocity in the direction of xc.

Equation (6) meets starting and ending boundary condi-

tions, while maintaining k as a free parameter. For this rea-

son, we denote equation (3) as a PSTF. An appropriate value

of k in a PSTF can produce trajectories that approximate the

7056

Authorized licensed use limited to: University of New Hampshire. Downloaded on September 22,2023 at 20:01:33 UTC from IEEE Xplore. Restrictions apply.

dynamics of a demonstration. For example, fig. 2 shows how

different values of k generate a wide variety of trajectories.

In fig. 2, each trajectory represents a unique PSTF.

Fig. 2: Trajectories for different values of k in equation (6)

with xc = 0, xn = 1 and (a) ẋc = 0, ẋn = 0. (b) ẋc = 0,

ẋn = 1.

C. Piece-wise PSTFs

The approach of the PSM is to break the phase space into

segments and then approximate each segment with a PSTF.

The first and second numerical derivatives of the demonstra-

tion are required to reconstruct its phase space curve. It is

difficult to get an accurate derivative approximation for noisy

data, consequently, we apply a Gaussian kernel smoothing to

the demonstration before modeling it. The projection of the

three-dimensional phase space onto the position-acceleration

plane can then be modeled with piece-wise PSTFs.

To clarify the piece-wise behavior, equation (3) can be

re-written as follows,

ẍ = knx+ cn (7)

where n is the segment index. Fig. 3 shows the acceleration

of a reaching motion vs. the position. The reaching motion

is segmented into three spatial intervals: [0, .3], [.3, .8], and

[.8, 1]. On the first interval [0, .3], k1 is evaluated in equation

(7) with the x1 = .3 and ẋ1 = 1.6. Once the phase space

state (x1, ẋ1) is reached, the second segment on the interval

[.3, .8] is evaluated with k2. The process is repeated for each

PSTF until the trajectory is complete. In general, a trajectory

segmented into N pieces has N values of k and N + 1
phase space states (x, ẋ). The demonstrated trajectory can be

reproduced via evaluating the value of k that corresponds to

the current spatial interval in equation 7. To allow for online

goal adaptation, the spatial intervals are expressed relative

to the goal’s location. Changing the goal location during the

reaching motion only changes x and cn. The change in goal

position may also cause the current spatial interval being

evaluated to change, hence, changing kn as well.

For this paper, we chose the number of segments (N)

manually and uniformly distributed cut points in time. One

PSTF is required for each time the velocity crosses zero,

hence, the lower bound on N is equal to the number of times

the demonstrated trajectory changes direction. In general, the

accuracy of the trajectory reproduced by the PSM increases

as the number of segments increase.

Fig. 3: The reaching motion demonstration is shown in black

and the model in blue. On the left is the demonstrated

trajectory and the PSM approximation. On the right is the

acceleration-position relationship and the PSM’s linear piece-

wise approximation.

D. Stability

We term the stability of a PSFT as its property to reach a

desired velocity (e.g ẋn) at a desired position (e.g. xn) from

an initial phase space state. Equation (7) does not generate

a stable trajectory for all values of kn. The stability depends

on both the initial velocity and kn. Through an energy-based

analysis, we determine the necessary condition to achieve

stability. If each individual PSTF is stable, then we can

consider the entire trajectory as stable.

Fig. 4 shows the kinetic energy of three trajectories on the

interval [0,1]. These three cases need to be considered: the

blue curve with k < 0 and min(KE) > 0, the orange curve

with k > 0 and min(KE) = 0, and the red curve with k > 0
and min(KE) < 0. The blue curve is stable, the red curve

is unstable, and the orange curve is an unstable equilibrium.

The resulting curves were generated with equation (4). Any

curve where k < 0 is periodic. The amplitude corresponds

to the difference between the two intersection points of the

KE curve with zero, hence, k < 0 is a stable trajectory. This

is shown by evaluating k < 0 in equation (6), which results

in a sinusoid with a constant offset. If k > 0, the result is

an exponential function and inherently unstable. Locations

where the KE curve intersect zero represent turnaround

points, since kinetic energy can’t be negative, e.g. the red

curve will stop at 0.25 and then accelerates toward negative

infinity. The orange curve intersects zero with a slope of zero,

which results in an unstable equilibrium point. The necessary

condition to ensure stability is that the minimum KE on the

interval [xc, xn] must be greater than zero.

Since the KE curves are quadratic, only one minimum

exists and it can be solved for analytically. The derivative of

the KE with respect to x is set equal to zero and solved to

find xmin,

knxmin + cn = 0

xmin = −cn/kn (8)

where xmin is the value of x that corresponds to the mini-

mum kinetic energy. If xmin is on the interval [xc, xn], then

the value of kn needs to be adjusted, such that, KE(xmin) >
0. A constraint on kn is determined by evaluating equation

(4) at xmin.

7057

Authorized licensed use limited to: University of New Hampshire. Downloaded on September 22,2023 at 20:01:33 UTC from IEEE Xplore. Restrictions apply.

KE(xmin) > 0

kn

(

(−cn/kn)
2 − x2

c

)

2
+ cn (−cn/kn − xc) +

ẋ2
c

2
> 0 (9)

Equation (9) is quadratic and can be solved to produce an

upper boundary on k, denoted kmax.

kmax <
−B +

√
B2 − 4AC

2A

A =
x2
n
− x2

c

(xn − xc)
xc − x2

c
−
(

x2
n
− x2

c

2 (xn − xc)

)2

B =

(

x2
n
− x2

c

(xn − xc)

ẋ2
n
− ẋ2

c

(xn − xc)
− 2

ẋ2
n
− ẋ2

c

(xn − xc)
xn + ẋ2

c

)

C = −
(

ẋ2
n
− ẋ2

c

(xn − xc)

)2

Fig. 4: Kinetic energy vs. position for three trajectories from

equation (4). The following are the parameters for each

curve: the blue curve: k = −24 ,
ẋ
2

c

2 = 3, the orange curve:

k = 24 ,
ẋ
2

c

2 = 3 , and the red curve: k = 32 ,
ẋ
2

c

2 = 3

The analysis thus far has assumed that the initial velocity

is in the direction of xn, however, this may not always

be the case in the presence of perturbations, e.g. a person

physically pushes the robot arm away from the goal position.

The orange curve in fig. 4 starts at a kinetic energy of 3,

which can have either positive or negative velocity. If the

velocity is away from xn, then it will approach negative

infinity.

One additional stability constraint is applied to ensure the

PSTF reaches the phase space state (xn, ẋn) in the case

that the ẋc in the wrong direction. Equation (7) needs to be

adjusted to equation (10).

ẍ =

{

knx+ cn ẋ ≥ xn−xc

|xn−xc|
m ẋ < xn−xc

|xn−xc|
(10)

In equation (10), m is a positive constant. If the velocity

is in the direction away from xn, a constant acceleration

is applied, until the velocity reaches zero. The value of m
influences how much overshoot in the negative direction the

trajectory will have and can be tuned to the specific robot’s

dynamics.

E. Synchronizing multiple dimensions

One approach to achieve multidimensional trajectories is

to model each dimension separately with piece-wise PSTFs.

The problem occurs when one of the dimensions experience

perturbations, causing the trajectory to become out of sync.

A grasping task requires that the robot gripper comes in at

a certain angle. If the Cartesian dimensions x, y, and z get

out of sync, the robot gripper will approach the goal at the

wrong angle. Despite its time-independent nature, the PSM

can deal with situations that require timing constraints.

Equation (6) can be re-written as a function of its deriva-

tive and then inverted to solve for t as a function of x.

x =
ẋ√
k
+ 2





˙−xc√
k
+ xc +

c

k

2



 e−
√
kt − c

k

t =
log
(

˙−xc√
k
+ xc +

c

k

)

√
k

−
log
(

x− ẋ√
k
+ c

k

)

√
k

(11)

The time that the nth segment takes to complete can be

calculated by substituting xn for x, cn for c, and kn for k
in equation (11).

tn =
log
(

˙−xc√
kn

+ xc +
cn

kk

)

√
kn

−
log
(

xn − ẋn√
kn

+ cn

kn

)

√
kn

(12)

The PSM uses a piece-wise combination of equation (10),

consequently, the total time to trajectory completion is the

sum of the time it takes to complete each segment as shown

in equation (13).

te =

N
∑

n=0

tn (13)

Each dimension has its own te, which quantifies the progres-

sion through each dimension. To synchronize each dimen-

sion, trajectories with smaller te values should be slowed

down to let the others catch up. We denote the largest te as

tE and adjust equation (10) again.

ẍ =

{

knx+ cn − T ẋ(tE − te) ẋ ≥ xn−xc

|xn−xc|
m ẋ < xn−xc

|xn−xc|
(14)

T is essentially a breaking term and is handpicked in our

implementation. In general, it needs to be large enough, such

that, the trajectories closer to the end of the movement slow

down enough for the ones further from the end to catch

up. The T ẋ(tE − te) term should be on the magnitude

of knx + cn term to have a significant impact. Fig. 5

shows a three-dimensional trajectory with and without the

time synchronization applied. Notice that the x component

starts with a lower te than both y and z. With the time

synchronization included, the x component waits for the

other components to approach 2.5 seconds until its start

moving at its original rate.

Another added benefit to having te = f(x, ẋ) is the ability

to couple different dimensions. This is particularly useful

for grasping task. A time-based function approximation can

7058

Authorized licensed use limited to: University of New Hampshire. Downloaded on September 22,2023 at 20:01:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Three dimensional trajectory with and without time

synchronization applied in the bottom and top plots, re-

spectively. The red, blue, and green curves are x, y, and z,

respectively. The components of the demonstrated trajectory

are shown in dashed lines.

model the robot’s end effector orientation R as a function of

any arbitrary dimension’s te. A standard control algorithm

can then be implemented to drive the error between the

reference orientation R = f(te) and the measured orientation

Rm to zero.

F. Collision avoidance

One of the strengths of the PSM is the ability to transition

from one phase space state to another with continuous

velocity. In the presence of an obstacle, if a collision is

detected, ẋn can be set to zero and xn can be set to xob,

where xob is the obstacle location. To limit the maximum

acceleration of the trajectory and required stopping distance,

kn is set to zero. Equation (14) is adjusted again to include

the obstacle avoidance condition,

ẍ =











knx+ cn − T ẋ(tE − te) ẋ ≥ xn−xc

|xn−xc|
m ẋ < xn−xc

|xn−xc|
−ẋ

2

c

2(xob−xc)
CD

(15)

where CD is a collision detected flag. For our implementa-

tion, if the line segment from the current position to the goal

position intersects an obstacle, then the collision condition

is triggered.

IV. EXPERIMENTS

We present results from a set of three experiments that

highlight the different properties of the proposed PSM. We

also compare the performance of PSM to DMP for a cylinder

rolling task. A video of the experiments has been submitted

with this paper.

A. Controller configuration

All trajectories were demonstrated to the robot via kines-

thetic teaching. Joint angles were recorded at 500 Hz for

each demonstration. The end effector position and orientation

were calculated with forward kinematics and then smoothed

with a Gaussian kernel to give a better approximation of

the numerical derivatives. One PSM was used for the x,

y, and z components of each demonstration. We coupled

the end effector orientation with the z component’s time

of completion parameter te. For each task, the trajectory

segment spatial intervals were defined with respect to the

goal position.

Fig. 6: Control diagram for the PSM integration with a robot

The control diagram in fig. 6 shows how the PSM was

integrated with a robot. The Cartesian state of the robot’s

end effect was fed into the PSM, which generated Cartesian

accelerations. An inverse kinematic controller then translated

the PSM output to joint angle accelerations (q̈) and sent them

to the robot.

B. Experiment 1: feeding assistant task

In this experiment, we teach the robot to perform a sequen-

tial task: feeding someone with a spoon. The task consists of

five trajectories, including: grasping a spoon, bringing it to a

neutral position, reaching for a bowl, performing a scooping

motion, and reaching to a person for feeding. Out of the

five trajectories, three require goal adaption (see fig. 7). The

position of the spoon, bowl, and user were varied to evaluate

the PSM’s ability to adapt different goal locations. The bowl

and spoon were placed at designated spots on a grid and the

participant’s face location was determined with a standard

face recognition algorithm. Fig. 7 shows the experimental

setup for this task. Four trajectories are shown in fig. 7:

reaching for the spoon in blue, returning to neutral in black,

reaching for the bowl in orange, and reaching for the user

in red. Goal positions were evaluated on a 3x3 grid for the

bowl placement, spoon placement, and user location as seen

in fig. 7, resulting in 45 different trajectory adaptations.

C. Experiment 2: collision avoidance

The setup for the second experiment was the same as the

feeding assistant task, except an obstacle was placed in the

path when the robot brought the spoon to the user. Fig. 8

shows a snapshot of the robot motion in the presence of the

obstacle. The robot was given the collision bounds of the

obstacle in advance. In this scenario, the robot’s y component

decreased its velocity due to the predicted collision. Once

the z component cleared the height of the obstacle, the y
component resumed its normal trajectory toward the user.

7059

Authorized licensed use limited to: University of New Hampshire. Downloaded on September 22,2023 at 20:01:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Variety of goal adaptations for three sub-task of the feeding process. The experimental setup is shown on the right.

Fig. 8: The obstacle free task is shown on the right and

obstacle avoidance task is shown on the left.

D. Experiment 3: cylinder rolling task

The task was to roll a cylinder from a designated start

position into a basket placed at the end of the table (see

fig. 9). Rolling the cylinder the correct distance required

the robot’s end effector to come in contact with it at a low

velocity and then accelerate to a high velocity. We evaluated

the PSM’s phase space based goal against the DMP’s time-

position based goal. This task is well suited for the PSM

because it requires the end effect to achieve several phase

space states along the trajectory.

Fig. 9: Experimental setup for the cylinder rolling task. The

cylinder is place at a designated starting point and the robot

attempts to roll the cylinder into the basket at the end of the

table.

Fig. 10 Shows the phase space curves for both the PSM

and DMP trajectories for this task from several stating

positions. The demonstration’s phase space curves are shown

in black. For this task, the cylinder is primary being rolled

in the y direction, hence, the y component velocity is crucial

in whether the cylinder will have enough momentum to roll

across the table. The PSM trajectories reach a maximum

Fig. 10: The three plots on the top show the phase space

curves produced by the PSM for several starting locations.

The three plots on the bottom show the phase space curves

for the DMP. The cylinder was place at y = 0.1 m.

speed of .5 m

s
at y = −.1 m, while the DMP trajectories

only reach a maximum speed of .4 m

s
. This results in task

failure for this experimental configuration.

V. CONCLUSION

The PSM proposed in this paper originated from the con-

cept of phase space in dynamical systems. We model trajec-

tories by first segmenting the phase space into spatial regions,

where position-acceleration relations are approximated with

linear second order systems. Spatial and temporal flexibility

of this approach is demonstrated through experiments with a

robot. The advantage of the PSM’s phase space based goal

compared to DMP’s time-position based goal is demonstrated

in the cylinder rolling task. The benefits of this framework

are robustness to temporal perturbation via time invariant

dynamics, multidimensional synchronization, learning from

a single demonstration, and the ability to transition between

phase space states with continuous velocity via PSTFs.

ACKNOWLEDGMENT

This work was supported in part by the National Science

Foundation (IIS 1830597).

REFERENCES

[1] S. R. Ahmadzadeh, R. Kaushik, and S. Chernova. Trajectory learning
from demonstration with canal surfaces: A parameter-free approach.
In Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International

Conference on, pages 544–549. IEEE, 2016.

7060

Authorized licensed use limited to: University of New Hampshire. Downloaded on September 22,2023 at 20:01:33 UTC from IEEE Xplore. Restrictions apply.

[2] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz. Trajectories
and keyframes for kinesthetic teaching: A human-robot interaction
perspective. In Proceedings of the seventh annual ACM/IEEE in-

ternational conference on Human-Robot Interaction, pages 391–398.
IEEE/ACM, 2012.

[3] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and autonomous systems,
57(5):469–483, 2009.

[4] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell.
Statistical dynamical systems for skills acquisition in humanoids. In
Proc. IEEE Intl Conf. on Humanoid Robots (Humanoids), Osaka,
Japan, 2012.

[5] S. Chernova and A. L. Thomaz. Robot learning from human teachers.
Synthesis Lectures on Artificial Intelligence and Machine Learning,
8(3):1–121, 2014.

[6] A. B. D. Pongas and S. Schaal. Rapid synchronization and accurate
phase-locking of rhythmic motor primitives.

[7] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal.
Dynamical movement primitives: learning attractor models for motor
behaviors. Neural Computation, 25:328373, 2013.

[8] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In In IEEE Interna-

tional Conference on Robotics and Automation, page 13981403. IEEE,
2002.

[9] S. M. Khansari-Zadeh and A. Billard. Imitation learning of globally
stable non-linear point-to-point robot motions using nonlinear pro-
gramming. In 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 2676–2683, Oct 2010.
[10] S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear

dynamical systems with gaussian mixture models. IEEE Transactions

on Robotics, 27(5):943–957, Oct 2011.

[11] S. M. Khansari-Zadeh, K. Kronander, and A. Billard. Learning to play
minigolf: A dynamical system-based approach. Advanced Robotics,
26:1967–1993, 2012.

[12] J. Kober, K. Mlling, O. Krmer, C. H. Lampert, B. Schölkopf, and
J. Peters. Movement templates for learning of hitting and batting.
In 2010 IEEE International Conference on Robotics and Automation,
pages 853–858, May 2010.

[13] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato. Learning from demonstration and adaptation of biped
locomotion. Robotics and Autonomous Systems, 47:7991, 2004.

[14] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and
A. G. Barto. Learning grounded finite-state representations from
unstructured demonstrations. The International Journal of Robotics

Research, 34(2):131–157, 2015.

[15] C. Paxton, F. Jonathan, M. Kobilarov, and G. D. Hager. Do what
i want, not what i did: Imitation of skills by planning sequences of
actions. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ

International Conference on, pages 3778–3785. IEEE, 2016.

[16] J. Peters and S. Schaal. Policy gradient methods for robotics. In Int.

Conf. Intelligent Robots and Systems. IEEE, 2006.

[17] A. B. S. Calinon, F. Guenter. On learning, representing, and gener-
alizing a task in a humanoid robot. IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, 37(2):286–298, 2007.

[18] A. B. S. Mohammad Khansari-Zadeh. Learning stable nonlinear
dynamical systems with gaussian mixture models. IEEE Transactions

on Robotics, 27(5):943–957, 2011.

7061

Authorized licensed use limited to: University of New Hampshire. Downloaded on September 22,2023 at 20:01:33 UTC from IEEE Xplore. Restrictions apply.

