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ABSTRACT The Photon Counting Histogram Expectation Maximization (PCH-EM) algorithm has recently
been reported as a candidate method for the characterization of Deep Sub-Electron Read Noise (DSERN)
image sensors. This work describes a comprehensive demonstration of the PCH-EM algorithm applied to
a DSERN capable quanta image sensor. The results show that PCH-EM is able to characterize DSERN
pixels for a large span of quanta exposure and read noise values. The per-pixel characterization results of
the sensor are combined with the proposed Photon Counting Distribution (PCD) model to demonstrate the
ability of PCH-EM to predict the ensemble distribution of the device. The agreement between experimental
observations and model predictions demonstrates both the applicability of the PCD model in the DSERN
regime as well as the ability of the PCH-EM algorithm to accurately estimate the underlying model
parameters.

INDEX TERMS Conversion gain, DSERN, EM algorithm, PCH, PCH-EM, photon counting, QIS, quanta

exposure, read noise.

I. INTRODUCTION

As the detection precision of advanced camera technology
improves, the ability to properly characterize and evaluate
modern image sensors only becomes more important. While
the traditional Photon Transfer (PT) method [1], [2], [3] can
be applied to Deep Sub-Electron Read Noise (DSERN)
image sensors, it has been shown there are other algo-
rithms that can improve the accuracy and precision of the
camera characterization [4], [5], [6]. Specifically, both the
Photon Counting Histogram (PCH) method [4], [7], [8], [9]
and recently introduced constrained Maximum Likelihood
Estimation (MLE) method [5] have been demonstrated to
incur less uncertainty in their estimates as compared to the
PT method. Recently, Hendrickson and Haefner proposed
a fourth method, Photon Counting Histogram Expectation
Maximization (PCH-EM), that improves on these techniques
by providing an automated algorithm for simultaneous max-
imum likelihood estimation of quanta exposure, conversion
gain, bias (DC offset), and read noise of DSERN pixels from
a single sample of data [6].

Due to the cutting edge nature of DSERN capable sen-
sors, the PCH-EM algorithm was initially demonstrated using
simulated Monte Carlo experiments. In this paper, through
the use of an early photon-counting-capable Quanta Image
Sensor (QIS) from Gigajot Technology Inc., a more com-
prehensive demonstration of the PCH-EM algorithm and
verification of the associated Photon Counting Distribution
(PCD) model is provided. This is accomplished by first
reviewing the assumed mathematical model and theoreti-
cal framework behind the PCH-EM method. New theory
pertaining to ensemble statistics of DSERN sensors is also
introduced. Experimental conditions and data capture meth-
ods needed for dark current characterization with PCH-EM
are provided. The experimental observations are evaluated
through the PCH-EM algorithm, providing a full charac-
terization of the sensor giving per-pixel estimates of dark
current, conversion gain, bias, and read noise all from a
single sequence of images captured under dark conditions.
The per-pixel characterization results are then combined
with the PCD model to predict the ensemble distribution
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for the device, showing that the model is able to predict
the distribution of the raw sensor data. This agreement
demonstrates both the applicability of the PCD model in the
DSERN regime as well as the PCH-EM algorithm’s ability
to accurately estimate the underlying model parameters.

Il. THEORY
A. THE PCD
The digital output of a DSERN pixel is modeled as

X=[K+R/g+nl
K ~ Poisson(H)

R~N(0, a,%), 1)

where H is the quanta exposure (e—), og the input referred
analog read noise (e—), g the conversion gain (e — /DN),
wu is the pixel bias (DN), and [-] denotes rounding to the
nearest integer. As such, the random variable X represents
the random process of adding noise (R) to a number of
electrons (K) followed by the application of gain, offset,
and finally quantization. Note that this is a general sensor
model not specific to DSERN devices. What differentiates
DSERN pixels is the fact that the signal corrupting noise R
is sufficiently small so that the electron number K can be
reasonably estimated.

Assuming g < og, quantization (rounding) in (1) is neg-
ligible and can be modeled as an additive noise component
so that the distribution of X is reasonably approximated by
the Photon Counting Distribution (PCD) [6]

. e HHK

fr@lo) =3 —

k=0

o(vn+kizo®). @

where 6 = (H,g, u,az) are the PCD parameters and

. 2y 1 (v — 2 2\ : .
¢, 0°) = Wexp( (x — w)“/20°) is the Gaussian
probability density with mean u and variance o2. In (2),
o= (01% /g> —i—oé)l/ 2 is the combined read and quantization
noise in (DN).

B. THE PCH-EM ALGORITHM B
Given a random sample x = {x[,...,xy} with x, u
PCD(H, g, i, (72) and an initial estimate of the parame-
ters 6y = (Ho, go, ,uo,aoz), the PCH-EM algorithm iter-
atively updates the parameter estimates via the update
equations [6]

Hy =A, (3a)
B, — H?
gl = L (3b)
Cr — XH
_ Hi
[yl =X — — (3¢)
81+1
. Bi—H,
oh =% — 2—” (3d)
81+1
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denoting the so-called membership probabilities; represent-
ing a probability distribution of the unknown electron
number associated with each observation x,. As such, the
membership probabilities satisfy Y po y,f,? =1.

In each iteration, the algorithm takes the current estimate
6; and then performs an Expectation (E) step to compute
the yn(,t() followed by a Maximization (M) step to update
the estimate according to (3). In doing so, the algorithm
guarantees an increase in the likelihood of the sample at
each iteration such that a local maxima of the likelihood
function is always achieved! [10]. The algorithm halts when
a specified convergence criteria is met.

In the context of machine learning, the general EM algo-
rithm can be viewed as a density-based clustering algorithm,
assigning labels to each datapoint based on what cluster the
datapoint is most likely to belong to. In the context of PCH-
EM, the Gaussian components comprising the PCD are the
clusters, with the electron number determining which cluster
an observation belongs. As such, a natural byproduct of the
PCH-EM algorithm is the ability to map each observation x,
to a nonnegative integer k, representing a best estimate for
the electron number associated with each observation. This
post-process denoising of the sensor data is accomplished
by applying the membership probabilities via

ky = arg max yrf,?. (6)
k

In essence, the mapping k, : x, — Ny described in (6) is
clustering the data by its mostly likely electron number in
an optimal manner as to reduce bit error rates [11].

To see this optimal clustering in action, consider the exam-
ple x, ~ PCD(1.8, 1,0, (0.33)2), where the values of the
parameters ¢ = 1 and pw = 0 are selected so that the data
can be interpreted as being in units of e—. Figure 1 shows
the PCD along with the optimal cluster edges obtained from
the quantization described in (6). While the PCD peaks are
centered at nonnegative integers, it can be seen that the clus-
ter edges are not directly centered between the peaks nor

1. Assuming the starting point 6y is sufficiently good, PCH-EM achieves
the global maximum of the likelihood function so that the final estimates
are maximum likelihood estimates for their respective parameters.
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FIGURE 1. Example PCD showing optimal cluster edges obtained
through (6).

are the clusters of equal size. This nonuniform clustering
ensures optimal estimation of the electron number for each
observation.

C. ENSEMBLE STATISTICS

The PCD in (2) describes the distribution of data produced
by a single DSERN pixel. When considering data produced
by an array of DSERN pixels, each with potentially differ-
ent parameters, the parameters themselves can be modeled
as random variables. Denoting E as the random variable
describing the ensemble of pixels leads to the hierarchical
model

E\H, g, i, o~ PCD(H, g, W, 02>

(H.g.1.0%) ~ Fy 7

so that the distribution of E is given by the Ensemble PCD
(EPCD)

fo) = / / / | rxaioyf0)do. ®)

where Fy is the joint distribution of the parameters (with cor-
responding joint density fy) and ® C R* is the parameter
space denoting all possible values of the parameter vec-
tor 6. Alternatively, the EPCD can be written as fg(x) =
Eo (fx(x]|60)), where Eg denotes the expected value w.r.t. 6.
The moments of the EPCD can be given in terms of the
moments of the parameters as shown in Appendix A.
Unlike the per-pixel PCD, the peaks (local maxima)
in the EPCD typically disappear at higher signal levels
(c.f. Figure 4 (top)), which is indicative of conversion gain
nonuniformity (see Appendix B). For this reason, it is also
useful to consider the ensemble distribution after correcting
conversion gain nonuniformity and bias through a conven-
tional two point Non-Uniformity Correction (NUC). This
two point NUC is accomplished by subtracting p from
each pixel and then multiplying the bias corrected pixels
by their respective conversion gain rendering their output
in units of electrons. Applying a gain and offset correction
both improves the resolution of the peaks and centers them
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on the nonnegative integers. The Non-Uniformity Corrected
(NUCed) EPCD can be found by setting g =1 and 4 =0
as constants leading to the model

EH, o2 ~ PCD(H, 1,0.02)
(H.02) ~ Fo ©)

with distribution

for ) = / f fi(¥IH. 1,0, 02 )fir(6') d',
@)/

where 0, = o x g is the total read and quantization noise
in units of electrons and 6’ = (H, 062_). Examples of both
the EPCD and NUCed EPCD can be seen in Figure 4 (see
Section V).

Lastly, consider the ensemble distribution of the electron
number K, which will appear later when evaluating the abil-
ity of PCH-EM to predict electron numbers. On a per-pixel
basis the electron number is Poisson distributed and since
each pixel may have a unique quanta exposure, the ensemble
electron number K, is described by

(10)

K.|H ~ Poisson(H)

H~ Fy an
with probability mass
E_HHk (—l)k .
Pk, (k) = I fu(H)dH = Ta’ Mu(=0]i=1, (12)
H : :
where My(f) = Ee'! denotes the moment generating

function of the quanta exposure random variable H.

Ill. EXPERIMENTAL METHOD

The experimental data was collected using a developmental
DSERN capable camera from Gigajot Technology Inc. The
specific camera chosen is the GJOO111, which consists of a
monochrome one megapixel CMOS QIS with 1.1 um pitch
pixels. It was operated at its full bit-depth of 14-bits using
four Correlated Multi-Sample (CMS) cycles to minimize
read noise.

For this experiment, the PCH-EM algorithm was used to
estimate per-pixel dark current. This is accomplished through
operating the camera with a lens cap and using a long integra-
tion time of fip = 4.87s. The long integration time ensures
each pixel was given ample opportunity to produce thermally
generated free-electrons. A total of 17,750 frames over a
512 x 512 px region of interest were captured continuously
under the dark environment.

The experiments were conducted with no external illumi-
nation with the intention of characterizing the dark current.
The dark current (iz) given in units of (e — /px/s) is
found from the relation iy = H/tjy. Additionally, the read
plus quantization noise (o,—) given in units of (e—) is
found by multiplying the gain by the square root of o2,
ie, 0, =+vo?xg.
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FIGURE 2. Experimental per-pixel histograms for various read noise and
quanta exposure. Histograms are fit with the PCD model using the PCH-EM
algorithm.

IV. RESULTS

The PCH-EM algorithm code, available on the Mathworks
File Exchange [12], was applied on a per pixel basis to
the experimental dataset. To expedite calculations, parallel
methods (memory limitations permitting) can be used as the
per-pixel estimates can be found independently. An addi-
tional speed improvement is also possible by implementing
PCH-EM through histograms (number of occurrences for
each unique DN observed). Using the histogram is especially
beneficial when there are relatively few unique DN values in
a sample compared to the number of frames reported. Finally,
an additional improvement can also be achieved by vectoriz-
ing the code, running the same sequence of calculations on
multiple pixels simultaneously with MATLAB’s optimized
methods. The final time for the analysis was slightly under
an hour running 12 cores on the machine used. Eventually,
the release of the optimized histogram implementation of
PCH-EM and other improvements to the algorithm in future
updates will be provided on the Mathworks file exchange.

A. PER-PIXEL CHARACTERIZATION
The PCH-EM algorithm provides estimates of the PCD
model parameters H, g, i, and o2, Using these estimated
parameters, the predicted probability density of the individ-
ual pixels can be computed. A comparison of the predicted
density (solid black line) against the observed experimen-
tal histogram (gray bars) for four of the sensor’s pixels are
shown in Figure 2.

The four pixels shown were selected to demonstrate that
the algorithm provides a good fit to the data at high or low
quanta exposure as well as high or low read noise. Note
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FIGURE 3. Experimental histogram of read noise (oe—) estimates obtained
from the PCH-EM algorithm.

that with low quanta exposure, there are very few peaks that
may be used for estimating the conversion gain. However,
even under such conditions, the probability density func-
tion calculated from the parameter estimates still accurately
matches the observed data histogram. Also note that since
these are dark frame measurements, the quanta exposure
represents the expected number of free-electrons generated
per-integration time via thermal contributions. Since this is
proportional to the integration time, increasing the integra-
tion time will increase the observed quanta exposure and
can further improve the estimates of the conversion gain if
needed.

B. PCD PARAMETER MAPS

Applied to the array, the PCD parameters for each pixel were
estimated resulting in four two-dimensional arrays (maps)
containing per-pixel estimates of H, g, u, and 2. Perhaps
the most important for DSERN sensors is the distribution
of read noise shown below in Figure 3. As can be seen, the
vast majority of the pixels have an estimated read noise of
less than 0.4 e— with the median of the histogram occurring
at 0.305e—.

The spatial context and distributions of other parameters
are found in Figures 6-9 (see Appendix C). Structure (or lack
thereof) observed in the parameter maps can be tied back to
the architecture of the sensor and may potentially be useful
in tuning the sensor parameters during development.

V. ENSEMBLE DISTRIBUTIONS

Applying the parameter estimates through (8), one can
observe how the PCH-EM algorithm fits the sensor data
on the array scale by predicting the EPCD of the sensor
and comparing it to the ensemble histogram of the raw data.
In order to estimate the EPCD, the unknown joint density
of the PCD parameters fy must be determined. While this
density is unknown, it may be approximated by binning the
four parameter maps in a four-dimensional histogram. After
normalization, this provides a discrete approximation for fp.
The approximate EPCD is then found by evaluating (8),
replacing integrals with sums, for an appropriate range of
x-values.
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FIGURE 4. Experimental ensemble histogram compared to estimated
EPCD for the case of mutually independent and dependent parameters
(top), and corresponding NUCed ensemble histogram with predicted
NUCed EPCD (bottom).

Figure 4 (top) shows the ensemble histogram made from
250 frames of the raw experimental data compared to the
estimated EPCD using the parameter maps. For comparison,
two EPCD’s were estimated under the assumption of mutu-
ally independent parameters (fp approximated by the product
of four individual histograms) and dependent parameters
(fo approximated by a single four-dimensional histogram),
respectively. One can see that the EPCD under the assump-
tion of dependent parameters provides an excellent fit to
the raw data; thus providing experimental confirmation
of the PCD model and PCH-EM algorithm. The fact that
the estimated EPCD for dependent parameters (RSME =
1.9 x 10™*) provides a better fit compared to the case
of independent parameters (RSME = 8.3 x 10™*) makes
sense since, for example, the expression for the variance
contains g; therefore, it is expected for o2 and g to be
dependent. In the ensemble histogram, it can be observed
that the peaks become less distinct as signal increases which
is usually indicative of conversion gain nonuniformity (see
Appendix B).

Figure 4 (bottom) shows the NUCed ensemble histogram
found by subtracting per-pixel estimates of w from each
frame and then multiplying the bias corrected frames by
the per-pixel estimates of g. This effectively removes the
effects of gain and offset nonuniformity from the raw data.
Notice that the peaks are now more clearly resolved and
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FIGURE 5. Ensemble histogram of predicted electron numbers compared
to the theoretical probability mass (12) estimated via the quanta exposure
map.

located at nonnegative integers showing that this two-point
NUC restores the electron counting capabilities of the sen-
sor. Using the same approach as before, the NUCed EPCD
can be found by approximating the joint density fyr from the
quanta exposure and read noise maps under the assumption
of dependent and independent parameters, and then approx-
imating the double integral in (10) by sums. As seen in
the bottom of Figure 4, both ensemble predictions under the
assumption of dependent parameters (RSME = 2.3 x 107%)
and independent parameters (RSME = 2.7 x 107%) fit
the NUCed data quite well with a slight advantage given
to the case of dependent parameters. This indicates that
the quanta exposure (dark current) is nearly independent
of the read noise (when in units of electrons), which
is reasonable to expect (see discussion at the end of
Appendix B).

Through Figures 2 and 4, the PCD and PCH-EM algo-
rithm have been shown to be effective in modeling DSERN
sensor data and providing estimates of the model parameters,
respectively. What remains to be demonstrated is if the elec-
tron number prediction formula in (6) can effectively recover
the electron numbers for each observation. Using (6), the
predicted electron number for each pixel of the 250-frame
stack of raw experimental data was computed. This process
resulted in an array of nonnegative integers, the same size as
the image stack, containing all the predictions. A histogram
of the predictions is given in Figure 5. While it cannot be
known if these predictions agree with the actual electron
numbers associated with each observation, the distribution of
the predictions can be compared to what would be expected
according to the ensemble electron number probability mass
in (12), which assumes per-pixel electron numbers to be
Poisson distributed. To predict this ensemble distribution, the
unknown quanta exposure density fy was approximated by
binning the quanta exposure map and then replacing the inte-
gral in (12) by a finite sum. Figure 5 compares the ensemble
histogram of the electron number predictions against the pre-
dicted probability mass according to the model. Recalling the
discussion in Section II.B, the data presented in Figure 5 can
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be viewed as an optimal quantization of the NUCed EPCD
in Figure 4 (bottom). The quality of fit between the data and
predicted probability mass demonstrates, at the very least,
that the predicted electron numbers agree with the actual
electron numbers in terms of distribution.

VI. DISCUSSION AND FUTURE WORK

In this paper, the PCH-EM algorithm proposed in [6]
was successfully demonstrated to accurately estimate quanta
exposure, conversion gain, bias, and read noise of DSERN
pixels in an automated fashion. Combining the assumed
model with the corresponding estimated parameters accu-
rately recreates the raw sensor data histograms, both on a
per-pixel level as well as at the ensemble (array) level. The
ensemble prediction required accounting for the correlation
of the four model parameters. Additionally, it was shown
how a two-point non-uniformity correction may be deter-
mined and applied to the ensemble, which improves the
resolution of individual electron peaks and restores electron
counting of the device. Lastly, the ability of PCH-EM to
denoise raw sensor measurements and recover the hidden
electron numbers was demonstrated.

This PCH-EM algorithm is a powerful tool for investi-
gating and tuning the performance of DSERN sensors, as
it can be applied automatically over a large span of param-
eters. Through the use of the estimated parameter maps,
PCH-EM not only is useful for sensor characterization but
also may find application during the advanced development
of the sensors themselves, for characterization and evaluation
of new pixel designs. Also, together with the Monte Carlo
methods provided in [12], an experimentalist can investi-
gate the number of frames required to achieve a desired
uncertainty.

Future work will include expanding upon the current
method to combine multiple illumination level measure-
ments in a multi-sample version of PCH-EM, exploring
techniques for accounting for non-linear responses, and
releasing optimized code on the Mathworks File Exchange.
In particular, a multi-sample PCH-EM algorithm shows
promise in extending the algorithm to include to sensors
with larger read noise (> 0.5 e—) and thus becoming a gen-
eral estimation procedure to supersede the photon transfer
method [13]. Additionally, implementing various techniques
for estimating the sample Fisher information will likely be
pursued [14], [15], [16], [17]. The ability to estimate the
Fisher information would allow the PCH-EM algorithm to
not only provide the parameter estimates but also their uncer-
tainties. Ultimately, a generalized characterization method
should work across the full dynamic range of the sensor and
full parameter space of the Photon Counting Distribution
model.
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FIGURE 6. Experimental histogram of dark current (iy) estimates obtained
from the PCH-EM algorithm (top) with corresponding map (bottom).

APPENDIX A

MOMENTS OF THE ENSEMBLE DISTRIBUTIONS

Moments of the EPCD are found by noting that E|6 ~
PCD(H, g, u,az). Using the law of total expectation the
first moment is

E(E) = E(E(EI0)) = E(w) + E(H/g).
Likewise, by the law of total variance
Var(E) = Var(E(E|0)) + E(Var(E|6))
— Var(u + H/g) + E(JZ) + E(H/g2). (14)

Expanding the first variance term further then gives the final
result of

Var(E) = Var(u) + Var(H/g) + E(az) + E(H/g2>
+ 2(E(uH/g) — E(WE(H/g)). (15)

The analogous moments of the NUCed EPCD come from
these expressions upon setting i = 0 and g = 1 as constants.
This gives E(E’) = E(H) and Var(E') = Var(H) + E(H) +
E(c2).

13)

APPENDIX B

DEPENDENCE OF ENSEMBLE PEAK RESOLUTION ON
PARAMETER NONUNIFORMITY

Here, the loss of peak resolution in the EPCD at higher
signal levels and the dependence of this phenomenon on
parameter nonuniformity is investigated.
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FIGURE 7. Experimental histogram of conversion gain (g) estimates
obtained from the PCH-EM algorithm (top) with corresponding map
(bottom).

Recall the distribution for a single pixel is given by
the PCD

o) = Y PK =k ¢(x u+k/g.0?).  (16)

k=0

fxix (x1k)

which is comprised of an infinite mixture of Gaussian com-
ponents given by the probability density fx k. The individual
components are thus isolated by considering the distribu-
tion of the random variable X|K = k ~ N (u + k/g, 02).
Computing the variance of this conditioned variable gives

Var(X|K = k) = o2, (17)

which is independent of the electron number k. This means
that the widths of each component making up the PCD are
the same; thus, as signal (k) increases, the resolution of
individual peaks remains constant.

Repeating this calculation for the ensemble variable E,
while assuming the appropriate regularity conditions to allow
interchanging series and integration, the EPCD in (8) can be
written in the form

o(e M H ) (x; 1w + k/g. 0%))
Eg (e_HHk)

SeK, (x]k)

> E
fe) =) P(K, =k

k=0

. (18)
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FIGURE 8. Experimental histogram of bias (1) estimates obtained from
the PCH-EM algorithm (top) with corresponding map (bottom).

which is comprised of an infinite mixture of non-Gaussian
components given by the probability density fgx,. The vari-
ance of the conditioned variable E|K, = k ~ fgg, is then
given by

Var(E|K, = k) = E(E2|Ke - k) — (E(EIK, = k)%, (19)

where
2w o\ Ee(e™"HNo? + (u+k/g)%)
E(E2IK, = k) = E, ) (20)
and
—H r7k
ECEIK, — k) — Eo(e "H (1 +k/g)) @1

Eg (e_HHk)

Upon inspection, Var(E|K, = k) is dependent on k; thus the
widths of the components comprising the EPCD vary with
signal level leading to a loss of peak resolution at higher
signals.

What is not clear is if the dependence of Var(E|K, = k)
on k is linked to the nonuniformity of only a subset of the
parameters. This can be investigated by considering what
happens to Var(E|K, = k) when holding none, one, two,
three, or all four parameters constant. This results in sixteen
cases. Evaluating all sixteen cases, it can be shown that hold-
ing (H,g), (H,g. 1), (H,g,0%), (g 1,0, or (H, g, 11,07
constant removes the dependence on k. Since the (H,g)
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FIGURE 9. Experimental histogram of read noise (0e_) estimates obtained
from the PCH-EM algorithm (top) with corresponding map (bottom).

case implies the (H, g, u) and (H, g, 02) cases, and the
(H, g, 1, 02) case results in the original PCD, there are only
two ways for Var(E|K, = k) to be independent of k under
dependent parameters: when (H, g) is constant or (g, i, 0'2)
is constant. Thus holding certain subsets of the parameters
constant does remove the dependence of Var(E|K, = k)
on k resulting in constant peak resolution. It is also worth
noting that g appears in all of these cases showing that if
conversion gain nonuniformity exists, then the EPCD com-
ponent width must depend on k; causing peak resolution to
decrease at higher signal levels. It is interesting that holding
only g constant does not remove the dependence on k; how-
ever, note that if H is independent of (g, u,o?) and then
g is held constant Var(E|K, = k) = E(o%) + Var(u). This
shows that the loss of resolution in the EPCD peaks can be
solely contributed to conversion gain nonuniformity of H is
independent of (g, u, o2). With so many combinations to
consider, a study of the statistical dependence of the indi-
vidual parameters in actual sensor systems may help guide
further analysis.

The component width of the NUCed EPCD can also be
found as a special case of Var(E|K,) for £ =0 and g =1
constant. This special condition leads to

E —HHk 2 o2
Eo(eH'o, ) Lol E (037), (22)

EK.=k) =
Var(E/| k) E, (=1
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where the last equality holds when H is independent of
062_. This explains why the component width of the NUCed
EPCD in Figure 4 appears to be constant.

APPENDIX C
ESTIMATED PARAMETER MAPS

To provide a visually aesthetic way to display the maps, a
nonlinear transformation of the form

X = FE(12,2> (F(xij))

was applied to the map elements. Here,

(23)

—1 .
F 5(2.2) 1 the

Beta(2, 2) quantile function, F is the empirical cumulative
distribution function of the map, and x;; is the ijth element
of the map. This transformation takes the original histogram
of the map and shapes it into that of a Beta(2,2) distri-
bution; however, because this transformation is monotone,
any structures in the original map are carried over to the
final transformation, all while suppressing the appearance of
outliers so that the structure is clearly observed.
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