
Robust Behavior Cloning with Adversarial Demonstration Detection

Mostafa Hussein1, Brendan Crowe2, Madison Clark-Turner1, Paul Gesel1, Marek Petrik3, and Momotaz Begum1

Abstract— Imitation learning (IL) frameworks in robotics
typically assume that a domain expert’s demonstration always
contains a correct way of doing the task. Despite its theoretical
convenience, this assumption has limited practical values for
an IL-powered robot in real world. There are many reasons
for an expert in the real world to provide demonstrations that
may contain incorrect or potentially unsafe way of doing a
task. In order for IL-powered robots to work in the real world,
I L frameworks need to detect such adversarial demonstrations
and not learn from them. This paper proposes an I L frame-
work that can autonomously detect and remove adversarial
demonstrations, if they exist in the demonstration set, as it
directly learns a task policy from the expert. The proposed
framework that we term Robust Maximum Entropy behavior
cloning (R-MaxEnt) learns a stochastic model that maps states
to actions. In doing so, R-MaxEnt solves a minmax problem
that leverages the entropy of the model to assign weights to
different demonstrations while assigning poor weights to
adversarial samples. Our empirical results show that R-MaxEnt
outperforms the existing I L approaches in both real and
simulated robotics tasks.

I . INTRODUC T I ON

The main appeal of the imitation learning (IL) paradigm
in robotics, also known as learning from demonstrations or
programming by demonstrations, is its promise to enable
lay users (hereafter termed as domain experts) with the
ability to train robots new skills from demonstrations [4],
[8], [13]. I L algorithms have experienced tremendous recent
progress in learning task policies from demonstrations in
controlled laboratory settings [28], [35] or simulated en-
vironments [23], [25], [29]. I L algorithms, however, need
the following two key characteristics to enable IL-powered
robots learning realistic tasks in natural human environments
from the demonstrations of domain experts:

 Dealing with Adversarial demonstrations: Domain ex-
perts may inadvertently provide one or more demon-
strations, among many correct ones, which show a
potentially unsafe policy. Demonstrators’ fatigue or lack
of knowledge of robotics/programming may also con-
tribute to such adversarial demonstrations. A robust I L
algorithm needs to detect and eliminate such adversarial
samples from the demonstration set before learning the
task policy.

 Sample efficiency: Having a simulator for every task to
be taught to a robot by a domain expert is infeasible and,

1 Cognitive Assistive Robotics Lab, University of New Hamp-
shire, fmhussein, mbc2004, pac48, mbegumg@cs.unh.edu; 2 Department
of Statistics, University of New Hampshire, bjc1041@wildcats.unh.edu;
3 Department of Computer Science, University of New Hampshire,
mpetrik@cs.unh.edu

most importantly, invalidate the reason why I L appeals
to domain experts. Therefore, I L algorithms need to
learn only from a handful of demonstrations and without a
simulator that can generate an unlimited number of
training samples.

To the best of our knowledge, there are no I L methods
that feature both of the characteristics above. A typical
assumption in most existing I L algorithms is that all expert
demonstrations are reliable and trustworthy. There exist a
handful of work that can deal with sub-optimal or noisy
demonstrations [22], [28], [45], [14], [44], [33]. But we are
interested in tackling adversarial demonstrations. Adversarial
demonstrations are those that do not follow the task definition
and are structurally wrong. For example, in the context of
teaching a robot how to make a cup of tea, an adversarial
demonstration would be the one where water or tea-bag is
not added to the cup. No existing I L algorithm addresses
the issues with adversarial demonstration. Most existing I L
algorithms also require many training samples, often supplied
by a simulator, to learn a policy.

This paper proposes to directly learn a task policy from
a handful of demonstrations while detecting and discarding
adversarial samples, if any, from the demonstration set. The
proposed algorithm (R-MaxEnt), learns a stochastic model of
the task policy in a supervised manner through constraining
feature expectation matching between the learned policy and
the demonstrated policy. R-MaxEnt analyzes the entropy of
different policy models in the model space, and the entropy
contributed by different demonstrations to each model. It
then leverages the maximum entropy principle (MEP) [3],
[24] to choose the model with the maximum entropy while
setting weights to different demonstrations that can help
to identify adversarial samples. We demonstrate that R-
MaxEnt is more robust and sample efficient than existing
I L approaches in classical control tasks in the OpenAi-gym
simulator [11]. We also demonstrate R-MaxEnt’s ability to
teach a Yumi robot an activity of daily living: tea-making.

I I . R E L AT E D WO R K

There are two main types of I L algorithms: Behavior
Cloning (BC) and Inverse Reinforcement Learning (IRL).
B C methods learn a mapping from states to actions as a su-
pervised learning problem [34]; B C is considered conceptu-
ally simple and theoretically sound [42]. The main criticism
of B C in its current state is the covariance shift [36], [37],
where small inaccuracies of the learned model compound
over time, and can lead to states that are very different from

X X

X

the ones encountered during training. In recent years, BC-
based end-to-end I L realized through deep neural networks
achieved success in autonomous driving [10]. There is,
however, no known general framework that can be applied to
learn different robotics tasks. In addition to that, learning
neural network-based task-policies has known issues such as
lack of convergence guarantee and sample inefficiency. There
is no BC-based I L method in the current literature that can
deal with adversarial demonstrations.

Classical IRL-based I L methods first learn the demon-
strator’s reward function and then use it to learn a policy
that maximizes the total reward [2], [31], [38], [41], [45].
Through connecting I R L with generative adversarial net-
works (GANs) [16], [20], several recent papers [17], [18],
[23], [25] achieve higher expected return than the classical
I R L based I L methods in simulated environments.

Despite their elegance and the capability of dealing with
sub-optimal demonstrations, IRL-based I L methods have
rarely been used in realistic robotics task [17]. The main
reason behind this is, I R L algorithms require millions of
samples during training to converge even for the simplest
control tasks [27]. The alternative is to have a full transition
probability knowledge [45].

The default assumption in these methods is that all demon-
strations are correct and should be considered for policy
learning [17], [18], [23], [25]. Even though these methods
use adversarial networks (i.e. GANs) for policy learning, the
definition of adversaries in GANs is markedly different from
the adversaries in demonstrations that we are interested in
exploring in this paper. For example, GANs train a generative
model G to estimate the distribution of the expert data,
and a discriminator D that tries to differentiate between the
actual expert data coming from the demonstration set and
the data coming from the generator G. At the convergence
point, the generator will produce data close enough to the
expert data that the discriminator will not differentiate from
the expert demonstrations. In I R L methods, the generator
G typically represents the policy, and the D represents the
reward function. However these recent approaches [17], [18],
[23], [25] use the given demonstrations as a reference to
discriminate the data coming from the generator to come
closer to the optimal policy. These approaches do not have
any mechanism to deal with the present of adversarial
demonstration in the dataset.

A recent line of research in [29], [43], [44] considers a
limited amount of random noise in a demonstration set and
proposes a a various approaches to detect such noisy demon-
strations. However, limited random noise in demonstrations
is different from adversarial demonstrations that always lead
to a potentially unsafe policy. Beside they still leverage the
advantage of using more samples through interaction with
the simulator

A few other I R L based approaches [21], [40] used “failed”
demonstration, in addition to correct ones, to train the model.
However, they assume that these failed demonstrations are
labeled a priori and do not detect them autonomously.

I I I . F E AT U R E E X P E C TAT I O N MAT C HI NG

As the basic framework, we assume the Markov decision
process (S ; A; P; r; 0) with the stochastic shortest path
objective (assuming some terminal states) [7], where S is the
state space, A is the action space, and 0 2 S represents the
distribution over the initial state. Here, S denotes the
probability simplex overt the set S . The unknown transition
probabilities are P : S A ! S and the unknown rewards are r :
S A ! R.

Our goal is to compute a randomized policy : S ! A that
matches the expert’s policy ~ : S ! A of the expert.
The policy is unknown and, instead, must be estimated
from a set of demonstrations. The demonstrations D =
(si ; ai) i=1; : : : ;Q consist of Q states and expert’s actions for
these states such that ai ~(; si). We also assume that there is
a distribution p~ 2 S over the states that represents the expert’s
probability of visiting the state. In practice, we assume that
this distribution is uniform over the states in D.

In most I L algorithms, we try to represent the task using a
set of n features f i : S A ! R; i = 1; 2; : : : ; n defined for
state-action pairs that contain enough information to enable
generalization from the demonstrations to the entire state
space. The important question in I L is “How can the learner
match the expert’s demonstrations?” Many approaches have
been introduced and studied in the I L community. Some of
the most-successful methods have been based on feature
expectation matching (FEM) [13], [33], [45] where the goal
is compute a policy that satisfies the following equality:

E~ [f i] = E[f i] ; i = 1; 2; : : : ; n : (1)

The feature expectations are computed with respect to the
policy indicated by the subscript and the state probabilities as
follows:

E~ [f i] =
X X

p~(s)~(ajs)fi (s; a)
s 2 S a 2 A

E[f i] = p~(s)(ajs)fi (s; a) :
s 2 S a 2 A

Note that we assume we can compute a policy that matches
the expert’s state distribution p~ sufficiently well.

The FEM problem in (1) is ill-defined because it can be
satisfied by many policies [45]. To select a policy that is
most-likely to generalize beyond the demonstrations, we
employ the principle of maximum entropy [3], [24] and solve
the following optimization problem to compute the policy :

max H ()
X X

p~(s)(ajs) log (ajs)
2 R S A

s 2 S a 2 A

s.t. E~ [f i] E[f i] = 0 i = 1; : : : ; n (2)

(ajs) 1 = 0 8 s 2 S
a 2 A

Here, H () denotes the causal entropy of the policy . Using the
standard convex duality arguments, we can see that the
optimal solution ? to (2) must satisfy, for some 2 R N ,

X

P P N

d

P
d = 1

d

d

1
M

X

M

X

that [3], [6], [15]:

N
!

?(ajs) = (z(s)) 1 exp i fi (s; a) ; (3)
i = 1

where z(s) = a 2 A exp i = 1 i f i (s; a) is a nor-
malization constant. Equation (3) indicates that it may be
possible to match the expert’s policy even with a limited
number of demonstrations because the policy ? depends
only on a small number of features.

The FEM algorithm in (2) can be derived independently
from the maximum likelihood principle [6], [15]. In fact,
one can readily show that the FEM optimization in (2) is the
dual formulation of the maximal likelihood solution to the
multinomial logistic regression [9]. The derivation, which we
omit due to the lack of space, follows the derivation for other
related methods [15].

As mentioned above, our goal is to design an I L algorithm
that is suitable for real-life robotics applications where we do
not have a simulation for each task and can only generate a
limited number of demonstrations. The FEM algorithm in (2)
does not need to access the simulator. However, the algorithm
must be robust enough not to fail even when some of the
demonstrations are incorrect or even adversarial. In the next
section, we discuss an algorithm that is statistically robust to
such errors in demonstrations.

A. Connection to Max-Ent IRL Approach

Now, we discuss the relationship between FEM, described
in Section III, and the popular Max-Ent I R L [45] which
also matches feature expectations while maximizing entropy.
Although FEM is a pure behavioral cloning technique while
Max-Ent I R L is an inverse reinforcement learning technique,
these two methods are closely related. FEM can be seen as a
special case of Max-Ent I R L with a simplifying assumption
that the state distribution p~(s; d) for the computed policy
is the same as for expert’s policy ~. This assumption is
likely to be satisfied when the agent can match the expert’s
policy closely, and the transition probabilities are mostly
deterministic.

Our algorithms are based on FEM instead of Max-Ent
I R L for two main reasons. First, the behavioral cloning
technique is easier to apply to robotics domains because it
does not require accessing a simulator. Second, FEM
involves a simpler optimization problem than Max-Ent IRL,
making it more convenient to develop and analyze methods
that can detect adversarial demonstrations. However, it is
important to note that the approach that we present in this
paper can be generalized to Max-Ent I R L and other related
B C and I R L algorithms.

I V. RO B U S T MA X I MUM E N T RO P Y B E H AV I O R CL O NI NG
(R-M A X E N T)

In this section, we propose methods that add robust-
ness to our model and detect any adversarial or incor-rect
demonstration. We assume that, the dataset D =

((sdi ; adi) i=1;: : : ;Q) j = 1 ; : : : ; D comprises D individual demon-
strations, or trajectories. Each one of these trajectories is
either considered to be generated by the actual expert, or is
adversarial and should be discarded.

To reduce the sensitivity to incorrect demonstrations, we
introduce a variable w 2 [0; 1]D which assigns an importance
weight to each demonstration. The goal is to give the
adversarial demonstration the minimum possible weight and
to give the correct demonstration a higher weight automat-
ically through our model. We assume that M = D wd

represents the assumed minimum number of demonstrations
that we can trust and is known.

We achieve statistical robustness by relying on the max-
imum entropy principle [3], [24]. In particular, we exclude
any demonstrations with high entropy with respect to other
demonstrations. The entropy is, in other words, used to
measure the consistency of the expert demonstrations. An
adversarial demonstration adds incorrect (or “random”) in-
formation to the model, which increases its entropy. We limit
the impact of this noise by assigning a lower weight wd to
a demonstration that significantly increases the learned
entropy. The goal of the formulation is to ensure that the
optimal w? is w? = 0 when the demonstration d is
adversarial and w? = 1 when the demonstration is correct.

To incorporate the weights w into the FEM algorithm, we
need to assume that the expert’s policy ~ : S f1; : : : ; Dg ! A

and the state distribution p~ : f1; : : : ; Dg ! S are
parameterized by the demonstration. This will make it
possible to essentially ignore some of the demonstrations.
Next, we replace ~ and p~ in (2) by their weighted versions
defined as follows:

D

~w(ajs) = wd ~(ajs; d)
d = 1

p~w(s) =
1 D

wd p~(s; d) :
d = 1

In essence, we allow the expert policies to differ among
demonstrations and aim to find the one policy that is most
consistent among them.

Then, optimizing for weights w that minimize the entropy
in (2), leads to the saddle point problem in Fig. 1. We call the
method R-MaxEnt. Note that the inner maximization prob-
lem is convex (concave objective function) and, therefore, it
can be replaced by its dual minimization problem. The result is
the non-convex quadratic problem depicted in Fig. 2.

We solve the non-convex quadratic problem in Fig. 2 using
the Sequential Quadratic Programming (SQP) algorithm 1;
see, for example, Chapter 18 of Nocedal and Wright [32].
The SQP algorithms generalizes the Newton’s method to
constrained optimization problems. In each iteration, the
Hessian of the Lagrangian function is approximated in a
quasi-Newton style. The algorithm then solves the resulting

1Implementation: h t tps : / / w w w . m a t h w or k s . c om /h e lp/ opt i m /
u g / c o n s t r a i n e d - n o n l i n e a r - o p t i m i z a t i o n - a l g o r i t h m s .
html\#bsgppl4

D

X X X

X

D

M

D N

d i

X

Q
(s ; a) 2 D

min max
w 2 R D 2 R S A

s: t:

X X

(ajs) log (a j s)
X

w d p~(s; d) s 2 S

a 2 A d = 1
D

wd fi (s; a)p~(s; d) (ajs) ~(ajs; d) = 0; i = 1; : : : ; N []
d = 1 s 2 S a 2 A (4)

(ajs) 1 = 0; 8s 2 S []
a 2 A

X
w d = M; wd 0; 8d 2 D; wd 1 8d = 1; : : : ; D [w]

d = 1

Fig. 1. R-MaxEnt saddle point problem. The gray label in square brackets indicates which variable the constraint applies to.

min (; w)
1 X

w

X
p~(s; d) log z (s) +

X

X X
~(ajs; d)f (s; a)

w 2 R D ; 2 R N
d = 1 s 2 S i = 1 s 2 S a 2 A

D

s: t: wd = M; wd 0 8d 2 D; wd 1 8d 2 D
d = 1

(5)

Fig. 2. R-MaxEnt minimization problem equivalent to Fig. 1.

quadratic program finds the next iteration using the line
search procedure. This algorithm may not converge to the
global minimum, but we find it to perform very well exper-
imentally.

V. S I M U L AT E D E X P E R I M E N T S AND R E S U LT S

A. Experiments with OpenAI-Gym Simulator

In order to demonstrate R-MaxEnt’s ability to detect
adversarial demonstrations, we now experiment with several
simulated tasks.

Although R-MaxEnt is a B C approach of policy learn-
ing that does not learn any implicit/explicit reward func-
tion, we compared its performance against three recent
I R L approaches: Generative Adversarial Imitation Learning
(GAIL) [22] and [23] with two different objective functions;
(1) Linear cost function from [2] (FEM); (2) Game-theoretic
apprenticeship learning (GTAL): the algorithm of [23] using
the cost function from [41]. The reason for this is that,
similarly to R-MaxEnt, these I R L approaches also use/build
on maximum entropy and FEM concepts. However, note that
all of these existing I R L approaches require a simulator to
improve the learned policy.

We run our algorithm on the classical control tasks
Mountain-Car [30] and Acrobot [19] in the OpenAi-Gym
simulator [11]. Both tasks have a continuous state space
and discrete actions. As the baseline, we compare to the
established B C method [5], which models B C using a
neural network with parameters B C . We find these pa-
rameters using maximum-likelihood estimation: B C = arg
max B C (ajs). With a given dataset of state-
action pairs, we split the dataset as 70% for training and 30%
validation data. We train the policy with supervised learning

using ADAM [26], until the validation error stops decreasing.
As we mentioned earlier, the dual of maximizing the entropy
is maximizing the likelihood of the given dataset. Keep in
mind that the I R L approaches has the advantage of using the
simulator in the training phase to generate more samples to
improve the accuracy (it used exactly 5000 samples in each
of the 300 iterations, a total of 1; 500; 000 samples) . We
leveraged the openly available source code2 for conducting
these experiments.

We generate the expert data using TRPO [39] on the
optimal cost functions. For the adversarial demonstrations,
we manipulate the actions of the expert data and the corre-
sponding state. For example, in the mountain car, we had
two actions: 0 and 1. The adversarial demonstrations are
generated as follows. If the optimized policy takes action 0
in a given state, we replace it with an action 1, and vice
versa to generate the next state. By doing this we are
building an actual adversarial demonstration that does not
follow the optimal policy, rather than simply a sub-optimal
demonstration.

To ensure a fair comparison, we use the same experimen-
tal settings as in [22], including the exact neural network
architectures for the policies, the features, and the optimizer
parameters for TRPO [39] for all of the algorithms except
ours, which does not use a neural network.

1) Adversarial Detection and Accuracy: The main goal
for our framework is to detect those adversarial demonstra-
tions in the dataset and give higher weights only to the
“correct” demonstrations. Fig. 3(a) and 3(b) summarize the
performance of different algorithms, under varying fraction
of expert/adversarial demonstrations (6 demonstrations in

2https://github.com/openai/imitation

(a) Results of Mountain-Car task.

Fig. 3.

(b) Results of Acrobot task.

Results of simulation experiments.

(c) Comparison of the time required for conver-
gence.

total). At the first data point (we have 0 adversarial demon-
strations and 6 correct demonstrations), we can see that R-
MaxEnt and B C perform worse than the I R L approaches,
the reason behind that is, the I R L approaches uses more
samples through interaction with the simulator to calculate
the policy. On the other hand, R-MaxEnt and B C can only
use the given demonstrations. However, starting from the
second data point (we have 2 adversarial demonstrations
and 4 correct demonstrations), we can see the power of
R-MaxEnt as it detects the adversarial demonstration d0 in
the dataset and removes it (set its wd0 = 0 while for each
“correct” demonstration d, we have wd = 1). Therefore, the
policy is computed with the correct demonstrations only. For
the other algorithms, we see a decrease in the accuracy with
more adversarial demonstrations added to the dataset.
Finally, when there are only adversarial demonstrations, R-
MaxEnt learns a random like policy.

2) Time complexity: We compared the time required to
train each algorithm to generate the policy using different
number of demonstrations. As shown in Fig 3(c), R-MaxEnt
and B C require much less time to converge, as they directly
compute the policy. On the other hand, the I R L approaches
spend much more time in the training phase.

V I . E X P E R I M E N T WITH T H E Y U M I RO B OT:
T E A -M A K I N G TA S K

We evaluated the performance of R-MaxEnt in learning the
tea-making task from human demonstrations. The demon-
stration set was generated through an IRB-approved user
study with three participants. Each participant performed
12 trials with a total 36 demonstrations of the task Fig. 4.
Participants were asked to make tea according to their own
preferred sequence but using all the ingredients. This resulted
in demonstrations with varying number and sequence of
atomic actions, all of which ended up with a cup of tea.

Fig. 4. Demonstration data collection: Participants making tea.

Feature S0 S1 S20 S62 ::: S127

Oven is on 0 1 0 0 ... 1
Oven is off 0 0 0 1 ... 1

Cup has milk 0 0 1 1 ... 1
Cup has sugar 0 0 0 1 ... 1
Cup has water 0 0 0 1 ... 1

Stir is done 0 0 0 0 ... 1

TA B L E I: State space for the Tea Making task.

network in the perception module was fine-tuned using 80%
split of the team-making dataset. Based on the seven atomic
actions we define the task in terms of a set of 27 = 128
states, as shown in Table I. Here, the role of the pre-trained
I3D is to give us a clear state representation, the same way a
simulator provides for the control tasks. Our objective here is
to investigate whether R-MaxEnt can detect the adversarial
demonstration and generate an acceptable policy.

2) Feature selection: Unlike the classical control tasks
where we get the state and feature information directly from
the simulator, here we need to generate a set of features
automatically. We used Task Precedence Graphs (TPG) (also
known as directed acyclic graph, DAG) for this purpose. TPG

a1 a2 a3 a4 a5 a6

1) Task definition: There are seven atomic actions in the
task, A : f Turn on/off the oven, Add water, Add sugar,
Add milk, Add tea bag, Stir, Do nothingg. We designed a
perception module using a 3D CNN namely, I3D [12],
to identify all of these atomic actions. The pre-trained I3D

Fig. 5. Demonstration 1

a1 a2 a4 a3 a5 a6

Fig. 6. Demonstration 2

a4

a1 a2 a5 a6

a3

Fig. 7. TPG generated from two demonstrations.

generates a set of temporal features that can represent the
sequential task [1].

For example, if we have two demonstrations with atomic
action sequences shown in Figs. 5 and 6, we can form one Fig. 8. Tea making task results .

coherent TPG, according to [1], as shown in Fig.7. Once a
TPG is generated, we can collect all spatio-temporal features
that it supports. For example, the TPG in Fig.7 supports the
following spatio-temporal features:

- a1; a2 happens before a4 and a3
- a5; a6 happens after a4 and a3

All such features are used to train the model.
3) Adversarial Demonstration Injection: In the context of

tea-making task a demonstration is considered as a correct
one when i) all ingredients (i.e. tea-bag, hot water, milk and
sugar) are used for making the tea, irrespective of the order
they are added, and ii) stir is the terminal. Accordingly, an
adversarial demonstration is defined as the one that misses
any ingredient. We create a number of such adversarial
demonstrations and include them in the dataset.

4) Results for the Tea Making T ask: At first, we eval-
uate R-MaxEnt with only a set of correct demonstrations.
Afterwards, we gradually add adversarial samples in the
demonstration set. The accuracy of R-MaxEnt is calculated
as the number of times, expressed in percentage, it infers
the correct actions, i.e. adding one of the four ingredient or
performing the stir action. Performance is compared with a
B C algorithm described in the previous experiment. Unlike
the classical control task, no comparison was performed with
any I R L algorithm since they require a simulator to generate
more samples during the training, which is infeasible for the
realistic tea-making task.

Results are shown in Fig. 8. The figure shows that both
algorithms have a 100% accuracy with no adversarial sam-
ple. As we add adversarial demonstrations, the accuracy of
B C decreases while R-MaxEnt’s accuracy holds steady and
only decreases when adversarial demonstrations outnumber
correct ones.

5) Task reproduction by a robot: We used kinesthetic
teaching to teach the robot how to execute different atomic
actions Fig. 9(a). The robot then autonomously executed
different actions as suggested by the model to perform the
complete tea-making task, as shown in Fig. 9(b) (please see
the attached video).

V I I . CO NC L U S I O N AND F U T U R E WO R K

We presented a novel I L method that automatically assigns
weights to expert’s demonstrations to excludes adversarial

(a) Kinesthetic teaching of the (b) Yumi robot performing
tea-making task to a Yumi robot. Adding Milk action.

Fig. 9. Yumi robot learning and performing one of the task actions.

and noisy ones. The method leverages the model’s entropy
to determine which demonstrations that are inconsistent with
the rest. Our algorithm achieves superior performance, time
complexity, and sample efficiency compared to other B C and
I R L approaches when adversarial demonstrations are present.
Finally, we note that our general approach is simple and can
be readily combined with I L algorithms or used as a pre-
processing step. Future work should extend our method to
continuous actions and develop a more efficient optimization
algorithm.

AC K N OW L E D G M E N T S

This work was supported in part by the National Science
Foundation grants IIS-1830597, IIS-1717368, IIS-1815275.

R E F E R E N C E S

[1] Tanveer Abbas and Bruce A MacDonald. Generalizing topological
task graphs from multiple symbolic demonstrations in programming
by demonstration (pbd) processes. In 2011 IEEE International
Conference on Robotics and Automation, pages 3816–3821. IEEE,
2011.

[2] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the International Conference
on Machine Learning (ICML), page 1. ACM, 2004.

[3] Shun-ichi Amari. Information geometry and its applications, volume
194. Springer, 2016.

[4] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Brown-
ing. A survey of robot learning from demonstration. Robotics and
autonomous systems, 57(5):469–483, 2009.

[5] Michael Bain and Claude Sammut. A framework for behavioural
cloning. In Machine Intelligence 15, pages 103–129, 1995.

[6] Adam Berger, Stephen A Della Pietra, and Vincent J Della Pietra. A
maximum entropy approach to natural language processing. Compu-
tational linguistics, 22(1):39–71, 1996.

[7] Dimitri P Bertsekas. Dynamic programming and optimal control,
volume 1. Athena scientific Belmont, MA, 1995.

¨ ¨

´

´

[8] A Billard, S Calinon, and R Dillmann. Handbook of robotics, chapter
learning from humans, 2016.

[9] Christopher M Bishop. Pattern recognition and machine learning.
springer, 2006.

[10] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew
Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[11] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[12] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a
new model and the kinetics dataset. In proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6299–
6308, 2017.

[13] Sonia Chernova and Andrea L Thomaz. Robot learning from human
teachers. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 8(3):1–121, 2014.

[14] Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. Robust learning
from demonstration using leveraged gaussian processes and sparse-
constrained optimization. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 470–475. IEEE, 2016.

[15] Miroslav Dudik. Maximum entropy density estimation and modeling
geographic distributions of species, 2007.

[16] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A
connection between generative adversarial networks, inverse re-
inforcement learning, and energy-based models. arXiv preprint
arXiv:1611.03852, 2016.

[17] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning:
Deep inverse optimal control via policy optimization. In International
Conference on Machine Learning, pages 49–58, 2016.

[18] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards
with adversarial inverse reinforcement learning. arXiv preprint
arXiv:1710.11248, 2017.

[19] Alborz Geramifard, Christoph Dann, Robert H Klein, William Dabney,
and Jonathan P How. Rlpy: a value-function-based reinforcement
learning framework for education and research. 2015.

[20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014.

[21] Daniel H Grollman and Aude Billard. Donut as i do: Learning from
failed demonstrations. In 2011 IEEE International Conference on
Robotics and Automation, pages 3804–3809. IEEE, 2011.

[22] Jonathan Ho and Stefano Ermon. Generative adversarial imitation
learning. In Advances in neural information processing systems, pages
4565–4573, 2016.

[23] Jonathan Ho, Jayesh Gupta, and Stefano Ermon. Model-free imitation
learning with policy optimization. In International Conference on
Machine Learning, pages 2760–2769, 2016.

[24] Edwin T Jaynes. Information theory and statistical mechanics. Phys-
ical review, 106(4):620, 1957.

[25] Kee-Eung Kim and Hyun Soo Park. Imitation learning via kernel
mean embedding. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[32] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer
Science & Business Media, 2006.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[27] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey
Levine, and Jonathan Tompson. Discriminator-actor-critic: Addressing
sample inefficiency and reward bias in adversarial imitation learning.
arXiv preprint arXiv:1809.02925, 2018.

[28] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-
end training of deep visuomotor policies. The Journal of Machine
Learning Research, 17(1):1334–1373, 2016.

[29] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable
imitation learning from visual demonstrations. In Advances in Neural
Information Processing Systems, pages 3812–3822, 2017.

[30] Andrew William Moore. Efficient memory-based learning for robot
control. 1990.

[31] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse
reinforcement learning. In Icml, volume 1, page 2, 2000.

[33] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell,
Pieter Abbeel, and Jan Peters. An algorithmic perspective on imitation
learning. arXiv preprint arXiv:1811.06711, 2018.

[34] Dean A Pomerleau. Efficient training of artificial neural networks for
autonomous navigation. Neural computation, 3(1):88–97, 1991.

[35] Rouhollah Rahmatizadeh, Pooya Abolghasemi, Aman Behal, and
Ladislau Boloni. Learning real manipulation tasks from virtual
demonstrations using lstm. arXiv preprint arXiv:1603.03833, 2016.

[36] Stephane Ross and Drew Bagnell. Efficient reductions for imitation
learning. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 661–668, 2010.

[37] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of
imitation learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627–635, 2011.

[38] Stuart Russell. Learning agents for uncertain environments. In
Proceedings of the eleventh annual conference on Computational
learning theory, pages 101–103, 1998.

[39] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. Trust region policy optimization. In International
conference on machine learning, pages 1889–1897, 2015.

[40] Kyriacos Shiarlis, Joao Messias, and S A Whiteson. Inverse reinforce-
ment learning from failure. 2016.

[41] Umar Syed and Robert E Schapire. A game-theoretic approach to
apprenticeship learning. In Advances in neural information processing
systems, pages 1449–1456, 2008.

[42] Umar Syed and Robert E Schapire. A reduction from apprenticeship
learning to classification. In Advances in neural information process-
ing systems, pages 2253–2261, 2010.

[43] Voot Tangkaratt, Bo Han, Mohammad Emtiyaz Khan, and Masashi
Sugiyama. Variational imitation learning with diverse-quality demon-
strations. In International Conference on Machine Learning, pages
9407–9417. PMLR, 2020.

[44] Jiangchuan Zheng, Siyuan Liu, and Lionel M Ni. Robust bayesian
inverse reinforcement learning with sparse behavior noise. In Twenty-
Eighth AAAI Conference on Artificial Intelligence, 2014.

[45] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K
Dey. Maximum entropy inverse reinforcement learning. In Association
for the Advancement of Artificial Intelligence (AAAI), volume 8, pages
1433–1438. Chicago, IL, USA, 2008.

