UNIQUENESS IN A NAVIER-STOKES-NONLINEAR-SCHRODINGER MODEL
OF SUPERFLUIDITY

PRANAVA CHAITANYA JAYANTI AND KONSTANTINA TRIVISA

ABSTRACT. In | ], the authors proved the existence of local-in-time weak solutions to the model
of superfluidity. The system of governing equations was derived in [ | and couples the nonlinear
Schrodinger equation (NLS) and the Navier-Stokes equations (NSE). In this article, we prove two
uniqueness theorems for these weak solutions. One of them is the classical weak-strong uniqueness
based on a relative entropy method. The other result trades some regularity of the stronger solution
for smallness of data and short time/low energy.
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1. INTRODUCTION

This article deals with the problem of uniqueness of the local-in-time weak solutions to a model of
superfluidity known as “Pitaevskii model” governed by the nonlinear Schrodinger equation (NLS)
coupled with the inhomogeneous Navier-Stokes equations (NSE) for incompressible fluids. The
Schrodinger equation is used to describe the dynamics of the superfluid phase, while the Navier-
Stokes equation is employed to describe the evolution of the normal Helium liquid.

The present article presents two distinct uniqueness results. Motivated by the analytical results
in | |, we investigate the issue of weak—strong uniqueness in Section 4 presenting a new class
of weak solutions with additional regularity properties. There are many results, mostly devoted to
the Navier—Stokes system for incompressible fluids, concerning conditional regularity of the weak
solutions. Roughly speaking, the weak solutions are regular as soon as they belong to a critical
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2 JAYANTI AND TRIVISA

regularity class. Results in that direction are presented by Caffarelli et al. [see L. Caffarelli, R.-V.
Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier—Stokes equations,
Comm. Pure Appl. Math. 35 (6) (1998) 771-831.] Escauriaza et al. [see L. Escauriaza, G. Seregin,
V. Sverak, L3, solutions of Navier Stokes equations and backward uniqueness, Uspekhi Mat. Nauk
58 (350) (2003) 3-44. no. 2, translation in Russian Math. Surveys 58 (2) 211-250.], Prodi [see G.
Prodi, Un teorema di unicitd per le equazioni di Navier—Stokes, Ann. Mat. Pura Appl. 48 (1959)
173-182.] , Serrin [see J. Serrin, The Initial Value Problem for the Navier-Stokes Equations,
Vol. 9, University of Wisconsin Press, 1963, pp. 69-98.], or more recently, Neustupa et al. [see
J.Neustupa, A.Noovotny, P. Penel, An interior regularity of aweak solution to the Navier—Stokes
equations in dependence on one component of velocity, in: Topics in Mathematical Fluid Mechanics,
in: Quad. Mat., vol. 10, Dept. Math., Seconda Univ., Napoli, Caserta, 2002 pp. 163-183] and
[J. Neustupa, M. Pokorny, An interior regularity criterion for an axially symmetric suitable weak
solution to the Navier-Stokes equations, J. Math. Fluid Mech. 2 (4) (2000) 381-399. ] In the
context of compressible fluids related results are presented by Feireisl, Novotny and Sun [see |E.
Feireisl, A. Novotny, Y. Sun, Suitable weak solutions to the Navier—Stokes equations of compressible
viscous fluids, Necas Center for Mathematical Modeling, Preprint 2010-019, 2010], Feireisl, Jin,
and Novotny [E. Feireisl, B.J. Jin, A. Novotny, Relative entropies, suitable weak solutions, and
weak—strong uniqueness for the compressible Navier—Stokes system, J. Math. Fluid Mech. 14
(2012) 717-730.] and by Mellet and Vasseur [see A. Mellet, A. Vasseur, Asymptotic analysis for a
Vlasov—Fokker—Planck /compressible Navier—Stokes system of equations, Comm. Math. Phys. 281
(2008) 573-596].

Our analysis is motivated by the pioneering work of Dafermos [see C.M. Dafermos, The second
law of thermodynamics and stability, Arch. Ration. Mech. Anal. 70 (1979) 167-179.] and DiPerna
[see Ronald DiPerna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math.
J. 28 (1) (1979) 137-188], the results of Germain [see P. Germain, Weak-strong uniqueness for the
isentropic compressible Navier—Stokes system, J. Math. Fluid Mech. 13 (2011) 137-146. [the
analysis of Mellet and Vasseur [13] as well as the approach of Feireisl et al. [see E. Feireisl, A.
Novotny, Y. Sun, Suitable weak solutions to the Navier—Stokes equations of compressible viscous
fluids, Necas Center for Mathematical Modeling, Preprint 2010-019, 2010]. . By employing Gron-
wall’s argument, a weak—strong uniqueness result is established yielding that a weakly dissipative
solution agrees with a classical solution with the same initial data when such a classical solution
exists.

We also refer the reader also to Section 2.5 in [ | where a related result is presented in the
context of ....fluids. .

The small data assumptions are required to complete a Gronwall’s inequality calculation. One
of the possibilities arising from the last condition in Theorem 2.4 essentially states that for the
system starting at any finite energy (however large), there is always a small enough existence time
up to which we can guarantee the uniqueness. The other route is for the energy to be small enough
(along with a bound on the existence time that depends on the allowed lower bound of the density
field).

1.1. Notation. Let ©(£2) be the space of smooth, compactly-supported functions on 2. Then,
H§ () is the completion of © under the Sobolev norm H®. The more general Sobolev spaces are
denoted by W*P(Q), where s € R is the derivative index and 1 < p < oo is the integrability index.
A dot on top, like HS(Q) or W#P, is used when referring to the homogeneous Sobolev spaces.

Consider a 3D vector-valued function u = (u1,u2,usz), where u; € ®(Q),i = 1,2, 3. The collection
of all divergence-free functions u defines D4(€2). Then, Hj;(Q2) is the completion of D4(£2) under
the H® norm. In addition, to say that a complex-valued wavefunction ¢ € H*({2) means that its
real and imaginary parts are the limits (in the H® norm) of functions in D(€2).
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The L? inner product, denoted by (-, -), is sesquilinear (the first argument is complex conjugated,
indicated by an overbar) to accommodate the complex nature of the Schrodinger equation. Thus,
for example, (¢, By) = fQ 1B dx. Needless to say, since the velocity and density are real-valued
functions, we will ignore the complex conjugation when they constitute the first argument of the
inner product.

We use the subscript « on a Banach space to denote the Banach space is defined over 2. For
instance, L% stands for the Lebesgue space LP()), and similarly for the Sobolev spaces: H j,x =
Hj;(€). For spaces/norms over time, the subscript ¢ will denote the time interval in consideration,
such as LY := LI[QO’T]7 where T" stands for the local existence time unless mentioned otherwise. The
Bochner spaces LP(0,7; X) and C([0,7T]; X) have their usual meanings, as (LP and continuous,
respectively) maps from [0, 7] to a Banach space X.

We also use the notation X < Y to imply that there exists a positive constant C' such that
X < CY. The dependence of the constant on various parameters (including the initial data), will
be denoted using a subscript as X Spyp, ¥ or X < O, 1Y

1.2. Organization of the paper. In Section 2, we describe the mathematical model and recall
the existence results of [ ], along with statements of the main results. The result involving less
regular strong solutions is demonstrated in Section 3, while justifying the additional assumptions
used. Finally, Section 4 is devoted to the proof of the more standard weak-strong uniqueness result,
using the relative entropy method.

2. MATHEMATICAL MODEL AND MAIN RESULTS

2.1. Model and recap of existence results. The nonlinear Schrédinger equation (NLS) is used
to describe the dynamics of the superfluid phase, while the incompressible inhomogeneous Navier-
Stokes equations (NSE) govern the normal Helium liquid. The “Pitaevskii model” that we consider
in this work is as follows. Henceforth, all statements are in the context of a smooth, bounded
domain Q C R3.

O+ ABY = —- Ay + HyPy (NLS)

B = ¢ (¥ —w? i =~ At Vo Ll + (CPL)

Oip+ V- (pu) = 2A Re(¢ By) (CON)

Oi(pu) + V- (pu @ u) + Vp — vAu = — 2ATm(VepByp) + AV Im(¢p Bip) + %V|1/}]4 (NSE)
Vou=0 (DIV)

We supplement the equations with appropriate initial and boundary conditions’.

¥(0,2) = 1o (x) u(0,x) = up(x) p(0,2) = po(z) a.e. x € (INT)

I¥or a justification of the exclusion of ¢t = 0 in the boundary conditions for the wavefunction, see Remark 2.4 in

[JT21]
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ou

u—a—n—O a.e. (t,z) € [0,T] x 0Q

p P _ 0
~On  On?  Ond

(BC)
=0 ae. (t,z) € (0,T] x 00

where n is the outward normal direction on the boundary 92, and T is the local existence time. For
more details about the model, refer to the discussion in | | or the derivation in | ]. Weak
solutions that we seek are those that satisfy the governing equations in the sense of distributions,
for a certain class of test functions.

Definition 2.1 (Weak solutions). Let Q C R3 be a bounded set with a smooth boundary 9S). For
a giwen time T > 0 and § € (0, %), consider the following test functions:

(1) a complez-valued scalar field p € HY(0,T; HY(Q)),

(2) a real-valued, divergence-free (3D) vector field ® € H'(0,T; H}(Q)), and

(3) a real-valued scalar field o € HY(0,T; H'(2)).
A triplet (¢, u, p) is called a weak solution to the Pitaevskii model if:
(i)

b € L(0, T HY(Q) 1 20, T H>(@)) 0 {By € L2(0,T: IX(2)))
u € L®(0,T; L3(Q)) N L*(0,T; H(Q)) (2.1)
p € L>¥([0,T] x Q)

(ii) and they satisfy the governing equations in the sense of distributions for all test functions,
i.e.,

T 1
- / / [watw Q.Vw'Vso—Ason—iu¢|¢!2w] d dt
0 Q 1

- /Q Wop(t = 0) — (T)p(T)] dr (2.2)

T
- / / [pu- 9@+ pu®@u: VO —vVu: VO — 2A® - Im(VyBy)| dz dt
0 Q

= [ (e = 0) = pTy(T)BD ds - (23)

T
- / / [p0i0 + pu - Vo + 2A0 Re(¥BY)| da dt = / [poo(t =0) — p(T)o(T)] dz (2.4)
0 Q Q

where (the initial data) 1o, pouo, po each belong to L?(£2).

In | ], the following existence result was proven.

5 3
Theorem 2.2 (Local existence). For any d € (0, 3), let ¢ € HOTHS(Q) and ug € H;M(Q). Suppose
po 18 bounded both above and below a.e. in 2, i.e., 0 < m < pg < M < oco. Then, there erists a
local existence time T and at least one weak solution (1, u, p) to the Pitaevskii model. In particular,
the weak solutions have the following regularity:
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e CO,T; Hi (@) n L2(0,7; HE T () (2.5)

we C0,T; H2 () n L2(0, T; H(Q) (2.6)
p € L°([0,T] x Q) NC(0,T; L*(Q))

where T depends on € € (0,m), the allowed infimum of the density field.

The solutions also satisfy some bounds/estimates (some derived a priori), summarized here for

convenience.

(1) Superfluid mass bound:

[l (0) < lWoll s ae. t € [0,T] (2.8)

(2) Normal fluid density bound: Given our choice of T, we know that 0 < & < p(t,z) < M’ :=
M+m—c¢eae. (t,x) €[0,T] x Q.

(3) Energy equation:

1 9 1 2 H 4 2 ;
(3vAuly + SIVUIEs + 510lty ) O+ vIVully s + 201801,

) ) p (2.9)
2 2 4
= S IVaouols + 2IVol, + Aol = By ae. te 0,1
(4) Higher-order energy estimate:
T
X(t) < 2Xy ae tc[0,T] / Y (r)dr < 31X,
0
where X(t) = 1+ ||A¢[7; +v|Vul7, ,  Xo= X(0) (2.10)
2
v
Y = AV (BOIZ; + IvEouls + o 1Al
(5) Highest-order energy estimate:
912 5.50) S Il 5.pe%" ac. € [0,7)
_1 1 cQ
1B, 305 SATH@E + 1DV 0ol
2.11)
1 ar (
Jul? 3s(®) S ol g+ 54/ 2 Xe

!/

M’ M 2 2 2 2
where Qr = AﬁXo + (Ay% + 7) XoT +AEIT |, E;= Hu0||H§+[S + ||¢0HH§+5
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(6) Time-derivative bounds:

HatT/JHB L2 <HB¢HL2 L2 "‘TQWHLOO [H2 +MT2H¢HL°° H!

[0,T7]

|9vull,

<
MRS \@Xo (2.12)

1 1
H&ngL[gO T]H;1 S (TEOM/)2 + (A_lEoXO)Q

In the derivation of (2.9), we make use of the non-conservative form of (NSE). Note that p is
simply a modified pressure that includes gradient terms on the RHS of the momentum equation.

pOyu + pu - Vu + Vp — vAu = —2A Im(Vip Brp) — 2Au Re(¢ Ba) (NSE’)

2.2. Uniqueness results. Given that weak solutions exist, it is instructive to ask whether they
are unique and under what additional assumptions (if any). The main results of this article are
the two weak-strong uniqueness theorems below, differing from each other in the regularity of the
strong solutions. The first of these is a standard weak-strong result, i.e., starting from the same
initial conditions, if we have a weak solution and a strong solution (in the precise sense described
below), then they are both identical almost everywhere.

Theorem 2.3 (Weak-strong uniqueness). Let (¢, u, p) be a weak solution as constructed in Theorem
2.2, and suppose there exists a strong solution (1/;,11, p) to the Pitaevskii model starting from the
same initial conditions (such that both these solutions exist up to some time T'). Specifically, it is
sufficient that the strong solution has the following additional reqularity over the weak solution:

5 e L0, T;Wh3(Q)) , ae LX0,T;Whe(Q))

oyt € L(0,T; L®()) (2:13)

Then, the solutions are identical a.e. in [0,T] x Q.

Based on the regularity in (2.5), one can easily see that 9y is already in L?(0,T; L*°(£)), which
is why no improvement is needed for the smoothness of ¥. In fact, the “weak wavefunction” has
enough regularity to be classified as a strong solution; it is the velocity and density that make
the solutions in Theorem 2.2 “weak”. Furthermore, in the above result, we can observe that the
velocity in the strong solution needs to have bounded (in space) spatio-temporal derivatives. As
much as this is not unusual to expect from strong solutions, it is possible to trade this rather
high regularity for some other conditions in order to obtain uniqueness. This is stated in the next
theorem, and will be referred to as “weak-moderate uniqueness” since the notion of strong solution
is significantly relaxed.

Theorem 2.4 (Weak-moderate uniqueness). Let (¢, u, p) be a weak solution as in Theorem 2.2.

Suppose there exists a “moderate” solution (1;,& p) starting from the same initial data, such that
p € L20,T;Wh3(Q)), i € L(0,T; L3( )) in addition to the regularity of the weak solutions.
Then, the solutions are identical a.e. in [0,T] x , if the following conditions are satisfied:
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(1) (Small initial velocity and wavefunction)

. 1
ol 05 gy S minfL, )

) (2.14)
[0l 505 g S (V)
(2) (Short existence time and/or low energy)
€
TS % (2.15)
along with either T or Ey being small enough that
(14+ANTEy+ p*T*E§ S vA (2.16)

where Ey = 5|, /pouoHig + %vaoHig + %Hon}{g is the initial energy of the system.

The small data assumptions are required to complete a Gronwall’s inequality calculation. One
of the possibilities arising from the last condition in Theorem 2.4 essentially states that for the
system starting at any finite energy (however large), there is always a small enough existence time
up to which we can guarantee the uniqueness. The other route is for the energy to be small enough
(along with a bound on the existence time that depends on the allowed lower bound of the density
field).

Remark 2.5. For fized values of v and A, it was arqued in Section 2.1 of | | that the local
existence time T grows with decreasing €. However, from (2.15), it is clear that for a unique
solution, we require T to decrease when € is reduced. This demonstrates a tug-of-war between the
existence and weak-moderate uniqueness in the Pitaevskii model.

It is to be noted that in the proof of Theorem 2.2, we already established that for a weak solution,
Owu € L?(0,T;L?). So, as far as the (time derivative of the) “moderate” velocity goes, we have
only assumed a slight increase in the spatial integrability, from L? to L? (as opposed to L* in
the first result). Also noteworthy is the absence of any additional (over the weak solution) bound
on the spatial derivatives of 4. The regularity of the “moderate” density remains unchanged from
Theorem 2.3.

Summarized below are some well-known Sobolev embeddings (see Chapter 5 of | ]) that
will be repeatedly utilized in the calculations that follow. We will begin with a proof of the second
theorem in the next section.

Lemma 2.6 (Sobolev embeddings). For 2 a smooth, bounded subset of R3,
(1) H'(Q) € L°(Q)
(2) H¥(Q) CL®(Q)Vs>3 ; H'(R)CL®R) Vs> 1
(3) H(Q) € H' (Q) V 5,5 € R, s > &'
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3. WEAK-MODERATE UNIQUENESS (PROOF OF THEOREM 2.4)

In the subsequent proof, we will use the difference between the weak and moderate solutions as
the test functions, so as obtain a Gronwall-type estimate for the L T]Lx norm of the difference
of two solutions. This is possible in the case of the velocity and wavefunction simply because of
their regularities. In the case of the density, it is possible to achieve it by working with smooth
approximations and passing to the limit. Finally, observe that the increased spatial regularity of p

results in an increased temporal regularity too.

- <7 oA
Hatp”L[QO’T]LQ% S lla VP'HL[?O’T]
(3.1)

BJ;‘ , o, <@
Lo L& LiomLz

SNl neoll s | was + HwH

[0,T]

The notion of the weak solution holds for all times 0 < ¢t < T, where T is the chosen local
existence time. Considering (2.2), (2.3) and (2.4) up to a time ¢ < T, and differentiating with
respect to t, we arrive at:

R o d ]
- [ |poe+ 5,70 Vo - AeBu — inglule] = - [ wtvieto) (32)
— /Q [pu- 0@+ pu@u: VO —vVu: VO — 2A® - Im(VYBY)| = —% . p(t)u(t) - @(t) (3.3)
- / (000 + pu - Vo + 200 Re($BY)] = —% (1) (1) (3.4)
Q Q

We write the above time-differentiated weak formulation for both the solutions (v, u,p) and
(121, u, p), setting the test functions to be ¢ = 9 — ¥, ®=u—a, and 0 = p — p. Now, we subtract
each of the equations (3.2), (3.3) and (3.4) from their counterparts formed by replacing the triplet
(1/;, U, p). We will analyze the resulting equations below. In what follows, « is a small positive real
number, used to extract out the dissipative terms |[V®|7, and || V4|32, and small enough that
they may be absorbed into the dissipative terms on the LHS of the momentum and Schrodinger
equations, respectively.

3.1. The wavefunction equation. While dealing with the Schrodinger equation, we will also
consider the real part after subtracting the equations for the two different weak solutions. Subse-
quently, a little rearrangement yields:

Gallelts + ke [ pBuo+ du [ 16Rf5] = —ARe [ 5B B)d—ptm [ 5 (jof + )

(3.5)

Here, By, := B— M|¢|2 is the linear (in v) part of the coupling operator. It is known from Lemma
2.7in | ] that the second term on the LHS is non-negative. This term will now be expanded
(using the definition of By) to obtain our “dissipation”, which will absorb similar quantities on the
RHS. A combination of Holder’s and Young’s inequalities, and dropping some non-negative terms
from the LHS, leads to:
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@ el + 3
A2 A-3
+ (M|l +0+ M| @@, 3
LD e

A4 A-5

To arrive at (3.6), we expressed B — B as shown below, and we will have occasion to reuse this.

B-B= % (1 = [a?) + i(u = @) - V + p <\w|2 - )1/?‘2>
:%(Ha)-@+i@-v+ﬂ(|¢\2+¢¢+gp§) (3.7)

Now, we will look at each of the terms in (3.6).

(i)
_ 2
Sllellpellull eI Vel S (507 ulfellel7z + sAIVell7
(i)
S lellzzllu+all e 191 22
< -1 -\ 112 7|12 2 2
S (RA) IV (u + a)][7, Lo 1®ll72 + mA[VelZ,
(iii)
S llellzall®ll s
2
v 2 2
pallzg + 1211k
8
_ ~ _ 2
< (kA)7° LQWH%g + () 2| @][72 + m|[ VI, + AV
In going to the last step, we have used the 3D version of the Ladyzhenskaya inequality:
IFilk: 1 Sf H 2 IV f H 7t followed by Young’s, in order to extract the required dissipative terms.
(iv)

A S ol

Ap 1l -
Llelizs + (An)7|

2 2
Lg”SOHLg

By 4 _ _3|| 78
§7HSOHL;+(AM) Y(kA) 3‘ L4||90H%g+“/\||VSDH%§

where we have once again used the Ladyzhenskaya inequality. Note that the first term in the
last line can be absorbed into the LHS of (3.6).
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[A-5] S N7 ||+ (kA)™

2 2
||90HL3 +rAIVeollz:

Combining these estimates into (3.6), and dropping the H(PH%4 term, gives us:
dy 2 A 2 2 2 2 2
Dol + 2IVely < [Iels + 1015:] + mlVRIZ + AVl (3

where h; € L[0 A

3.2. The momentum equation. Subtracting the two momentum equations, we get:

—/p<I>~8t<I>—/Uﬁ-8t<I>—/[p¢®u+pﬂ®<1>+aﬁ®&]:V<IJ+V\V<I>H2L2

Q Q Q N (3.9)
_ — .\ 4 d . :
2N | @ -1 By — B — u -
YNy

2
The first term on the LHS can be rewritten since we see that % satisfies the requirements to
be a test function for the density field in (3.4).

|1’2 / |1’2 / 2— / ‘i|2
- @' Q___ —_— = . I @ B - I
/ p® - 0, / POy 5 pu -V 5 + ARe [ |®|"YBy : 5

Further simplification using Holder’s and Young’s inequalities (to appropriately absorb the dis-
sipation ||V¢>||%2 from the RHS into the LHS) yields,

i 3llves

+ 5lIVel

1
<= [Ip® @ ull}; + lpi @ @3 + o ® al s

[B-1+/B-2]+/B-3]

- 2A/Q ® - Im (V@Bd) + VB + Vi (B — 3)&)

(3.10)

[B-4]+/B-5]+/B-6]

e of ye
/Qat(au) / pu - V-— /Q |®|“ Reyy By
B-7 B-8

Each of the terms on the RHS can be bounded from above as follows (using the Holder and
Young inequalities, and the Some of these terms are more straightforward than others.

(i)

2 2 2
S ol e l[ullzee 19112

2 =12 2
S ol e l[allzee 1912
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~ 4 2
S lallzgellolize

S IVl IBE] o 19 12 S (58) Bl 011 + RAIV ]2,
(v) Expanding B — B as in (3.7),

B6l= | &1 [W?{l(um)-<I>+i<I>-V+u(Isol2+so¢3+<p&)1E}$]
_l@l7:
LgonHLgo||¢>HLg|rso||Lg (\sonLgo +4],.)

2
7 2
) 1l

2 2
7 7 2
ol ) el

Estimating the remaining terms requires some of the additional regularity/small-data assump-
tions listed in Theorem 2.4.

(vi)

<(

—/ 1 1
_Im/g@-vw (—2A<p+2\u|2<p+iu~Vso+u!¢!2so>

=[B-5.1]+ [B-5.2] + [B-5.3]| +[B-5.4]

e Integrating by parts on the first term,
1 -
/Imv V)i w+2/1mq>.mw
B—5.1.1 B-5.1.2

B-5.1.1] <

~

3, 199051Vl e S ()t

~112 9 9
Vel + wvl| v,

In order to get the first term on the RHS to also be absorbed into the dissipation from
-2
the Schrodinger equation, we will require (/ﬁl/)*lﬂvaL (t) < kA. For now, we will

assume this, and justify it in Section 3.4.

B-5.1.2] <

~ ~112
@l 9ele S )7 AG| ) @l3s + sl Vel
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[ ]
2
7 4 2 7 2
S lullfe |99 N@lglellze S lullfeli@ls + ]| _lel?s
[ ]
S Nl V3] 1@l wells
< (oA) Ml 2 [V D12, + AV
S A ulfe |99 I@13s + mAl Vel
[
~ ~ 112
S [ad] _1olalvells S en) 7| w1l + xAlIells
(vii)
:—/8tﬂ~cr<1>—/8ta(ﬂ-<1>)
Q Q
[ ]

S 10val palloll 2 191l e
S 0all g lloll 2 1Vl 22

— ~112 2 2
< (n) ovill3 1012, + rv|[ VB2

e By subtracting the continuity equations for p and p, we obtain

80 +®-Vj+u-Vo=2ARe @B@z) —JB;Z)
which allows us to rewrite as

Z/Q(ﬂ-@) {_q)‘vﬁ—u'Va—i—QARe(@Bw—géij)}

[B-7.2.1+[B-7.2.2]+|B-7.2.3]

Each of these terms will now be estimated.

B7.2.1) S [l o [ VAl 1 @112 1] o
_ ~112 ~112 2 2
< () a2 1V 5125 181125 + sl VD)2,

This is a suitable estimate due to the regularity of the stronger solution: p € L[20 7] Wi,

For the second term, we will additionally interpolate the L2 norm between the L? and
LS norms: |[Vii]| 73 < IVal || D], -
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:/QO'U-V((I)-TL):/QUU-(V‘I))'I?—I—/O'u-(Vﬁ)-(I)

Q
S lull e Il ol 2 9@ 1 + Nl e ol |Vl 0] e
_ ~112 ~ ~ 2 2
< ()7 (il + 198l e | D%l 5 ) Nl ol

+ /4;1/||V<I>H%%

Finally,

B-7.2.3) = 2A / (- @) Re (3B + 0B + (B — B)))

[B-7.2.3.1+/B-7.2.3.2]+|B-7.2.3.3]

These are, in turn, bounded as follows. The third term is dealt with in a manner

mirroring that of [B-6].

~ ~112 2 2 2
B-72.3.1) S [l o121l 2 2 1 BY e S il 12132 + 1B ol
BT233) 5 il [V (ot s + V3] + il 9], ) ol
~12 2 ~112 9
9], (i + |19, ) el
The middle term requires to be broken down further, much like [B-5].

=71 1
B-7.2.3. —Re/(a-¢)¢ [—2A90+ 2|U!290+W-V<P+MW\2<P]
Q

[B-7.2.3.2.1]+|B-7.2.3.2.2]+|B-7.2.3.2.3]+/B-7.2.3.2.4]

We integrate by parts on the first term, and analyze the remaining terms just as before.

1 - - -
Br2320] - ke | [ (v0-0)- %0+ [ (V@) ive+ (@ 0)vi vy
Q Q Q
< -1 ~ 112 =12 ~ 112 =2 2
Y €7V o8 2 W 8 o2 B T
~112
+ (M) Ml |9 IVl + kAITe

To be able to absorb the |[V®||3, term into the dissipation (at the very end), we require

)
(/ﬁA)*lHaH%o@ (t) w’ : (t) < kv. As was done in [B-5.1.1| we will assume this for now
and justify it in Section 3.4.
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~112
~ 112 4 2 2
B72323) S alljx lultz 12l3s + [ _llels

B-7.23.2.3)  (kA) " [l 20 ul2

~12 9 9
913 + sAIVels

~112 2 2
B-7.2.3.2.4] 5 ||t e |72 + [1¥]750

~112 9
o lelEs

(viii) Using (3.1), and the vector identity V@ =0.-V®—(Vxd)xo,

— 2 2 2 2
Slplpgelull el 2 IV @l 2 S (k)" ol e lullzee @M 72 + w2 V@I 7

(viv)
2
S 19l e 1B oo 19172

Returning to (3.10), and using the ensuing estimates, we arrive at:
d 2 v 2 2 2 2 2 2
e 1®lle + SIVeILs < ha(t) |lllzz + 1917 + HUIILg] + rv||[ V|7, + sA[Vel:  (3.11)

where hy € L[0 Ak Also, note that we have replaced the density in the first term of the LHS by its
minimum value.

3.3. The continuity equation. In this case, we get
/U@ta—/(pu—pu) VU—QA/aRe B — 1/131/1 /|0]
Q

which can be rewritten (after simplifying the first term on the LHS) as

d1

pn 2||0HL2 = / pP - Vo —2A Re/ opBy + U@(B — B)y (3.12)
Q Q

C-1 C-2+C-3

Remark 3.1. The above calculations can be rigorously justified by considering the difference be-
tween the equations for pN (the approzimate densities in Section 4.3 of | |) and p. Passing to the
limit N — oo leaves us with the desired equation for o = p— p, since we know that p € C(0,T; L2).



UNIQUENESS IN AN NSE-NLS MODEL OF SUPERFLUIDS 15

(i) Once again, recalling that we have assumed in Theorem 2.4 that p € L[Z0 7] Wi, Thus,
- ~ - <112 2 2
=~ [ Vi 20 S IVl 1@ sl S ) IV Iy + VO

Observe that o should always be considered in the L2 norm while using Holder’s, since there
is no dissipation term for the density.

(ii) For the second term, apart from the above, we also interpolate the L2 norm between the L2
and LS norms.

1 1
S llollzzllelize Bl S lloll 2 Vel 2 (|1 Bz (VB 7,
_ 2 2
S (RA) o Nz 1BY [l 2 VB || 2 + £AIVel|72

where once again, we choose x small enough for the absorption of the dissipation term, this
time into the corresponding term from the Schrédinger equation.

(iii) Similar analysis on the third term yields

[C-3] < HUHLg

(B - B

L3

<ol U\wHLw|ru+a||Lgu<b||Lg 111 o

d

w?‘

LY

v

LY

2
LS

2 ~
Mt @l g [V + Vil + 07|V

d

¢

2
2
Lol Fllellog 9]

D%‘

2 2
< 1 2 —11|.7
<ol |14 T

A

d

+ ][ V|2, + RAIVe|2,

w?(

8
— 4 2
| + Gy Slotg]} el

2 4
Lge L2

In going to the last step, we have used the Ladyzhenskaya inequality, followed by Young’s.
A consequence of this is that ||o||; 2 is now raised to the power 4, as opposed to 2 which is

needed for a Gronwall’s inequality argument (coming up next). So, we split it as follows:

lolits = llo— Al llol2s < (Iel3z + 17132 ) llo]22- We also replace [o]3 by the upper

bound [[¢][3; +

2
L2
Using the above estimates, we can simplify (3.12) to read:

d
@HUH%; < hs(D)lol7z + mv[ V|, + AVl (3.13)

where hg € L[lo,T}'
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3.4. Small data and short time/low energy. In Section 3.2, in the analysis of [B-5.1.1| and

B-7.2.3.2.1|, we assumed the following to hold a.e. ¢t € [0,T7]:

(k)1 t) < kA (3.14)

()l 0|5 0 < o (3.15)

Let us begin with a discussion of (3.14). From here on, we will drop the tilde on the functions in
the above conditions (since they must hold for both the weak solutions). Also, for the remainder
of this section, we will denote s = % + 4.

3
Due to the embedding Hz ok C¥. a sufficient condition for (3.14) to hold is:

2
HwHLfoH;+1 SJ vA (3.16)

We can derive such a bound using the Lions-Magenes lemma (see Lemma 1.2 in Chapter 3 of

[ D

t
91 (6) = Wolgos +2 [ @bt
0
2 1
< HwOHH;H + 2T Hf)WHLgH;H ”M’LgoH;“

1
2 2 2
S Wollgzger + TNO N ot + SI¥N ooz

implying

2 2 2
1212 e rets S Ibollgess + THO N2 2 (3.17)

Now, we will derive a slightly better bound for ||0;%|| r2r2 than that in (2.12), so that everything

may be expressed in terms of the initial energy Eo. Multiplying (NLS) by 9;%, and integrating over
Q,

51Vl + 10wl = -2 [ By + % [ adlue

We now take the real and imaginary parts of this, and then add the two equations. In the
process, we will use the fact that Re <8,ﬂ|¢]21j}> = i@t\wﬁ.

GIVUIE + lowlEy + 5 501ty = —ARe [ 0By — At [ 5B + i | 2310l

Using Holder’s inequality and Sobolev embedding, we get:

S LIV, + G012, S ABYIZ + w21Vl
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Integrating over time, and using (2.9), we arrive at:

1017212 S (1+ A)Eo + p°TE] (3.18)

Using (3.17) and (3.18), we conclude that (3.16) may now be replaced by another sufficient
condition:

o]l s + (1 + AT Ep + (T2 E§ < vA (3.19)

It is obvious that this can be satisfied for when Ey (or T') and [[to|| s+1 are small enough. Here,
we will establish one such choice. Let the constant of proportionality in (3.19) be c. First, select Ey
such that TEy(1+A) < %, ie., B < 7. Then, update’ Ey so that u?T?E§ < % as well. Using
the previous bound for Ej, this reduces to p?TE] < A, i.e., Ey < A%LF%Tfé. Finally, choose the
initial wavefunction to satisfy szngq;H < b

Now, we will move on to (3.15). In this case, the analysis for the wavefunction is very similar
and we will not discuss it. For the velocity, we follow a similar approach as well, and make use of
(2.10). After some simplification, we arrive at:

TXo

ol + 72| (1wl + 0+ 7B + 27288] S v (3:20

where Xo = 1+ v||Vuo|2; + [|A%oll22 < 1+ vlluol%, + lo]2-

The second term on the LHS is already controlled by (3.19). Since Xy > 1, the only way we can
control the first term on the LHS is by choosing a T' small enough that

T
2 2 2
ol + = (1 + vlluolg + ol %z0) S 1

~ ~

Since ||wo||i,s+1 < vA, we choose |Juglly, < min{l,»#7'}, and then, we pick T < 755 The
other possibility, of course, is that for a given Ej, we simply select T' small enough (along with the

appropriate smallness of |lugl| s and [[¢ho| s+1) to satisfy (3.14) and (3.15).

Having discussed the smallness assumption, we now proceed to add (3.8), (3.11) and (3.13). By
choosing x sufficiently small, we can ensure all the dissipation terms are absorbed by the LHS.
What remains is:

d
S Il + 1913, + 0125] S (a4 Bz + ) () [Ill3 + 191035 + ol (3.21)

Using Gronwall’s inequality, and the fact that [|¢||;2 = ||®|;2 = ||o||;2 = 0 at ¢ = 0 completes
the proof of Theorem 2.4.
U

2Recall that Fo depends on p, so it is not correct to infer a dependence of Ey bound on .
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4. WEAK-STRONG UNIQUENESS (PROOF OF THEOREM 2.3)

We shall now work with a pair of solutions, one weak and the other strong (in the sense indicated
in (2.13)). The approach makes use of the energy structure of the system and is motivated by the
classical results of Section 2.5 in [ ]. We will begin with the wavefunction, by acting with the
gradient operator on (NLS) for each of the two solutions ¢ and ¢). Then, we will subtract the
equations and integrate against V(¢ — 1&) The real part of the resulting equation is given below.
The analysis is a combination of the calculations in Section 3.2 of | | and Section 3.1 above, in
that we will be looking at the energy (H. norm) difference between the two wavefunctions.

d1

g2l V@ =)

_ —ARe/mV(lD —¥) - V(BY - BJ) +u1m/mv(¢ ~4)-V (ww - \121(2&)

2
LE

Integrating by parts on the RHS, we get a Laplacian term in each of the integrals. In the first
integral, we observe that By — Bi) = —%A(Q/} — 1/;) + ..., so that this gives us a “dissipation” term
along with other terms. In the second term of the RHS, we extract the A(y — @ZNJ) in L2, and absorb
it into the aforementioned dissipation term. After some manipulation, we arrive at:

Lazc <
~Y

o | >

~12
[wmuig@\\wum + ||w||igo] IA(u - @)

L3 (4.1)
+ [A (lulte + Nl ) +

utt+8) (Il + ], )] [ - o)

2
L3
Now, we move on to the momentum equation. The modus operandi here follows Section 2.5 of

[ ]. In what follows, ¥ = —2AuRe()B1) and ¥ = —2AIm(VBi). We begin from (2.3),
setting ® = u. This way, we can arrive at an expression for fx pU - U.

/pu-ﬁ+u Vu:Vfa:/po\uo\Q—i—/ pu-(@tﬂ—i—ﬁ-Vﬁ)—i—/ 1 (4.2)
T t,x x t,x

t,x

We write (NSE’) for the strong solution, and rearrange it to get:

POyt + pu - Vi +Vp—vAu =V + U + (p— p)dyii + (p — p)i - Vi + p(u — @) - Vi (4.3)

Multiplying (4.3) by u and integrating,

/pu@tﬂ+/ pu@u:Vu+v Vu:Vﬂ:/ \iJqu/ Uy
t.x t,x t,x t,x t,x

+Ax(p_ﬁ)u-(ata+a-va)+/ plu—1)@u: Vi

t.x

Adding (4.2) and (4.4),
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/pu-’&—i—21/ Vu:Vﬂ:/p0]u0|2+/(p—ﬁ)u‘(atmefL‘Vﬁ)
T t,x T t,x

s ’ ~ ~ (4.5)

+/ P(u—ﬁ)®u:VfL+/ [\P'-ﬁ—l—\ll-u—i-\lf"u}
t,x t,x

Next, we take the inner product of both (NSE) and (NSE’) with u, use incompressibility, and
add them, to arrive at the energy equation for the normal fluid alone.

GaIVauly + VIl =24 [ n(V0B) - A [ WP Re(iBY)  (@0)

This obviously holds as an a priori estimate, valid for the approximate fields (@DN JulV, plV ), but
given the regularity of the solution, we can easily pass to the limit to see that it is accurate for
the weak solutions too. From this equation, integrating on [0,¢] for 0 < ¢t < T', we can obtain an
equation for [ pu - u.

1 1 1
3 [ ol 4o / Vaf? = / poluol? + [ [Q\D-uw“u] (“.7)
x t t,x

Finally, multiply (4.3) by @ and integrate over [0,¢] x €. Since @ is a strong solution, %\71\2 can
work as a test function. Therefore, we use (2.4) to simplify, and the resulting equation is:

1 . 1 — SO
2/p1u2+u/ Va|® = /po\uol —|—/ (p—p)a- (O +1u-Va)
T t,x t,x

) (4.8)
+/ p(u—a)®a:va+/ [qurqﬂ} -a+ARe/ DB\l
t,x t,x t,x
Add (4.7) and (4.8), and subtract (4.5). Then, differentiate the result with respect to t.
GaIVat =) + VIV - ) = = [0 p)u—) @i+ Va)
- [plu=0)® (w=1): Va - ARe [ @By - GBI (uf - [af) (4.9)

—ARe/z,z?Bz,z?|u—a|2 —2A1m/(v¢3¢—vzz3&) (u—7)

Reduction to a form that is amenable to the Gronwall’s inequality can be achieved using Holder’s
and Young’s inequalities to extract quadratic terms of interest. The only detail worth mentioning
here is for the term

[ @B = FBOul? =) < |[5B6 DBt il =it = )]

The wavefunction part® on the RHS is split as:

[ <@~

3The same argument also works for the final term on the RHS of (4.9).

nt |eBw -9 ,
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The first term is easy to handle since By € L?L°. The second term is treated using (3.7),
except that the difference in velocities is now replaced by @(u — ). For the final term, we can

8 8 vERT
factor out a dissipative contribution, since B(y) — ¢)) = —3A(1) — ) +

Therefore, the final contribution from the momentum equation can be summarized thusly.

allvau— o,

~112 ~ 12 ~ 112 ~112
< |10l + Nl I Vallg ] llo — 7172
~\ (12
+ VIV (- )7

+ [max{/%_l, 1}?”“"‘5‘”%2" (1 T \WH%;O + HQ;H;‘)
)

] Iatu - )2,
i [mwrigo (1 ' kuigo) ' /fH@HL;o (1)

il (1 1) + 1018 706 - D,

+ max{rx !, 1}§ <
1+A A

(4.10)

~ 112
+ ]|V (u = )|z +wA | D20 — D),

Finally, in the case of the continuity equation, we take the difference of (CON) written for each
of the solutions, multiply by p — p and integrate over 2. Recall that we have established the weak
solution p € C([0,T]; L2), so all the forthcoming manipulations are allowed.

giale s == [ o= 7w 20Re [0 p) (FBv DBy

T

In the first term on the RHS, we can replace p by (p — p), because the velocities u and @ are
divergence-free. Then,

d 12 _ . _ ~ —
gillp = plz S o= pllpallu —all s [IVolls + Alle = Al 2

The handling of the last term on the RHS was already discussed above in the context of the
momentum equation. So, we end up with:
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d - 1~ _ -
Zllp=pllzz S ) Al + A+ A = Al

e (1Bt + O] Nt (14 haie) +2 (it + 0] ) | v - o[,
Al -2 L ) o ©(4a1)
S R A P A P N Y ol
+ V= @)l +ra D - ),

The last step is to add (4.1), (4.10) and (4.11), and choose k small enough that the dissipation
terms on the RHS are absorbed into the LHS. This leaves us with:

o [

2
~\ 12 ~112
" IVat = )y + ol

< H() [HW - )

2
~\ 112 ~112
IR =@, + o= Al | (412)

where H(t) is integrable on [0,7]. The weak-strong uniqueness thus follows from Groénwall’s in-
equality, because both the solutions originate from the same initial conditions.

O
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