
Learning Stable Dynamics via Iterative Quadratic Programming

Paul Gesel1 and Momotaz Begum1

AbstractÐ This paper proposes a novel autonomous dynamic
system (ADS) based controller for trajectory learning from
demonstration (LfD). We call our method Learning Stable
Dynamics via Iterative Quadratic Programming (LSD-IQP).
LSD-IQP learns an energy function and an ADS from demon-
strations via semi-infinite quadratic programming. Energy
function constraints are imposed on the learned ADS to ensure
convergence to a single goal position. Unlike other energy-based
methods, LSD-IQP allows the energy function to have both
local maximums and saddle points. This flexibility enables LSD-
IQP to learn a broader class of motions compared to other
ADS-based controllers. We demonstrate the capabilities of LSD-
IQP via several experiments, including: 1) learning handwritten
symbols and comparing the swept error area to several other
ADS methods 2) learning a pick-and-place task with novel goal
positions for a robot, and 3) learning a point to point motion
in the presence of a non-convex obstacle for a robot.

I. INTRODUCTION

We are interested in designing a controller for trajectory

learning from demonstration (LfD) that is robust against

both spatial and temporal perturbations, offers high accuracy,

and is computationally efficient. These properties are often

required for robots operating in the real world. In unstructured

environments, the robot’s trajectory can be blocked at any

moment by an unexpected obstacle. Robustness to temporal

perturbation enables a robot to successfully resume its

previous trajectory once the path is cleared. The robot

must exhibit robustness to spatial perturbations, e.g. the

goal position of a manipulation task may vary, even during

execution. Finally, high reproduction accuracy is required for

tasks where constraints are implicitly captured, such as pick

and place.

Two primary trajectory LfD paradigms have emerged in

the literature: 1) autonomous control and 2) non-autonomous

control. Non-autonomous methods, such as Dynamic Motion

Primitive (DMP) [1] and Probabilistic Movement Primitives

(ProMPs) [2], are generally more accurate, but lack temporal

robustness. Since they are (at least implicitly) time-dependent,

a separate mechanism is needed to re-index the motion if

temporal perturbations occur [3]. Autonomous methods, such

as Stable Estimator of Dynamical Systems (SEDS) [3] and the

Control Lyapunov Function-based Dynamic Movements (CLF-

DM) [4], benefit from temporal and spatial robustness, but

are generally less accurate, especially when sharp movements

are required. The trade-off between accuracy and stability

has been previously identified as the accuracy vs. stability

dilemma [5].

1 Department of Computer Science, University of New Hampshire, USA
paul.gesel@unh.edu, mbegum@cs.unh.edu

In this paper, we propose an autonomous dynamic system

(ADS) for trajectory LfD, named Learning Stable Dynamics

via Iterative Quadratic Programming (LSD-IQP), that exhibits

accuracy and robustness to spatial and temporal perturbations.

Our method performs trajectory learning in two stages: 1)

learning an energy function from demonstrations and 2)

learning an ADS that is subjected to a set of stability criteria

derived from the learned energy function. The accuracy and

robustness of LDS-IQP is achieved through the learned energy

function that can have both local maximums and saddle

points. Additionally, LSD-IQP has the inherent ability to

avoid non-convex obstacles since we employ semi-infinite

programming. Finally, we explicitly consider demonstration

tracking in our formulation to avoid visiting a state not seen

in the demonstrations, thus minimizing the effect of covariant

shift.

II. RELATED WORK

DMP [1], [6], [7], ProMPs [2], [8], [9], and SEDS

variations [3], [10], [11] are widely used in trajectory LfD.

Since the DMPs and ProMPs methods are (at least implicitly)

time-dependent, we consider them to be a different class of

methods. Consequently, they are not the focus of this paper.

More recent ADS approaches, namely CLF-DM and FSM-

DS, have been developed in [4] and [12], which benefit from

time-invariant control and increased accuracy.

SEDS is a dynamic system (DS) based controller that learns

a direct mapping from state (position) to action (velocity) [3].

The controller is parameterized with a linear combination of

basis functions. Conditions on the controller’s parameters are

developed via a Lyapunov stability analysis, ensuring that the

motion always converges to a single goal position. Learning

is then formulated as a non-linear constrained optimization

problem. The method is autonomous and exhibits both

spatial and temporal robustness to perturbations. However, the

Lyapunov function is quadratic, which limits the reproduction

accuracy for more complex motions. Additionally, non-linear

constrained optimization can be computationally expensive if

many parameters are used.

CLF-DM exploits multi-stage learning to achieve improved

accuracy [4]. In the first step, a control Lyapunov function

is learned from demonstrations via a constrained non-linear

optimization. The second step learns a potentially unstable

ADS with a standard regression technique. Finally, the last

step uses the learned Lyapunov function to stabilize the

learned ADS via a constrained convex optimization. The

Lyapunov function learning is formulated in a way, such that

the gradient of the Lyapunov function cannot be zero, other

than at the goal point. Consequently, the Lyapunov function

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 2958

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(IC

RA
) |

 9
79

-8
-3

50
3-

23
65

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

RA
48

89
1.

20
23

.1
01

61
23

7

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

cannot have local maximums, hence the class of possible

motions is restricted. Compared to SEDS, the method achieves

improved accuracy, but still suffers from the computational

complexity of general non-linear programming.

In [12], a more recent ADS method named FSM-DS applies

Extreme Learning Machines (ELMs) to learn demonstrated

motions. Similar to SEDS, a constrained non-linear optimiza-

tion is developed to learn the controller. Constraints on the

optimization are determined that guarantee stability through a

Lyapunov analysis. FSM-DS obtained a reduced swept error

area compared to other methods, including SEDS and CLF-

DM. However, as with other methods, the Lyapunov function

cannot have local maximums or saddle points.

In [13], learning is achieved by applying a diffeomorphic

transformation to a base ADS. The transformation distorts the

velocity field to match that of the demonstrated motions. The

base ADS has a quadratic Lyapunov function and, thus, is

stable. The diffeomorphic transformation cannot change the

underlying topology, hence the deformed Lyapunov function

must still have only one critical point. As stated earlier, this

ultimately limits the types of motions that can be expressed.

Another limitation of this approach is that it only handles a

single demonstration.

Recent advances in hierarchical policy learning have

successfully integrated dynamic system-based controllers as

layers in the deep learning pipeline [14], [15], [16], [17].

For example, Neural Dynamic Policies (NDP) [14] is a

deep policy learning method that integrates DMP into its

network. The method showed a substantially higher success

rate for simulated tasks in Mujoco compared to a neural

network policy. The drawback of the aforementioned method

is that it requires interaction with the environment and is

computationally expensive to learn.

In this paper, we develop LSD-IQP to overcome the

problems of other ADS methods. Our method exhibits both

high reproduction accuracy and increased flexibility, including

concave obstacle avoidance. We are able to achieve this

result because our energy function is allowed to have local

maximums and saddle points. To the best of our knowledge,

there is no other ADS-based method that exhibits this

capability.

III. PROPOSED APPROACH

We formulate a closed-loop control policy as an ADS,

namely

ẋ = f(x) (1)

where f : Rn → Rn is a function mapping from state x

to action ẋ of an n dimensional motion. This formulation

yields two important implications: 1) the rate of change of

the state is directly controllable and 2) the control policy is

closed-loop and time-invariant. The goal in trajectory LfD is

to learn a function f(x), such that some characteristics of the

demonstration are learned. We will parameterize the control

policy f(x) with a weighted linear combination of basis

functions and develop objective functions for learning the

demonstration’s key characteristics. A convex optimization

will then be formulated with quadratic penalties on the basis

function weights. In general, optimizing the weights with

respect to an arbitrary objective function directly does not

guarantee convergence to a single stable goal point, e.g.

spurious attractors and limit cycles will exist. Hence, we

impose constraints on the optimization to ensure stability.

A. Stability analysis

The use of an energy function to prove a dynamic system’s

asymptotic stability is ubiquitous. This type of analysis is

often performed when proving stability via a Lyapunov

function. We aim to develop a general energy function V (x),
which can have local maximums and saddle points. Our

objective is to use the energy function to stabilize f(x).
We require the following three conditions on the energy

function to be met,

V (0) = 0 (2)

∀x∈X\{0}V (x) > 0 (3)

∀x∈X\{0}∃{x0∈X : 0<||x−x0||<ϵ}V (x0)− V (x) < 0 (4)

where X ⊂ R
n is the set of all feasible states and ϵ is a small

value. The stated constraints imply that 1) V (x) has only one

minimum, which is global at x = 0 and 2) V (x) is locally

negative definite or indefinite everywhere except 0, e.g. there

is always a direction that decreases V (x). Additionally, since

V (0) is a global minimum, V (x) is locally positive definite

at the origin. In summary, all stationary points of V (x) must

be either maximums or saddles, other than the minimum at

the origin. Given the energy function, we then require the

following condition on the ADS (f(x)) to be satisfied.

∀x∈X\{0}∥∇V (x)∥ > 0 =⇒ ∇V (x) · f(x) < 0 (5)

Effectively, the ADS is required to move in the negative

gradient of V (x) when it is non-zero.

Two additional conditions are required to handle infeasible

regions. We assume each infeasible region is entirely con-

tained inside or outside an n-dimensional closed polytope. We

require that the normal vector at every point on the polytope is

in the direction of the feasible states. The following conditions

then must be satisfied,

∀x∈O∇V (x) ·N(x) > 0 (6)

∀x∈Of(x) ·N(x) > 0 (7)

where O is the union of all points on each infeasible

region’s polytope and N : R
n → R

n maps points to

their corresponding normals. The conditions require that the

direction of motion points into the feasible states if x is

on the polytope. It also prevents x from entering into the

infeasible states.

Given the functions V (x) and f(x) which satisfy the

required conditions, we can show asymptotic stability for all

non-stationary starting points in the feasible state space.

Lemma 3.1: The value of V (x) always decreases when

x is not in the set of a stationary points S or at the origin,

specifically ∀x∈X\({0}∪S)V̇ (x) < 0

2959

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

Proof: We can use a first order approximation of V (x)
around a fixed point x0:

V (x) = V (x0) +∇V (x0)
T (x− x0)

It then follows that:

x(t) = x0 =⇒ x(t+ dt) = x0 + f(x0)dt

V (x(t+ dt)) = V (x0) +∇V (x0)
T (f(x0)dt)

Eq. (5) requires that ∇V (x) dotted with f(x) is negative,

which implies:

V (x(t+ dt))− V (x0) < 0

V̇ (x) < 0

Lemma 3.1 states that V (x) always decreases until x becomes

a stationary point or the origin. Since V (x) has only one

bounded minimum at x = 0, x will asymptotically converge

to the origin.

∀x∈X\({0}∪S) lim
t→∞

x(t) = 0 (8)

We can also show that for all stationary starting points in the

feasible state space, there exists a piece-wise function f(x)
that will decrease V (x).

Lemma 3.2: There always exists an f(x0), such that

V̇ (x0) < 0 for x0 ∈ S , specifically ∀x∈S V̇ (x) < 0
Proof: We can use a second order approximation of

V (x) around a fixed point x0

V (x) = V (x0) +
1

2
(x− x0)

T∇2V (x0)(x− x0)

It then follows that:

x(t) = x0 =⇒ x(t+ dt) = x0 + f(x0)dt

V (x(t+ dt)) = V (x0) +
1

2
(f(x0)dt)

T∇2V (x0)(f(x0)dt)

Eq. (4) requires that there exists a vector (x − x0) with

length less than ϵ, such that (x− x0)
T∇2V (x0)(x− x0) is

negative, which implies:

∃f :Rn→Rn

1

2
(f(x0)dt)

T∇2V (x0)(f(x0)dt) < 0

∃f :Rn→RnV (x(t+ dt))− V (x0) < 0

∃f :Rn→Rn V̇ (x0) < 0

Lemma 3.2 states that there is at least one direction around

maximums and saddle points of V (x), where V (x) decreases.

The direction is not known in general. However, the eigenvec-

tors of the Hessian at the stationary points can be calculated.

Then the direction of a non-zero eigenvector can be used.

Practically speaking, a random ẋ can be used, since the

stationary points are unstable.

The constraints imposed on the energy functions for

methods like SEDS, CLF-DM, and FSM-DS are stricter than

the conditions that we require. The common constraint for

each method is that the energy function must have only one

critical point, which is a minimum. In other words, the energy

function and a bowl-shaped manifold are diffeomorphic. The

constraint is expressed through eq. (9).

∀x∈X\{0}∃d∈Rn∇V (x) · d < 0 (9)

Energy functions with peaks, saddles, and ridges violate the

constraint in eq. (9), but the constraint in eq. (9) does not

violate our method’s constraints. Lemma 3.3 illustrates the

latter.

Lemma 3.3: If the V (x) satisfies eq. (9), then V (x) also

satisfies eq. (4).
Proof: Eq. (9) implies the gradient is non-zero every-

where other than the origin.

∀x∈X\{0}∃d∈Rn∇V (x) · d < 0 =⇒ ∀x∈X\{0}||∇V (x)|| > 0

If the gradient is non-zero, then there must be a nearby point
less than ϵ distance away, such that the value of the energy
function decreases.

∀x∈X\{0}||∇V (x)|| > 0 =⇒

∀x∈X\{0}∃{x0∈X : 0<||x−x0||<ϵ}V (x0)− V (x) < 0

Since any valid energy function according to the constraints

of eq. (9) is also a valid energy function according to our

constraints, our set of possible energy functions is a superset

of those from methods like CLF-DM and SEDS. Hence, our

method can express a broader class of ADS.

B. Energy function learning

We propose the following parameterized energy function

shown in eq. (10).

V (wl,x) =

bl
∑

i

wl
iϕ

l
i(x) (10)

The basis functions ϕl can be arbitrary functions, however,

at least one must be bowl-shaped to guarantee at least one

feasible solution exists. For our implementation, we use one

quadratic basis function and bl − 1 radial basis functions.

To learn the weights wl from the demonstrations, we need

an optimization metric to shape the energy function. We

propose two objectives: 1) position tracking and 2) direction

following. For position tracking, we want the negative gradient

of V (x) to point towards the nearest demonstration. This will

allow the ADS to approach and follow the demonstrations.

We express the objective in eq. (12).

near(x) = argmin
ξ∈D

∥ξ − x∥ (11)

J lp(wl) =
∑

x∈X

(

∇V (wl,x) ·
near(x)− x

∥near(x)− x∥
− β

)2

(12)

Here, the near(x) function returns the point closest to x

from the position demonstration set D =
{

ξt,n
}Tn,N

t=0,n=1
, β is

a hyperparameter, and ξt,n is a point from the demonstration

2960

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

set, where t is the time index and n is the demonstration

number. The position tracking objective J lp incentivizes

the energy function gradient to point towards the nearest

demonstration point.

The second objective is direction following. The negative

gradient of the V (x) should point in the direction of motion

along each demonstration. This allows the controller to

precisely follow the demonstrated trajectories. We express

the second objective in eq. (13).

J ld(wl) =
N
∑

n=1

Tn

∑

t=0

(

∇V (wl, ξt,n) ·
ξ̇t,n

∥ξ̇t,n∥
− 1

)2

(13)

Here, ξ̇t,n are velocities from the demonstrations, N is the

number of demonstrations, and TN is the length of the N th

demonstration. The objective incentivizes the gradient of

V (x) to point in the direction of the demonstrated motion at

each demonstration point.

Given the two objectives, we formulate the optimization

in eq. (14) in order to learn the weights wl.

argmin
wl

{

αlJ lp(wl) + (1− αl)J ld(wl) | Cl
}

(14)

Here, the hyperparameter αl varies between 0 and 1 and

scales the influence of each objective. Notably, the set Cl is

the set of constraints described by eqs. (2-4) and eq. (6).

Although the objective function is quadratic and the

constraints are linear, the optimization cannot be solved with

a quadratic program because the constraints are continuous.

We, therefore, implemented algorithm 1. Line 1 initializes

Algorithm 1 Optimization via Iterative Quadratic Program-

ming

Input: J , GET_VIOLATION

Output: w

1: C ← {V (0) = 0}
2: do

3: w = quadprog(J , C)

4: Ci ← GET_VIOLATION(w)

5: C ← C ∪ Ci

6: while |Ci| > 0

the constraints set C with the condition from eq. (2). On

the first iteration, the optimization is solved via a quadratic

program with just one constraint. Line 4 then checks for any

constraint violations. If there is one, it is returned, otherwise,

an empty set is returned. If no violation occurred, the while

loop terminates, otherwise, the new constraint is added to the

constraint set and another iteration starts.

Finding the constraint violations for the condition in eq.

(4) is not trivial, hence we propose algorithm 2. Furthermore,

we present fig. 1 to visually demonstrate how we identify

constraint violations. Lines 2-3 initialize an empty open set

and an empty closed set for the energy first expansion. Lines

4-6 check the condition for eq. (6). Lines 7-16 correspond to

steps 1-3 in fig 1. The closed list starts empty and expands the

minimum energy regions first (shown in green). Step 4 in fig.

Algorithm 2 Energy Function Constraint Violation

Input: ϵ

1: function GET_VIOLATION(wl)

2: open← {0}
3: closed← {}
4: for xi ∈ O do

5: if ∇V (wl,xi) ·N(xi) ≤ 0 then

6: return
{

−∇V (wl,xi) ·N(xi) < 0
}

7: while |open| > 0 do

8: xi ← argminx∈open V (wl,x)
9: open← open \ xi

10: closed← closed ∪ xi

11: for j ∈ {1..n} do

12: xc ← xi

13: for k ∈ {−1, 1} do

14: xc
j ← xi

j + kϵ
15: if xc /∈ closed then

16: open← open ∪ xc

17: if V (wl,xi)− V (wl,xc) ≥ 0 then

18: return
{

V (wl,xi)− V (wl,xc) < 0
}

19: return {}

Fig. 1: Four steps of the constraint violation detection are

shown. Steps 1-3 show an energy-first expansion from the

origin. Step 4 is the first time a constraint violation is detected.

1 corresponds to the condition in line 17 being true, when the

energy of the expanded state is lower than the current state.

The algorithm will continue to run until all X are expanded

or a constraint violation is found.

Notably, algorithm 2 finds constraint violations on a regular

grid determined with the input variable ϵ. There is a possibility

that constraint violations exist between the discrete points,

e.g. there could be a local minimum. This is, however,

unlikely with wide smooth basis functions, such as radial basis

functions. Nevertheless, we handle this possibility by using

linear interpolation for points between grid points. Minimums

of a linearly interpolated function can only occur on the grid.

Since the constraints are enforced on the grid, we can say

there will be no constraint violating minimums.

C. Controller learning

Given the energy function, we can learn a stable ADS

f(x) from the demonstrations. We parameterize the f(x) the

following way.

f(wc, wv,x) =

bc
∑

i

wc
i∇ϕ

c
i (x) + wv∇V (x) (15)

2961

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

Here, bc is the number of basis functions used for f(x).
Notably, the controller is composed of a linear combination

of arbitrary basis functions ∇ϕc
i (x) and the gradient of

the energy function. By including ∇V as one of the basis

functions, we guarantee that the condition in eq. (4) can be

satisfied. The solution is trivially obtained when wv = −1 and

wc = 0, as the controller will follow the energy function’s

negative gradient.

We want the controller to move toward the nearest

demonstration and then begin to follow it. We again propose

two objectives to achieve this; one for position tracking and

the other for velocity tracking. The first objective function is

shown in eq. (17).

g(x) =∥ ˙near(x)∥
near(x)− x

∥near(x)− x∥
(16)

Jcp(wc, wv) =
∑

x∈X

∥f(wc, wv,x)− g(x)∥
2

(17)

The ˙near(x) function refers to the velocity corresponding to

the nearest demonstration point. The second objective aims

to follow the demonstrated velocity once the demonstration

is reached. This objective is shown in eq. (18).

Jcd(x) =

N
∑

n=1

Tn

∑

t=0

∥

∥

∥
f(ξt,n)− ξ̇t,n

∥

∥

∥

2

(18)

Finally, the optimization in eq. (19) is formulated.

argmin
wc,wv

{

α
c
J
cp(wc

, w
v) + (1− α

c)Jcd(wc
, w

v) | Cc
}

(19)

As before, the constraints required in eqs. (5) and (7) are

continuous and cannot be solved with a regular quadratic

program. Instead, we apply algorithm 1. To find the constraint

violation points, we implemented algorithm 3. The algorithm

Algorithm 3 Controller Constraint Violation Function

Input: ϵ

1: function GET_VIOLATION(wc, wv)

2: for xi ∈ O do

3: if f(wc, wv,xi) ·N(xi) ≤ 0 then

4: return
{

−f(wc, wv,xi) ·N(xi)
}

5: for xi ∈ X do

6: if f(wc, wv,xi) · ∇V (wl,xi) ≥ 0 then

7: return
{

f((wc, wv,xi) · ∇V (wl,xi)
}

8: return {}

checks the conditions in eqs. (5) and (7) and returns a violation

if found. Similar to algorithm 2, a parameter ϵ is required to

specify the discrete interval to check for violations.

D. Dependent dimensions

For many pick-and-place tasks, the orientation of the end

effector can be estimated as a function of the Cartesian

position. Therefore, we directly model dependent dimensions

as a function of the independent dimensions (state) and the

goal.

y = h(x, g) (20)

Here, y ∈ R
m represents the dependent dimensions, h :

Rn → Rm is a function that estimates the dependent dimen-

sions given the state x, and g ∈ R
n is the goal parameter. We

parameterize h(x, g) with radial basis functions and estimate

y via least square. Finally, we apply a proportional control

to track estimated dependent dimensions. Notably, it is not

necessary to model any dependent dimensions, but doing so

is more computationally and data-efficient.

IV. RESULTS

We evaluate LSD-IQP with three experiments: 1) learning

motions from the handwritten LASA data set [18], 2) learning

a pick and place task for a robot, and 3) learning a point-

to-point motion with a non-convex obstacle for a robot. We

directly compare LSD-IQP to SEDS, CLF-DM, and FSM-DS

in experiment 1 since they are all ADS methods. Results

are quantified with the swept error area (SEA) metric and

learning time for 30 motions. For both robot experiments,

two Cartesian dimensions were used for the state and all

other dimensions were made dependent. The source code for

each method’s implementation is located at [19], [20], and

[21], respectively.

A. Experiment 1: learning handwritten symbols

This experiment demonstrates LSD-IQP’s increased accu-

racy in learning complex motion compared to other ADS

methods. We present quantitative results in terms of SEA

and total learning time in table I. SEA is a commonly used

benchmark for the LASA data set. The metric effectively

measures spatial and temporal accuracy. A low SEA value

corresponds to a motion that has the same shape as the

demonstrations and is aligned in time. For a more detailed

explanation, see [4]. Compared to the other approaches, LSD-

IQP showed the best performance in terms of mean SEA and

total learning time.

TABLE I Comparison of the mean swept error area (mm2)
and total learning time (sec) for the SEDS, CLF-DM, FSM-

DS, and LSD-IQP methods.

SEDS CLF-DM FSM-DS LSD-IQP

SEA 351.3 181.3 164.3 93.5

time 376.7 412.2 351.3 182.7

While SEA is the standard metric used to measure

performance on the LASA data set, it does not capture all

important characteristics of ADS learning. Namely, the SEA

is evaluated by reproducing motions from the same points

as the original demonstrations. This is shown for a sample

written letter in fig. 2 with green dots. In this case, LSD-IQP

reproduces the demonstrations correctly, while SEDS fails to

learn the motion. SEDS’s quadratic Lyapunov function is too

restricted to generate motion that moves too directly away

from the goal. The increased performance of LSQ-IQP over

other methods is apparent when reproducing motions from

novel starting positions. Three arbitrary novel starting points

are shown in fig. 2. LSQ-IQP quickly and smoothly converges

2962

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Comparison of streamline plots for LSD-IQP (left)

and SEDS (right). LSD-IQP shows stable and accurate

reproduction under spatial perturbation.

Fig. 3: Demonstrations for pick and place task (left) and point

to point task (right).

to the original demonstrations from each point, while SEDS

generally maintains the shape of the demonstrations. The

effects of the distributional shift are highlighted in the red

region. The motion divergences from the demonstrations,

which could lead to the robot moving outside of its workspace.

B. Experiment 2: pick and place task with novel goals

Our second experiment validated LSD-IQP ability to learn

multi-modal demonstrations via a pick-and-place task on a

robotic platform. Two demonstrations were provided for both

picking and placing at two different goal locations, totaling

eight demonstrations. The demonstrations were provided by

a human teacher via kinesthetic teaching. Fig 3 illustrates

the demonstrations for both robot experiments. Note, the

demonstrations are shown relative to a single block location.

The task requires precision and a proper approach angle to

avoid the robot’s fingers from colliding with the block. Also,

since the block is picked from the tabletop, precise clearance

is required to avoid a collision. For this experiment, motions

were executed by mapping learned Cartesian velocities to

joint velocities with the pseudo-inverse of the Jacobian. The

robot was successfully able to pick and place the block at

novel goal positions along a 3x3 grid with 5 cm spacing.

This experiment demonstrates LSD-IQP’s ability to model

Fig. 4: Streamline plots of LSD-IQP for the pick and place

task for two different goal positions.

Fig. 5: Energy function learned via LSD-IQP (left) and

streamline plot for the learned controller.

multi-modal trajectories. As seen in fig. 4, the flow lines drive

the robot’s end effector to the goal location via two primary

modes. If the block is on the robot’s left, it will grab the block

from the right side, while if the block is in front of the robot,

it will grab the block by moving straight forward. These two

different modes were present in the demonstrations.

C. Experiment 3: point-to-point motion with an obstacle

We further validated LSD-IQP with a point-to-point ob-

stacle avoidance task on a robotic platform. In this task, the

robot must maneuver its hand above the obstacle and then

slide along the surface while maintaining a suitable clearance.

The key challenge is that the obstacle is non-convex and must

be avoided from any starting position. For this experiment,

four demonstrations were provided.

This experiment demonstrates LSD-IQP’s ability to avoid

infeasible regions of the state space. The learned controller

converges to the goal from all feasible states. As seen in fig.

5, the flow on the boundary of the obstacle always has some

component in the normal direction. This result is achievable

only because the learned energy function has two maximums,

forming a ridge line inside of the obstacle. This effect is

illustrated by the dashed black line in fig. 5. The energy

functions of other ADS methods, such as CLF-DM, must have

only one critical point, which is a minimum. The topology

of those types of energy functions is fundamentally diffident

from that of the LSD-IQP, consequently, they are not able to

generate motion that circumvents the obstacle. The flexible

energy function topology allowed in our formulation enables

learning of complex ADS, even in a non-convex feasible state

space.

V. CONCLUSION

In this paper, we developed LSD-IQP to learn an ADS

from multiple demonstrations. Learning was broken into two

stages: 1) learning an energy function and 2) learning an

ADS. In both cases, iterative quadratic programming with

constraint generation was employed to solve the optimization

problem. We validated LSD-IQP in three experiments and

showed increased accuracy and capability compared to other

ADS methods.

ACKNOWLEDGMENT

This work was supported in part by the National Science

Foundation (IIS 1830597).

2963

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, ªLearning and
generalization of motor skills by learning from demonstration,º in
2009 IEEE International Conference on Robotics and Automation.
IEEE, 2009, pp. 763±768.

[2] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, ªProbabilistic
movement primitives,º 01 2013.

[3] S. M. Khansari-Zadeh and A. Billard, ªLearning stable nonlinear
dynamical systems with gaussian mixture models,º IEEE Transactions

on Robotics, vol. 27, no. 5, pp. 943±957, Oct 2011.
[4] S. Mohammad Khansari-Zadeh and A. Billard, ªLearning control

lyapunov function to ensure stability of dynamical system-based
robot reaching motions,º Robotics and Autonomous Systems,
vol. 62, no. 6, pp. 752±765, 2014. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0921889014000372

[5] K. Neumann and J. J. Steil, ªLearning robot motions with stable
dynamical systems under diffeomorphic transformations,º Robotics and

Autonomous Systems, vol. 70, pp. 1±15, 2015. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0921889015000883

[6] Z. Li, T. Zhao, F. Chen, Y. Hu, C.-Y. Su, and T. Fukuda, ªReinforcement
learning of manipulation and grasping using dynamical movement
primitives for a humanoidlike mobile manipulator,º IEEE/ASME

Transactions on Mechatronics, vol. 23, no. 1, pp. 121±131, 2018.
[7] C. Yang, C. Chen, W. He, R. Cui, and Z. Li, ªRobot learning system

based on adaptive neural control and dynamic movement primitives,º
IEEE Transactions on Neural Networks and Learning Systems, vol. 30,
no. 3, pp. 777±787, 2019.

[8] F. Frank, A. Paraschos, P. van der Smagt, and B. Cseke, ªConstrained
probabilistic movement primitives for robot trajectory adaptation,º IEEE

Transactions on Robotics, vol. 38, pp. 2276±2294, 2022.
[9] R. A. Shyam, P. Lightbody, G. Das, P. Liu, S. Gomez-Gonzalez,

and G. Neumann, ªImproving local trajectory optimisation using
probabilistic movement primitives,º in 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2019, pp. 2666±
2671.

[10] N. Figueroa, S. Faraji, M. Koptev, and A. Billard, ªA dynamical system
approach for adaptive grasping, navigation and co-manipulation with
humanoid robots,º in 2020 IEEE International Conference on Robotics

and Automation (ICRA), 2020, pp. 7676±7682.

[11] Y. Shavit, N. Figueroa, S. S. M. Salehian, and A. Billard, ªLearning
augmented joint-space task-oriented dynamical systems: A linear
parameter varying and synergetic control approach,º IEEE Robotics

and Automation Letters, vol. 3, no. 3, pp. 2718±2725, 2018.

[12] J. Duan, Y. Ou, J. Hu, Z. Wang, S. Jin, and C. Xu, ªFast and stable
learning of dynamical systems based on extreme learning machine,º
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49,
no. 6, pp. 1175±1185, 2019.

[13] N. Perrin and P. schlehuber caissier, ªFast diffeomorphic matching
to learn globally asymptotically stable nonlinear dynamical systems,º
Systems & Control Letters, vol. 96, pp. 51±59, 10 2016.

[14] S. Bahl, M. Mukadam, A. Gupta, and D. Pathak, ªNeural dynamic
policies for end-to-end sensorimotor learning,º in Advances in Neural

Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc.,
2020, pp. 5058±5069. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/file/354ac345fd8c6d7ef634d9a8e3d47b83-Paper.pdf

[15] S. Bahl, A. K. Gupta, and D. Pathak, ªHierarchical neural dynamic
policies,º in RSS, 2023.

[16] S. Pirk, K. Hausman, A. Toshev, and M. Khansari, ªModeling long-
horizon tasks as sequential interaction landscapes,º in CoRL, 2020.

[17] R. Pahič, A. Gams, A. Ude, and J. Morimoto, ªDeep encoder-decoder
networks for mapping raw images to dynamic movement primitives,º
in 2018 IEEE International Conference on Robotics and Automation

(ICRA), 2018, pp. 5863±5868.

[18] S. M. Khansari-Zadeh and A. Billard. Lasa handwriting dataset.
[Online]. Available: https://cs.stanford.edu/people/khansari/download.
html

[19] S. M. Khansari-Zadeh. Stable estimator of dynamical systems (seds) -
source code. [Online]. Available: https://bitbucket.org/khansari/seds/
src/master/

[20] ÐÐ. Control lyapunov function-based dynamics movement (clf-dm) -
source code. [Online]. Available: https://bitbucket.org/khansari/clfdm/
src/master/

[21] J. Duan, Y. Ou, J. Hu, Z. Wang, S. Jin, and C. Xu. Fast
and stable learning of dynamical systems based on extreme
learning machine - source code. [Online]. Available: https:
//github.com/SIAT-CIBS/FSM-DS/

2964

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

