2023 IEEE International Conference on Robotics and Automation (ICRA) | 979-8-3503-2365-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICRA48891.2023.10161237

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)

May 29 - June 2, 2023. London, UK

Learning Stable Dynamics via Iterative Quadratic Programming

Paul Gesel' and Momotaz Begum'!

Abstract— This paper proposes a novel autonomous dynamic
system (ADS) based controller for trajectory learning from
demonstration (LfD). We call our method Learning Stable
Dynamics via Iterative Quadratic Programming (LSD-IQP).
LSD-IQP learns an energy function and an ADS from demon-
strations via semi-infinite quadratic programming. Energy
function constraints are imposed on the learned ADS to ensure
convergence to a single goal position. Unlike other energy-based
methods, LSD-IQP allows the energy function to have both
local maximums and saddle points. This flexibility enables LSD-
IQP to learn a broader class of motions compared to other
ADS-based controllers. We demonstrate the capabilities of LSD-
IQP via several experiments, including: 1) learning handwritten
symbols and comparing the swept error area to several other
ADS methods 2) learning a pick-and-place task with novel goal
positions for a robot, and 3) learning a point to point motion
in the presence of a non-convex obstacle for a robot.

I. INTRODUCTION

We are interested in designing a controller for trajectory
learning from demonstration (LfD) that is robust against
both spatial and temporal perturbations, offers high accuracy,
and is computationally efficient. These properties are often
required for robots operating in the real world. In unstructured
environments, the robot’s trajectory can be blocked at any
moment by an unexpected obstacle. Robustness to temporal
perturbation enables a robot to successfully resume its
previous trajectory once the path is cleared. The robot
must exhibit robustness to spatial perturbations, e.g. the
goal position of a manipulation task may vary, even during
execution. Finally, high reproduction accuracy is required for
tasks where constraints are implicitly captured, such as pick
and place.

Two primary trajectory LfD paradigms have emerged in
the literature: 1) autonomous control and 2) non-autonomous
control. Non-autonomous methods, such as Dynamic Motion
Primitive (DMP) [1] and Probabilistic Movement Primitives
(ProMPs) [2], are generally more accurate, but lack temporal
robustness. Since they are (at least implicitly) time-dependent,
a separate mechanism is needed to re-index the motion if
temporal perturbations occur [3]. Autonomous methods, such
as Stable Estimator of Dynamical Systems (SEDS) [3] and the
Control Lyapunov Function-based Dynamic Movements (CLF-
DM) [4], benefit from temporal and spatial robustness, but
are generally less accurate, especially when sharp movements
are required. The trade-off between accuracy and stability
has been previously identified as the accuracy vs. stability
dilemma [5].

1 Department of Computer Science, University of New Hampshire, USA
paul.gesel@unh.edu, mbegum@cs.unh.edu

In this paper, we propose an autonomous dynamic system
(ADS) for trajectory LfD, named Learning Stable Dynamics
via Iterative Quadratic Programming (LSD-IQP), that exhibits
accuracy and robustness to spatial and temporal perturbations.
Our method performs trajectory learning in two stages: 1)
learning an energy function from demonstrations and 2)
learning an ADS that is subjected to a set of stability criteria
derived from the learned energy function. The accuracy and
robustness of LDS-IQP is achieved through the learned energy
function that can have both local maximums and saddle
points. Additionally, LSD-IQP has the inherent ability to
avoid non-convex obstacles since we employ semi-infinite
programming. Finally, we explicitly consider demonstration
tracking in our formulation to avoid visiting a state not seen
in the demonstrations, thus minimizing the effect of covariant
shift.

II. RELATED WORK

DMP [1], [6], [7], ProMPs [2], [8], [9], and SEDS
variations [3], [10], [11] are widely used in trajectory LfD.
Since the DMPs and ProMPs methods are (at least implicitly)
time-dependent, we consider them to be a different class of
methods. Consequently, they are not the focus of this paper.
More recent ADS approaches, namely CLF-DM and FSM-
DS, have been developed in [4] and [12], which benefit from
time-invariant control and increased accuracy.

SEDS is a dynamic system (DS) based controller that learns
a direct mapping from state (position) to action (velocity) [3].
The controller is parameterized with a linear combination of
basis functions. Conditions on the controller’s parameters are
developed via a Lyapunov stability analysis, ensuring that the
motion always converges to a single goal position. Learning
is then formulated as a non-linear constrained optimization
problem. The method is autonomous and exhibits both
spatial and temporal robustness to perturbations. However, the
Lyapunov function is quadratic, which limits the reproduction
accuracy for more complex motions. Additionally, non-linear
constrained optimization can be computationally expensive if
many parameters are used.

CLF-DM exploits multi-stage learning to achieve improved
accuracy [4]. In the first step, a control Lyapunov function
is learned from demonstrations via a constrained non-linear
optimization. The second step learns a potentially unstable
ADS with a standard regression technique. Finally, the last
step uses the learned Lyapunov function to stabilize the
learned ADS via a constrained convex optimization. The
Lyapunov function learning is formulated in a way, such that
the gradient of the Lyapunov function cannot be zero, other
than at the goal point. Consequently, the Lyapunov function

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 2958

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

cannot have local maximums, hence the class of possible
motions is restricted. Compared to SEDS, the method achieves
improved accuracy, but still suffers from the computational
complexity of general non-linear programming.

In [12], a more recent ADS method named FSM-DS applies
Extreme Learning Machines (ELMs) to learn demonstrated
motions. Similar to SEDS, a constrained non-linear optimiza-
tion is developed to learn the controller. Constraints on the
optimization are determined that guarantee stability through a
Lyapunov analysis. FSM-DS obtained a reduced swept error
area compared to other methods, including SEDS and CLF-
DM. However, as with other methods, the Lyapunov function
cannot have local maximums or saddle points.

In [13], learning is achieved by applying a diffeomorphic
transformation to a base ADS. The transformation distorts the
velocity field to match that of the demonstrated motions. The
base ADS has a quadratic Lyapunov function and, thus, is
stable. The diffeomorphic transformation cannot change the
underlying topology, hence the deformed Lyapunov function
must still have only one critical point. As stated earlier, this
ultimately limits the types of motions that can be expressed.
Another limitation of this approach is that it only handles a
single demonstration.

Recent advances in hierarchical policy learning have
successfully integrated dynamic system-based controllers as
layers in the deep learning pipeline [14], [15], [16], [17].
For example, Neural Dynamic Policies (NDP) [14] is a
deep policy learning method that integrates DMP into its
network. The method showed a substantially higher success
rate for simulated tasks in Mujoco compared to a neural
network policy. The drawback of the aforementioned method
is that it requires interaction with the environment and is
computationally expensive to learn.

In this paper, we develop LSD-IQP to overcome the
problems of other ADS methods. Our method exhibits both
high reproduction accuracy and increased flexibility, including
concave obstacle avoidance. We are able to achieve this
result because our energy function is allowed to have local
maximums and saddle points. To the best of our knowledge,
there is no other ADS-based method that exhibits this
capability.

III. PROPOSED APPROACH

We formulate a closed-loop control policy as an ADS,
namely

&= f(z) ey

where f : R" — R" is a function mapping from state x
to action & of an n dimensional motion. This formulation
yields two important implications: 1) the rate of change of
the state is directly controllable and 2) the control policy is
closed-loop and time-invariant. The goal in trajectory LfD is
to learn a function f(x), such that some characteristics of the
demonstration are learned. We will parameterize the control
policy f(x) with a weighted linear combination of basis
functions and develop objective functions for learning the
demonstration’s key characteristics. A convex optimization

will then be formulated with quadratic penalties on the basis
function weights. In general, optimizing the weights with
respect to an arbitrary objective function directly does not
guarantee convergence to a single stable goal point, e.g.
spurious attractors and limit cycles will exist. Hence, we
impose constraints on the optimization to ensure stability.

A. Stability analysis

The use of an energy function to prove a dynamic system’s
asymptotic stability is ubiquitous. This type of analysis is
often performed when proving stability via a Lyapunov
function. We aim to develop a general energy function V' (x),
which can have local maximums and saddle points. Our
objective is to use the energy function to stabilize f(x).

We require the following three conditions on the energy
function to be met,

V)=0 (2
Vecx\(o3V(z) >0 (3)
Vaex\ {0} Haock : 0<|lz—azoll<e}V (T0) = V(E) <0 (4

where X C R” is the set of all feasible states and € is a small
value. The stated constraints imply that 1) V() has only one
minimum, which is global at = 0 and 2) V() is locally
negative definite or indefinite everywhere except O, e.g. there
is always a direction that decreases V' (x). Additionally, since
V(0) is a global minimum, V' (x) is locally positive definite
at the origin. In summary, all stationary points of V (a) must
be either maximums or saddles, other than the minimum at
the origin. Given the energy function, we then require the
following condition on the ADS (f(x)) to be satisfied.

Vaex\(o} [VV (@) >0 = VV(z)- f(@) <0 (5)

Effectively, the ADS is required to move in the negative
gradient of V(x) when it is non-zero.

Two additional conditions are required to handle infeasible
regions. We assume each infeasible region is entirely con-
tained inside or outside an n-dimensional closed polytope. We
require that the normal vector at every point on the polytope is
in the direction of the feasible states. The following conditions
then must be satisfied,

VecoVV (z) N(x) >0 ©6)
Veeof(x) N(z) >0 (7

where O is the union of all points on each infeasible
region’s polytope and N : R® — R" maps points to
their corresponding normals. The conditions require that the
direction of motion points into the feasible states if x is
on the polytope. It also prevents a from entering into the
infeasible states.

Given the functions V(z) and f(x) which satisfy the
required conditions, we can show asymptotic stability for all
non-stationary starting points in the feasible state space.

Lemma 3.1: The value of V(x) always decreases when
x is not in the set of a stationary points S or at the origin,
specifically Ve x\ (foyus)V (x) <0

2959

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

Proof: We can use a first order approximation of V()
around a fixed point xg:

V(z) = V(zo) + VV(xo)" (& — o)
It then follows that:

z(t) =z = z(t+dt) =xo+ f(xo)dt
V(a(t + dt) = V(o) + TV (o) (f(zo)dt)

Eq. (5) requires that VV (x) dotted with f(x) is negative,
which implies:

V(x(t+dt)) —V(xg) <0
V(x) <0

|
Lemma 3.1 states that V' (x) always decreases until « becomes
a stationary point or the origin. Since V(x) has only one
bounded minimum at £ = 0, will asymptotically converge
to the origin.

VmeX\({o}US)tljggw(t) =0 ®

We can also show that for all stationary starting points in the
feasible state space, there exists a piece-wise function f(x)
that will decrease V ().
Lemma 3.2: There always exists an f(xg), such that
V(a:o) < 0 for @y € S, specifically VyesV () < 0
Proof: We can use a second order approximation of
V(x) around a fixed point g

V(@) = V(wo) + 3 (@ — 7)YV (wo)(w — o)

It then follows that:
x(t) =xg = x(t+dt) =xo+ f(xo)dt
V(@ + de)) = Vo) + 3 (f(@o)dt) V2V (o) (£ (o))

Eq. (4) requires that there exists a vector (x — xg) with
length less than €, such that (x — xo)T V2V (z0)(z — o) is
negative, which implies:

e (@0t} T2V (o) (f (o)) < 0
Hf:Rn_>RnV(.’I}(t + dt)) - V(:I?()) <0

Jp.rnsrnV(20) <0

|
Lemma 3.2 states that there is at least one direction around
maximums and saddle points of V' (x), where V' () decreases.
The direction is not known in general. However, the eigenvec-
tors of the Hessian at the stationary points can be calculated.
Then the direction of a non-zero eigenvector can be used.
Practically speaking, a random & can be used, since the
stationary points are unstable.
The constraints imposed on the energy functions for
methods like SEDS, CLF-DM, and FSM-DS are stricter than
the conditions that we require. The common constraint for

each method is that the energy function must have only one
critical point, which is a minimum. In other words, the energy
function and a bowl-shaped manifold are diffeomorphic. The
constraint is expressed through eq. (9).

Vacx\ {0} Jaer VV () - d <0 9)

Energy functions with peaks, saddles, and ridges violate the
constraint in eq. (9), but the constraint in eq. (9) does not
violate our method’s constraints. Lemma 3.3 illustrates the
latter.

Lemma 3.3: If the V() satisfies eq. (9), then V() also
satisfies eq. (4).

Proof: Eq. (9) implies the gradient is non-zero every-

where other than the origin.

Vaex\{0y3aern VV(x) - d <0 = Ygea\ (o ||VV(2)]| >0

If the gradient is non-zero, then there must be a nearby point
less than e distance away, such that the value of the energy
function decreases.

VEGX\{O}HVV(CB)H >0 =
Vaoeax\ {0} Hmoex : 0<|lo—zol|<e} V (®0) — V() <0

|
Since any valid energy function according to the constraints
of eq. (9) is also a valid energy function according to our
constraints, our set of possible energy functions is a superset
of those from methods like CLF-DM and SEDS. Hence, our
method can express a broader class of ADS.

B. Energy function learning

We propose the following parameterized energy function
shown in eq. (10).

bl
V(w',z) =) wigl(z) (10)

K3
The basis functions ¢! can be arbitrary functions, however,
at least one must be bowl-shaped to guarantee at least one
feasible solution exists. For our implementation, we use one
quadratic basis function and b' — 1 radial basis functions.

To learn the weights w' from the demonstrations, we need

an optimization metric to shape the energy function. We
propose two objectives: 1) position tracking and 2) direction
following. For position tracking, we want the negative gradient
of V() to point towards the nearest demonstration. This will
allow the ADS to approach and follow the demonstrations.
We express the objective in eq. (12).

(1)

near(x) =argmin ||€ — x||
£eD

near(x) — x

1D (ol — W x) _ ’
) a;((vv() rearte) ol ")
(12)

Here, the near(zx) function returns the point closest to x
o . ™ N .
from the position demonstration set D = {5’“"} 0 meys D18

a hyperparameter, and £€%™ is a point from the demonstration

2960

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

set, where t is the time index and n is the demonstration
number. The position tracking objective J'P incentivizes
the energy function gradient to point towards the nearest
demonstration point.

The second objective is direction following. The negative
gradient of the V() should point in the direction of motion
along each demonstration. This allows the controller to
precisely follow the demonstrated trajectories. We express

émn

the second objective in eq. (13).
2
: -1 (13)
1§85)

Here, ft’” are velocities from the demonstrations, N is the
number of demonstrations, and TV is the length of the Nth
demonstration. The objective incentivizes the gradient of
V(x) to point in the direction of the demonstrated motion at
each demonstration point.

Given the two objectives, we formulate the optimization
in eq. (14) in order to learn the weights w'.

argmin {o/ J'?(w') + (1 — ') J"(w!) | C'}

™

N
Tty =" (vww’, g

n=1t=0

(14)

Here, the hyperparameter o varies between 0 and 1 and
scales the influence of each objective. Notably, the set C' is
the set of constraints described by egs. (2-4) and eq. (6).
Although the objective function is quadratic and the
constraints are linear, the optimization cannot be solved with
a quadratic program because the constraints are continuous.
We, therefore, implemented algorithm 1. Line 1 initializes

Algorithm 1 Optimization via Iterative Quadratic Program-
ming
Input: J, GET_VIOLATION
Output: w
: C «+ {V(0) =0}
do
w = quadprog(J, C)
C' + GET_VIOLATION(w)
C+ CUCt
while |C?| > 0

AN A >

the constraints set C with the condition from eq. (2). On
the first iteration, the optimization is solved via a quadratic
program with just one constraint. Line 4 then checks for any
constraint violations. If there is one, it is returned, otherwise,
an empty set is returned. If no violation occurred, the while
loop terminates, otherwise, the new constraint is added to the
constraint set and another iteration starts.

Finding the constraint violations for the condition in eq.
(4) is not trivial, hence we propose algorithm 2. Furthermore,
we present fig. 1 to visually demonstrate how we identify
constraint violations. Lines 2-3 initialize an empty open set
and an empty closed set for the energy first expansion. Lines
4-6 check the condition for eq. (6). Lines 7-16 correspond to
steps 1-3 in fig 1. The closed list starts empty and expands the
minimum energy regions first (shown in green). Step 4 in fig.

Algorithm 2 Energy Function Constraint Violation
Input: €

I function GET_VIOLATION(w')

2: open + {0}

3: closed + {}

4 for z* € O do

5: if VV(w!,z%) - N(x*) <0 then

6: return {—VV (w',z*)- N(z*) <0}

7. while |open| > 0 do

8 xt ¢+ arg Minlgcopen V(wt, z)

9: open < open \ x*

10: closed + closed U x*

11 for j € {1.n} do

12: x€ <+ xt

13: for k € {—1,1} do

14: x§ — x’ + ke

15: if ¢ ¢ closed then

16: open <+ open U x°

17: if V(w! z?) —V(w!,z%) >0 then
18: return {V (w',z%) — V(w',z¢) < 0}

19: return {}

[/

Violation detected

Fig. 1: Four steps of the constraint violation detection are
shown. Steps 1-3 show an energy-first expansion from the
origin. Step 4 is the first time a constraint violation is detected.

1 corresponds to the condition in line 17 being true, when the
energy of the expanded state is lower than the current state.
The algorithm will continue to run until all X" are expanded
or a constraint violation is found.

Notably, algorithm 2 finds constraint violations on a regular
grid determined with the input variable e. There is a possibility
that constraint violations exist between the discrete points,
e.g. there could be a local minimum. This is, however,
unlikely with wide smooth basis functions, such as radial basis
functions. Nevertheless, we handle this possibility by using
linear interpolation for points between grid points. Minimums
of a linearly interpolated function can only occur on the grid.
Since the constraints are enforced on the grid, we can say
there will be no constraint violating minimums.

C. Controller learning

Given the energy function, we can learn a stable ADS
f (@) from the demonstrations. We parameterize the f(x) the
following way.

.
flws,w’ @) =Y wiVei(z) + w'VV(x) (15

2961

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

Here, b° is the number of basis functions used for f(x).

Notably, the controller is composed of a linear combination
of arbitrary basis functions V¢§(x) and the gradient of
the energy function. By including V'V as one of the basis
functions, we guarantee that the condition in eq. (4) can be
satisfied. The solution is trivially obtained when w” = —1 and
w® = 0, as the controller will follow the energy function’s
negative gradient.

We want the controller to move toward the nearest
demonstration and then begin to follow it. We again propose
two objectives to achieve this; one for position tracking and
the other for velocity tracking. The first objective function is
shown in eq. (17).

g(x) =[néar(z)||m

= > If(w®w’, @) - g(a)|

xeX

near(x) — x (16)

JP(we, w’ (17)
The near(x) function refers to the velocity corresponding to
the nearest demonstration point. The second objective aims
to follow the demonstrated velocity once the demonstration
is reached. This objective is shown in eq. (18).

N T

=323 [rterm - g
n=1t=0

Finally, the optimization in eq. (19) is formulated.

J(‘d

\ (18)

arg min {ozCJCp(wc,w”) + (1 =) (we,w") | CC} (19)
As before, the constraints required in eqs. (5) and (7) are
continuous and cannot be solved with a regular quadratic
program. Instead, we apply algorithm 1. To find the constraint
violation points, we implemented algorithm 3. The algorithm

Algorithm 3 Controller Constraint Violation Function
Input: €

1: function GET_VIOLATION(w*€, w")

2. for ' € O do

3 if f(we w? x*) N(z') <0 then

4 return {—f(w® w’,) - N(z*)}
5. for x* ¢ X do
6
7
8

if f(we w? xt) VV(w!, z*) > 0 then
return { f((w®, v, z*) - VV(w', z%)}
return {}

checks the conditions in egs. (5) and (7) and returns a violation
if found. Similar to algorithm 2, a parameter e is required to
specify the discrete interval to check for violations.

D. Dependent dimensions

For many pick-and-place tasks, the orientation of the end
effector can be estimated as a function of the Cartesian
position. Therefore, we directly model dependent dimensions
as a function of the independent dimensions (state) and the
goal.

y = h(z,g) (20)

Here, y € R™ represents the dependent dimensions, h :
R™ — R™ is a function that estimates the dependent dimen-
sions given the state , and g € R" is the goal parameter. We
parameterize h(x, g) with radial basis functions and estimate
y via least square. Finally, we apply a proportional control
to track estimated dependent dimensions. Notably, it is not
necessary to model any dependent dimensions, but doing so
is more computationally and data-efficient.

IV. RESULTS

We evaluate LSD-IQP with three experiments: 1) learning
motions from the handwritten LASA data set [18], 2) learning
a pick and place task for a robot, and 3) learning a point-
to-point motion with a non-convex obstacle for a robot. We
directly compare LSD-IQP to SEDS, CLF-DM, and FSM-DS
in experiment 1 since they are all ADS methods. Results
are quantified with the swept error area (SEA) metric and
learning time for 30 motions. For both robot experiments,
two Cartesian dimensions were used for the state and all
other dimensions were made dependent. The source code for
each method’s implementation is located at [19], [20], and
[21], respectively.

A. Experiment 1: learning handwritten symbols

This experiment demonstrates LSD-IQP’s increased accu-
racy in learning complex motion compared to other ADS
methods. We present quantitative results in terms of SEA
and total learning time in table I. SEA is a commonly used
benchmark for the LASA data set. The metric effectively
measures spatial and temporal accuracy. A low SEA value
corresponds to a motion that has the same shape as the
demonstrations and is aligned in time. For a more detailed
explanation, see [4]. Compared to the other approaches, LSD-
IQP showed the best performance in terms of mean SEA and
total learning time.

TABLE I Comparison of the mean swept error area (mm?)
and total learning time (sec) for the SEDS, CLF-DM, FSM-
DS, and LSD-IQP methods.

SEDS | CLF-DM | FSM-DS | LSD-IQP
SEA | 351.3 | 181.3 164.3 93.5
time | 376.7 | 412.2 351.3 182.7

While SEA is the standard metric used to measure
performance on the LASA data set, it does not capture all
important characteristics of ADS learning. Namely, the SEA
is evaluated by reproducing motions from the same points
as the original demonstrations. This is shown for a sample
written letter in fig. 2 with green dots. In this case, LSD-IQP
reproduces the demonstrations correctly, while SEDS fails to
learn the motion. SEDS’s quadratic Lyapunov function is too
restricted to generate motion that moves too directly away
from the goal. The increased performance of LSQ-IQP over
other methods is apparent when reproducing motions from
novel starting positions. Three arbitrary novel starting points
are shown in fig. 2. LSQ-IQP quickly and smoothly converges

2962
Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

ALl

A/ LYY DN Al (LI
[© Novel starting pointA. Demonstrations % Goal position

Imitation failure
Splitting region

~. Reproductions @ Original starting point .. Diverging motion

Fig. 2: Comparison of streamline plots for LSD-IQP (left)
and SEDS (right). LSD-IQP shows stable and accurate
reproduction under spatial perturbation.

|-'A

Fig. 3: Demonstrations for pick and place task (left) and point
to point task (right).

to the original demonstrations from each point, while SEDS
generally maintains the shape of the demonstrations. The
effects of the distributional shift are highlighted in the red
region. The motion divergences from the demonstrations,

which could lead to the robot moving outside of its workspace.

B. Experiment 2: pick and place task with novel goals

Our second experiment validated LSD-IQP ability to learn
multi-modal demonstrations via a pick-and-place task on a
robotic platform. Two demonstrations were provided for both
picking and placing at two different goal locations, totaling
eight demonstrations. The demonstrations were provided by
a human teacher via kinesthetic teaching. Fig 3 illustrates
the demonstrations for both robot experiments. Note, the
demonstrations are shown relative to a single block location.
The task requires precision and a proper approach angle to
avoid the robot’s fingers from colliding with the block. Also,
since the block is picked from the tabletop, precise clearance
is required to avoid a collision. For this experiment, motions
were executed by mapping learned Cartesian velocities to
joint velocities with the pseudo-inverse of the Jacobian. The
robot was successfully able to pick and place the block at
novel goal positions along a 3x3 grid with 5 cm spacing.

This experiment demonstrates LSD-IQP’s ability to model

Fig. 4: Streamline plots of LSD-IQP for the pick and place
task for two different goal positions.

. e 4]

Fig. 5: Energy function learned via LSD-IQP (left) and
streamline plot for the learned controller.

multi-modal trajectories. As seen in fig. 4, the flow lines drive
the robot’s end effector to the goal location via two primary
modes. If the block is on the robot’s left, it will grab the block
from the right side, while if the block is in front of the robot,
it will grab the block by moving straight forward. These two
different modes were present in the demonstrations.

C. Experiment 3: point-to-point motion with an obstacle

We further validated LSD-IQP with a point-to-point ob-
stacle avoidance task on a robotic platform. In this task, the
robot must maneuver its hand above the obstacle and then
slide along the surface while maintaining a suitable clearance.
The key challenge is that the obstacle is non-convex and must
be avoided from any starting position. For this experiment,
four demonstrations were provided.

This experiment demonstrates LSD-IQP’s ability to avoid
infeasible regions of the state space. The learned controller
converges to the goal from all feasible states. As seen in fig.
5, the flow on the boundary of the obstacle always has some
component in the normal direction. This result is achievable
only because the learned energy function has two maximumes,
forming a ridge line inside of the obstacle. This effect is
illustrated by the dashed black line in fig. 5. The energy
functions of other ADS methods, such as CLF-DM, must have
only one critical point, which is a minimum. The topology
of those types of energy functions is fundamentally diffident
from that of the LSD-IQP, consequently, they are not able to
generate motion that circumvents the obstacle. The flexible
energy function topology allowed in our formulation enables
learning of complex ADS, even in a non-convex feasible state
space.

V. CONCLUSION

In this paper, we developed LSD-IQP to learn an ADS
from multiple demonstrations. Learning was broken into two
stages: 1) learning an energy function and 2) learning an
ADS. In both cases, iterative quadratic programming with
constraint generation was employed to solve the optimization
problem. We validated LSD-IQP in three experiments and
showed increased accuracy and capability compared to other
ADS methods.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation (IIS 1830597).

2963

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

[1]

[6]

[7]

[8

=

[9]

[10]

REFERENCES

P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
2009 IEEE International Conference on Robotics and Automation.
IEEE, 2009, pp. 763-768.

A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” 01 2013.

S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” IEEE Transactions
on Robotics, vol. 27, no. 5, pp. 943-957, Oct 2011.

S. Mohammad Khansari-Zadeh and A. Billard, “Learning control
lyapunov function to ensure stability of dynamical system-based
robot reaching motions,” Robotics and Autonomous Systems,
vol. 62, no. 6, pp. 752-765, 2014. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S0921889014000372

K. Neumann and J. J. Steil, “Learning robot motions with stable
dynamical systems under diffeomorphic transformations,” Robotics and
Autonomous Systems, vol. 70, pp. 1-15, 2015. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S0921889015000883
Z.Li, T. Zhao, F. Chen, Y. Hu, C.-Y. Su, and T. Fukuda, “Reinforcement
learning of manipulation and grasping using dynamical movement
primitives for a humanoidlike mobile manipulator,” IEEE/ASME
Transactions on Mechatronics, vol. 23, no. 1, pp. 121-131, 2018.

C. Yang, C. Chen, W. He, R. Cui, and Z. Li, “Robot learning system
based on adaptive neural control and dynamic movement primitives,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 30,
no. 3, pp. 777-787, 2019.

F. Frank, A. Paraschos, P. van der Smagt, and B. Cseke, “Constrained
probabilistic movement primitives for robot trajectory adaptation,” IEEE
Transactions on Robotics, vol. 38, pp. 2276-2294, 2022.

R. A. Shyam, P. Lightbody, G. Das, P. Liu, S. Gomez-Gonzalez,
and G. Neumann, “Improving local trajectory optimisation using
probabilistic movement primitives,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 2666—
2671.

N. Figueroa, S. Faraji, M. Koptev, and A. Billard, “A dynamical system
approach for adaptive grasping, navigation and co-manipulation with
humanoid robots,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), 2020, pp. 7676-7682.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

2964

Y. Shavit, N. Figueroa, S. S. M. Salehian, and A. Billard, “Learning
augmented joint-space task-oriented dynamical systems: A linear
parameter varying and synergetic control approach,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 2718-2725, 2018.

J. Duan, Y. Ou, J. Hu, Z. Wang, S. Jin, and C. Xu, “Fast and stable
learning of dynamical systems based on extreme learning machine,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49,
no. 6, pp. 1175-1185, 2019.

N. Perrin and P. schlehuber caissier, “Fast diffeomorphic matching
to learn globally asymptotically stable nonlinear dynamical systems,”
Systems & Control Letters, vol. 96, pp. 51-59, 10 2016.

S. Bahl, M. Mukadam, A. Gupta, and D. Pathak, “Neural dynamic
policies for end-to-end sensorimotor learning,” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc.,
2020, pp. 5058-5069. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/file/354ac345fd8c6d7ef634d9a8e3d47b83-Paper.pdf

S. Bahl, A. K. Gupta, and D. Pathak, “Hierarchical neural dynamic
policies,” in RSS, 2023.

S. Pirk, K. Hausman, A. Toshev, and M. Khansari, “Modeling long-
horizon tasks as sequential interaction landscapes,” in CoRL, 2020.
R. Pahi¢, A. Gams, A. Ude, and J. Morimoto, “Deep encoder-decoder
networks for mapping raw images to dynamic movement primitives,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 5863-5868.

S. M. Khansari-Zadeh and A. Billard. Lasa handwriting dataset.
[Online]. Available: https://cs.stanford.edu/people/khansari/download.
html

S. M. Khansari-Zadeh. Stable estimator of dynamical systems (seds) -
source code. [Online]. Available: https://bitbucket.org/khansari/seds/
src/master/

——. Control lyapunov function-based dynamics movement (clf-dm) -
source code. [Online]. Available: https://bitbucket.org/khansari/clfdm/
src/master/

J. Duan, Y. Ou, J. Hu, Z. Wang, S. Jin, and C. Xu. Fast
and stable learning of dynamical systems based on extreme
learning machine - source code. [Online]. Available: https:
//github.com/SIAT-CIBS/FSM-DS/

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 28,2023 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.

