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ABSTRACT

Processing large data sets has become an essential part of computational genomics. Greatly
increased availability of sequence data from multiple sources has fueled breakthroughs in
genomics and related fields but has led to computational challenges processing large sequ-
encing experiments. The minimizer sketch is a popular method for sequence sketching that
underlies core steps in computational genomics such as read mapping, sequence assembling,
k-mer counting, and more. In most applications, minimizer sketches are constructed using
one of few classical approaches. More recently, efforts have been put into building mini-
mizer sketches with desirable properties compared with the classical constructions. In this
survey, we review the history of the minimizer sketch, the theories developed around the
concept, and the plethora of applications taking advantage of such sketches. We aim to pro-
vide the readers a comprehensive picture of the research landscape involving minimizer
sketches, in anticipation of better fusion of theory and application in the future.
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1. INTRODUCTION

Recently, many advances in computational biology have been made possible by the increasing

amount data generated from high-throughput sequencing experiments. Processing these sequencing

data and extracting biological insights from them efficiently require both improved computing infrastructures

and novel algorithms adapted to large-scale data analysis.

Minimizer sketches are a type of ‘‘sequence sketch’’ used to reduce the computational needs of com-

putational biology algorithms. In this context, we use the term sequence sketches to refer to the collection

of methods that generate a small representation of a long sequence (See Section 2.2 for more discussion).

This small representation is designed to preserve some of the structure and information from the original
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string. By using these much smaller sketches, it is possible to design algorithms that perform operations

between sequences, such as sequence search and sequence alignment, with reduced storage, memory, or

computational costs.

1.1. Background

The history of minimizer sketches, especially its introduction to computational biology, is worthy of

discussion. This is also a story of how big data is playing an increasing important role in computational

genomics. The concept of minimizer sketch for computational biology first appears in Roberts et al. (2004a)

and Roberts et al. (2004b), and an equivalent algorithm for document fingerprinting, called winnowing,

appears in Schleimer et al. (2003), all around the same time. It is first used in computational biology to

reduce memory requirements to compute overlaps between sequencing reads: given a large set of sequ-

ences, how can one determine which pair of sequences overlap without exhaustively iterating and aligning

every possible pair? One solution is to create a mapping from the constituent k-mers (substrings of fixed

length k) to the sequences, and only compare the sequences that have k-mers in common. Although this

method saves a lot of computation by avoiding aligning many pairs of sequences that do not have any good

alignment, it was considered memory prohibitive because of the very large number of k-mers to store the

mapping (potentially up to 4k k-mers).

The conceptual idea behind minimizers is to sketch the sequence, or more precisely speaking, to generate a

set of k-mers for each sequence, a fingerprint, that is much smaller than the original sequence. Applying a

minimizer sketch means selecting the minimal k-mer in each sliding window of a given sequence (thus the name

‘‘minimizer’’), and collecting the resulting subset of k-mers as the fingerprint (see Section 2 for precise

definitions). If the sketch/fingerprint of two sequences has a large overlap, a sequence-level overlap is likely.

This holds because if the two sequences have a large overlap, the fingerprint (minimal k-mers in sliding

windows) on the overlapping part should be shared between the fingerprints.

The idea of minimizer sketching was promising at the time, but one will have to wait for a full decade before

minimizer sketches become widely used in computational genomics. There are a multitude of factors behind this

development. One such factor is the emergence of next-generation sequencing (NGS), such as those developed

by Illumina, that supplanted Sanger sequencing as the dominant sequencing technology. NGS offered shorter

reads than Sanger sequencing, but was more accurate, cheaper, and with much higher throughput. The large

increase in throughput and reduction of sequencing cost per base lead to a significant increase in data size: typical

sequencing depth jumped from � 10· coverage, to between 50 · and 100· or more. This sharp increase in

available sequences and large data sets introduced unprecedented computational challenges.

The ever increasing availability of sequencing data from private and public databases, such as the

Sequence Read Archive (SRA), the continuing plummeting cost for NGS, and the advent of third-

generation sequencing and single-cell sequencing pose even more harsh challenges for computational

efficiency. Minimizers and sequence sketching methods have been key instruments in algorithmic devel-

opments of computational genomics during the NGS era as they allow great memory and computation

reduction with provably little or no cost in accuracy. The methods will likely continue to be a central com-

ponent in the new generation of core algorithms such as read mapping, sequence search, sequence assem-

bly, and k-mer counting. This review presents the theory underpinning minimizers and many of the

optimizations and variants proposed over time to improve the original minimizer sketches.

1.2. Structure of this review

We provide a comprehensive review of developments in computational genomics around the design,

analysis, and application of minimizer sketches. Section 2 provides a formal definition of minimizer

sketches, and discusses their properties and relationship to other sequence sketching methods. In Section 3,

we focus on the theory side of minimizer sketches, that is, how to design and analyze a minimizer sketch.

Contents in this section include various ways to set up a minimizer sketch by choosing its parameters and

the various metrics used to analyze the performance of these sketches.

In Section 4, we look at the applications of minimizer sketches, with focus on three representative

scenarios: read mapping (including sequence overlapping), sequence assembly, and an umbrella term that

we call k-mer dispatching, which covers the use case of minimizer sketches for k-mer counting, sequence

compression, and more general types of sequence comparison. In Section 5, we discuss extensions of
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minimizer sketches as well as other newer methods that serve a similar purpose. We conclude with some

high-level discussion on where the field is heading next in Section 6.

2. BASICS OF MINIMIZER SKETCHES

2.1. Definition

A minimizer sketch scheme is defined by three parameters w‚ k, and O: window length, k-mer length, and

k-mer ordering, respectively. w and k are two integers, and O is a total ordering over all k-mers. We use S
to denote the alphabet, and r = jSj. For most applications in computational genomics r= 4, and we assume

r remains a small constant even in theoretical analyses. A window of a minimizer sketch scheme is a

sequence of length w + k - 1, or alternatively, a sequence of w k-mers. Given a sequence, the minimizer

sketch is generated as follows: for each window in the sequence, select the k-mer in the window that is the

lowest in the ordering O, breaking ties (when the k-mer with the lowest ordering appears multiple times)

by preferring the leftmost k-mer. The sketch of the sequence is the collection of k-mers and associated

locations that have been selected in any window. Formally:

Definition 1 (Minimizer and Windows). A ‘‘minimizer sketch scheme’’ or simply a ‘‘minimizer

scheme’’ is characterized by (w‚ k‚O) where w and k are integers and O is a total order over Sk. A

‘‘window’’ is a string of length w + k - 1, consisting of exactly w overlapping k-mers. Given a window as

input, the minimizer selector outputs the location of the smallest k-mer according to O, breaking ties

by preferring the leftmost k-mer. The k-mer at this location is the ‘‘minimizer’’ of this window. The

‘‘minimizer sketch’’ Mw‚ k‚O(S), of a sequence S given (w‚ k‚O) is the union of all k-mers selected in its

constituent overlapping windows with their locations in the string.

Throughout this article, we use the term ‘‘minimizer sketch’’ for both the scheme and the resulting sketch,

when the context is clear whether the algorithm or the collection of k-mer with locations is of interest.

Intuitively, minimizer sketches select only a small subset of the k-mers in S, because adjacent windows

likely share the same minimizer. See Figure 1 for an example minimizer sketch with lexicographical order.

2.1.1. Basic properties of minimizer sketches. Minimizer sketches satisfy the following formal

guarantees:

Lemma 1. Any minimizer sketch satisfies the following three properties:

� (Window) Minimizer sketches are guaranteed to select a k-mer at least every w bases.
� (Local) If two sequences share a window (have an identical substring of at least w+ k - 1 bases), it is

guaranteed that their minimizer sketch has a common k-mer that could be used to locate the matching

window in both sequences.
� (Forward) In a sequence, the minimizer picked by any window comes at or after the position of any

other minimizer picked in a previous window.

Proof: These properties are direct consequences of the definition.

� Window Property: The minimizer sketch is required to select a k-mer in any window, thus it cannot

avoid selecting a k-mer for at least w consecutive bases.

FIG. 1. Example minimizer sketch with w = 5‚ k = 3 and O
being the lexicographical order. Left-hand side: the sequence

S=AACGTCGATCCG at the top, each line below is a window

of S with selected k-mer in red. Right-hand side: Resulting sketch

of S.
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� Local Property: This can be seen by noting that the minimizer selection criteria depend only on the

sequence of the window (in particular, the tie-breaking rule is also only dependent on the window itself),

and nothing outside the window. Thus, if two sequences share a window, the k-mer selected within this

window appears in the sketch of both sequences, which can then be used to recover the window match.
� Forward Property: Assume otherwise, that is, there are two adjacent windows (differing by one base) and

the k-mer x selected in the earlier window comes after the k-mer y selected in the latter window. In this

case, y is also a k-mer in the earlier window, as otherwise ywould be the last k-mer in the latter window and

x cannot come after y. Similarly, x is also in the latter window. So in the former window we have x < y (no

equality due to tie-breaking rule) and in the latter window we have y < x, leading to a contradiction.,

The window property ensures that the sequence is sampled approximately uniformly and that there are no

long substrings without minimizer k-mers. This property is the basis of applications that use minimizer

sketches to break down long sequences in chunks, for example, to parallelize workloads (see Section 4.3).

The local property is the most important guarantee for applications such as read mapping, ensuring that

long identical substrings (at least as long as a window) between sequences can always be retrieved

by comparing their minimizer sketches. Finally, the forward property enables time- and space-efficient

implementation of minimizer sketches, by streaming the sequence and capturing minimizer k-mers in the

stream, as discussed later in this section.

2.1.2. Selecting w and k. The values of w and k are of utmost importance for a minimizer sketch.

Selection of these parameters is highly dependent on the specific application of the minimizer sketch, and

different guidelines exist for different types of applications. For read mapping, the value of w presents a trade-off

between efficiency and sensitivity: larger w means fewer k-mers sketched and higher efficiency, but higher

potential to miss long matches as only sequences of length w+ k - 1 are guaranteed to share a k-mer. Many read

mappers choose a value between 10 and 100, depending on their intended usage (a higher value for lower

sequencing error rate and longer sequences, e.g.). The value of k is more nuanced and in general should be

selected such that k-mer collisions are not too frequent. Nowadays, read mappers commonly choose values

between 10 and 25.

We discuss read mapping in more detail in Section 4.1. For k-mer counting type of application, w0 and k0

(to distinguish from the k implied by the task) should be selected such that a window is of the same length

as the k-mers for counting, and k0 should be selected such that the number of bins (rk0 max) yields a

reasonable overhead for parallelization. We discuss k-mer counting and other related use cases for mini-

mizer sketches in Section 4.3.

2.1.3. Selecting O. As different orderings have no immediate impact on the three important properties

of minimizer sketches of Lemma 1, and the order choice does not change the correctness of algorithms using

minimizers, the selection of O historically received less attention. The ordering of k-mers directly deter-

mines which k-mers are included in the sketch and which ones are not, so it indeed has a salient impact, for

example, on the size of the sketch created. Common ordering choices include the following:

� Lexicographical Ordering: The k-mers are ordered by first comparing the leftmost character, then the

second in case a tie, and so on. For a DNA alphabet, AAA . . .A is the smallest k-mer and TTT . . . T is

the largest. This is very commonly used due to its simplicity and efficiency in comparing k-mers.

However, lexicographical ordering has a number of issues, including overrepresentation for stretches

of As in the sketch, an overall larger sketch size, and more. These issues were recognized very early

on, and remedies of these issue include prioritizing less frequent characters (Roberts et al., 2004a;

Roberts et al., 2004b), prioritizing k-mers with a certain prefix (Deorowicz et al., 2015), and other

tweaks (e.g., see Wood and Salzberg, 2014, on XORing k-mers).
� Frequency Ordering. Seen in Chikhi et al. (2015) and commonly adopted in practice, the method

assumes existence of a background k-mer distribution (e.g., empirical k-mer distribution in the latest

human reference genome), and the k-mers are ordered in a way such that less frequent k-mers are given

higher priority. Jain et al. (2020) propose a more practical method that demotes (larger in O and thus

less likely to be selected) frequent k-mers above a certain threshold in a probabilistic way.
� Random Ordering: k-mers are ordered randomly for the sketch (although consistent between sequ-

ences). A common choice of modern sketches, this has a number of advantages, including less bias

toward certain bases, highly efficient (using a hash function), and a small sketch size.
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Due to the nature of genomic sequences, minimizers are often defined with ‘‘canonical k-mers.’’ The canon-

ical k-mer of m is either m itself or the reverse-complement of m, whichever is smaller lexicographically, and

the ordering O is defined on canonical k-mers only. Using canonical k-mers allows, for example, using

minimizer sketches on sequencing reads where the sequenced strand is unknown. Although the canonical

k-mers are routinely used in practice, most of the theory on minimizers, for simplicity reasons, uses normal

k-mers and ignores the restriction to canonical k-mers.

In Section 3, we discuss some other more carefully crafted orderings that improve upon the afore-

mentioned sketches in certain ways.

2.1.4. Implementing a minimizer sketch. Depending on the ordering chosen, implementing a min-

imizer sketch can be easy or hard. In most scenarios, the ordering comes in the form of (or can be converted

to) a hash function, in which case the set of minimizer k-mer locations is computable in time linear in the

input sequence length (assuming the sequence is sufficiently long, and computing the hash takes constant

time) using a monotonic queue. We provide a sample implementation of an algorithm to compute a

minimizer sketch. This algorithm has an amortized run time of O(jSj), an improvement over the naive

algorithm [whose worst-case run time is O(wjSj)].
The first part is to implement the monotonic queue. This is a data structure that maintains a set A of

comparable elements, supporting the following operations:

� Insert an element to A.
� Remove an element from A, in the exact order as they were inserted into A (equivalently, remove the

current oldest element in A).
� Query the current minimum in A.

Intuitively, if two elements x and y are consecutively added to A with x > y, x can never be the current

minimum and can be discarded. Thus, we only need to keep track of elements that are not useless by this

rule, which form a queue that is monotonic in both value and time of insertion (thus the name). We use a

deque (double-ended queue, allowing adding and removing elements on both ends of the queue) as the

underlying data structure.

Algorithm 1: Insert (X, T) inserts an item to the monotonic queue.

input: Item X and time T

1 while Rightmost item in deque is larger than X do

2 Remove rightmost item and time in deque;

3 end

4 Append (X‚ T) to right end of deque;

Algorithm 2: Fetch (T) removes old items and returns the current minimum.

input: Time T

output: Minimal item X0 with time T 0 satisfying T 0 � T

1 while Leftmost time in deque is lower than T do

2 Remove leftmost item and time in deque;

3 end

4 Return leftmost item in deque;

Due to the tie-breaking rule favoring leftmost k-mers, the monotonic queue needs to favor item with

lower time (i.e., if there are two items with same value but different time, the item with lower time shall be

selected). Thus, the item removal rule in Insert reads strictly larger-than. Removal of items from the

monotonic queue is performed at query time (Algorithm 2).

In using the monotonic queue, it is necessary that time (the parameter T) only increases between calls to

Insert and between calls to Fetch. (In some other implementations, the monotonic queue is parameterized

by a fixed ‘‘window length.’’ It is equivalent to using our approach but subtracting the window length from

T during Fetch calls.) If this condition holds, then the items in the queue are in increasing order for both the

value of the item and the time of insertion. Based on this time monotonicity condition, we can prove the
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correctness and efficiency of monotonic queues [explanations are also available in Jain et al. (2020) and

Carruthers-Smith (2011) under a different name].

Lemma 2. Assume the time monotonicity condition holds. Each time Fetch(T) is invoked, the item

returned is the minimal item with insert time no less than T, assuming such item exists.

Proof: Assume Fetch(T) returns (X0‚ T0), and the correct answer is (X1‚ T1) instead with X1 < X0 and

T1 � T .

� If T1 > T0, the item (X0‚ T0) would have been removed during Insert(X1, T1), and cannot be selected

during Fetch(T).
� If T1 < T0, the item (X1‚ T1) would not have been removed during Fetch(T 0) for any T 0 � T . If the

item is removed during Insert(X2‚ T2) for some item (X2‚ T2), we have T2 > T1 and X2 < X1, so

(X1‚ T1) is not the correct answer. This implies (X1‚ T1) is still in the deque at the end of Fetch(T), and

will be selected over (X0‚ T0) because it is to the left of (X0‚ T0) in the deque.

The case where X1 =X0 and T1 < T0 can be proved in a similar way. ,

Lemma 3. Assume the time monotonicity condition holds. Making N calls to the monotonic queue takes

O(N) time.

Proof: As the functions have no other loops other than line 2 for both Algorithm 1 and Algorithm 2, it is

sufficient to show that these two lines are executed at most N times during N calls. The only way to add an

item to the deque is through line 4 in Algorithm 1, which happens exactly once per Insert call, and thus, at

most N items would have entered the deque. Line 2 for both Algorithm 1 and Algorithm 2 removes one

item from the deque, and thus, they are executed at most N times in total. ,
Lemma 3 implies Insert and Fetch have amortized constant run time.

We now implement a minimizer sketch, assuming that the hash functions are easily calculated. We

achieve this by sliding a minimizer window from left to right, and maintaining a monotonic queue with the

k-mers in the current window.

Algorithm 3: Pseudocode for Implementing a Minimizer Sketch

input : Three integers w‚ k‚N and a sequence S of length N

output: The minimal k-mer in each of the sliding windows of length w,

for a total of N -w - k values

1 for i)f0‚ 1‚ . . .N - kg
2 Calculate X to be the hash of the ith k-mer of S;

3 Call Insert(X‚ i);

4 if i � (w- 1) then

5 Append the k-mer represented by Fetch(i -w + 1) to output;

6 end

7

2.1.5. Parallelization. Parallelization of minimizer sketching is also simple, as one can simply

divide the sequence into segments and sketch each segment in parallel. However, there are some intricacies

when it comes to minimizer k-mers at the boundary of segments. A safe method to parallelize minimizer

sketch is to split the input sequence into segments with overlaps that are a full window long. This way,

minimizer k-mers inside the intersection of segments may be counted twice (we can easily deduplicate

given the forward property in Lemma 1), but no undercounting is possible.

2.2. Relationship to related concepts

2.2.1. Other sequence sketches. Minimizer can be broadly categorized as a sequence sketch in a

compressive manner: the size of the resulting sketch is usually smaller than the sequence itself. Methods

such as the Burrows-Wheeler Transform (BWT) (Burrows and Wheeler, 1994) and FM-Index (Ferragina
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and Manzini, 2000) are sometimes also called compressive sequence sketches, but with a critical dis-

tinction: minimizer sketches do not aim to preserve the whole sequence but only parts of it, while BWT and

FM-Index can be used to recover the full sequence. A common alternative to minimizer sketching is by

downsampling k-mers, that is, select all k-mers that are present in a predefined set. We discuss this line of

work in Section 5.2. In addition, for those interested in sequence sketching in general, Rowe (2019) and

Marçais et al. (2019) present more thorough reviews for different families of sequence sketching methods.

2.2.2. MinHash. MinHash (Broder, 1997) and minimizer sketches bear some similarity other than

their name, but they are also sufficiently different in essence. The positional information of the selected

k-mers is usually included in a minimizer sketch. Even if a minimizer sketch does not explicitly include the

position information, because of the shifting window procedure to create the sketch, the original position of

a k-mer in the sequence has an effect on whether a k-mer is selected. With MinHash, the sketch is created

over an unordered collection of elements and there is no notion of position.

An important use case for MinHash is the estimation of distance between sets. Minimizer sketches can be

used for distance estimation by discarding positional information, but as discussed in Section 4.4, they are

rather ineffective for that specific purpose.

2.2.3. Locality-sensitive hashes. Conceptually speaking, minimizer sketches are also ‘‘locality sensi-

tive.’’ Minor changes in the underlying sequence usually only bring modest changes to the resulting minimizer

sketch; if a base in the sequence gets changed, minimizer k-mers only change in windows that include the base

by the locality as in Lemma 1 (also see Edgar, 2021; Hoang et al., 2022a; Marçais et al., 2018; Shaw and Yu,

2022; for some more discussion on this specific topic). However, there are certain difficulties classifying

minimizers directly in the locality-sensitive hash (LSH) framework, as the minimizer sketch consists of k-mers

alongside their locations, but a typical LSH has a fixed value domain. Moreover, the correctness and perfor-

mance of algorithms using minimizer sketches are based on the properties given in Lemma 1, not based on

bounds of k-mer collision probabilities as commonly done in the analysis of LSH.

3. THEORIES OF MINIMIZER SKETCHES

In this section, we discuss works on the theoretical front of minimizer sketches. Many theoretical

developments of minimizer sketches are tightly connected to (and for many, largely motivated by) appli-

cations. With this idea in mind, we organize this section by trying to answer the following questions:

� What is a good minimizer sketch?
� How to build a good minimizer sketch?

Both questions can be discussed in varying contexts: in the asymptotic context (in the limit of large

w and k) and practical ones (tailored for parameter configurations commonly seen in existing applications);

in expectation where the sequence S is a random sequence; and in the sequence-specific case where the

input sequence is fixed (e.g., the human reference genome). Minimizer sketches are also a useful mathe-

matical construct. For example, in samSAMi (Grabowski and Raniszewski, 2013), minimizer sketches are

used to build a reduced representation of suffix arrays that allows for efficient searching. However, most

theoretical work focuses on improving minimizer sketches themselves.

We organize this section by first discussing theoretical developments around the concept of density

(a direct measure of how sparse minimizer sketches pick k-mers) in Section 3.1, followed by a discussion

of alternative metrics in Section 3.2 and a brief perspective on open problems in Section 3.3.

3.1. Density and related techniques

3.1.1. Introduction. Minimizer sketches are used in a very diverse set of contexts. Because of this,

there is hardly a unifying measure of ‘‘goodness’’ for a minimizer sketch. Being a sequence sketch,

compactness (i.e., relative size) of the sketch naturally comes first as an important metric. In general a

compact sketch is considered beneficial as it leads to less data to store in memory and less data to process.

There is a long line of work formalizing what it means to be compact, and what makes a compact

minimizer sketch, as we describe below.
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3.1.2. Definition of density. The density of a minimizer sketch measures, either on average or on a

specific sequence, the size of the sequence sketch. Formally speaking:

Definition 2 (Density). Given a minimizer sketch and a sequence S, the ‘‘specific density’’ of the

sketch on S is defined as
jMw‚ k‚O(S)j
jSj - k + 1

, the number of selected locations in the sketch divided by the number of

k-mers in S. The ‘‘expected density’’ (sometimes abbreviated as density) is the specific density of a

sufficiently long random string.

The task of building a good minimizer sketch in this context refers to the task of producing an ordering O
given w and k (and when targeting specific density, also given the sequence S) that has a low density.

As a concrete example, consider the lexicographical minimizer sketch and sequence S as presented in

Figure 1. There are 11 k-mers in S, and 5 of them are present in the sketch, resulting in a specific density of

5=11. However, as presented in Figure 2, a different choice of O can lead to a very different sketch and the

resulting specific density; here, we get a specific density of 2=11 instead, which is better in this context.

3.1.3. Average case: expected density. Many of the previous studies focus on the expected density,

including Schleimer et al. (2003), Zheng et al. (2021b), Zheng et al. (2020), Marçais et al. (2017), and

Marçais et al. (2018). Through this line of work, it has been established that the expected density of a

random minimizer sketch is 2=(w + 1) under mild conditions (Zheng et al., 2020). For the extreme condi-

tions, when the k-mers are much longer than windows (k � w), the optimal density of 1=w can be achieved

by a carefully constructed minimizer sketch, and when the reverse holds (w � k), there are no minimizer

sketches of density O(1=w) (Marçais et al., 2018; Zheng et al., 2020).

In addition, when k > w (or when k � w), a careful construction of the k-mer ordering leads to a

minimizer sketch of density 1:68=(w+ 1) (Zheng et al., 2020). Here, we briefly present a result in this line

of work, which involves a number of useful concepts that are also relevant later this section.

Lemma 4. When k > (3 + �) logr w for an arbitrarily small constant of e, a random (w‚ k) -minimizer

sketch has an expected density of 2=w + o(1=w).

We provide a proof outline here; see Zheng et al. (2020) for a complete proof. Before the sketch, we need

some more technical tools from the classical literature. These can be found in earlier articles (e.g., see Roberts

et al., 2004b; Schleimer et al., 2003), and are paraphrased into the presented form in Zheng et al. (2020).

Definition 3 (Charged context). A ‘‘context’’ of a minimizer sketch is a substring of length (w+ k)

(equivalently, the union of two adjacent windows). A context becomes a ‘‘charged context’’ for a fixed

minimizer sketch, if the minimizer selector selects different k-mers in its two constituent windows.

Lemma 5. A context is charged for a minimizer sketch (w‚ k‚O), if and only if the minimal k-mer in

the context (breaking ties by favoring leftmost k-mer) is the first or the last k-mer.

Proof: If the smallest k-mer is neither the first or last one, it belongs to both windows and is the selected

minimizer in both windows. ,

Lemma 6. For any sequence S and any minimizer sketch (w‚ k‚O) such that S is at least w + k bases long,

the number of selected k-mers in S equals the number of charged contexts in S plus 1.

Proof: A direct consequence of the Forward property of Lemma 1. ,

FIG. 2. Comparing two minimizer sketches that

are identical in w‚ k and S, only differing in the

lexicographical ordering O. Left: A < C < G < T ,

identical to Figure 1. Middle: T < G < C < A and

all other parameters intact. Right: Resulting sket-

ches for both setups.
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Corollary 1. The expected density of a minimizer sketch equals the probability that a random context

(a random string of length w+ k) is a charged one.

We are now ready to prove Lemma 4.

Proof: A context has w + 1 k-mers, and the probability that any two k-mers in the window are equal

to each other is r - k. Thus, by union bound, the probability that all k-mers are unique is at least

1 - (w + 1)2r- k = 1 - o(1=w). Thus, up to o(1=w) error, we only need to calculate the probability for a

charged context assuming unique k-mers. For these contexts, the probability that the context is charged for

a random minimizer sketch is exactly 2=(w + 1), as the ordering between all k-mers is completely random

and there is a 1=(w + 1) chance for each k-mer to be minimal. ,

3.1.4. Universal hitting sets. Another (UHS) method for constructing low-density minimizer sket-

ches revolves around using universal hitting sets, Orenstein et al. (2016). These are set of k-mers that must

appear at least once in any window. It is straightforward to construct minimizer sketches from a universal

hitting set (see Definition 5) with density guarantees, and consequently, building minimizer sketches with

low density can be done by building small universal hitting sets as a proxy.

The concept is first proposed in Orenstein et al. (2016), and construction of UHSes has since been refined in

multiple ways (DeBlasio et al., 2019; Ekim et al., 2020; Hoang et al., 2022b; Pellow et al., 2017). Here, we

highlight some results developed from this line of work, and leave theoretical developments in this front to Section

3.1.2. The core technical tool is the universal hitting set (aka a universal set) and its connection to minimizers:

Definition 4 (Universal Hitting Sets). A ‘‘(w‚ k) - universal hitting set’’ U is a set of k-mers, such that

any sequence of w k-mers contains at least a k-mer from U.

In other words, a universal hitting set is a set of unavoidable words: every string containing at least a

w k-mer ‘‘hits’’ (i.e., intersects) the set.

Definition 5 (Compatible Minimizer Sketches). Given a (w‚ k) - universal hitting set U, a minimizer

sketch (w‚ k‚O) is said to be ‘‘compatible’’ with U if and only if O satisfies x<Oy for any x 2 U and y =2U.

Lemma 7. Let (w‚ k‚O) be a minimizer sketch compatible with U. The expected density of the mini-

mizer sketch is upper bounded by jUj=rk.

Proof: By definition of a universal hitting set, any window of the compatible minimizer sketch contains

some k-mers from the set. This implies that only k-mers in U could be selected by the compatible minimizer

sketch. Assume the worst-case scenario, that is, whenever a k-mer in U appears in the sequence, it is selected

by the minimizer sketch. In a random sequence, each k-mer is also a random k-mer and the probability that

the k-mer belongs to U is jUj=rk, so the expected density is exactly jUj=rk in the worst case. ,
The importance of compatible minimizer sketches is that it allows us to encode an order on the k-mers with

desirable properties (as per Lemma 7) by only encoding a set. Encoding a total order on the k-mers is more

memory consuming: there are rk! possible orders on k-mers, taking a superexponential amount of memory to fully

encode (� krk bits). In other words, to create an order giving guaranteed low density, it is not necessary to record

a total order between the k-mers; recording the relative order between a few classes of k-mers is sufficient.

3.1.5. Constructing universal hitting sets. A recurring theme in heuristic construction of universal

hitting sets is to start from a base set and add k-mers as necessary until all sequences of length L are covered by a

k-mer of the set. The k-mer to be added to the set is selected using a set of heuristics. We show a simple example.

Algorithm 4: Pseudocode for Finding a UHS

input: Integers w‚ k

output: A (w‚ k) - universal hitting set

1 Initialize output set U with a base set;

2 while U is not a valid (w‚ k) -UHS do

3 for Each remaining k-mer x

4 Count the number of distinct window sequences that contain x

but not any k-mer in U;

5

6 Add the k-mer with the largest window count to U;

7 end
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The base set can be the empty set. More commonly the base is a ‘‘minimum decycling set’’ (see

Definition 6), that is a minimal size set of k-mers that intersects any infinitely long sequences. Starting from

a decycling set makes sense as a universal hitting set must also be decycling, and there exists a simple

construction for one such set. Then the algorithm extends this set until every path of length L is hit.

While useful in practice, the method above has multiple shortcomings. First, there is no guarantee that

the generated set is close to optimal. Second, the above algorithm does not scale: the number of k-mers

grows exponentially with k, so the algorithm runs very slowly at even modest values of k.

Other heuristics find the longest sequence that is not hit by the set and adds k-mers from this sequence to

the set. PASHA (Ekim et al., 2020) proposes to parallelize the above algorithm using some approximations,

while another method to incrementally expand universal hitting sets with short k-mers to universal hitting

sets with long k-mers is proposed in DeBlasio et al. (2019).

3.1.6. Theory of universal hitting sets. In this section, we take a detour and discuss theoretical

development behind the concept of universal hitting sets. This work is tied to the development of minimizer

sketches, but many are of independent interest.

For computational complexity of optimizing universal hitting sets, we first define a ‘‘sequence-specific

hitting set’’ for a sequence S as a set of k-mers that intersect with each window of length w in S. It is known

from Orenstein et al. (2016) that finding the minimal sequence-specific hitting set for any sequence S of a

given length L is NP-hard. However, Definition 4 requires the Universal Hitting Set to hit every possible

window of a fixed length. This is equivalent to a sequence-specific hitting set for the de Bruijn sequence of

order w + k - 1 (the window length) with L= rw + k - 1. It is unknown whether efficient algorithms for

sequence-specific hitting sets exist when the input sequence is restricted to de Bruijn sequences.

Besides the hardness in optimization, Universal Hitting Sets are of interest on their own, linking string

algorithms (unavaoidable word sets), graph theory via de Bruijn graphs, minimizers, and other sketching

methods (see Section 5), through the following concept:

Definition 6 (Decycling set). A set of k-mers A is called a decycling set if any sufficiently long string

contains a k-mer in A. In other words, the longest string not containing any k-mer in A is finitely long.

Decycling sets can also be seen as universal hitting sets with a sufficiently long (but finite) window length.

The name ‘‘decycling’’ comes from the fact that these sets are also ‘‘decycling’’ on a de Bruijn graph. Any

sequence corresponds to a path in a de Bruijn graph (and conversely), and an infinitely long sequence must

contain cycles from the graph. Consequently, a decycling set must intersect every cycle of the de Bruijn graph.

More formally, the following lemma and theorem state the existence and size of minimal decycling sets:

Lemma 8. Any decycling set of k-mers over an alphabet of size r must contain at least

Nr‚ k = 1
k

P
ijk u(i)rk=i k-mers, where u(i) is Euler’s totient function. (Nr‚ k is also known as the number of

necklaces or the number of Lyndon words).

Proof: We separate k-mers into equivalence classes by rotation, that is, if two k-mers a and b satisfy that

a = b[i : k]b[0 : i], a and b are equivalent. The number of equivalence classes is exactly Nr‚ k (Weisstein,

1995) and each class forms a cycle in the de Bruijn graph. The decycling set must contain one k-mer from

each equivalence class, as each class corresponds to an infinitely long repeating sequence. ,

Theorem 1. (Mykkeltveit, 1972) For any r and k, there exists a decycling set of size Nr‚ k.

Consequently, minimal decycling sets must be of size Nr‚ k. The proof of Mykkeltveit (1972) is con-

structive and leads to a practical algorithm to construct one decycling set for each k. Champarnaud et al.

(2004) gives an alternate construction of a minimum decycling set.

Many relevant questions remain open regarding minimal decycling sets and the link between decycling

sets and universal hitting sets. Zheng et al. (2021b) give bounds on the remaining path length of the

Mykkeltveit set (the longest string one can write down without hitting a k-mer in a Mykkeltveit set),

between O(k2) and O(k3). Similar bounds for other minimum decycling sets or what range of window is

possible with minimum decycling sets is not known.

As discussed above, many of the methods for constructing universal hitting sets take a patchwork

approach: start with a minimal decycling set as the base and add k-mers to the set until it becomes a

universal hitting set for the proper parameter L. Interestingly, as recently shown in Pellow et al. (2023),
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using the Mykkeltveit set as the base set and adding k-mers in random ordering (resulting in a universal

hitting set of arbitrary size), the resulting compatible minimizer sketch achieves superior density even to

sequence-specific methods with prior knowledge of the reference sequence. The surprising result may be

attributed to certain structures of minimal decycling sets that are currently unexplored.

The concept of a universal hitting set has also been previously explored in combinatorics, as a special case

of nonavoidable words (Bell, 2005; Burstein and Kitaev, 2005; Evdokimov and Kitaev, 2004; Higgins, 2011;

Higgins and Saker, 2006; Lothaire and Lothaire, 2002; Saker and Higgins, 2002). Nonavoidable words take

a more general definition, where the set contains strings of variable length, including wild cards in several

cases. This flexibility also implies that the problem of minimizing the size of a universal hitting set does not

have a well-defined equivalent in the world of nonavoidable words. Nevertheless, structural results regarding

nonavoidable words would be useful for future research in k-mer sets and sketching in general.

3.1.7. Sequence-specific density. A more recent line of work focuses on calculating the density on

a specific sequence (DeBlasio et al., 2019; Ekim et al., 2020; Hoang et al., 2022b; Orenstein et al., 2016;

Pellow et al., 2017; Zheng et al., 2021a).

3.1.7.1. Universal hitting sets
We have described universal hitting sets in detail in Section 3.1.1. Many of the proposed methods for

building universal hitting sets are able to prioritize k-mer inclusion from a reference sequence, making them

sequence-specific methods. Overall, these methods are able to reduce density by up to 30% (compared with

a random minimizer sketch; e.g., see Hoang et al., 2022b) in some practical scenarios on a human reference

genome.

3.1.7.2. Polar sets
Polar sets (Zheng et al., 2021a) are another example of construction of an order for low-density mini-

mizer sketches using a set with interesting properties. In a polar set for a sequence S, the k-mers, similar to

polar opposites, repel each other and are guaranteed not to be too close to one another. More precisely:

Definition 7 (Polar set). Given a sequence S, a (w‚ k) - polar set A is a set of k-mers such that if the ith

and jth k-mers of S are both in A, then jj - ij � w.

In other words, k-mers in the polar set are spread well apart in a sequence, while a universal hitting set

makes the opposite guarantee that k-mers need to be close together. Compatible minimizer sketches

(Definition 5) are similarly defined over polar sets and an analogue of Lemma 7 exists for polar sets,

guaranteeing that a well-chosen polar set leads to a minimizer sketch with low density.

Zheng et al. (2021a) relax the definition of polar sets, show that finding a polar set of optimal size is also

NP-complete, and give a heuristic algorithm to find polar sets. The heuristic is based on the following idea:

if a sequence is not-repetitive and every k-mer is unique, it is trivial to find an optimal polar set by taking

every wth k-mer from S. Given a sequence with repeated k-mers, the heuristic starts by selecting k-mers

every wth bases and then updating the set to be a proper polar set.

3.1.7.3. Learning orders
More recently, DeepMinimizer (Hoang et al., 2022b) proposes a more drastic departure from the afore-

mentioned approaches for sequence-specific minimizer sketches. Instead of trying to find a special subset of

k-mers, a scoring function p over k-mers is learned via deep learning. Similar to the case of polar sets, the

goal is to create an order that selects, as much as possible, k-mers that are w bases apart. Because density is

not a differentiable objective, it cannot be optimized directly with back-propagation methods. Instead,

DeepMinimizer uses two neural networks to optimize a proxy objective, and the total ordering O is gen-

erated by comparing scores of k-mers.

DeepMinimizer is shown to produce low-density minimizer sketches in some range of parameters (more

specifically, large w and small k) and with very repetitive sequences (e.g., the centromere regions of chro-

mosomes), that previous methods are less effective against.

3.2. Other metrics

Density is a straightforward measure for performance of minimizer sketches, but as discussed before, it does

not capture every desirable aspect of a minimizer sketch. Several alternative metrics have since been proposed

to augment density, and the most interesting candidates are the notions of preservation and balance.
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3.2.1. Preservation. Minimizer sketches are known for their robustness: the set of sampled k-mers

remains relatively stable in the presence of sequence mutations, as we have discussed briefly in Section 2.2.

On the contrary, being a k-mer-based method (see Section 5 for a discussion of non-k-mer-based methods),

minimizer sketches are inherently susceptible to mutations because one base change in a k-mer results in a

totally different k-mer, and a base change in a window can change the selected k-mer. While many sequ-

encing methods produce high-fidelity sequences with low error rate, there exist sequencing protocols with

high error rates (for lower cost, longer sequences, etc.) and mutation rates (especially in cancer samples; see

Blanca et al., 2022, for some perspective) that must be taken into account. Therefore, we are interested in the

ability of minimizer sketches to preserve k-mer matches in the presence of sequence differences.

The concept of k-mer preservation comes from multiple applications, including sequence assembly and

phylogeny reconstruction. There are no agreed upon definitions of preservation. Here, we present one

definition from Hoang et al. (2022a).

Definition 8 (Preservation). Let S be a random string, and S0 be mutated copy of S, and (w‚ k‚O) be a

fixed minimizer sketch. Let M� =Mw‚ k‚O(S) \Mw‚ k‚O(S0) be the set of shared minimizers between S and

S0. The ‘‘preservation rate’’ is defined as
jM�j

jSj - k + 1
, the number of shared minimizers over the number of

k-mers in S.

Commonly S0 is randomly mutated following a specific distribution, such as i.i.d. mutation per base,

although this is not relevant to our discussion here.

Figure 3 shows a toy example of calculating preservation of a minimizer sketch. We assume that the only pos-

sible mutation of S is to change the fourth base toA. The preservation rate of the lexicographical minimizer sketch

on S is 2=11, as 2 minimizer k-mers (out of 5 in S) remain in S0, and S has a total of 11 k-mers. This is also a

good example of how seemingly minor changes in the sequence might change the resulting minimizer

sketch, in particular when w is small compared with k: a single base change affects k overlapping k-mers.

A similar measure of preservation is found in Sahlin (2021) with a different divisor. Edgar (2021), Shaw

and Yu (2022), and Dutta et al. (2022) measure preservation by counting the number of bases covered by a

common minimizer k-mer instead of counting k-mers. Frith et al. (2020) focus on shorter sequences and

evaluate preservation by whether a pair of sequences with predetermined distance share a minimizer k-mer.

However, these metrics are highly similar in essence, as they all evaluate the robustness of minimizer

sketches against mutations in the sequence.

Unlike existing studies on density and specific density, the studies on building minimizer sketches with

improved preservation are largely validated via experiments. In Shaw and Yu (2022), a more tractable

formula for preservation is provided and several methods, including some nonminimizer methods, are

compared for their preservation metric. This is further extended in Dutta et al. (2022). Hoang et al. (2022a)

also evaluate preservation on minimizer sketches and the generalizations, as discussed later in Section 5.

3.2.2. Balance.

3.2.2.1. Distance balance
Minimizer sketches are bound by the window property (they must select a k-mer every w base), so we want

the k-mers to be selected as sparsely as possible within the limits of window property. One way to quantify the

efficiency is the number of k-mers picked by a sketch as we have seen in Section 3.1. Alternatively, we can also

measure how spread apart the selected k-mers are; more spread apart minimizer k-mers means more efficient

sketches. This balance, or evenness in some contexts, is usually presented by gathering the distance between

adjacent minimizer k-mers, then plotting the distribution and analyzing its properties such as skewness.

This idea has been mentioned in Edgar (2021) and Frith et al. (2020) [a key construct in Shaw and

Yu (2022), the probability vector, is also tightly connected to this concept] and has been qualitatively

FIG. 3. Example for calculating preservation, with setup iden-

tical to that in Figure 1. Left-hand side: The original sequence S,

its windows, and selected minimizer k-mers. Right-hand side: The

mutated sequence S0 (the single mutated base is marked in pur-

ple), its windows, and selected minimizer k-mers (those different

from S are marked in purple). The preservation rate is 2/11.
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evaluated, although there are few works that explicitly set out to build such ‘‘balanced’’ minimizer sket-

ches. The polar set method as mentioned in Section 3.1 explicitly enforces a minimum distance between

minimizer k-mers, but only on some parts of the sequence.

Relatedly, a distinct line of research focuses solely on the idea of maximizing spread between k-mers in a

mathematically rigorous way. The concept of minimal overlapping words has been previously studied in

Blackburn (2015) and Levenshtein (1970), and is connected to computational genomics in Frith et al.

(2020). The study by Frith et al. (2023) is a further extension over this line of work, which also proposes a

number of different measurements for sequence sketches.

3.2.2.2. Bucket balance
For k-mer counting, de Bruijn graph construction, and some other applications (see Section 4.3), min-

imizer sketches are used to bucket (or rather, partition) k-mers such that adjacent k-mers are likely to fall

within the same bucket. In these scenarios, buckets should not be overwhelmingly large compared with

others, and a guarantee that buckets have approximately the same size would also be very helpful. There are

several specialized methods for constructing minimizer sketches that specifically aim to improve bucket

balance, especially in comparison with lexicographical minimizer sketches known to have bad bucket

balance (the homopolymer of As bucket is likely overwhelmingly large, assuming A is the lowest character

in the ordering). Explicit mentions of this objective can be seen in Nyström-Persson et al. (2021), Ben-Ari

et al. (2021), Flomin et al. (2022), Efe (2018), and Marçais et al. (2017).

3.3. Open questions

The theoretical development of minimizer sketches and related concepts is far from complete. In this

section, we list a number of open directions for future work.

� A nonasymptotic lower bound on density for a minimizer sketch as a function of k and w. This is

especially useful in the case of k =Y( logr w), which is common in practice and very hard in the sense

that current designs are not able to improve performance.
� Similarly, a more refined upper bound of preservation for a minimizer sketch as a function of k and w

in the average case, as well as better designs targeting preservation with performance guarantees.
� As minimizer sketches are used in many different contexts, other measurements of efficiency are

desirable. For example, currently, most analyses on preservation of minimizer sketches only focus on

mutation by substitution. However, insertion and deletion are also common in genomic data. Thus, a

similar measurement of robustness against indels may be of interest. Dutta et al. (2022) and Frith et al.

(2023) both propose a number of different measures.
� A more efficient algorithm to design sequence-specific minimizer sketches with lower density (or other

related metrics), while remaining efficient to implement, is also wanted. Several existing methods,

such as those using an iteratively constructed Universal Hitting Set, require using a lookup table to

query membership of a k-mer (such as whether the k-mer is in the UHS) during sketching. For large

value of k, the lookup table may become a limiting factor for efficiency, and designs circumventing

such limitation may be desirable.
� Due to the nature of genomic sequences, many applications using minimizer sketches only use canon-

ical k-mers, defined as the set of k-mers that are not larger than its reverse-complement. It is mostly

unknown how existing theories regarding minimizer performance apply to canonical minimizers.
� Structures and designs of decycling sets, which underpin many methods in this section and elsewhere

(such as open syncmers in Section 5), are also largely unexplored, which may motivate research in

sequence sketches in general.
� Lastly, in Section 5, we discuss extensions and alternatives of minimizer sketches. Most of these new

concepts are also accompanied by new and exciting theoretical problems regarding their performance.

We believe that interesting lines of research will emerge from these open directions.

4. APPLICATIONS OF MINIMIZER SKETCHES

Minimizer sketches are extremely versatile and fit into many major algorithmic building blocks in

computational genomics. This section is split into four parts. We first discuss three major categories of
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using minimizer sketches, and then list other uses that may be less known. Before discussing the methods, it

should be noted that many of the tools we discuss in this section are highly complex. While they use

minimizer sketches, the use of the sketch might only be a small part of the full picture, and in many cases is

a more routine (less novel) component of the method. Thus, we encourage readers to look at individual

articles if they are interested in more details.

4.1. Read mapping

Minimizer sketches were first proposed for read overlapping (see our discussion in Section 1), and later

popularized by their extensive uses in read mapping (among other use cases). While there are some

differences, the essential idea of sketching multiple sequences and comparing their k-mer contents remains

the same. In this section, we discuss this line of work in greater detail. We start with the problem setup, how

the minimizer sketches play a natural part in solving the problem, and then discuss the plethora of existing

methods that take this route.

4.1.1. The problem. The common setup is as follows (for read mappers): we are given a long

reference sequence with preprocessing allowed. Then, a stream of short sequences will arrive, with the

expectation that these sequences are approximately subsequences of the reference sequence (differences are

common). The objective is to find potential matches against the long reference as fast as possible.

There are many variants to this problem statement, depending on the exact scenario. For example,

in RNA-seq, commonly we need to find split matches: that is, the reads (short sequences) might be split

into several segments and each needs to be mapped onto the reference to different locations, but the

mapped segments should (usually) not be too far away from each other. Resolving differences such as

the aforementioned in an efficient way is a key challenge for many modern read mappers. However,

the solution usually lies outside the scope of sequence sketches, and so, we do not discuss this in length

here.

4.1.2. The recipe. Minimizer sketches are a natural fit for read mapping. The common pattern works

as follows: we first fix a minimizer sketch (w‚ k‚O) and build the sketch on the reference sequence in

preprocessing. Commonly, the reference sketch is indexed using the k-mer as key, so given a k-mer in the

sketch, it is easy to fetch the location of its appearances on the reference sequence. For each incoming

read (the short sequences), do the following: using the same minimizer sketch (w‚ k‚O), sketch the read

sequence. For each k-mer x in the read sketch, check if it is also in the reference sketch. Each appearance of

x in the reference sketch indicates a possible match between reference and read, using the location of x as

the anchor. Figure 4 provides an example of this approach and shows the potential speedup.

This seed-and-extend approach has been used for a long time, although using the minimizer sketch

for the seeding part is a relatively recent invention. Properties of minimizer sketches (see Lemma 1)

translate to guarantees over the seeding process. The window property establishes a uniform lower bound

of seed coverage on the reference and the read sequences. The local property ensures that credible sequence

matches (exact matches as long as minimizer windows) will always be recovered regardless of the sequence

and the ordering.

After getting the set of anchor matches, a number of different techniques [direct extension, accelerated

anchor chaining (Li and Birol, 2018), etc.] can be used to derive the final mapping, which is out of scope of

our discussion.

FIG. 4. Example of using minimizer sketch for read mapping. Left-hand side presents the original sequence, the

original read, and the set of potential mappings. Right-hand side presents their minimizer k-mers as colored blocks, and

the set of potential mappings that has at least a minimizer match. The second mapping has two minimizer matches, and

is usually considered the mapping with highest quality.
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4.1.3. Examples

4.1.3.1. Mapping to sequences
Minimap (Li, 2016) is one of the most frequently used read mappers that use minimizer sketches with

random ordering for quickly finding seed matches. This simple approach has proven to be very powerful

and has been adopted by several other works [e.g., see Naznooshsadat et al. (2020); Dilthey et al. (2019); de

Sena Brandine and Smith (2021), each with specialization outside the sketching methods]. Minimap2 (Li,

2021; Li and Birol, 2018) improves upon Minimap in various aspects. On the use of minimizers, Minimap2

does not index the original sequence but the HPC (HomoPolymer-Compressed) version of it, with runs of

same character collapsed into one single character. It also culls frequent minimizer k-mers, which is a

common idea present in most of the read mappers using minimizer sketches.

This has been shown to empirically improve the performance. Chromap (Zhang et al., 2021) further

builds upon this idea with optimizations to fit the use case of chromatin profiling. MashMap (Jain et al.,

2018), an approximate mapper specialized for long reads, uses a hierarchical minimizer sketch (several

minimizer sketches with different parameters) to quickly adapt to different read lengths without sacrificing

too much time. Winnowmap ( Jain et al., 2020) uses a slightly modified version of minimizer sketches

called ‘‘robust minimizers’’ (which is discussed in more detail in Section 5) and uses a stochastic two-layer

k-mer ordering to demote frequent k-mers. Notably, it removed the k-mer culling step (ignoring the most

common k-mers in genomes), claiming that step might lead to loss of information.

lra (Ren and Chaisson, 2021) also refines the baseline approach in multiple ways. It filters out minimizer

k-mers by discarding k-mers with high frequency both globally and locally, and a second round of mini-

mizer sketches is used to refine anchor chain matches.

4.1.3.2. Mapping to graphs
The same idea of indexing reference sequences is applicable to indexing sequence graphs. Sequence-to-graph

mapping is a young and exciting research area, with many proposed methods centering around the idea of

extending seeds obtained from minimizer matches. GraphAligner (Rautiainen and Marschall, 2020) introduces

minimizer sketches to sequence graph mapping using a relatively unmodified minimizer sketch: sequences

present in the sequence graph are sketched and indexed using minimizers, and their indices are used to find

potential seed locations. Pandora (Colquhoun et al., 2021) takes a slightly different route, and directly produces

a sketch of the sequence graph using minimizer k-mers as nodes of the sequence graph instead; reads are then

walked over the ‘‘local sketch graph’’ consisting of minimizer k-mers to quickly perform quasimapping.

Giraffe (Sirn et al., 2021), now part of vg toolkit (Garrison et al., 2018), is specialized in matching

sequences against gene variation graphs. As the size of the variation graph can be huge and the matches can

be ambiguous, Giraffe uses multiple rounds of minimizer seed truncation (discarding repetitive minimizer

k-mers) and clustering (grouping together minimizer k-mers close enough to each other), to reduce the

workload for the seed extension part. GED-MAP (Büchler et al., 2023) is a tool for aligning short reads to

pan-genome. It constructs the pan-genome reference by first collapsing short variants (such as indels) as

wild cards, and then linearizes the remaining graph structure for modeling structural variants. On the linear

reference, minimizer k-mers can be similarly defined and an algorithm is provided to efficiently find all

minimizers, followed by a standard implementation of seed-and-extend for read mapping.

4.2. Sequence assembly

Sequence assembly is another important pillar of computational biology, and minimizer sketches also

play a role in many modern assemblers. The general task of sequence assembly can be described as follows.

Given a set of sequencing reads, the goal is to reconstruct the genome sequence (sometimes multiple

sequences considering haplotypes, sometimes a sequence graph) that these reads were sequenced from.

There are two (classic) paradigms of sequence assembly: OLC (Overlap-Layout-Consensus) and de Bruijn

graph walking. Minimizer sketches are used to facilitate assemblers falling into either category. For

example, k-mer counting in the sequencing reads is a common first step of assembly pipeline, and mini-

mizers are commonly used for that task (see Section 4.3).

4.2.1. Minimizers in OLC assemblers. For OLC (Overlap-Layout-Consensus) assemblers, mini-

mizer sketches are used to quickly group reads that are likely to overlay each other due to shared mini-

mizers, somewhat similar to how reads are quickly located onto reference sequences in read mapping
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(Section 4.1). The pioneering articles on minimizer sketches (Roberts et al., 2004a; Roberts et al., 2004b)

apply minimizer sketches to quickly perform sequence overlapping. Minimus (Sommer et al., 2007) is

another method to directly incorporate minimizer sketches into read overlapping in a rather straightforward

manner. In addition to overlapping, ntJoin (Coombe et al., 2020) is a scaffolding tool that constructs a

directed graph representing connections between minimizer k-mers in assembled segments, and then tra-

verses the graph to quickly sort out orientations and positioning of these segments (usually considered to be

part of the layout phase in the OLC paradigm).

While SparseAssembler (Ye et al., 2012) does not directly use minimizer sketches, it uses fixed interval

sampling (as discussed later in Section 5), which is a minimizer-like sampling scheme.

4.2.2. Minimizers in other assemblers. Sequence assemblers designed for second-generation short

reads typically do not use the OLC paradigm and either use de Bruijn graph-based assembling or hybrid

approaches. The construction of the de Bruijn graph from sequencing reads is the central step in this

paradigm. Minimizer sketches permit parallelizing this step (see Section 4.3).

LJA (Bankevich et al., 2022) is a new assembler for HiFi reads (Wenger et al., 2019) consisting of

multiple novel components, and the first step in the algorithm is to construct a sparse de Bruijn graph over

HPC reads (HPC stands for HoloPolymer Compressed as in Minimap2) (Li and Birol, 2018). This is

facilitated by using minimizer k-mers as vertices with edges denoting adjacency in the originating sequ-

ence. Another assembler named WENGAN (Di Genova et al., 2021) is designed for hybrid sequencing

libraries, and the first step of the algorithm is to build a de Bruijn graph by assembling short reads, followed

by pseudoalignment over synthesized segments from long reads using minimizers in a similar way as

Minimap2.

4.3. k-mer Dispatching

Parallelization is essential to big data analysis, which is increasingly the norm today for computational

genomics. As such, parallelization primitives are important for computational genomics, especially those

operating over k-mers. Minimizer sketches serve as an important tool for parallelization in computational

biology, most prominently in k-mer counters. In this section, we first discuss how minimizer sketches work

in accelerating a k-mer counter, and then present how the underlying idea of k-mer dispatching finds use in

other scenarios.

4.3.1. k-mer Counting: dispatching k-mers with minimizers

4.3.1.1. Setup and parallelization
Given a sequence S and parameter k, the task of k-mer counting is to produce a table with all k-mers in S

alongside their frequencies. The ordering of k-mers in the table is irrelevant as long as each k-mer appears

at most once. A naive algorithm counting k-mers one by one is both slow and memory-intensive. We now

present two attempts for parallelization.

� Split S into different segments: send each segment to a different process (potentially running on a

different machine), perform k-mer counting on each segment individually, then collect the tabulation,

and merge the counts.
� Split k-mers into different buckets: the set of all k-mers is partitioned into disjoint sets (by a hash

function or a simpler criteria such as the identity of the first three characters), and each process handles

counting of k-mers in the assigned set. A main process would then stream the sequence S and dispatch

k-mers to the responsible processes. The resulting tabulation is simply concatenated from all processes,

because each k-mer is counted only in a single process.

However, the first method takes up too much memory during the collection phase (because of merging

tables that can be as large as jSj), and the second method takes up too much time during dispatching (each

character in the original sequence is sent k times to the subprocesses).

4.3.1.2. Parallelization with minimizers
Minimizer sketches provide an elegant approach to parallelize k-mer counting, with the advantages

of both methods described above. To start, choose a minimizer sketch (w0‚ k0‚O0) such that a window

of the resulting minimizer is a k-mer (formally w0 + k0 - 1 = k). The method consists of splitting k-mers

16 ZHENG ET AL.



into different buckets, while ensuring that if two k-mers have the same minimizer (the k0-mer selected

by the minimizer, by treating the k-mer as a window), they belong to the same bucket.

The main process streams the k-mers of S and dispatches them to the process responsible for counting

that k-mer. However, because k-mers are now bucketed by their minimizers, it is very likely k-mers close to

each other share the same k0-mer minimizer, and thus would be sent to the same process. Consecutive

k-mers that share a k0-minimizer are merged into a ‘‘super-k-mer’’ and a passing super-k-mer reduces the

communication overhead.

As an example, let k = 10, let S[i : j] denote the sequence sisi + 1 . . . sj - 2sj - 1, and assume S[0 : 10] through

S[4 : 14] all share the same minimizer. Instead of sending these 5 k-mers (50 characters), the main process

sends S[0 : 14] (14 characters) to the counting process, reducing communication by 3 times in this specific

case. The remainder of the algorithm is mostly the same as the second method, as the final tabulation is

done by concatenation.

This saving is typical: as discussed before, the density of a random (w0‚ k0)-minimizer is around 2=w0

(see Section 3.1), meaning two minimizer k0-mers are apart by w0=2 bases on average. For example, using

k0 = 7 when counting 21-mers gives w0 = 15 and w0=2 = 7:5 consecutive k-mers are sent at once in average.

See Figure 5 for an example of this algorithm; in this specific example, the sequence S has 13 5-mers

(65 characters), but by using minimizer 2-mers, only 32 characters need to be sent to the buckets.

4.3.2. Examples of k-mer dispatching. From the string algorithm viewpoint, the minimizer dis-

patching method is partitioning k-mers into rk0 buckets (most commonly for computational genomics

r= 4), with the property that k-mers that are close to each other on the order-k de Bruijn graph are likely to

fall within the same bucket, and every instance of a k-mer is sent to the same bucket. This property is useful

in many applications, and thus, the idea of minimizer dispatching k-mers has been independently dis-

covered many times in diverse contexts. Here, we only briefly discuss the use case for each context. Refer

to Section 3.2.2 for a discussion on how to build a minimizer sketch specifically for this task.

� k-mer counting: We have discussed how this works in the previous section, and the idea is first

proposed by MSPKCounter (Li, 2015) and is later followed by a number of improved protocols [see

Petrillo et al. (2019); Shibuya et al. (2022); Erbert et al. (2017); Marchet et al. (2020); Mercado et al.

(2021) e.g.; they share the same underlying idea, but implement it differently]. KMC2 (Deorowicz

et al., 2015) also proposes to exclude k-mers fitting certain patterns to improve basket balance, which

is carried over to its successor KMC3 (Kokot et al., 2017).
� Building de Bruijn graphs (Ben-Ari et al., 2021; Khan et al., 2022; Li et al., 2013; Marchet et al., 2021;

Nyström-Persson et al., 2021; Qiu and Luo, 2017; Rautiainen and Marschall, 2021): Similar to k-mer

counting, breaking the input sequence into buckets allows building subgraphs in parallel and then

reconstructing the de Bruijn graph. Holley and Melsted (2020) operate over colored de Bruijn graphs

that support edits, and so, a number of more advanced data structures are needed, however, the core

idea remains the same. BCALM and BCALM2 (Chikhi et al., 2016; Chikhi et al., 2015) are methods to

generate maximal paths in the de Bruijn graph to compactly store de Bruijn graphs, and these methods

rely on careful walking between minimizer bins to ensure correctness. Rengasamy et al. (2018) do not

build a full de Bruijn graph, but use a similar idea in one of its steps.
� Sequence compression (Grabowski et al., 2015; Liu and Li, 2021; Liu et al., 2019; Patro and

Kingsford, 2015; Wang et al., 2017; Zhang et al., 2020): By dispatching k-mers into buckets by

minimizers, each bucket is efficiently compressed due to the sequence similarity inside the bucket. In

addition, the Bucket Index Correction (BIC) software package (Wang et al., 2017) uses a read error-

FIG. 5. Example of minimizer-assisted k-mer

counting. For counting 5-mers, we use k0 = 2 and

lexicographical order, implying w0 = 4. Left-top

shows the sequence S and its windows (5-mers)

grouped into super-k-mers by shared minimizer.

Super-k-mers are sent to buckets and the results of

5-mer counting are shown in each bucket. The

final tabulation is obtained by concatenation.
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correction method to find sequences that are similar to each other but differ in minimizer k-mers; these

differences are treated as ‘‘errors’’ that are corrected at compression and recovered at decompression.

In minicom (Liu et al., 2019), the reads in a bucket are further pairwise compared, anchored at the

minimizer, and then reordered to achieve maximum compression.
� Caching and indexing: Kraken (Wood and Salzberg, 2014) and Kraken 2 (Wood et al., 2019) are tools

to quickly identify metagenomic taxonomy from an underlying k-mer database. As the database is

huge, it cannot fully reside within memory. The authors propose to organize the database storage by

minimizers. When querying the constituent k-mers in a string, it is likely that all k-mers sharing the

same minimizer have been loaded into memory, so no disk read is required if the current k-mer shares

the same minimizer as the previous one, greatly reducing cache miss rate.

Kraken 2 further improves upon Kraken by only storing minimizers instead of the full k-mers.

CONSULT (Rachtman et al., 2021) is a contamination removal tool that contains a coarse k-mer

lookup table, and the first step is to reduce k-mers to their minimizers similar to how Kraken 2 works.

Blight (Marchet et al., 2021) implements an exact k-mer key-value lookup, and the first step is also to

split k-mers into minimizer buckets.

4.4. Other use cases

We briefly discuss some other interesting use cases of minimizer sketches that do not neatly fit into any

of the above categories. A common trait of these use cases is that they are using minimizer sketch as a

method to sample k-mers from a sequence, and then use the k-mer set as a proxy for sequence comparison.

4.4.1. Sequence similarity estimation. As discussed in Section 2.2, minimizer sketches are not

LSHs. Nevertheless, minimizer sketches are essentially methods to deterministically sample k-mers from a

sequence. To estimate sequence similarity, one can use the set of collected minimizer k-mers from a string

as an estimate of the complete k-mer set for that sequence, as seen in Wu et al. (2020) and Li et al. (2020).

Furthermore, Jain et al. (2018) propose to estimate sequence identity from potential mappings by using

MinHash estimate (as seen in Ondov et al., 2016) over the set of minimizer k-mers. This idea is also present

in Dilthey et al. (2019). isONclust (Sahlin and Medvedev, 2020) takes a different route where the size of

minimizer anchor chain matches is used to estimate the portion of aligned sequences.

However, as pointed out in Belbasi et al. (2022) and also empirically shown in Baharav et al. (2020),

this might introduce biases when estimating a simple Jaccard distance. MinMer (Kille et al., 2023) is

an extension of minimizer sketches used in MashMap3 achieving significantly reduced bias for Jaccard

similarity, which is further discussed in Section 5.1.

4.4.2. Polishing and quality control. Several polishing and quality control methods use minimizers

extensively; the set of minimizer matches between sequences is smaller than full k-mer matches, but usu-

ally representative enough for filtering purposes. HyPo (Kundu et al., 2019) uses well-supported mini-

mizers to split long unpolished sequences into chunks. MiniScrub (LaPierre et al., 2019) extensively uses

minimizer k-mers as features for learning a quality control model. Minirmd (Liu et al., 2020) uses mini-

mizer matches to detect and deduplicate highly similar reads. WENGAN (Di Genova et al., 2021) uses

minimizers to index paired-end sequence collections to polish assemblies from hybrid reads (in addition to

using it during the primary assembly).

4.4.3. Sequence membership query. Furthermore, for similar reasons as in Section 4.4.1, minimizer

sketches work as efficient samples for large-scale sequence indexing. Raptor (Seiler et al., 2021) uses

minimizer k-mers as representative samples to quickly match sequences against large sequence databases.

Needle (Darvish et al., 2022) further improves upon this idea to perform quantification (counting appear-

ances) of transcript sequences in large collections of experiments by counting minimizer k-mers of the

transcripts as a proxy. SPUMONI 2 (Ahmed et al., 2023) is a tool for sequence classification, which can

be seen as a generalization of membership query against a pangenome. The tool works by representing

all sequences using its minimizers and performing classification on the resulting minimizer alphabet. This

results in more compact representation and more efficient execution, which is crucial for applications

such as nanopore adaptive sampling (Martin et al., 2022) where nontarget reads are discarded during

sequencing.
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5. EXTENSIONS AND ALTERNATIVES

Minimizer sketches are widely useful in many contexts as we have shown in Section 4, but they may

not naturally fit into every application. Thus, to develop sketches better suited toward specific needs,

many alternatives to minimizer sketches have been proposed. We divide these extensions into three

groups. The first two groups are k-mer-based and are split by whether or not they still hold the window

property (see Definition 1 and Lemma 1). We discuss potential non-k-mer -based methods at the end of this

section.

5.1. Windowed methods

Methods in this section still guarantee that a selection is made in every window.

5.1.1. Local schemes. Local schemes and forward schemes (Marçais et al., 2018; Schleimer et al.,

2003) are strict generalizations of minimizer sketches. Local schemes are defined as an arbitrary function

mapping a window sequence to a location on the window. Thus, any sketching methods that satisfy the

window property are at least a local scheme. Forward schemes are local schemes that satisfy the forward

property in Definition 1. Thus, any sketching methods that satisfy all three properties in Lemma 1 are

forward schemes. Currently, there is some interest (Marçais et al., 2018; Zheng et al., 2021b) in under-

standing the design space of local and forward schemes compared with that of minimizer sketches.

5.1.2. Robust winnowing. As mentioned before, minimizer sketches are known for not working well

in repeats. Because of the tie-breaking rule favoring leftmost location, any minimizer sketch has to pick

almost every k-mer in a homopolymer (stretches of the same character). There is a modified tie-breaking

rule called Robust Winnowing proposed by Schleimer et al. (2003) and first used by Jain et al. (2020) that

avoids such degeneracy. In Jain et al. (2020) and Jain et al. (2022), it has been shown that such methods

allow for dropping the common practice of masking high-frequency k-mers while being highly effective in

speeding up long read mapping. However, from the theoretical perspective, this rule has a side effect: the

local guarantee no longer holds as knowing the window content alone is no longer sufficient to determine

minimizer picks.

5.1.3. Fixed interval sampling. There is a very simple way to achieve optimal density (Section 3.1)

if we do not care about the local guarantee at all: simply select every w k-mer in the sequence S, which

drops the local guarantee as simply inserting a base anywhere before the window changes all the picks after

it. Almutairy and Torng (2018) and Khiste and Ilie (2015) use this idea to find maximal exact matches

(MEMs) without error between two long sequences. Relatedly, Kutzner et al. (2020) propose a method to

extend fixed interval sampling or minimizer sketches to variable-length seeds, including MEMs. These

methods are in general greatly constrained as they cannot deal with insertions or deletions at all.

5.1.4. MinMers. MinMers (Kille et al., 2023) is another generalization of minimizer sketches by

selecting the minimal s k-mers in a window, instead of a single one. MinMers satisfies the window and local

property as defined in Lemma 1, but it is not guaranteed to be ‘‘forwarding’’ in the sense a k-mer may be

selected in two disjoint windows, but not in an in-between window (which is impossible for a regular

minimizer sketch). Thus, Algorithm 2 cannot be used for this case, and an efficient algorithm is proposed in

Kille et al. (2023) to efficiently construct and query a MinMer sketch using a heap.

This sketch is used for estimation of Jaccard similarity in the same way as described in Section 4.4.1. The

MinMer sketch guarantees that the s globally minimal k-mers are always included, and it is known that a

MinHash estimator using s smallest hash values has an expected error of O(1=
ffiffi
s

p
) [see e.g., Cohen (2014)

for more discussion]. Thus, the authors argue that with suitable choice of s, MinMer is an asymptotic

unbiased estimator for Jaccard distance between sequences. Furthermore, MinMer sketch is also built into a

new tool named MashMap3 in the same article for fast approximate sequence mapping.

5.2. Nonwindowed methods

Methods in this section no longer guarantee that a selection exists in every window (for many, the entire

concept of a window is deprecated), but they still operate based on the concept of k-mers.
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5.2.1. Direct k-mer downsampling. A simple yet elegant way of sampling k-mers is to completely

ignore contexts and select solely based on the k-mer itself. More precisely, a priority set of k-mer is

generated first (randomly in most cases). A k-mer is selected if it is in the priority set regardless of the

context (as opposed to a minimizer sketch; the window length w is obsolete). This idea has been proposed

several times under different names (Dutta et al., 2022; Edgar, 2021; Ekim et al., 2021; Wood et al., 2019).

Using downsampled k-mers as nodes (called Universal Minimizers) in a greatly simplified assembly

graph, mdbg (Ekim et al., 2021) achieves impressive speedup in sequence assembly. Branchwater (Irber

et al., 2022) uses the same technique under the name FracMinHash, and the resulting sketch serves as

indexes in sourmash (Brown and Irber, 2016) for large-scale, massively parallel search of petabyte-scale

sequence collections. Kraken 2 (Wood et al., 2019) and MashMap3 (Dutta et al., 2022) also include an

optional downsampling over a minimizer sketch to further reduce memory usage.

5.2.2. Open syncmers. Open syncmers (Edgar, 2021) are a new class of k-mer selection methods that

operate in a somewhat similar manner to the Miniception algorithm (Zheng et al., 2020), with an additional

parameter t.

� Construct a (regular) minimizer sketch (w0‚ k0‚O0) whose windows are k-mers.
� For a given k-mer, apply the minimizer selector on the k-mer as a window.
� If the minimizer selects the tth k0 -mer, the whole k-mer is selected in the open syncmer scheme.

It can be seen as an instance of direct k-mer downsampling as described in the last paragraph, where no

sequence contexts are considered in selecting a k-mer. Follow-up works show that open syncmer has great

potential in areas such as read mapping and taxonomy classification (Dutta et al., 2022; Sahlin, 2022; Shaw

and Yu, 2022). Open syncmers also do not satisfy the local guarantee, and when t > 1, open syncmers

also naturally avoid oversampling in low-complexity regions. In fact, Edgar (2021) strongly argued against

the local guarantee as a requirement for sequence sketches, suggesting that such guarantee provides no

protection against sequence mutations.

5.2.3. Masked minimizers/parameterized syncmers. Masked minimizers, proposed in Hoang et al.

(2022a), and parameterized syncmer schemes (PSS), proposed in Dutta et al. (2022), are a generalization

of both minimizers and open syncmers.

Observe that if an open syncmer with parameters (w0‚ k0‚O0‚ t) selects a k-mer, the tth k0-mer was

selected by a minimizer with parameters (w0‚ k0‚O0). In other words, if we treat open syncmers as methods

to select k0-mers, it is similar to a minimizer sketch followed by a very specific selection process as follows:

� Construct a (regular) minimizer sketch (w0‚ k0‚O0) whose windows are k-mers.
� Collect all k0-mers from the above minimizer sketch.
� A k0-mer x is selected if and only if the (unique) window with x as its tth k0-mer has x as its minimizer.

Masked minimizers introduce a mask parameter � 2 f0‚ 1gw that replaces t in open syncmers, and

generalizes the open syncmer selection process as follows:

� The first two steps are identical to the previous description.
� A k0-mer x is selected if and only if there exists some index t 2 [0‚w- 1] with �[t] = 1 such that the

window with x as its tth k0-mer has x as its minimizer.

In Dutta et al. (2022), a set of locations S = fxig � [0‚w- 1] play the same role as �. An open syncmer

is simply a masked minimizer with � being a one-hot vector (equivalently a parameterized syncmer with

S containing a single element), and a (regular) minimizer is a masked minimizer with � being a vector of all

ones. As masked minimizers are generalizations of open syncmers, they also may not satisfy the window

guarantee depending on the mask �. Dutta et al. (2022) propose to modify the parameterized syncmer

sketches by forcing a minimizer selection when a window contains no selected k-mers, thus recovering the

window guarantee at the expense of selecting more k-mers.

Relatedly, Hoang et al. (2022a) also propose a metric called generalized sketch score to evaluate masked

minimizers. When applied to (regular) minimizers, it reduces to relative conservation (Preservation in

Definition 8 divided by Specific Density in Definition 1). It is shown that certain constructions of masked

minimizers improve the generalized sketch score compared with open syncmers and (regular) mini-

mizers. Dutta et al. (2022) propose to evaluate parameterized syncmers using a variety of performance
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measurements from preservation to percentile of gaps length in sketches, and present tractable formula for

several measurements assuming random sequence and random substitution. These measurements are also

used to perform hyperparameter optimization for parameterized syncmers and integrate into existing

mappers [minimap2 (Li and Birol, 2018) and Winnowmap2 ( Jain et al., 2022)], with downsampling and

canonicalization (as briefly discussed in Section 3.3). Improvement in long-read mapping performance is

observed via experiment on simulated and real data.

5.3. Non-k-mer-based methods

All methods discussed up to this point select k-mers from an input sequence. There are also a multitude

of methods that aim to replace k-mers, including k-mers with wild cards (Binda et al., 2015; Ning et al.,

2001; Wood et al., 2019), bidirectional anchors (Loukides and Pissis, 2021), and more classical ones such

as variable length matches (related to unavoidable words as discussed in Section 3.1). Among these

methods, the Strobemer (Sahlin, 2022; Sahlin, 2021) is a particularly interesting candidate because it is

essentially built by chaining minimizer k-mers together. The expectation is that such a primitive is more

robust to mutations than raw k-mers or k-mers with wild cards as minimizer sketches are already robust to

mutations. It remains to be seen if a minimizer sketch over strobemers is possible, and if they can replace

k-mers in more applications.

6. CONCLUSION

We have provided an extensive review of the theory and application of the minimizer sketches, and

related methods. Thanks to their extreme versatility and good performance gains, minimizer sketches have

found their way into many algorithms and software packages.

Minimizers provide strong guarantees (e.g., the window guarantee). On the one hand, these guarantees

help prove the correctness of algorithms using minimizers, on the other hand, they make developing well

performing minimizer schemes difficult. The current research trend is to relax these guarantees, either

abandon them entirely or have probabilistic guarantees, or to use machine learning methods to optimize

minimizer schemes.

We believe minimizer and related sketching methods will continue to enhance bioinformatic pipelines

thanks to continuous rigorous theoretical advancements.
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