2210.08332v3 [cs.SE] 25 Apr 2023

arxiv

Code Recommendation for Open Source Software Developers

Yiqiao Jin
Georgia Institute of Technology
Atlanta, GA, USA
yjin328@gatech.edu

Yizhou Sun

University of California, Los Angeles

Los Angeles, CA, USA
yzsun@cs.ucla.edu

ABSTRACT

Open Source Software (OSS) is forming the spines of technology
infrastructures, attracting millions of talents to contribute. Notably,
it is challenging and critical to consider both the developers’ inter-
ests and the semantic features of the project code to recommend
appropriate development tasks to OSS developers. In this paper,
we formulate the novel problem of code recommendation, whose
purpose is to predict the future contribution behaviors of develop-
ers given their interaction history, the semantic features of source
code, and the hierarchical file structures of projects. We introduce
CODER, a novel graph-based CODE Recommendation framework
for open source software developers, which accounts for the com-
plex interactions among multiple parties within the system. CODER
jointly models microscopic user-code interactions and macroscopic
user-project interactions via a heterogeneous graph and further
bridges the two levels of information through aggregation on file-
structure graphs that reflect the project hierarchy. Moreover, to
overcome the lack of reliable benchmarks, we construct three large-
scale datasets to facilitate future research in this direction. Extensive
experiments show that our CODER framework achieves superior
performance under various experimental settings, including intra-
project, cross-project, and cold-start recommendation.

CCS CONCEPTS

« Information systems — Collaborative filtering; Web and so-
cial media search; Social recommendation; Personalization.

KEYWORDS

Code recommendation; recommender system; open source software
development; multimodal recommendation; graph neural networks

ACM Reference Format:

Yiqiao Jin, Yunsheng Bai, Yanqiao Zhu, Yizhou Sun, and Wei Wang. 2023.
Code Recommendation for Open Source Software Developers. In Proceedings
of the ACM Web Conference 2023 (WWW °23), April 30-May 4, 2023, Austin, TX,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3543507.
3583503

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WWW °23, April 30-May 4, 2023, Austin, TX, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9416-1/23/04.

https://doi.org/10.1145/3543507.3583503

Yunsheng Bai
University of California, Los Angeles
Los Angeles, CA, USA
yba@cs.ucla.edu

Yanqgiao Zhu
University of California, Los Angeles
Los Angeles, CA, USA
yzhu@cs.ucla.edu

Wei Wang
University of California, Los Angeles
Los Angeles, CA, USA
weiwang@cs.ucla.edu

bert/ modeling_bert.py

< /> Param. loading
< /> Embeddings
< /> Models

;
E tokenization_bert.py

. modeling_roberta.py

™
E tokenization_roberta.py
(X X

models/

transformers

src/transformers

data/ roberta/

Figure 1: An example of the transformers repository. OSS
projects under similar topics usually adopt similar naming
conventions and file structures, which can be seen as knowl-
edge transferable across projects.

1 INTRODUCTION

Open Source Software (OSS) is becoming increasingly popular in
software engineering [23, 50]. As contribution to OSS projects
is highly democratized [70], these projects attract millions of de-
velopers with diverse expertise and efficiently crowd-source the
project development to a larger community of developers beyond
the project’s major personnel [23, 35]. For instance, GitHub, one
of the most successful platforms for developing and hosting OSS
projects, has over 83 million users and 200 million repositories [13].

Community support and teamwork are major driving forces be-
hind open source projects [35]. OSS projects are usually developed
in a collaborative manner [2], whereas collaboration in OSS is es-
pecially challenging. OSS projects are of large scales and usually
contain numerous project files written in diverse programming
languages [4]. According to statistics, the most popular 500 GitHub
projects contain an average of 2,582 project files, 573 directories, and
360 contributors. Meanwhile, there are more than 300 programming
languages on GitHub, 67 of which are actively being used [11, 12].
For project maintainers, it is both difficult and time-consuming
to find competent contributors within a potentially large candidate
pool. For OSS developers, recommending personalized develop-
ment tasks according to their project experience and expertise can
significantly boost their motivation and reduce their cognitive loads
of manually checking the project files. As contribution in OSS is
voluntary, developers that fail to find meaningful tasks are likely
to quit the project development [48]. Therefore, an efficient system

https://orcid.org/0000-0002-6974-5970
https://orcid.org/0000-0003-1623-6184
https://orcid.org/0000-0003-2205-5304
https://orcid.org/0000-0003-1812-6843
https://orcid.org/0000-0002-8180-2886
https://doi.org/10.1145/3543507.3583503
https://doi.org/10.1145/3543507.3583503
https://doi.org/10.1145/3543507.3583503

WWW °23, April 30-May 4, 2023, Austin, TX, USA

for automatically matching source code with potential contributors
is being called for by both the project core team and the potential
contributors to reduce their burden.

To solve the above issues, in this paper, we for the first time
introduce the novel problem of code recommendation for OSS de-
velopers. As shown in Fig. 2, this task recommends code in the form
of project files to potentially suitable contributors. It is noteworthy
that code recommendation has several unique challenges such that
traditional recommender models are not directly applicable.

Firstly, OSS projects contain multimodal interactions among
users, projects, and code files. For example, OSS development con-
tains user-code interactions, such as commits that depict micro-
scopic behaviors of users, and user-project interactions, such as
forks and stars that exhibit users’ macroscopic preferences and
interests on projects. Also, the contribution relationships are often
extremely sparse, due to the significant efforts required to make a
single contribution to OSS projects. Therefore, directly modeling
the contribution behavior as in traditional collaborative filtering
approaches will inevitably lead to inaccurate user/item representa-
tions and suboptimal performances.

Secondly, in the software engineering domain, code files in a
project are often organized in a hierarchical structure [69]. Fig. 1
shows an example of the famous huggingface/transformers repos-
itory [56]. The src directory usually contains the major source
code for a project. The data and models subdirectories usually
include functions for data generation and model implementations,
respectively. Such a structural organization of the OSS project re-
veals semantic relations among code snippets, which are helpful
for developers to transfer existing code from other projects to their
development. Traditional methods usually ignore such item-wise
hierarchical relationships and, as a result, are incapable of con-
necting rich semantic features in code files with their project-level
structures, which is required for accurate code recommendation.

Thirdly, most existing benchmarks involving recommendation
for softwares only consider limited user-item behaviors [5, 21], are
of small scales [39, 40], or contain only certain languages such as
Python [20, 37, 51] or Java [5, 21, 40], which renders the evaluation
of different recommendation models difficult or not realistic.

To overcome the above challenges, we propose CODER, a CODE
Recommendation framework for open source software developers
that matches project files with potential contributors. As shown in
Fig. 2, CODER treats users, code files, and projects as nodes and
jointly models the microscopic user-code interactions and macro-
scopic user-project interactions in a heterogeneous graph. Further-
more, CODER bridges these two levels of information through
message aggregation on the file structure graphs that reflect the
hierarchical relationships among graph nodes. Additionally, since
there is a lack of benchmark datasets for the code recommenda-
tion task, we build three large-scale datasets from open software
development websites. These datasets cover diverse subtopics in
computer science and contain up to 2 million fine-grained user-file
interactions. Overall, our contributions are summarized as follows:

o We for the first time introduce the problem of code recommen-
dation, whose purpose is to recommend appropriate development
tasks to developers, given the interaction history of developers,

Jinetal.

the semantic features of source code, and hierarchical structures of
projects.

e We propose CODER, an end-to-end framework that jointly
models structural and semantic features of source code as well as
multiple types of user behaviors for improving the matching task.

e We construct three large-scale multi-modal datasets for code
recommendation that cover different topics in computer science to
facilitate research on code recommendation.

e We conduct extensive experiments on massive datasets to
demonstrate the effectiveness of the proposed CODER framework
and its design choices.

2 PRELIMINARIES
2.1 GitHub

GitHub is a code hosting platform for version control and collabora-
tion based on git. Users can create repositories, namely, digital
directories, to store source code for their projects. Users can make
changes to the source code in the form of commits, which are snap-
shots of an OSS project, that capture the project state. A GitHub
commit mainly reflects two aspects: 1) The commit author is highly
interested in the project; 2) the user has the expertise to contribute.
In this work, we study the factors that influence users’ contributing
behaviors. We use git commits as positive interactions.

2.2 Problem Formulation

Before delving into our proposed CODER framework, we first for-
malize our code recommendation task. We use the terms “repos-
itory” and “project” interchangeably to refer to an open source
project. We define U, V, R as the set of users, files, and reposi-
tories, respectively. Each repository ri € R contains a subset of
files V. < V. Both macroscopic project-level interactions and
microscopic file-level interactions are present in OSS development.

File-level behaviors. We define Y € {0, 1}|‘LI|><|(V| as the inter-
action matrix between U and V for the file-level contribution
behavior, where each entry is denoted by y;;. y;j = 1 indicates that
u; has contributed to v, and y;; = 0, otherwise.

Project-level behaviors. Interactions at the project level are more
diverse. For example, the popular code hosting platform GitHub
allows users to star (publicly bookmark) interesting repositories
and watch (subscribe to) repositories for updates. We thus define
T as the set of user-project behaviors. Similar to Y, we define S; €

{0, 1} UXIRI 35 the project-level interaction matrix for behavior
of type t. Our goal is to predict the future file-level contribution
behaviors of users based on their previous interactions. Formally,
given the training data Y™®, we try to predict the interactions in
the test set y;; € Y™ = Y\Y™.

3 METHODOLOGY

As shown in Fig. 2, we design CODER, a two-stage graph-based rec-
ommendation framework. CODER considers u; € U,vj € V,ri €
R as graph nodes, and models the user-item interactions and the
item-item relations as edges. We use two sets of graphs to character-
ize the heterogeneous information in code recommendation. One is
the user-item interaction graphs that encompass the collaborative
signals. The other is the file-structure graphs that reveal file-file and

Code Recommendation for Open Source Software Developers

WWW ’23, April 30-May 4, 2023, Austin, TX, USA

7 b) Structural-level aggregation USer-project
w @ ®) g8 % interaction
Star vy " graphs
Repository ry [1:1:1:0 " [soli
p(i,k,t)
User u; File -

@

’
Contrib%

.oo -

structure
graphs
o

(d) Project-level aggregation

oo
se(i, /)
< N 3 User-file
H | 01 v2 U3 interaction —
[mana] oo auun] graphs J
= < v oo
Code def add(x, y): S~ So \ u*
segment return x + IR ») '
y ~a
= 7D
C= [Cl]f‘:lfl h = feourt(C, Q) =D
@o-tal
Q= [qi]i:1

(a) Code-user modality fusion

Input

Node semantics modeling

(c) File-level aggregation

Multi-behavioral modeling Prediction

Figure 2: Our proposed CODER framework for code recommendation. CODER jointly considers project file structures, code se-
mantics, and user behaviors. CODER models the microscopic file-level interactions and macroscopic project-level interactions
through Multi-Behavioral Modeling, and bridges the micro/macro-scopic signals through Node Semantics Modeling.

file-project relationships from the project hierarchy perspective.
The code recommendation problem is then formulated as a user-file
link prediction task.

CODER contains two major components: 1) Node Semantics
Modeling, which learns the fine-grained representations of project
files by fusing code semantics with their historical contributors,
and then aggregate project hierarchical information on the file
structure graph to learn the file and repository representation; 2)
Multi-behavioral Modeling, which jointly models the microscopic
user-file interactions and macroscopic user-project interactions.
Finally, CODER fuses the representations from multiple behaviors
for prediction. This way, node semantics modeling bridges the
coarse-grained and fine-grained interaction signals on the item
side. Therefore, CODER efficiently characterizes intra-project and
inter-project differences, eventually uncovering latent user and
item features that explain the interactions Y.

3.1 Node Semantics Modeling

Node semantics modeling aims to learn file and repository repre-
sentation. The challenge is how to inherently combine the seman-
tic features of each project file with its interacted users and the
project hierarchy. To address this challenge, we first use a code-
user modality fusion mechanism (Fig. 2a) to fuse the file content
modality and the historical users at the code level. Then, we embed
the fine-grained collaborative signals from user-file interactions
into the file representations. Next, we employ structural-level ag-
gregation (Fig. 2b), which explicitly models the project structures
as hierarchical graphs to enrich the file/repository representation
with structural information. This step produces representation for
each file v; and repository ry, which serve as the input for user
behavior modeling in Sec. 3.2.

3.1.1 Code-User Modality Fusion. A project file is characterized by
diverse semantic features including multiple method declarations

and invocations, which are useful for explaining why a contributor
is interested in it. Inspired by the success of pretrained language
models [24, 26, 31], we use pretrained CodeBERT [7], a bimodal lan-
guage model for programming languages, to encode the rich seman-
tic features of each file. CodeBERT is shown to generalize well to
programming languages not seen in the pretraining stage, making
it suitable for our setting where project files are written in diverse
programming languages. Here, a straightforward way is to directly
encode each file into a per-file latent representation. Such an encod-
ing scheme has two issues. Firstly, a file may contain multiple classes
and function declarations that are semantically distinct. Fig. 1 shows
the file structure of the huggingface/transformers [56] reposi-
tory as an example. The modeling_bert.py file contains not only
various implementations of the BERT language model for differ-
ent NLP tasks, but also utilities for parameter loading and word
embeddings. These implementations are distributed among several
code segments in the same project file, and file-level encoding can
fail to encode such semantic correlations. Secondly, the property of
a project file is influenced by the historical contributors’ features.
A user’s contribution can be viewed as injecting her/his own at-
tributes, including programming style and domain knowledge, into
the interacted file. Such contribution behaviors make it more likely
to be interacted again by users with similar levels of expertise than
random contributors.

Therefore, we propose a code-user modality fusion strategy
to embed both code semantics and user characteristics into the file
representation. Specifically, for each file, we partition its source
code into N¢ code segments and encode each of them into a code-
segment-level representation c;. This produces a feature map C =
[cr,co,...enc].C € RNcxd wwhere d is the embedding size. Simi-
larly, we sample Ny historical users of the file and encode them
into a feature map Q = [ug,uy, ... uNQ], Qe RNoXd Please refer
to Appendix B for details in encoding C and Q. Inspired by the
success of co-attention [32, 71], we transform the user attention

WWW °23, April 30-May 4, 2023, Austin, TX, USA

space to code attention space by calculating a code-user affinity
matrix L € RNcXNo,

L = tanh(CWoQ"), (1)

where Wo € R is a trainable weight matrix. Next, we compute
the attention weight a € RN¢ of the code segments to select salient
features from C. We treat the affinity matrix as a feature and learn
an attention map H with Ny representations:

H = tanh(WcCT + Wo(LQ)T), (2)
a= softmax(wITIH), 3)

where W, Wq € RNuXd wp e RMH are the weight parame-
ters. Finally, the file attention representation h is calculated as
the weighted sum of the code feature map:

h=a"C. 4

The file attention representation serves as a start point to further
aggregate file structural features.

3.1.2 Structural-Level Aggregation. Projects are organized in a hi-
erarchical way such that nodes located closer on the file structure
graph are more closely related in terms of semantics and functional-
ity. For example, in Fig. 1, both files under the bert/ directory con-
tain source code for the BERT [26] language model, and files under
roberta/ contains implementation for the RoBERTa [31] model.
The file modeling_bert.py is therefore more closely related to
tokenization_bert.py in functionality than to tokenization_
roberta.py.

To exploit such structural clues, we model each repository as a
hierarchical heterogeneous graph [69] Gg consisting of file, direc-
tory, and repository nodes. Each node is connected to its parent
node through an edge, and nodes at the first level are directly con-
nected to the virtual root node representing the project. To encode
the features of directory nodes, we partition the directory names
into meaningful words according to underscores and letter capi-
talization, then encoded the nodes by their TF-IDF features. Our
encoding scheme is motivated by the insight that the use of stan-
dard directory names (e.g., doc, test, and models) is correlated
with project popularity among certain groups of developers [2, 79].
Repository features are encoded by their project owners, creation
timestamps, and their top-5 programming languages. The reposi-
tory and directory representations are mapped to the same latent
space as the file nodes. Then, we pass the representation h through
multiple GNN layers to aggregate the feature of each node from its
neighbors on Gg:

h = foxn(h, Gs), ©)
where h is the structure-enhanced node representation. The aggre-
gation function foNN(+) can be chosen from a wide range of GNN
architectures, such as GCN [28], GraphSAGE [16], and GIN [61]. In
practice, we employ a 3-layer Graph Attention Network (GAT) [49].

3.2 Multi-behavioral Modeling

Direct modeling of the sparse contribution behavior potentially
leads to inaccurate user/item representations and aggravates the
cold-start issue. Instead, we jointly model the microscopic user-file
contribution in File-level Aggregation (Fig. 2c) and macroscopic
user-project interactions in Project-level Aggregation (Fig. 2d) to

Jinetal.

learn user preferences and address the sparsity issue. Then, the
representations learned from multi-level behaviors are combined
to form the user and item representations for prediction.

3.2.1 File-level Aggregation. We model the project files and their
contributors as an undirected user-file bipartite graph Gr consisting
of users u; € U, files v; € V and their interactions. The initial
embedding matrix of users/items is denoted by E(%):

0 0 (0 0
EO - = [u! © ... u\('ll\’ (), . I((&I] 6)

users embeddings item embeddings

(0)

where u ;

(0)

embedding for file v}, equivalent to its structure- enhanced repre-

is the initial embedding for user u; and v; is the initial

sentation h (Sec. 3.1.2). We adopt the simple weight sum aggregator
in LightGCN [18] in the propagation rule:

W=y Ly =,)
v eN; y/INil |N]|
VO 3 L, ®)

! u,’ENj 1’|M||N[

(D (D

layer [, Nl and Nj indicate the neighbors of user u; and file v,
and 1/4/|N;||Nj]| is the symmetric normalization term set to the
graph Laplacian norm to avoid the increase of GCN embedding
sizes [18, 28]. In the matrix form, the propagation rule of file-level
aggregation can be expressed as:

where u;" and v, are the embeddings for user u; and file v; at

E) =p 2AD 2E(D), 9)

0 YTR
(YTR) T
ity matrix, and D is the diagonal degree matrix in which each entry
D;; indicates the number of non-zero entries on the i-th row of A. By
stacking multiple layers, each user/item node aggregates informa-
tion from its higher-order neighbors. Propagation through L layers
yields a set of representations {E(!) }IL:O' Each E() emphasizes the
messages from its [-hop neighbors. We apply mean-pooling over
all E() to derive the user and file representations u} and v;.‘ from

where A = (e RUURIVDXUUKIVD g the affin-

different levels of user/item features:

L
1 3)
* _
l.li —?l_oui 5 (10)
L
1
* 0
V., = V. . 11
J L+1l_0 J (11)

3.2.2 Project-Level Aggregation. OSS development is characterized
by both microscopic contribution behaviors and multiple types
of macroscopic project-level behaviors. For example, developers
usually find relevant projects and reuse their functions and ex-
plore ideas of possible features [20, 22]. In particular, GitHub users
can star (bookmark) interesting repositories and discover projects
under similar topics. This way, developers can adapt code imple-
mentation of these interesting projects into their own development
later. Hence, project-level macroscopic interactions are conducive
for extracting users’ broad interests.

Code Recommendation for Open Source Software Developers

For each behavior t, we propagate the user and repository em-
beddings on its project-level interaction graph Q{,:

_1 1
zL=p,?AD, 2ZY. (12)

The initial embeddings Z(9) is shared by all t € 7" and is composed
of the initial user representations identical to Eq. (6) and the repos-
itory embeddings from the structure-enhanced representation h in
Eq. (5):

zO = [zﬁo),zgo),...zl(%, rio),rgo),‘..rl(;?l |. (13)

user embeddings repository embeddings
where ZEO) = ugo), A € RUUFHIRDXAUIIRD g the affinity matrix
for behavior t constructed similarly as A in Eq. (9). With repre-
sentations {Z;l) }le0 obtained from multiple layers, we derive the
combined user and repository representations for behavior t as

RN)
*
Z;; = o1 2, zZ,; (14)
L
1
* ' (15)

r,, = —— oL
BT L+1 b
1=0

3.3 Prediction

For file-level prediction, we aggregate the macroscopic signals

zfl., r;i from each behavior t into u;, v;:

z} = AGG({z],t € T}),
u; = MLP([uF || z]),

rr =AGG({r},t € T}), (16)
vj = MLP([v} | rg(j)]), (17)

where AGG(-) is an aggregation function and MLP(-) is a multilayer
perceptron, ¢(+) : V — R maps the index of each project file to its
repository, and || is the concatenation operator. On the user side,
both macroscopic interests and micro-level interactions are injected
into the user representations. On the item side, the semantics of each
file is enriched by its interacted users and the repository structural
information.

For computational efficiency, we employ inner product to calcu-
late the user u;’s preference towards each file v;:

se(i) =] vj, (18)
where s is the scoring function for the file-level behavior. Similarly,

for each user-project pair, we derive a project-level score for each
behavior ¢ using the project-level scoring function sp:

sp(i,k, t) = (ZZi Trzk. (19)

3.4 Optimization

We employ the Bayesian Personalized Ranking (BPR) [43] loss,
which encourages the prediction of an observed user-item interac-
tion to be greater than an unobserved one:

Lr=) —log(sigmoid(se(i,j*) = sp(i 7)), (20)
(i,j*.j7)e0

L= Z —log(sigmoid(sp (i, k*,t) — sp(i, k™, 1)), (21)
(i.k* k") e0

WWW 23, April 30-May 4, 2023, Austin, TX, USA

where Lr is the file-level BPR loss, and .Elt, is the project-level
BPR loss for behavior t, O denotes the pairwise training data, j*
indicates an observed interaction between user u;, and item v j*
and j~ indicates an unobserved one. As high-order neighboring
relations within contributors are also useful for recommendations,
we enforce users to have similar representations as their structural
neighbors through structure-contrastive learning objective [30, 57]:

(m . (0)
exp(u;” -u; "’ /1)
L((:u= E —log PR :

. (22)
u;eU Zujefu eXp(ul(']) . u;.O)/‘[)

Here, 7 is set to an even number so that each user node can aggre-
gate signals from other user nodes and 7 is a temperature hyper-
parameter. Similarly, the contrastive loss is applied to each v;:

0, 0
V_ exp(v;” - v; /1)
Lo = E —log o
0V 2ojevexp(v; v [7)

(23)

The overall optimization objective is

L=Le+h) Lh+do(LE + L)+ 1000 (9)
teT
where © denotes all trainable model parameters and A3, A2, A3 are
hyper-parameters.

3.5 Complexity Analysis

The node semantic modeling (Sec. 3.1) has time complexity of
O((Nc + Ng)|V| + |E]), where & is the set of edges in all file
structure graphs. The user behavior modeling (Sec. 3.2) has time
complexity of O(JA*|+ Y, |A}|), where |A*] is the number of posi-
tive entries in |A| and likewise for |A7|. The overall time complexity
is O((Nc +No) V| +|E| + |A*| + X; |AF[). Although obtaining the
initial code segment embeddings C implies large computational
costs, our model only calculates C once and caches it to be used
in each iteration. Empirically, the average inference time of MF,
LightGCN, and CODER are 0.804 ms, 1.073 ms, and 1.138 ms per
test example, respectively.

4 EXPERIMENTS
4.1 Experimental Settings

4.1.1 Datasets. We collected 3 datasets covering diverse topics in
computer science including machine learning (ML), fullstack (FS),
and database (DB), using the GitHub API ! and the PyGithub ?package.
We retain repositories with > 250 stars and > 3 contributors to
exclude repositories intended for private usages [2]. We include
projects with contribution history of at least 3 months according
to their commit history. To ensure that our model generalizes on a
wide range of topics, popularity, and project scales, we first select 3
subsets of repositories using their GitHub topics >, which are project
labels created by the project owners. Then, we randomly sample
300 repositories from each subset considering their numbers of
project files and stars. We use the Unix timestamp 1550000000 and
1602000000 to partition the datasets into training, validation, and
test sets. This way, all interactions before the timestamp are used

Uhttps://docs.github.com/en/rest
Zhttps://github.com/PyGithub/PyGithub.git
Shttps://github.com/topics

https://docs.github.com/en/rest
https://github.com/PyGithub/PyGithub.git
https://github.com/topics

WWW ’23, April 30-May 4, 2023, Austin, TX, USA

Table 1: Summary of the datasets. The second column shows
the number of files with observed interactions instead of all
existing files in the projects.

Dataset | #Files #Users #Interactions Density
ML 239,232 21,913 663,046 1.26 x 1074
DB 415,154 30,185 1,935,155 1.54 x 107%
FS 568,972 51,664 1,512,809 514 x 107>

as the training data. We retain the users with at least 1 interaction
in both train and test set. More details about dataset construction
are in the appendix.

4.1.2 Implementation Details. We implemented our CODER model
in PyTorch [42] and PyG [8]. For all models, we set the embed-
ding size to 32 and perform Xavier initialization [14] on the model
parameters. We use Adam optimizer [27] with a batch size of
1024. For Node Semantic Modeling (Sec. 3.1), we conduct a grid
search on N¢c € {4,8,12,16} and Ng € {2, 4,8}, and choose to
set Nc = 8 and Ng = 4. The code encoder we use is the pre-
trained CodeBERT [7] model with 6 layers, 12 attention heads,
and 768-dimensional hidden states. For Multi-Behavioral Modeling
(Sec. 3.2), we set the number of convolution layers L = 4 for both
intra- and inter-level aggregation. For prediction and optimization,
we search the hyper-parameter A3 in {1074,1073,1072}, and A,
in {1072, 1071, 1}. For the structure contrastive loss [30], we adopt
the hyper-parameter setting from the original implementation and
set Ag = 107, 5 = 2 without further tuning. For the baseline models,
the hyper-parameters are set to the optimal settings as reported in
their original papers. For all models, we search the learning rate
in {10743 x 107%,1073,3 x 1073, 1072}.

4.1.3 Baselines. We compare CODER with 3 groups of methods:

e G1: a factorization-based method MF [43],

e G2: neural-network-based methods including MLP [47] and
Neu-MF [19],

o G3: graph-based methods that model user-item interactions
as graphs, including NGCF [53], LightGCN [18], and NCL [30].

As the task is to predict users’ file-level contribution, file-level
behavior modeling is the most critical component. Therefore, we
use file-level contribution behaviors as the supervision signals as
in Eq. (18). For brevity, we use repository identity to refer to the
information of which repository a file belongs to. As the baselines do
not explicitly leverage the repository identities of files, we encode
their repository identities as a categorical feature through one-hot
encoding during embedding construction. To ensure fairness of
comparison, we incorporate the project-level interaction signals
into the user representations by applying multi-hot encoding on
the repositories each user has interacted with. All the baseline
models use the same pretrained CodeBERT embeddings as CODER
to leverage the rich semantic features in the source code.

4.1.4 Evaluation Metrics. Following previous works [18, 19, 53,
78], we choose Mean Reciprocal Rank (MRR@K), Normalized Dis-
counted Cumulative Gain (NDCG@K), Recall@K (Rec@K), and
Hit@K as the evaluation metrics.

Jinetal.
0.15 0.55
0.14 - 0.5 F

043 0.45
0.4

0.12
0.35

0.11
0.3
0.1 0.25
0.09 0.2
0.08 0.15

NDCD@20 Rec@20 Hit@20 MRR@20

mCDB-FO-CoO-EO0-Sm-PENCL mCDE-FO-CO-E0-SE-PENCL
Figure 3: Results among variants of CODER and the best
baseline model NCL on the ML dataset.

4.2 Performance

4.2.1 Intra-Project Recommendation. In this setting, we evaluate
the model’s ability to recommend development tasks under her
interacted repositories. For each user u;, we rank the interactions
under repositories they have interacted with in the training set.
This setting corresponds to the scenario in which project maintain-
ers recommend new development tasks to existing contributors
based on their previous contribution. As shown in Tab. 2, CODER
consistently outperforms the baselines by a large margin. On the
ML dataset, CODER outperforms the best baseline by 17.9% on
NDCG@20, 15.8% on Hit@20, and 8.2% on MRR@20. On the DB
dataset, CODER achieves performance improvements of 27.3% on
NDCG@20, 29.5% on Hit@20, and 6.0% on MRR@20. Notably, the
greatest performance improvement is achieved on the FS dataset,
which has the greatest sparsity. CODER achieves a maximum perfor-
mance improvement of 37.1% on NDCG@5 and 35.6% on NDCG@10.
The results show that CODER achieves significant performance
improvement over the baseline, and is especially useful when the
observed interactions are scarce.

Among the baselines, graph-based method (G3) achieves better
performances than (G1), (G2) as they can model the high-order re-
lations between users and items through the interaction graph and
the embedding function. LightGCN [18] underperforms NGCF [53]
on the DB dataset, whose training set has the greatest density, and
outperforms NGCF on the ML and FS datasets. This implies that
the message passing scheme of NGCF, which involves multiple
linear transformation and non-linear activation, is more effective
for denser interactions. Such results justify our design choice in
multi-behavioral modeling, which uses the LightGCN propagation
scheme. NCL exhibits the strongest performance, demonstrating the
importance of the contrastive learning loss in modeling differences
among homogeneous types of nodes, which is also included in our
model design. Neural-network-based methods (G2) generally out-
perform matrix factorization (G1), as they leverage multiple feature
transformations to learn the rich semantics in the file embeddings
and the user-file interactions.

4.2.2 Cold-Start Recommendation. User contribution is usually
sparse due to the considerable workload and voluntary nature of
OSS development. In this sense, it is important to accurately capture

Code Recommendation for Open Source Software Developers

WWW 23, April 30-May 4, 2023, Austin, TX, USA

Table 2: The overall performance on 3 datasets. The best performance is marked in bold. The second best is underlined.

results among

Dataset Metric MF MLP NeuMF NGCF LightGCN NCL CODER Improvement
NDCG@5 0.065 0.073 0.076 0.091 0.106 0.119 0.132 11.2%
Hit@5 0.162 0.189 0.189 0.237 0.291 0.276 0.351 20.5%
MRR@5 0.098 0.113 0.114 0.137 0.164 0.201 0.211 5.0%
NDCG@10 0.066 0.075 0.081 0.093 0.109 0.118 0.136 14.8%
ML Hit@10 0.229 0.250 0.263 0.310 0.386 0.337 0.440 14.0%
MRR@10 0.106 0.121 0.124 0.147 0.177 0.209 0.223 6.7%
NDCG@20 0.072 0.081 0.084 0.100 0.116 0.120 0.141 17.9%
Hit@20 0.324 0.343 0.346 0.407 0.457 0.466 0.540 15.8%
MRR@20 0.113 0.127 0.130 0.154 0.185 0.213 0.230 8.2%
NDCG@5 0.085 0.079 0.085 0.099 0.082 0.124 0.160 29.0%
Hit@5 0.205 0.191 0.206 0.263 0.237 0.316 0.390 23.2%
MRR@5 0.130 0.118 0.128 0.162 0.132 0.252 0.260 3.2%
NDCG@10 0.086 0.079 0.085 0.100 0.084 0.123 0.159 29.4%
DB Hit@10 0.267 0.251 0.276 0.361 0.324 0.380 0.488 28.4%
MRR@10 0.138 0.126 0.137 0.175 0.144 0.260 0.273 4.9%
NDCG@20 0.088 0.083 0.088 0.103 0.091 0.125 0.160 27.3%
Hit@20 0.335 0.338 0.362 0.454 0.422 0.437 0.588 29.5%
MRR@20 0.143 0.132 0.143 0.182 0.150 0.264 0.280 6.0%
NDCG@5 0.063 0.063 0.067 0.082 0.089 0.106 0.146 37.1%
Hit@5 0.168 0.178 0.179 0.231 0.245 0.283 0.374 31.9%
MRR@5 0.100 0.100 0.107 0.132 0.146 0.170 0.226 33.0%
NDCG@10 0.063 0.065 0.068 0.085 0.092 0.106 0.144 35.6%
FS Hit@10 0.231 0.244 0.249 0.319 0.332 0.361 0.467 29.3%
MRR@10 0.109 0.110 0.117 0.144 0.157 0.180 0.239 32.3%
NDCG@20 0.067 0.070 0.073 0.090 0.095 0.110 0.146 32.7%
Hit@20 0.307 0.321 0.335 0.406 0.414 0.451 0.559 23.9%
MRR@20 0.114 0.115 0.122 0.150 0.163 0.187 0.245 31.4%
-o—LGNRecl\Zlatl:lL — CODER NDCG thus designed according to this principle. We define cold-start users
1 0.035 LGN ~+~NCL ——CODER as users with < 2 interactions in the training set. To evaluate the
0.08 model performance with fewer interactions, we choose NDCG@K,
0.06 0.025 Recall @K, and Hit@K, where K € {3,5}. The strongest 4 baselines
’ in Tab. 2 are evaluated for comparison.
0.04 ‘ﬁ/ 0.015 As observed from Tab. 3, performance for cold-start users is
0.02 H—&—/—‘ worse than that for all users in Tab. 2. Notably, CODER is able to
0 0.005 achieve even greater performance improvement over the baseline
Tt oo e 5 M0 1R o0 &N 400 models. It can be attributed to the following aspects: 1) CODER
LGN HI:JCL —CODER MRR learns more accurate representations by fusing the fine-grained se-
0.25 003 -GN —e-NCL —=CODER mantics of project files with their interacted users, which facilitates
02 the learning of user preferences even in the absence of dense user
015 0.025 interactions. 2) By explicitly modeling multiple types of project-
' level behaviors, CODER effectively models the users’ interests to
0.1 0.02 complement the sparse file-level contribution relations, which is
0.05 \’*// '/w-/—_‘ more effective than encoding the project-level interactions in the
0 0015 embedding space.

5 10 15 20 50 100 5 10 15 20 50 100

Figure 4: Cross-Project Performance of CODER and the 2
strongest baselines under various K, K € [5,100].

the users’ preferences with few observed interactions. Our model is

4.2.3 Cross-Project Recommendation. Although 91% developers
in our dataset focused on 1 project throughout their development,
active contributors can work on multiple projects. For these con-
tributors, the project core team can recommend development tasks
based on their development experiences in previous projects.

WWW °23, April 30-May 4, 2023, Austin, TX, USA

Table 3: File-level link prediction results for cold-start users.
“LGN” stands for the baseline “LightGCN”. The best perfor-
mance is marked in bold. The second best is underlined.

Metric NeuMF NGCF LGN NCL CODER Impr.
NDCG@3 | 0.059 0.067 0.068 0.090 0.126 40.9%
Hit@3 0.106 0.123 0.161 0.211 0.224 5.9%
ML MRR@3 0.081 0.087 0.089 0.119 0.165 38.3%
NDCG@5 | 0.068 0.078 0.088 0.105 0.132 25.8%
Hit@5 0.161 0.162 0.230 0.261 0.273 4.8%
MRR@5 0.093 0.097 0.105 0.130 0.177 36.0%
NDCG@3 | 0.078 0.063 0.055 0.075 0.119 53.0%
Hit@3 0.152 0.114 0.128 0.165 0.238 44.4%
DB MRR@3 0.102 0.089 0.070 0.095 0.157 54.0%
NDCG@5 | 0.086 0.061 0.064 0.086 0.127 47.5%
Hit@5 0.195 0.132 0.165 0.220 0.287 30.6%
MRR@5 0.112 0.093 0.079 0.106 0.168 50.2%
NDCG@3 | 0.079 0.075 0.085 0.092 0.128 38.7%
Hit@3 0.171 0.165 0.179 0.179 0.242 35.6%
FS MRR@3 0.110 0.095 0.104 0.116 0.171 48.0%
NDCG@5 | 0.086 0.086 0.085 0.095 0.137 44.3%
Hit@5 0.230 0.220 0.202 0.222 0.313 36.2%
MRR@5 0.124 0.106 0.109 0.125 0.187 49.4%

During evaluation, we rank the interactions in projects each
user has not yet interacted with in the training set. This setting is
considerably more challenging than intra-project recommendation
since the candidate item pool is significantly larger. According to
the results in Fig. 4, CODER consistently achieves superior perfor-
mance by a large margin with respect to the baselines, especially
for K > 20. The results show that CODER jointly learns inter-
project differences to choose the correct repositories and character-
ize intra-project distinctions to recommend the correct files within
the chosen repositories.

4.2.4 Ablation Studies. In Fig. 3, we compare the performance of
our model (abbreviated as CD) among its 5 variants. CD-F removes
the code-user modality fusion strategy in Eq. (1). CD-C excludes
the structural contrastive learning objective in Egs. (22, 23). CD-E
does not use the pretrained CodeBERT embeddings and instead
applies TF-IDF encoding on the source code, a common approach
in project recommendation models [62]. CD-P removes the project-
level aggregation in Sec. 3.2.2. CD-S disables the structural-level
aggregation in Sec. 3.1.2. Results on the ML dataset are in Fig. 3.
We observe that all 6 variants of CODER outperform NCL,
among which the full model (CD) performs the best, indicating
the importance of each component in our model design. The per-
formance drops most significantly when we disable project-level
aggregation in CD-P, indicating the importance of explicitly mod-
eling user-project interactions through graph structures. We also
observe a considerable decrease when we remove the structural-
level aggregation (CD-S), implying that the structural information
of files has a significant contribution towards the file representation.
CD-E does not lead to a more significant performance decrease, but
is outperformed by CD-F where fine-grained code representations
are present. Thus, user behaviors and project structural clues are
more important than semantic features in code recommendation.

Jinetal.

5 RELATED WORK

5.1 Research in Open Source Code

Open sourcing has grown into a standard practice for software
engineering [23] and attract researchers to study social coding [70].
Analytical studies focus on users’ motivation [10, 67], expertise [50],
collaboration patterns [38], and factors that impact the popular-
ity [2] of projects. Methodological studies explore project classi-
fication [74] and code search [33], connecting publications with
projects [45]. Recently, the field of Neural Code Intelligence (NCI),
which uses deep learning techniques to tackle analytical tasks on
source code, has emerged as a promising direction to improve
programming efficiency and reducing human errors within the
software industry [64]. Although previous works explored the rec-
ommendation task in OSS development settings such as automatic
suggestions of API function calls [20, 40], Good First Issues [1, 60],
and data preparation steps [65], no previous works have studied
the challenging task of code recommendation task, which requires
in-depth understanding of diverse user-item interactions and OSS
projects written in multiple programming languages.

5.2 Recommender Systems

The advances in deep learning greatly facilitate the evolution of
recommender systems [3, 17, 41, 44, 72, 73]. Motivated by the suc-
cess of Graph Neural Networks (GNN) [9, 34, 52, 75, 76, 80, 81], a
series of graph-based recommender systems [29, 55, 59] are pro-
posed, which organize user behaviors into heterogeneous interac-
tion graphs. These methods formulate item recommendation as
link prediction or representation learning tasks [46, 54, 77], and
utilize high-order relationships to infer user preferences, item at-
tributes, and collaborative filtering signals [45, 58, 68]. Noticeably,
traditional recommendation models cannot be easily transferred to
code recommendation as they do not model unique signals in OSS
development, such as project hierarchies and code semantics.

6 CONCLUSION AND FUTURE WORKS

We are the first to formulate the task of code recommendation for
open source developers. We propose CODER, a code recommenda-
tion model for open source projects written in diverse languages.
Currently, our approach only considers recommending existing files
to users. As CODER harnesses the metadata and semantic features
of files, it cannot deal with users creating new files where such in-
formation of the candidate files is absent. We plan to generalize our
framework by allowing users to initialize files under their interested
subdirectories. Moreover, our source code encoding scheme can be
further improved by harnessing knowledge about programming
languages such as using Abstract Syntax Tree (AST) [39] and data
flow [15, 20] (graphs that represent dependency relation between
variables). Our current encoding scheme is a computationally ef-
ficient way to deal with the diversity of programming languages.
In the future, we plan to incorporate such domain knowledge to
improve the file representations at a finer granularity. Our current
encoding scheme is a computationally efficient way to deal with
the diversity of programming languages. Moreover, the user rep-
resentations can be further enhanced by modeling users’ social
relations [6, 36] and behaviors [25, 63, 66].

Code Recommendation for Open Source Software Developers

ACKNOWLEDGMENTS
This work was partially supported by NSF 2211557, NSF 1937599,
NSF 2119643, NASA, SRC, Okawa Foundation Grant, Amazon Re-

search Awards, Cisco research grant, Picsart Gifts, and Snapchat
Gifts.

REFERENCES

[1] Jan Willem David Alderliesten and Andy Zaidman. 2021. An Initial Exploration

[13
[14

[15

[16

[17

[18

[19
[20
[21

[22

[23
[24

[25

[26

[27
[28

[29

=

it

]
]

]

]

]

]

]

]

]

of the “Good First Issue” Label for Newcomer Developers. In CHASE. 117-118.
Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding the
factors that impact the popularity of GitHub repositories. In ICSME. 334-344.
Jin Chen, Defu Lian, Binbin Jin, Kai Zheng, and Enhong Chen. 2022. Learning
Recommenders for Implicit Feedback with Importance Resampling. In WWW.
1997-2005.

Jailton Coelho, Marco Tulio Valente, Luciano Milen, and Luciana L Silva. 2020. Is
this GitHub project maintained? Measuring the level of maintenance activity of
open-source projects. Information and Software Technology 122 (2020), 106274.
Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software Heritage: Why and
How to Preserve Software Source Code. In iPRES. 1-10.

Wengi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In WWW. 417-426.
Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. In Findings of EMNLP
2020. 1536-1547.

Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In RLGM@ICLR.

Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, and Duen Horng Chau.
2022. Graph vulnerability and robustness: A survey. TKDE (2022).

Marco Gerosa, Igor Wiese, Bianca Trinkenreich, Georg Link, Gregorio Robles,
Christoph Treude, Igor Steinmacher, and Anita Sarma. 2021. The shifting sands
of motivation: Revisiting what drives contributors in open source. In ICSE. 1046~
1058.

GitHub. 2016. The State of the Octoverse. https://octoverse.github.com/2016/
GitHub. 2022. Collection: Programming Languages. — https://github.com/
collections/programming-languages

GitHub. 2022. Github Number of Repositories. https://github.com/search.
Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS. 249-256.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2021. GraphCodeBERT:
Pre-training Code Representations with Data Flow. In ICLR.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. NIPS 30 (2017).

Junheng Hao, Tong Zhao, Jin Li, Xin Luna Dong, Christos Faloutsos, Yizhou
Sun, and Wei Wang. 2020. P-companion: A principled framework for diversified
complementary product recommendation. In CIKM. 2517-2524.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgen: Simplifying and powering graph convolution network for
recommendation. In SIGIR. 639-648.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173-182.

Xincheng He, Lei Xu, Xiangyu Zhang, Rui Hao, Yang Feng, and Baowen Xu. 2021.
Pyart: Python api recommendation in real-time. In ICSE. 1634-1645.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing
source code with transferred API knowledge. In IJCAL 2269-2275.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

Jyun-Yu Jiang, Pu-Jen Cheng, and Wei Wang. 2017. Open source repository
recommendation in social coding. In SIGIR. 1173-1176.

Yiqiao Jin, Xiting Wang, Yaru Hao, Yizhou Sun, and Xing Xie. 2023. Prototypical
Fine-tuning: Towards Robust Performance Under Varying Data Sizes. In AAAL
Yigiao Jin, Xiting Wang, Ruichao Yang, Yizhou Sun, Wei Wang, Hao Liao, and
Xing Xie. 2022. Towards fine-grained reasoning for fake news detection. In AAAL
Vol. 36. 5746-5754.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. In ICLR.

Anchen Li, Bo Yang, Huan Huo, and Farookh Hussain. 2022. Hypercomplex
Graph Collaborative Filtering. In WWW. 1914-1922.

[30

[31

[32

[33

&
=

[35

[36]

[37

[38

W
20,

[40

[41

[42]

[43

S
&

[45

[46

[47

(48

[49

[50

[56

WWW ’23, April 30-May 4, 2023, Austin, TX, USA

Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving
Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning.
In WWW. 2320-2329.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. 2016. Hierarchical
question-image co-attention for visual question answering. NIPS 29 (2016).
Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. 2019.
Aroma: Code recommendation via structural code search. In OOPSLA.

Haitao Mao, Lun Du, Yujia Zheng, Qiang Fu, Zelin Li, Xu Chen, Han Shi, and
Dongmei Zhang. 2021. Source free unsupervised graph domain adaptation. arXiv
preprint arXiv:2112.00955 (2021).

Nora McDonald and Sean Goggins. 2013. Performance and participation in open
source software on github. In CHI 139-144.

Xin Mei, Xiaoyan Cai, Sen Xu, Wenjie Li, Shirui Pan, and Libin Yang. 2022.
Mutually reinforced network embedding: An integrated approach to research
paper recommendation. Expert Systems with Applications (2022), 117616.
Antonio Valerio Miceli-Barone and Rico Sennrich. 2017. A Parallel Corpus of
Python Functions and Documentation Strings for Automated Code Documenta-
tion and Code Generation. In IJCNLP. 314-319.

Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kistner. 2022. Collabora-
tion Challenges in Building ML-Enabled Systems: Communication, Documenta-
tion, Engineering, and Process. Organization 1, 2 (2022), 3.

Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast,
Eli Rademacher, Tien N Nguyen, and Danny Dig. 2016. API code recommendation
using statistical learning from fine-grained changes. In SIGSOFT. 511-522.
Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas
Degueule, and Massimiliano Di Penta. 2019. Focus: A recommender system
for mining api function calls and usage patterns. In ICSE. 1050-1060.

Sejoon Oh, Ankur Bhardwaj, Jongseok Han, Sungchul Kim, Ryan A Rossi, and
Srijan Kumar. 2022. Implicit Session Contexts for Next-Item Recommendations.
In CIKM. 4364-4368.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. NIPS 32.
Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAIL 452-
461.

Walid Shalaby, Sejoon Oh, Amir Afsharinejad, Srijan Kumar, and Xiquan Cui.
2022. M2TRec: Metadata-aware Multi-task Transformer for Large-scale and
Cold-start free Session-based Recommendations. In RecSys. 573-578.

Huajie Shao, Dachun Sun, Jiahao Wu, Zecheng Zhang, Aston Zhang, Shuochao
Yao, Shengzhong Liu, Tianshi Wang, Chao Zhang, and Tarek Abdelzaher. 2020.
paper2repo: GitHub repository recommendation for academic papers. In WWW.
629-639.

Kartik Sharma, Yeon-Chang Lee, Sivagami Nambi, Aditya Salian, Shlok Shah,
Sang-Wook Kim, and Srijan Kumar. 2022. A Survey of Graph Neural Networks
for Social Recommender Systems. arXiv preprint arXiv:2212.04481 (2022).
Nitish Srivastava and Russ R Salakhutdinov. 2012. Multimodal learning with
deep boltzmann machines. NIPS.

Igor Steinmacher, Ana Paula Chaves, Tayana Uchoa Conte, and Marco Aurélio
Gerosa. 2014. Preliminary empirical identification of barriers faced by newcomers
to Open Source Software projects. In SBES. 51-60.

Petar Veli¢kovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

Rahul Venkataramani, Atul Gupta, Allahbaksh Asadullah, Basavaraju Muddu,
and Vasudev Bhat. 2013. Discovery of technical expertise from open source code
repositories. In WWW. 97-98.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S Yu. 2018. Improving automatic source code summarization via deep
reinforcement learning. In ASE. 397-407.

Haonan Wang, Jieyu Zhang, Qi Zhu, and Wei Huang. 2022. Augmentation-free
graph contrastive learning. arXiv preprint arXiv:2204.04874 (2022).

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In SIGIR. 165-174.

Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu,
Xiangnan He, and Tat-Seng Chua. 2021. Learning intents behind interactions
with knowledge graph for recommendation. In WWW. 878-887.

Xiting Wang, Kunpeng Liu, Dongjie Wang, Le Wu, Yanjie Fu, and Xing Xie. 2022.
Multi-level recommendation reasoning over knowledge graphs with reinforce-
ment learning. In WWW. 2098-2108.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2020. Transformers: State-of-the-art natural language processing. In EMNLP.
38-45.

https://octoverse.github.com/2016/
https://github.com/collections/programming-languages
https://github.com/collections/programming-languages
https://github.com/search

WWW ’23, April 30-May 4, 2023, Austin, TX, USA

[57] Junfei Wu, Weizhi Xu, Qiang Liu, Shu Wu, and Liang Wang. 2022. Adversarial
Contrastive Learning for Evidence-aware Fake News Detection with Graph
Neural Networks. arXiv preprint arXiv:2210.05498 (2022).

[58] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019.
A neural influence diffusion model for social recommendation. In SIGIR. 235-244.

[59] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In AAAI Vol. 33.
346-353.

[60] Wenxin Xiao, Hao He, Weiwei Xu, Xin Tan, Jinhao Dong, and Minghui Zhou. 2022.
Recommending good first issues in GitHub OSS projects. In ICSE. 1830-1842.

[61] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks?. In ICLR.

[62] Wenyuan Xu, Xiaobing Sun, Xin Xia, and Xiang Chen. 2017. Scalable relevant

project recommendation on GitHub. In Internetware. 1-10.

Weizhi Xu, Junfei Wu, Qiang Liu, Shu Wu, and Liang Wang. 2022. Mining Fine-

grained Semantics via Graph Neural Networks for Evidence-based Fake News

Detection. arXiv preprint arXiv:2201.06885 (2022).

[64] Yichen Xu and Yangiao Zhu. 2022. A Survey on Pretrained Language Models for
Neural Code Intelligence. arXiv.org (Dec. 2022). arXiv:2212.10079v1 [cs.SE]

[65] Cong Yan and Yeye He. 2020. Auto-suggest: Learning-to-recommend data prepa-
ration steps using data science notebooks. In SIGMOD. 1539-1554.

[66] Ruichao Yang, Xiting Wang, Yiqiao Jin, Chaozhuo Li, Jianxun Lian, and Xing
Xie. 2022. Reinforcement Subgraph Reasoning for Fake News Detection. In KDD.
2253-2262.

[67] Yunwen Ye and Kouichi Kishida. 2003. Toward an understanding of the motivation

of open source software developers. In ICSE. 419-429.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In KDD. 974-983.

[69] Xueli Yu, Weizhi Xu, Zeyu Cui, Shu Wu, and Liang Wang. 2021. Graph-based
Hierarchical Relevance Matching Signals for Ad-hoc Retrieval. In WWW. 778-
787.

[70] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recommenda-
tion for pull-requests in GitHub: What can we learn from code review and bug
assignment? Information and Software Technology 74 (2016), 204-218.

[71] Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian. 2019. Deep modular
co-attention networks for visual question answering. In CVPR. 6281-6290.

[72] Fajie Yuan, Xiangnan He, Haochuan Jiang, Guibing Guo, Jian Xiong, Zhezhao

Xu, and Yilin Xiong. 2020. Future data helps training: Modeling future contexts

for session-based recommendation. In WWW. 303-313.

Jinghao Zhang, Yanqiao Zhu, Qiang Liu, Shu Wu, Shuhui Wang, and Liang Wang.

2021. Mining Latent Structures for Multimedia Recommendation. In ACM MM.

3872-3880.

[74] Yu Zhang, Frank F Xu, Sha Li, Yu Meng, Xuan Wang, Qi Li, and Jiawei Han. 2019.
Higitclass: Keyword-driven hierarchical classification of github repositories. In
ICDM. 876-885.

[75] Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye.
2021. Heterogeneous graph structure learning for graph neural networks. In
AAAL Vol. 35. 4697-4705.

[76] Jianan Zhao, Qianlong Wen, Shiyu Sun, Yanfang Ye, and Chuxu Zhang. 2021.
Multi-view Self-supervised Heterogeneous Graph Embedding. In ECML-PKDD.
319-334.

[77] Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, and Yong Li. 2021. DGCN: Diversi-
fied Recommendation with Graph Convolutional Networks. In WWW. 401-412.

[78] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin. 2021.
Disentangling user interest and conformity for recommendation with causal
embedding. In WWW. 2980-2991.

[79] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. 2014. Patterns of folder use and
project popularity: A case study of GitHub repositories. In ESEM. 1-4.

[80] Yangiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang.
2021. Deep graph structure learning for robust representations: A survey. arXiv
preprint arXiv:2103.03036 (2021).

[81] Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph contrastive learning with adaptive augmentation. In WWW. 2069-2080.

[63

=
&

[73

A DATASETS

We categorized the open source projects in our dataset using their
GitHub topics. The topics used in each dataset are shown in Tab. 4.

B IMPLEMENTATION DETAILS

To derive C in Sec. 3.1.1, we first convert the source code into a
set of tokens, then partition them into code segments with equal
number of tokens. As the source code is first tokenized and then

Jinetal.

Table 4: GitHub topics used during the construction of each
dataset.

Dataset Topics
computer-vision, data-science, @deep-learning,
ML machine-learning, neural-network,
pytorch, tensorflow
S angular, css, html, javascript, js,
nodejs, react, reactjs, vue, vuejs
DB database, graphqgl, mongodb, mysql, sql

partitioned at the token level, our partitioning scheme will not
partition meaningful tokens in the middle. For example, if “def” is
a meaningful token, our method will make sure that the token will
not be split into multiple parts such as “de” and “f”.

Next, we encode the tokens using CodeBERT. Each token pro-
duces a token-level representation. For each code segment c;, we
perform max pooling on all of its token representations to derive
c;. We use CodeBERT to encode files written in all programming
languages (PL) as well as natural language (NL), as CodeBERT is
able to generalize to a wide range of programming languages and
shows outstanding performances on NL-PL tasks. As CodeBERT
learns general-purpose code representations for both natural lan-
guage (NL) and programming languages (PL), CodeBERT is suitable
for encoding the rich natural language clues in OSS projects in-
cluding the README file, which contains frequent context-switching
between NL and PL.

https://arxiv.org/abs/2212.10079v1

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 GitHub
	2.2 Problem Formulation

	3 Methodology
	3.1 Node Semantics Modeling
	3.2 Multi-behavioral Modeling
	3.3 Prediction
	3.4 Optimization
	3.5 Complexity Analysis

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance

	5 Related Work
	5.1 Research in Open Source Code
	5.2 Recommender Systems

	6 Conclusion and Future Works
	Acknowledgments
	References
	A Datasets
	B Implementation Details

