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ABSTRACT
Transparency and accountability have become major concerns

for black-box machine learning (ML) models. Proper explanations

for the model behavior increase model transparency and help re-

searchers developmore accountablemodels. Graph neural networks

(GNN) have recently shown superior performance in many graph

ML problems than traditional methods, and explaining them has

attracted increased interest. However, GNN explanation for link

prediction (LP) is lacking in the literature. LP is an essential GNN

task and corresponds to web applications like recommendation and

sponsored search on web. Given existing GNN explanation meth-

ods only address node/graph-level tasks, we propose Path-based

GNN Explanation for heterogeneous Link prediction (PaGE-Link)
that generates explanations with connection interpretability, enjoys
model scalability, and handles graph heterogeneity. Qualitatively,
PaGE-Link can generate explanations as paths connecting a node

pair, which naturally captures connections between the two nodes

and easily transfer to human-interpretable explanations. Quanti-

tatively, explanations generated by PaGE-Link improve AUC for

recommendation on citation and user-item graphs by 9 - 35% and

are chosen as better by 78.79% of responses in human evaluation.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Mathe-
matics of computing → Graph algorithms.

KEYWORDS
Model Transparency, Model Explanation, Graph Neural Networks,

Link Prediction
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1 INTRODUCTION
Transparency and accountability are significant concerns when re-

searchers advance black-box machine learning (ML) models [19, 35].

Good explanations of model behavior improve model transparency.

For end users, explanations make them trust the predictions and in-

crease their engagement and satisfaction [1, 10]. For researchers and

developers, explanations enable them to understand the decision-

making process and create accountable ML models. Graph Neural

Networks (GNNs) [43, 55] have recently achieved state-of-the-art

performance on many graph ML tasks and attracted increased in-

terest in studying their explainability [25, 45, 47, 52]. However, to

our knowledge, GNN explanation for link prediction (LP) is missing

in the literature. LP is an essential task of many vital Web applica-

tions like recommendation [26, 42, 49] and sponsored search [9, 20].

GNNs are widely used to solve LP problems [50, 56], and generating

good GNN explanations for LP will benefit these applications, e.g.,

increasing user satisfaction with recommended items.

Existing GNN explanation methods have addressed node/graph-

level tasks on homogeneous graphs. Given a data instance, most

methods generate an explanation by learning a mask to select an

edge-induced subgraph [25, 45] or searching over the space of sub-

graphs [48]. However, explaining GNNs for LP is a new and more

challenging task. Existing node/graph-level explanation methods

do not generalize well to LP for three challenges. 1) Connection
Interpretability: LP involves a pair of the source node and the target

node rather than a single node or graph. Desired interpretable ex-

planations for a predicted link should reveal connections between

the node pair. Existing methods generate subgraphs with no format

constraints, so they are likely to output subgraphs disconnected

from the source, the target, or both. Without revealing connections

between the source and the target, these subgraph explanations

are hard for humans to interpret and investigate. 2) Scalability:
For LP, the number of edges involved in GNN computation almost
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user1 bought item2, and item2 shares attribute1 as item1

user1 and user2 both bought item3, and user2 bought item1

Figure 1: Given a GNN model and a predicted link (𝑢1, 𝑖1)
(dashed red) on a heterogeneous graph of user 𝑢, item 𝑖, and
attribute 𝑎 (left). PaGE-Link generates two path explanations
(green arrows). Interpretations illustrated on the right.

grows from 𝑚 to ∼2𝑚 compared to the node prediction task be-

cause neighbors of both the source and the target are involved.

Since most existing methods consider all (edge-induced) subgraphs,

the increased edges will scale the number of subgraph candidates

by a factor of 𝑂 (2𝑚), which makes finding the optimal subgraph

explanation much harder. 3) Heterogeneity: Practical LP is often

on heterogeneous graphs with rich node and edge types, e.g., a

graph for recommendations can have user->buys->item edges and

item->has->attribute edges, but existing methods only work for

homogeneous graphs.

In light of the importance and challenges of GNN explanation

for LP, we formulate it as a post hoc and instance-level explanation

problem and generate explanations for it in the form of important

paths connecting the source node and the target node. Paths have

played substantial roles in graph ML and are the core of many non-

GNN LPmethods [15, 16, 21, 36]. Paths as explanations can solve the

connection interpretability and scalability challenges. Firstly, paths

connecting two nodes naturally explain connections between them.

Figure 1 shows an example on a graph for recommendations. Given

a GNN and a predicted link between user 𝑢1 and item 𝑖1, human-

interpretable explanations may be based on the user’s preference

of attributes (e.g., user 𝑢1 bought item 𝑖2 that shared the same

attribute 𝑎1 as item 𝑖1) or collaborative filtering (e.g, user 𝑢1 had

a similar preference as user 𝑢2 because they both bought item

𝑖3 and user 𝑢2 bought item 𝑖1, so that user 𝑢1 would like item

𝑖1). Both explanations boil down to paths. Secondly, paths have

a considerably smaller search space than general subgraphs. As

we will see in Proposition 4.1, compared to the expected number

of edge-induced subgraphs, the expected number of paths grows

strictly slower and becomes negligible. Therefore, path explanations

exclude many less-meaningful subgraph candidates, making the

explanation generation much more straightforward and accurate.

To this end, we propose Path-based GNN Explanation for het-

erogeneous Link prediction (PaGE-Link), which achieves a better

explanation AUC and scales linearly in the number of edges (see

Figure 2). We first perform k-core pruning [2] to help find paths and
improve scalability. Then we do heterogeneous path-enforcing mask

learning to determine important paths, which handles heterogene-

ity and enforces the explanation edges to form paths connecting

source to target. In summary, the contributions of our method are:

• Connection Interpretability: PaGE-Link produces more inter-

pretable explanations in path forms and quantitatively improves

explanation AUC over baselines.

0.35
0.09

Figure 2: (a) PaGE-Link outperforms GNNExplainer and PG-
Explainer in terms of explanation AUC on the citation
graph and the user-item graph. (b) The running time of
PaGE-Link scales linearly in the number of graph edges.

• Scalability: PaGE-Link reduces the explanation search space by

magnitudes from subgraph finding to path finding and scales

linearly in the number of graph edges.

• Heterogeneity: PaGE-Linkworks on heterogeneous graphs and
leverages edge-type information to generate better explanations.

2 RELATEDWORK
We review relevant research on (a) GNNs (b) GNN explanation (c)

recommendation explanation and (d) paths for LP. We summarize

the properties of PaGE-Link vs. representative methods in Table 1.

GNNs. GNNs are a family of ML models on graphs [17, 38, 44].

They take graph structure and node/edge features as input and out-

put node representations by transforming and aggregating features

of nodes’ (multi-hop) neighbors. The node representations can be

used for LP and achieved great results on LP applications [7, 26, 42,

49–51, 54]. We review GNN-based LP models in Section 3.

GNN explanation. GNN explanation was studied for node and

graph classification, where the explanation is defined as an impor-

tant subgraph. Existing methods majorly differ in their definition

of importance and subgraph selection methods. GNNExplainer [45]

selects edge-induced subgraphs by learning fully parameterized

masks on graph edges and node features, where the mutual infor-

mation (MI) between the masked graph and the prediction made

with the original graph is maximized. PGExplainer [25] adopts the

same MI importance but trains a mask predictor to generate a dis-

crete mask instead. Other popular importance measures are game

theory values. SubgraphX [48] uses the Shapley value [34] and per-

forms Monte Carlo Tree Search (MCTS) on subgraphs. GStarX [52]

uses a structure-aware HN value [8] to measure the importance of

nodes and generates the important-node-induced subgraph. There

are more studies from other perspectives that are less related to

this work, i.e., surrogate models [12, 39], counterfactual explana-

tions [24], and causality [22, 23], for which [46] provides a good

review. While these methods produce subgraphs as explanations,

what makes a good explanation is a complex topic, especially how

to meet “stakeholders’ desiderata” [18]. Our work differs from all

above since we focus on a new task of explaining heterogeneous LP,

and we generate paths instead of unrestricted subgraphs as explana-

tions. The interpretability of paths makes our method advantaged

especially when stakeholders have less ML background.
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Table 1:Methods and desired explanation properties. A ques-
tion mark (?) means “unclear”, or “maybe, after non-trivial
extensions”. "Rec. Exp." stands for the general recommenda-
tion explanation methods.

Methods G
N
N
E
x
p
[
4
5
]

P
G
E
x
p
[
2
5
]

S
u
b
g
r
a
p
h
X

[
4
8
]

J
-
R
E
C
S
[
2
8
]

P
R
I
N
C
E
[
6
]

R
e
c
.
E
x
p
.
[
5
3
]

P
a
G
E
-
L
i
n
k

On Graphs ✓ ✓ ✓ ✓ ✓ ? ✓
Explains GNN ✓ ✓ ✓ ✓
Explains LP ? ? ? ✓ ✓ ✓ ✓
Connection ? ? ? ✓
Scalability ✓ ✓ ✓ ? ? ✓
Heterogeneity ✓ ✓ ✓ ? ✓

Recommendation explanation. This line of works explains why a

recommendation is made [53]. J-RECS [28] generates recommen-

dation explanations on product graphs using a justification score

that balances item relevance and diversity. PRINCE [6] produces

end-user explanations as a set of minimal actions performed by the

user on graphs with users, items, reviews, and categories. The set

of actions is selected using counterfactual evidence. Typically, rec-

ommendations on graphs can be formalized as an LP task. However,

the recommendation explanation problem differs from explaining

GNNs for LP because the recommendation data may not be graphs,

and the models to be explained are primarily not GNN-based [40].

GNNs have their unique message passing procedure, and GNN-

based LP corresponds to more general applications beyond rec-

ommendation, e.g., drug repurposing [13], and knowledge graph

completion [3, 27]. Thus, recommendation explanation is related

to but not directly comparable to GNN explanation.

Paths. Paths are important in graph ML, and many LP meth-

ods are path-based, such as graph distance [21], Katz index [16],

SimRank [15], and PathSim [36]. Paths have also been used to cap-

ture the relationship between a pair of nodes. For example, the

“connection subgraphs” [5] find paths between the source and the

target based on electricity analogs. In general, although black-box

GNNs recently outperform path-based methods in LP accuracy, we

embrace paths for their interpretability for LP explanation.

3 NOTATIONS AND PRELIMINARY
In this section, we define necessary notations, summarize them in

Table 2, and review the GNN-based LP models.

Definition 3.1. A heterogeneous graph is defined as a directed

graph G = (V, E) associated with a node type mapping function

𝜙 : V → A and an edge type mapping function 𝜏 : E → R. Each
node 𝑣 ∈ V belongs to one node type 𝜙 (𝑣) ∈ A and each edge

𝑒 ∈ E belongs to one edge type 𝜏 (𝑒) ∈ R.

Let Φ(·, ·) denote a trained GNN-based model for predicting the

missing links in G, where a prediction 𝑌 = Φ(G, (𝑠, 𝑡)) denotes
the predicted link between a source node 𝑠 and a target node 𝑡 .

The model Φ learns a conditional distribution 𝑃Φ (𝑌 |G, (𝑠, 𝑡)) of
the binary random variable 𝑌 . The commonly used GNN-based LP

models [50, 54, 56] involve two steps. The first step is to generate

Table 2: Notation table

Notation Definition and description

G = (V, E) a heterogeneous graph G, node set V , and edge set E
𝜙 : V → A a node type mapping function

𝜏 : E → R an edge type mapping function

𝐷𝑣 the degree of node 𝑣 ∈ V
E𝑟

edges with type 𝑟 ∈ R, i.e., E𝑟 = {𝑒 ∈ E |𝜏 (𝑒) = 𝑟 }
Φ( ·, ·) the GNN-based LP model to explain

(𝑠, 𝑡 ) the source and target node for the predicted link

𝒉𝑠 & 𝒉𝑡 the node representations for 𝑠 & 𝑡

𝑌 = Φ(G, (𝑠, 𝑡 )) the link prediction of the node pair (𝑠, 𝑡 )
G𝑐 = (V𝑐 , E𝑐 ) the computation graph, i.e., L-hop ego-graph of (𝑠, 𝑡 )

node representations (𝒉𝑠 ,𝒉𝑡 ) of (𝑠, 𝑡) with an 𝐿-hop GNN encoder.

The second step is to apply a prediction head on (𝒉𝑠 ,𝒉𝑡 ) to get the

prediction of 𝑌 . An example prediction head is an inner product.

To explain Φ(G, (𝑠, 𝑡)) with an 𝐿-Layer GNN encoder, we restrict

to the computation graph G𝑐 = (V𝑐 , E𝑐 ). G𝑐 is the 𝐿-hop ego-graph

of the predicted pair (𝑠, 𝑡), i.e., the subgraph with node set V𝑐 =

{𝑣 ∈ 𝑉 |𝑑𝑖𝑠𝑡 (𝑣, 𝑠) ≤ 𝐿 or 𝑑𝑖𝑠𝑡 (𝑣, 𝑡) ≤ 𝐿}. It is called a computation

graph because the 𝐿-layer GNN only collects messages from the 𝐿-

hop neighbors of 𝑠 and 𝑡 to compute 𝒉𝑠 and 𝒉𝑡 . The LP result is thus

fully determined by G𝑐 , i.e., Φ(G, (𝑠, 𝑡)) ≡ Φ(G𝑐 , (𝑠, 𝑡)). Figure 3b
shows a 2-hop ego-graph of𝑢1 and 𝑖1, where𝑢3 and 𝑎

1

3
are excluded

since they are more than 2 hops away from either 𝑢1 or 𝑖1.

4 PROPOSED PROBLEM FORMULATION:
LINK-PREDICTION EXPLANATION

In this work, we address a post hoc and instance-level GNN explana-

tion problem. The post hoc means the modelΦ(·, ·) has been trained.
To generate explanations, we won’t change its architecture or pa-

rameters. The instance level means we generate an explanation for

the prediction of each instance (𝑠, 𝑡). Specifically, the explanation
method answers the question of why a missing link is predicted

by Φ(·, ·). In a practical web recommendation system, this question

can be “why an item is recommended to a user by the model”.
An explanation for a GNN prediction should be some substruc-

ture in G𝑐 , and it should also be concise, i.e., limited by a size budget

𝐵. This is because an explanation with a large size is often neither

informative nor interpretable, for example, an extreme case is that

G𝑐 could be a non-informative explanation for itself. Also, a fair

comparison between different explanations should consume the

same budget. In the following, we define budget 𝐵 as the maximum

number of edges included in the explanation.

We list three desirable properties for a GNN explanation method

on heterogeneous LP: capturing the connection between the source

node and the target node, scalable to large graphs, and addressing

graph heterogeneity. Using a path-based method inherently pos-

sesses all the properties. Paths capture the connection between a

pair of nodes and can be transferred to human-interpretable expla-

nations. Besides, the search space of paths with the fixed source

node and the target node is greatly reduced compared to edge-

induced subgraphs. Given the ego-graph G𝑐 of 𝑠 and 𝑡 , the number

of paths between 𝑠 and 𝑡 and the number of edge-induced sub-

graphs in G𝑐 both rely on the structure of G𝑐 . However, they can
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(a) A GNN predicted link
(𝑢1, 𝑖1) (dashed red) that needs
explanation.
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(b) Extract 2-hop ego-graph of (𝑢1, 𝑖1) excluding 𝑢3 and 𝑎1
3

(black box). Then prune it to get the k-core excluding 𝑖5,
𝑎2
1
, and 𝑎2

2
(orange box).

Path-enforcing 
mask learning
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(c) Human-interpretable path explanations
(𝑢1, 𝑖2, 𝑎1

1
, 𝑖1) and (𝑢1, 𝑖3,𝑢2, 𝑖1) (green arrows)

that capture the connection between 𝑢1 and 𝑖1.

Figure 3: PaGE-Link on a graph with user nodes 𝑢, item nodes 𝑖, and two attribute types 𝑎1 and 𝑎2. (Best viewed in color.)

be estimated using random graph approximations. The next propo-

sition on random graphs shows that the expected number of paths

grows strictly slower than the expected number of edge-induced

subgraphs as the random graph grows. Also, the expected number

of paths becomes insignificant for large graphs.

Proposition 4.1. Let G(𝑛,𝑑) be a random graph with n nodes and
density d, i.e., there are𝑚 = 𝑑

(𝑛
2

)
edges chosen uniformly randomly

from all node pairs. Let 𝑍𝑛,𝑑 be the expected number of paths between
any pair of nodes. Let 𝑆𝑛,𝑑 be the expected number of edge-induced

subgraphs. Then 𝑍𝑛,𝑑 = 𝑜 (𝑆𝑛,𝑑 ), i.e., lim𝑛→∞
𝑍𝑛,𝑑

𝑆𝑛,𝑑
= 0.

Proof. In Appendix A. ■

Paths are also a natural choice for LP explanations on heteroge-

neous graphs. On homogeneous graphs, features are important for

prediction and explanation. A 𝑠-𝑡 link may be predicted because

of the feature similarity of node 𝑠 and node 𝑡 . However, the het-

erogeneous graphs we focus on, as defined in Definition 3.1, often

do not store feature information but explicitly model it using new

node and edge types. For example, for the heterogeneous graph

in Figure 3a, instead of making it a user-item graph and assigning

each item node a two-dimensional feature with attributes 𝑎1 and 𝑎2,

the attribute nodes are explicitly created and connected to the item

nodes. Then an explanation like “𝑖1 and 𝑖2 share node feature 𝑎
1

1
”

on a homogeneous graph is transferred to “𝑖1 and 𝑖2 are connected

through the attribute node 𝑎1
1
” on a heterogeneous graph.

Given the advantages of paths over general subgraphs on con-

nection interpretability, scalability, and their capability to capture

feature similarity on heterogeneous graphs, we use paths to explain

GNNs for heterogeneous LP. Our design principle is that a good

explanation should be concise and informative, so we define the

explanation to contain only short paths without high-degree nodes.
Long paths are less desirable since they could correspond to unnec-

essarily complicated connections, making the explanation neither

concise nor convincing. For example, in Figure 3c, the long path

(𝑢1, 𝑖3, 𝑎1
2
, 𝑖2, 𝑎

1

1
, 𝑖1) is not ideal since it takes four hops to go from

item 𝑖3 to the item 𝑖1, making it less persuasive to be interpreted

as “item1 and item3 are similar so item1 should be recommended”.

Paths containing high-degree nodes are also less desirable because

high-degree nodes are often generic, and a path going through them

is not as informative. In the same figure, all paths containing node

𝑎1
2
are less desirable because 𝑎1

2
has a high degree and connects to

all the items in the graph. A real example of a generic attribute is

the attribute “grocery” connecting to both “vanilla ice cream” and

“vanilla cookie”. When “vanilla ice cream” is recommended to a per-

son who bought “vanilla cookie”, explaining this recommendation

with a path going through “grocery” is not very informative since

“grocery” connects many items. In contrast, a good informative path

explanation should go through the attribute “vanilla”, which only

connects to vanilla-flavored items and has a much lower degree.

We formalize the GNN explanation for heterogeneous LP as:

Problem 4.2. Generating path-based explanations for a predicted

link between node 𝑠 and 𝑡 :

• Given
– a trained GNN-based LP model Φ(·, ·),
– a heterogeneous computation graph G𝑐 of 𝑠 and 𝑡 ,

– a budget 𝐵 of the maximum number of edges in the explanation,

• Find an explanation P = { 𝑝 |𝑝 is a 𝑠-𝑡 path with maximum length

𝑙𝑚𝑎𝑥 and degree of each node less than 𝐷𝑚𝑎𝑥 }, |P |𝑙𝑚𝑎𝑥 ≤ 𝐵,

• By optimizing 𝑝 ∈ P to be influential to the prediction, concise,

and informative.

5 PROPOSED METHOD: PAGE-LINK
This section details PaGE-Link. PaGE-Link has two modules: (i) a

𝑘-core pruning module to eliminate spurious neighbors and im-

prove speed, and (ii) a heterogeneous path-enforcing mask learning

module to identify important paths. An illustration is in Figure 3.

5.1 The k-core Pruning
The 𝑘-core pruning module of PaGE-Link reduces the complexity of

G𝑐 . The𝑘-core of a graph is defined as the uniquemaximal subgraph

with a minimum node degree 𝑘 [2]. We use the superscript 𝑘 to

denote the 𝑘-core, i.e., G𝑘
𝑐 = (E𝑘

𝑐 ,V𝑘
𝑐 ) for the 𝑘-core of G𝑐 . The

𝑘-core pruning is a recursive algorithm that removes nodes 𝑣 ∈ V
such that their degrees 𝐷𝑣 < 𝑘 , until the remaining subgraph only

has nodes with 𝐷𝑣 ≥ 𝑘 , which gives the 𝑘-core. The difference

in nodes between a (𝑘 + 1)-core and a 𝑘-core is called the 𝑘-shell.

The nodes in the orange box of Figure 3b is an example of a 2-

core pruned from the 2-hop ego-graph, where node 𝑎2
1
and 𝑎2

2
are

pruned in the first iteration because they are degree one. Node 𝑖5
is recursively pruned because it becomes degree one after node 𝑎2

2
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is pruned. All those three nodes belong to the 1-shell. We perform

𝑘-core pruning to help path finding because the pruned 𝑘-shell

nodes are unlikely to be part of meaningful paths when 𝑘 is small.

For example, the 1-shell nodes are either leaf nodes or will become

leaf nodes during the recursive pruning, which will never be part

of a path unless 𝑠 or 𝑡 are one of these 1-shell nodes. The 𝑘-core

pruning module in PaGE-Link is modified from the standard 𝑘-core

pruning by adding a condition of never pruning 𝑠 and 𝑡 .

The following theorem shows that for a random graph G(𝑛,𝑑),
𝑘-core will reduce the expected number of nodes by a factor of

𝛿V (𝑛,𝑑, 𝑘) and reduce the expected number of edges by a factor of

𝛿E (𝑛,𝑑, 𝑘). Both factors are functions of 𝑛, 𝑑 , and 𝑘 . We defer the

exact expressions of these two factors in Appendix B, since they are

only implicitly defined based on Poisson distribution. Numerically,

for a random G(𝑛,𝑑) with average node degree 𝑑 (𝑛 − 1) = 7, its

5-core has 𝛿V (𝑛,𝑑, 5) and 𝛿E (𝑛,𝑑, 5) both ≈ 0.69.

Theorem 5.1 (Pittel, Spencer and Wormald [29]). Let G(𝑛,𝑑) be
a random graph with𝑚 edges as in Proposition 4.1. Let G𝑘 (𝑛,𝑑) =
(V𝑘 (𝑛,𝑑), E𝑘 (𝑛,𝑑)) be the nonempty𝑘-core ofG(𝑛,𝑑). ThenG𝑘 (𝑛,𝑑)
contain𝛿V (𝑛,𝑑, 𝑘)𝑛 nodes and𝛿E (𝑛,𝑑, 𝑘)𝑚 edges with high probabil-

ity for large n, i.e., |V𝑘 (𝑛,𝑑) |/𝑛
𝑝
−→ 𝛿V (𝑛,𝑑, 𝑘) and |E𝑘 (𝑛,𝑑) |/𝑚

𝑝
−→

𝛿E (𝑛,𝑑, 𝑘) (
𝑝
−→ stands for convergence in probability).

Proof. Please refer to Appendix B and [29]. ■

The 𝑘-core pruning helps reduce the graph complexity and ac-

celerates path finding. One concern is whether it prunes too much

and disconnects 𝑠 and 𝑡 . We found that such a situation is very

unlikely to happen in practice. To be specific, we focus on explain-

ing positively predicted links, e.g. why an item is recommended to

a user by the model. Negative predictions, e.g., why an arbitrary

item is not recommended to a user by the model, are less useful in

practice and thus not in the scope of our explanation. (𝑠, 𝑡) node
pairs are usually connected by many paths in a practical G [41],

and positive link predictions are rarely made between disconnected

or weakly-connected (𝑠, 𝑡). Empirically, we observe that there are

usually too many paths connecting a positively predicted (𝑠, 𝑡) in-
stead of no paths, even in the 𝑘-core. Therefore, an optional step to

enhance pruning is to remove nodes with super-high degrees. As

we discussed in Section 4, high-degree nodes are often generic and

less informative. Removing them can be a complement to k-core to

further reduce complexity and improve path quality.

5.2 Heterogeneous Path-Enforcing Mask
Learning

The second module of PaGE-Link learns heterogeneous masks to

find important path-forming edges. We perform mask learning

to select edges from the 𝑘-core-pruned computation graph. For

notation simplicity in this section, we use G = (V, E) to denote

the graph for mask learning to save superscripts and subscripts, and

G𝑘
𝑐 is the actual graph in the complete version of our algorithm.

The idea is to learn a mask over all edges of all edge types to

select the important edges. Let E𝑟 = {𝑒 ∈ E|𝜏 (𝑒) = 𝑟 } be edges
with type 𝑟 ∈ R. Let M = {M𝑟 } |R |

𝑟=1
be learnable masks of all edge

types, with M𝑟 ∈ R |E𝑟 |
corresponds type 𝑟 . We denote applying

M𝑟
on its corresponding edge type by E𝑟 ⊙ 𝜎 (M𝑟 ), where 𝜎 is the

sigmoid function, and ⊙ is the element-wise product. Similarly, we

also overload the notation ⊙ to indicate applying the set of masks

on all types of edges, i.e., E ⊙ 𝜎 (M) = ∪𝑟 ∈R {E𝑟 ⊙ 𝜎 (M𝑟 )}. We

call the graph with the edge set E ⊙ 𝜎 (M) a masked graph. Apply-
ing a mask on graph edges will change the edge weights, which

makes GNNs pass more information between nodes connected by

highly-weighted edges and less on others. The general idea of mask

learning is to learn anM that produces high weights for important

edges and low weights for others. To learn an M that better fits

the LP explanation, we measure edge importance from two per-

spectives: important edges should be both influential for the model

prediction and form meaningful paths. Below, we introduce two

loss terms L𝑝𝑟𝑒𝑑 and L𝑝𝑎𝑡ℎ for achieving these two measurements.

L𝑝𝑟𝑒𝑑 is to learn to select influential edges for model prediction.

The idea is to do a perturbation-based explanation, where parts of

the input are considered important if perturbing them changes the

model prediction significantly. In the graph sense, if removing an

edge 𝑒 significantly influences the prediction, then 𝑒 is a critical

counterfactual edge that should be part of the explanation. This idea

can be formalized as maximizing the mutual information between

the masked graph and the original graph prediction 𝑌 , which is

equivalent to minimizing the prediction loss

L𝑝𝑟𝑒𝑑 (M) = − log 𝑃Φ (𝑌 = 1|G = (V, E ⊙ 𝜎 (M)), (𝑠, 𝑡)). (1)

L𝑝𝑟𝑒𝑑 (M) has a straightforwardmeaning, which says themasked

subgraph should provide enough information for predicting the

missing link (𝑠, 𝑡) as the whole graph. Since the original prediction
is a constant,L𝑝𝑟𝑒𝑑 (M) can also be interpreted as the performance

drop after the mask is applied to the graph. A well-masked graph

should give a minimum performance drop. Regularizations of the

mask entropy and mask norm are often included in L𝑝𝑟𝑒𝑑 (M) to
encourage the mask to be discrete and sparse.

L𝑝𝑎𝑡ℎ is the loss term for M to learn to select path-forming

edges. The idea is to first identify a set of candidate edges denoted

by E𝑝𝑎𝑡ℎ (specified below), where these edges can form concise

and informative paths, and then optimize L𝑝𝑎𝑡ℎ (M) to enforce

the mask weights for 𝑒 ∈ E𝑝𝑎𝑡ℎ to increase and mask weights for

𝑒 ∉ E𝑝𝑎𝑡ℎ to decrease. We considered a weighted average of these

two forces balanced by hyperparameters 𝛼 and 𝛽 ,

L𝑝𝑎𝑡ℎ (M) = −
∑︁
𝑟 ∈R

(𝛼
∑︁

𝑒∈E𝑝𝑎𝑡ℎ

𝜏 (𝑒)=𝑟

M𝑟
𝑒 − 𝛽

∑︁
𝑒∈E,𝑒∉E𝑝𝑎𝑡ℎ

𝜏 (𝑒)=𝑟

M𝑟
𝑒 ) . (2)

The key question for computing L𝑝𝑎𝑡ℎ (M) is to find a good

E𝑝𝑎𝑡ℎ containing edges of concise and informative paths. As in

Section 4, paths with these two desired properties should be short

and without high-degree generic nodes. We thus define a score

function of a path 𝑝 reflecting these two properties as below

𝑆𝑐𝑜𝑟𝑒 (𝑝) = log

∏
𝑒∈𝑝

𝑒=(𝑢,𝑣)

𝑃 (𝑒)
𝐷𝑣

=
∑︁
𝑒∈𝑝

𝑒=(𝑢,𝑣)

𝑆𝑐𝑜𝑟𝑒 (𝑒), (3)

𝑆𝑐𝑜𝑟𝑒 (𝑒) = log𝜎 (M𝜏 (𝑒)
𝑒 ) − log(𝐷𝑣). (4)

In this score function,M gives the probability of 𝑒 to be included

in the explanation, i.e., 𝑃 (𝑒) = 𝜎 (M𝜏 (𝑒)
𝑒 ). To get the importance

of a path, we first use a mean-field approximation for the joint

probability by multiplying 𝑃 (𝑒) together, and we normalize each
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Algorithm 1 PaGE-Link

Input: heterogeneous graph G, trained GNN-based LP model

Φ(·, ·), predicted link (𝑠, 𝑡), size budget 𝐵, k for k-core, hyperpa-

rameters 𝛼 and 𝛽 , learning rate 𝜂, maximum iterations 𝑇 .

Output: Explanation as a set of paths P.

Extract the computation graph G𝑐 ;

Prune G𝑐 for the k-core G𝑘
𝑐 ;

Initialize M (0)
;

𝑡 = 0;

while M (𝑡 )
not converge and 𝑡 < 𝑇 do

Compute L𝑝𝑟𝑒𝑑 (M (𝑡 ) ); ⊲ Eq.(1)

Compute 𝑆𝑐𝑜𝑟𝑒 (𝑒) for each edge 𝑒; ⊲ Eq.(4)

Construct E𝑝𝑎𝑡ℎ by finding shortest paths on G𝑘
𝑐 with edge

distance −𝑆𝑐𝑜𝑟𝑒 (𝑒);
Compute L𝑝𝑎𝑡ℎ (M (𝑡 ) ) according to E𝑝𝑎𝑡ℎ ; ⊲ Eq.(2)

M (𝑡+1) = M (𝑡 ) − 𝜂∇(L𝑝𝑟𝑒𝑑 (M (𝑡 ) ) + L𝑝𝑎𝑡ℎ (M (𝑡 ) ));
t += 1;

end while
P = Under budget 𝐵, the top shortest paths on G𝑘

𝑐 with edge

distance −𝑆𝑐𝑜𝑟𝑒 (𝑒);
Return: P.

Table 3: Time complexity of PaGE-Link and other methods.

GNNExp [45] PGExp [25] SubgraphX [48] PaGE-Link (ours)

𝑂 ( |E𝑐 |𝑇 ) 𝑂 ( |E |𝑇 )
/
𝑂 ( |E𝑐 |) Θ( |V𝑐 |𝐷̂2𝐵𝑛𝑜𝑑𝑒−2) 𝑂 ( |E𝑐 | + |E𝑘

𝑐 |𝑇 )

𝑃 (𝑒) for edge 𝑒 = (𝑢, 𝑣) by its target node degree 𝐷𝑣 . Then, we

perform log transformation, which improves numerical stability

for multiplying many edges with small 𝑃 (𝑒) or large 𝐷𝑣 and break

down a path score to a summation of edge scores 𝑆𝑐𝑜𝑟𝑒 (𝑒) that are
easier to work with. This path score function captures both desired

properties mentioned above. A path score will be high if the edges

on it have high probabilities and these edges are linked to nodes

with low degrees. Finding paths with the highest 𝑆𝑐𝑜𝑟𝑒 (𝑝) can be

implemented using Dijkstra’s shortest path algorithm [4], where

the distance represented by each edge is set to be the negative score

of the edge, i.e., −𝑆𝑐𝑜𝑟𝑒 (𝑒). We let E𝑝𝑎𝑡ℎ be the set of edges in the

top five shortest paths found by Dijkstra’s algorithm.

5.3 Mask Optimization and Path Generation
We optimize M with both L𝑝𝑟𝑒𝑑 and L𝑝𝑎𝑡ℎ . L𝑝𝑟𝑒𝑑 will increase

the weights of the prediction-influential edges. L𝑝𝑎𝑡ℎ will further

increase the weights of the path-forming edges that are also highly

weighted by the current M and decrease other weights. Finally,

after the mask learning converges, we run one more shortest-path

algorithm to generate paths from the final M and select the top

paths according to budget 𝐵 to get the explanation P defined in

Section 4. A pseudo-code of PaGE-Link is shown in Algorithm 1.

5.4 Complexity Analysis
In Table 3, we summarize the time complexity of PaGE-Link and

representative existing methods for explaining a prediction with

computation graph G𝑐 = (V𝑐 , E𝑐 ) on a full graph G = (V, E).

Let 𝑇 be the mask learning epochs. GNNExplainer has complexity

|E𝑐 |𝑇 as it learns a mask on E𝑐 . PGExplainer has a training stage
and an inference stage (separated by / in the table). The inference

stage is linear in |E𝑐 |, but the training stage covers edges in the

entire graph and thus scales in 𝑂 ( |E |𝑇 ). SubgraphX has a much

higher time complexity exponential in |V𝑐 |, so a size budget of

𝐵𝑛𝑜𝑑𝑒 nodes is forced to replace |V𝑐 |, and 𝐷̂ = max𝑣∈V 𝐷𝑣 denotes

the maximum degree (derivation in Appendix C). For PaGE-Link,

the k-core pruning step is linear in |E𝑐 |. The mask learning with

Dijkstra’s algorithm has complexity |E𝑘
𝑐 |𝑇 . PaGE-Link has a better

complexity than existing methods since |E𝑘
𝑐 | is usually smaller than

|E𝑐 | (see Theorem 5.1), and PaGE-Link often converges faster, i.e.,

has a smaller 𝑇 , as the space of candidate explanations is smaller

(see Proposition 4.1) and noisy nodes are pruned.

6 EXPERIMENTS
In this section, we conduct empirical studies to evaluate explana-

tions generated by PaGE-Link. Evaluation is a general challenge

when studying model explainability since standard datasets do not

have ground truth explanations. Many works [25, 45] use synthetic

benchmarks, but no benchmarks are available for evaluating GNN

explanations for heterogeneous LP. Therefore, we generate an aug-

mented graph and a synthetic graph to evaluate explanations. They

allow us to generate ground truth explanation patterns and evaluate

explainers quantitatively.

6.1 Datasets
The augmented graph. AugCitation is constructed by augment-

ing the AMiner citation network [37]. A graph schema is shown

in Figure 4a. The original AMiner graph contains four node types:

author, paper, reference (ref), and field of study (fos), and edge

types “cites”, “writes”, and “in”. We construct AugCitation by aug-

menting the original graph with new (author, paper) edges typed

“likes” and define a paper recommendation task on AugCitation
for predicting the “like” edges. A new edge (𝑠, 𝑡) is augmented if

there is at least one concise and informative path 𝑝 between them.

In our augmentation process, we require the paths 𝑝 to have lengths

shorter than a hyperparameter 𝑙𝑚𝑎𝑥 and with degrees of nodes on 𝑝

(excluding 𝑠 & 𝑡 ) bounded by a hyperparameter𝐷𝑚𝑎𝑥 . We highlight

these two hyperparameters because of the conciseness and infor-

mativeness principles discussed in Section 4. The augmented edge

(𝑠, 𝑡) is used for prediction. The ground truth explanation is the set

of paths satisfying the two hyperparameter requirements. We only

take the top 𝑃𝑚𝑎𝑥 paths with the smallest degree sums if there are

many qualified paths. We train a GNN-based LP model to predict

these new “likes” edges and evaluate explainers by comparing their

output explanations with these path patterns as ground truth.

The synthetic graph. UserItemAttr is generated tomimic graphs

with users, items, and attributes for recommendations. Figure 4b

shows the graph schema and illustrates the generation process. We

include three node types: “user”, “item”, and item attributes (“attr”)

in the synthetic graph, and we build different types of edges step

by step. Firstly, the “has” edges are created by randomly connect-

ing items to attrs, and the “hidden prefers” edges are created by

randomly connecting users to attrs. These edges represent items

having attributes and user preferences for these attributes. Next,
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(a) Schema of AugCitation. “writes”,
“cites”, and “in” edges are original.
The “likes” edges (dashed red) are
augmented for prediction.
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(b) Schema of UserItemAttr (the left box) and its generation process (the right box). Three types of base
edges are generated first, i.e., “has” (black), “hidden prefers” (dashed gray), and “buys” (blue). The solid
“has” and “buys” edges are then used to generate “likes” edges (dashed red) for prediction and the ground
truth explanation patterns (green arrows).

Figure 4: The proposed augmented graph AugCitation and the synthetic graph UserItemAttr.

we randomly sample a set of items for each user, and we connect a

(user, item) pair by a “buys” edge, if the user “hidden prefers” any

attr the item “has”. The “hidden prefers” edges correspond to an

intermediate step for generating the observable “buys” edges. We

remove the “hidden prefers” edges after “buys” edges are generated

since we cannot observe ‘hidden prefers” information in reality. An

example of the rationale behind this generation step is that items

have certain attributes, like the item “ice cream” with the attribute

“vanilla”. Then given that a user likes the attribute “vanilla” as hid-

den information, we observe that the user buys “vanilla ice cream”.

The next step is to generate more ‘buys” edges between randomly

picked (user, item) pairs if a similar user (two users with many

shared item neighbors) buys this item. The idea is like collaborative

filtering, which says similar users tend to buy similar items. The

final step is generating edges for prediction and their corresponding

ground truth explanations, which follows the same augmentation

process described above for AugCitation. For UserItemAttr, we
have “has” and “buys” as base edges to construct the ground truth,

and we create “likes” edges between users and items for prediction.

6.2 Experiment Settings
The GNN-based LPmodel. As described in Section 3, the LPmodel

involves a GNN encoder and a prediction head. We use RGCN [32]

as the encoder to learn node representations on heterogeneous

graphs and the inner product as the prediction head. We train the

model using the cross-entropy loss. On each dataset, our prediction

task covers one edge type 𝑟 . We randomly split the observed edges

of type 𝑟 into train:validation:test = 7:1:2 as positive samples and

draw negative samples from the unobserved edges of type 𝑟 . Edges

of other types are used for GNNmessage passing but not prediction.

Explainer baselines. Existing GNN explanation methods cannot

be directly applied to heterogeneous LP. Thus, we extend the popu-

lar GNNExplainer [45] and PGExplainer [25] as our baselines. We

re-implement a heterogeneous version of their mask matrix and

mask predictor similar to the heterogeneous mask learning mod-

ule in PaGE-Link. For these baselines, we perform mask learning

using their original objectives, and we generate edge-induced sub-

graph explanations from their learned mask. We refer to these two

adapted explainers as GNNExp-Link and PGExp-Link below. We do

not compare to other search-based explainers like SubgraphX [48]

Table 4: ROC-AUC scores on learned masks. PaGE-Link out-
performs baselines.

GNNExp-Link PGExp-Link PaGE-Link (ours)

AugCitation 0.829 0.586 0.928
UserItemAttr 0.608 0.578 0.954

because of their high computational complexity (see Section 5.4).

They work well on small graphs as in the original papers, but they

are hard to scale to large and dense graphs we consider for LP.

6.3 Evaluation Results
Quantitative evaluation. Both the ground truth and the final ex-

planation output of PaGE-Link are sets of paths. In contrast, the

baseline explainers generate edge masks M. For a fair compari-

son, we take the intermediate result PaGE-Link learned, also the

mask M, and we follow [25] to compare explainers by their masks.

Specifically for each computation graph, edges in the ground truth

paths are treated as positive, and other edges are treated as negative.

Then weights in M are treated as the prediction scores of edges

and are evaluated with the ROC-AUC metric. A high ROC-AUC

score reflects that edges in ground truth are precisely captured

by the mask. The results are shown in Table 4, where PaGE-Link

outperforms both baseline explainers.

For scalability, we showed PaGE-Link scales linearly in 𝑂 ( |E𝑘
𝑐 |)

in Section 5.4. Here we evaluate its scalability empirically by gen-

erating ten synthetic graphs with various sizes from 20 to 5,500

edges in G𝑐 . The results are shown in Figure 2b, which suggests

the computation time scales linearly in the number of edges.

Qualitative evaluation. A critical advantage of PaGE-Link is that

it generates path explanations, which can capture the connections

between node pairs and enjoy better interpretability. In contrast,

the top important edges found by baseline methods are often dis-

connected from the source, the target, or both, which makes their

explanations hard for humans to interpret and investigate. We con-

duct case studies to visualize explanations generated by PaGE-Link

on the paper recommendation task on AugCitation.
Figure 5 shows a case in which the model recommends the source

author “Vipin Kumar” the recommended target paper titled “Fast
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Figure 5: Explanations (green arrows) by different explainers for the predicted link (𝑎2367, 𝑝16200) (dashed red). PaGE-Link
explanation explains the recommendation by co-authorship, whereas baseline explanations are less interpretable.

Figure 6: Top three paths (green arrows) selected by PaGE-

Link for explaining the predicted link (𝑎328, 𝑝5670) (dashed
red). The selected paths are short and do not go through a
generic field of study like “Computer Science”.

and exact network trajectory similarity computation: a case-study

on bicycle corridor planning”. The top path explanation generated

by PaGE-Link goes through the coauthor “Shashi Shekhar”, which

explains the recommendation as Vipin Kumar and Shashi Shekhar

coauthored the paper “Correlation analysis of spatial time series

datasets: a filter-and-refine approach”, and Shashi Shekhar wrote

the recommended paper. Given the same budget of three edges,

explanations generated by baselines are less interpretable.

Figure 6 shows another example with the source author “Huan

Liu” and the recommended target paper titled “Using association

rules to solve the cold-start problem in recommender systems”.

PaGE-Link generates paths going through the common fos of the

recommended paper and three other papers written by Huan Liu:

𝑝22646, 𝑝25160, and 𝑝35294. We show the PaGE-Link explana-

tion with the top three paths in green. We also show other un-

selected fos shared by the 𝑝22646, 𝑝25160, and 𝑝35294 and the

target paper. Note that the explanation paths all have length three,

even though there are many paths with length five or longer,

e.g., (𝑎328, 𝑝22646, 𝑓 4, 𝑝25260, 𝑓 4134, 𝑝5670). Also, the explanation
paths go through the fos “Redundancy (engineering)” and “User

profile” instead of generic fos like “Artificial intelligence” and “Com-

puter science”. This case demonstrates that explanation paths se-

lected by PaGE-Link are more concise and informative.

7 HUMAN EVALUATION
The ultimate goal of model explanation is to improve model trans-

parency and help human decision-making. Human evaluation is

thus the best way to evaluate the effectiveness of an explainer,

which has been a standard evaluation approach in previous works

[6, 30, 33]. We conduct a human evaluation by randomly picking

100 predicted links from the test set of AugCitation and generate

explanations for each link using GNNExp-Link, PGExp-Link, and

PaGE-Link. We design a survey with single-choice questions. In

each question, we show respondents the predicted link and those

three explanations with both the graph structure and the node/edge

type information, similarly as in Figure 5 but excluding method

names. The survey is sent to people across graduate students, post-

docs, engineers, research scientists, and professors, including peo-

ple with and without background knowledge about GNNs. We ask

respondents to “please select the best explanation of ‘why the model
predicts this author will like the recommended paper?’ ”. At least
three answers from different people are collected for each question.

In total, 340 evaluations are collected and 78.79% of them selected

explanations by PaGE-Link as the best.

8 CONCLUSION
In this work, we study model transparency and accountability on

graphs. We investigate a new task: GNN explanation for heteroge-

neous LP. We identify three challenges for the task and propose a

new path-based method, i.e. PaGE-Link, that produces explanations

with interpretable connections, is scalable, and handles graph hetero-
geneity. PaGE-Link explanations quantitatively improve ROC-AUC

by 9 - 35% over baselines and are chosen by 78.79% responses as

qualitatively more interpretable in human evaluation.
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A PROOF OF PROPOSITION 4.1
Proof. We prove 𝑍𝑛,𝑑 = 𝑜 (𝑆𝑛,𝑑 ) by definition, where we show

lim𝑛→∞
𝑍𝑛,𝑑

𝑆𝑛,𝑑
= 0. As we can permute the indices of nodes in

G(𝑛,𝑑), without loss of generality, we assume 𝑍𝑛,𝑑 is the expected

number of paths between nodes indexed 1 and n. Our proof is

mainly based on the result in [31], which computes the expected

number of all 1-n paths, i.e., 𝑍𝑛,𝑑 = (𝑛 − 2)!𝑑𝑛−1𝑒 (1 + 𝑜 (1)). On the

other hand, the number of edge-induced subgraphs considered in

[25, 45] equals the size of the power set of all edges, i.e., 𝑆𝑛,𝑑 = 2
𝑑 (𝑛

2
)
.

We thus have

log𝑍𝑛,𝑑 = log

[
(𝑛 − 2)!𝑑𝑛−1𝑒 (1 + 𝑜 (1))

]
(1)

< log

[√︁
2𝜋 (𝑛 − 2) (𝑛 − 2

𝑒
) (𝑛−2)𝑒

1

12(𝑛−2) 𝑑𝑛−1𝑒 (1 + 𝑜 (1))
]

(2)

=
1

2

log(2𝜋 (𝑛 − 2)) + (𝑛 − 2) log(𝑛 − 2

𝑒
) + log

1

12(𝑛 − 2)
+ (𝑛 − 1) log𝑑 + 1 + log(1 + 𝑜 (1)) (3)

= 𝑂 (log𝑛) +𝑂 (𝑛 log𝑛) +𝑂 (log 1

𝑛
) +𝑂 (𝑛 log𝑑) (4)

+ log(1 + 𝑜 (1)) (5)

= 𝑂 (𝑛 log𝑛) + log(1 + 𝑜 (1)) (6)

log 𝑆𝑛,𝑑 = log 2
𝑑 (𝑛

2
) = 𝑑

(
𝑛

2

)
log 2 = 𝑂 (𝑛2) (7)

lim

𝑛→∞
𝑍𝑛,𝑑

𝑆𝑛,𝑑
= lim

𝑛→∞
exp(log

𝑍𝑛,𝑑

𝑆𝑛,𝑑
) (8)

= exp( lim
𝑛→∞

log

𝑍𝑛,𝑑

𝑆𝑛,𝑑
) (9)

= exp( lim
𝑛→∞

log𝑍𝑛,𝑑 − log 𝑆𝑛,𝑑 ) (10)

= exp( lim
𝑛→∞

𝑂 (𝑛 log𝑛) + log(1 + 𝑜 (1)) −𝑂 (𝑛2)) (11)

= 0 (12)

Step (1) to (2) is Stirling’s formula. Step (8) to (9) is because exp is

continuous. ■

B DETAILED THEOREM 5.1
We now state a more detailed version of Theorem 5.1. This theorem

gives the exact formula of 𝛿V (𝑛,𝑑, 𝑘) and 𝛿E (𝑛,𝑑, 𝑘), which are

built upon a Poisson random variable. The argument is adapted

from [14, 29]. Readers can refer to [14, 29] for the proof.

For 𝜇 > 0, let 𝑃𝑜 (𝜇) denote a Poisson distribution with mean 𝜇.

Let𝜓𝑘 (𝑑𝑛) = 𝑃 (𝑃𝑜 (𝑑𝑛) ≥ 𝑘) be the tail probability of 𝑃𝑜 (𝑑𝑛). Let
𝑐𝑘 = inf𝜇>0 𝜇/𝜙𝑘−1 (𝜇). When 𝑑𝑛 > 𝑐𝑘 , the equation 𝜇/𝜓𝑘−1 (𝜇) =
𝑑𝑛 will have two roots for 𝜇. Let 𝜇 (𝑑𝑛, 𝑘) be the larger root. Then
we have the following more detailed version of Theorem 5.1 with

𝛿V (𝑛,𝑑, 𝑘) and 𝛿E (𝑛,𝑑, 𝑘) as functions of 𝜇 (𝑑𝑛, 𝑘).

Theorem B.1 (Pittel, Spencer and Wormald). Let G(𝑛,𝑑) be a
random graph with 𝑚 edges as in Proposition 4.1. Let G𝑘 (𝑛,𝑑) =

(V𝑘 (𝑛,𝑑), E𝑘 (𝑛,𝑑)) be the k-core ofG(𝑛,𝑑). When𝑑𝑛 > 𝑐𝑘 ,G𝑘 (𝑛,𝑑)
will be nonempty with high probability (w.h.p.) for large n. Also,
G𝑘 (𝑛,𝑑) will contain𝜓𝑘 (𝜇 (𝑑𝑛, 𝑘))𝑛 nodes and [𝜇 (𝑑𝑛, 𝑘)2/(𝑑2𝑛(𝑛 −
1))]𝑚 edges w.h.p. for large n, i.e., |V𝑘 (𝑛,𝑑) |/𝑛

𝑝
−→ 𝜓𝑘 (𝜇 (𝑑𝑛, 𝑘)) and

|E𝑘 (𝑛,𝑑) |/𝑚
𝑝
−→ 𝜇 (𝑑𝑛, 𝑘)2/(𝑑2𝑛(𝑛 − 1)) (

𝑝
−→ stands for convergence

in probability).

C COMPLEXITY OF SUBGRAPHX
The search-based methods often have much higher time complex-

ity exponential in the number of nodes or edges. Thus, a budget

is forced instead of searching subgraphs with all sizes. For exam-

ple, SubgraphX finds all connected subgraphs with at most 𝐵𝑛𝑜𝑑𝑒
nodes, which has complexity Θ( |V𝑐 |𝐷̂2𝐵𝑛𝑜𝑑𝑒−2) for a graph with

maximum degree 𝐷̂ = max𝑣∈V 𝐷𝑣 . This complexity can be shown

using the following two lemmas.

Lemma C.1. For a graph G with n vertices, the number of the
connected subgraph of G having 𝐵𝑛𝑜𝑑𝑒 nodes is bounded below by
the number of trees in G having 𝐵𝑛𝑜𝑑𝑒 nodes.

Proof. Each connected subgraph has a spanning tree. ■

Lemma C.2. For a graph G with node setV , the number of trees in
G having 𝐵𝑛𝑜𝑑𝑒 tree nodes is Θ( |V|𝐷̂2𝐵𝑛𝑜𝑑𝑒−2).

Proof. See [11] for proof using an encoding procedure. ■

D DATASET DETAILS
We show the hyperparameters for constructing the datasets in

Section 6 in Table 5, which includes the augmentation of the Aminer

citation graph and the generation of the synthetic graph.

Table 5: Hyperparameters for constructing AugCitation and
UserItemAttr

𝑙𝑚𝑎𝑥 𝐷𝑚𝑎𝑥 𝑃𝑚𝑎𝑥

AugCitation 3 30 5

UserItemAttr 3 15 5

https://doi.org/10.1561/1500000066
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E PATH HIT EVALUATION
Besides ROC-AUC scores, another way to evaluate the explanations

is through the path hit rate (HR). Specifically, we fix the budget of

𝐵 edges and evaluate whether an explanation can hit any complete

path in the ground truth. Note that the ground truth for each link

(𝑠, 𝑡) only has the top 𝑃𝑚𝑎𝑥 shortest paths with the smallest degree

sums, so hitting a long path or a less informative path with high-

degree generic nodes will not count.

For a fair comparison with baselines, we take the generated

explanation mask M for each method, select the top 𝐵 weighted

edges to compare against the ground truth. We show results with

different budget 𝐵 in Table 6. Explanations generated by PaGE-

Link have higher path HR than baselines on both datasets. In con-

trast, GNNExp-Link and PGExp-Link can barely hit any path in the

ground truth for 𝐵 less than 50.

Note that the actual explanation output of PaGE-Link is a set of

paths P. If we evaluate P instead of the top cut of the intermediate

output mask M. Then PaGE-Link can achieve perfect path HR (=1)

when the budget |P | gets large.

Table 6: Path hit rate (HR). PaGE-Link has high HR with a
small budget 𝐵. Baselines achieve nonzero HR for large 𝐵.

B GNNExp-Link PGExp-Link PaGE-Link (ours)

AugCitation

10 0.000 0.000 0.007
50 0.002 0.000 0.194
100 0.019 0.000 0.425
200 0.064 0.002 0.645

UserItemAttr

10 0.000 0.000 0.163
50 0.008 0.032 0.705
100 0.016 0.039 0.790
200 0.046 0.101 0.907
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