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ABSTRACT

Transparency and accountability have become major concerns
for black-box machine learning (ML) models. Proper explanations
for the model behavior increase model transparency and help re-
searchers develop more accountable models. Graph neural networks
(GNN) have recently shown superior performance in many graph
ML problems than traditional methods, and explaining them has
attracted increased interest. However, GNN explanation for link
prediction (LP) is lacking in the literature. LP is an essential GNN
task and corresponds to web applications like recommendation and
sponsored search on web. Given existing GNN explanation meth-
ods only address node/graph-level tasks, we propose Path-based
GNN Explanation for heterogeneous Link prediction (PaGE-Link)
that generates explanations with connection interpretability, enjoys
model scalability, and handles graph heterogeneity. Qualitatively,
PaGE-Link can generate explanations as paths connecting a node
pair, which naturally captures connections between the two nodes
and easily transfer to human-interpretable explanations. Quanti-
tatively, explanations generated by PaGE-Link improve AUC for
recommendation on citation and user-item graphs by 9 - 35% and
are chosen as better by 78.79% of responses in human evaluation.
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1 INTRODUCTION

Transparency and accountability are significant concerns when re-
searchers advance black-box machine learning (ML) models [19, 35].
Good explanations of model behavior improve model transparency.
For end users, explanations make them trust the predictions and in-
crease their engagement and satisfaction [1, 10]. For researchers and
developers, explanations enable them to understand the decision-
making process and create accountable ML models. Graph Neural
Networks (GNNs) [43, 55] have recently achieved state-of-the-art
performance on many graph ML tasks and attracted increased in-
terest in studying their explainability [25, 45, 47, 52]. However, to
our knowledge, GNN explanation for link prediction (LP) is missing
in the literature. LP is an essential task of many vital Web applica-
tions like recommendation [26, 42, 49] and sponsored search [9, 20].
GNNs are widely used to solve LP problems [50, 56], and generating
good GNN explanations for LP will benefit these applications, e.g.,
increasing user satisfaction with recommended items.

Existing GNN explanation methods have addressed node/graph-
level tasks on homogeneous graphs. Given a data instance, most
methods generate an explanation by learning a mask to select an
edge-induced subgraph [25, 45] or searching over the space of sub-
graphs [48]. However, explaining GNNs for LP is a new and more
challenging task. Existing node/graph-level explanation methods
do not generalize well to LP for three challenges. 1) Connection
Interpretability: LP involves a pair of the source node and the target
node rather than a single node or graph. Desired interpretable ex-
planations for a predicted link should reveal connections between
the node pair. Existing methods generate subgraphs with no format
constraints, so they are likely to output subgraphs disconnected
from the source, the target, or both. Without revealing connections
between the source and the target, these subgraph explanations
are hard for humans to interpret and investigate. 2) Scalability:
For LP, the number of edges involved in GNN computation almost
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Figure 1: Given a GNN model and a predicted link (uy,i1)
(dashed red) on a heterogeneous graph of user u, item i, and
attribute g (left). PaGE-Link generates two path explanations
(green arrows). Interpretations illustrated on the right.

grows from m to ~2m compared to the node prediction task be-
cause neighbors of both the source and the target are involved.
Since most existing methods consider all (edge-induced) subgraphs,
the increased edges will scale the number of subgraph candidates
by a factor of O(2™), which makes finding the optimal subgraph
explanation much harder. 3) Heterogeneity: Practical LP is often
on heterogeneous graphs with rich node and edge types, e.g., a
graph for recommendations can have user->buys->item edges and
item->has->attribute edges, but existing methods only work for
homogeneous graphs.

In light of the importance and challenges of GNN explanation
for LP, we formulate it as a post hoc and instance-level explanation
problem and generate explanations for it in the form of important
paths connecting the source node and the target node. Paths have
played substantial roles in graph ML and are the core of many non-
GNN LP methods [15, 16, 21, 36]. Paths as explanations can solve the
connection interpretability and scalability challenges. Firstly, paths
connecting two nodes naturally explain connections between them.
Figure 1 shows an example on a graph for recommendations. Given
a GNN and a predicted link between user u; and item i;, human-
interpretable explanations may be based on the user’s preference
of attributes (e.g., user u; bought item i2 that shared the same
attribute a; as item i1) or collaborative filtering (e.g, user u; had
a similar preference as user uz because they both bought item
i3 and user up bought item i, so that user u; would like item
i1). Both explanations boil down to paths. Secondly, paths have
a considerably smaller search space than general subgraphs. As
we will see in Proposition 4.1, compared to the expected number
of edge-induced subgraphs, the expected number of paths grows
strictly slower and becomes negligible. Therefore, path explanations
exclude many less-meaningful subgraph candidates, making the
explanation generation much more straightforward and accurate.

To this end, we propose Path-based GNN Explanation for het-
erogeneous Link prediction (PaGE-Link), which achieves a better
explanation AUC and scales linearly in the number of edges (see
Figure 2). We first perform k-core pruning [2] to help find paths and
improve scalability. Then we do heterogeneous path-enforcing mask
learning to determine important paths, which handles heterogene-
ity and enforces the explanation edges to form paths connecting
source to target. In summary, the contributions of our method are:

o Connection Interpretability: PaGE-Link produces more inter-
pretable explanations in path forms and quantitatively improves
explanation AUC over baselines.
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Figure 2: (a) PaGE-Link outperforms GNNExplainer and PG-
Explainer in terms of explanation AUC on the citation
graph and the user-item graph. (b) The running time of
PaGE-Link scales linearly in the number of graph edges.

o Scalability: PaGE-Link reduces the explanation search space by
magnitudes from subgraph finding to path finding and scales
linearly in the number of graph edges.

o Heterogeneity: PaGE-Link works on heterogeneous graphs and
leverages edge-type information to generate better explanations.

2 RELATED WORK

We review relevant research on (a) GNNs (b) GNN explanation (c)
recommendation explanation and (d) paths for LP. We summarize
the properties of PaGE-Link vs. representative methods in Table 1.

GNNs. GNNs are a family of ML models on graphs [17, 38, 44].
They take graph structure and node/edge features as input and out-
put node representations by transforming and aggregating features
of nodes’ (multi-hop) neighbors. The node representations can be
used for LP and achieved great results on LP applications [7, 26, 42,
49-51, 54]. We review GNN-based LP models in Section 3.

GNN explanation. GNN explanation was studied for node and
graph classification, where the explanation is defined as an impor-
tant subgraph. Existing methods majorly differ in their definition
of importance and subgraph selection methods. GNNExplainer [45]
selects edge-induced subgraphs by learning fully parameterized
masks on graph edges and node features, where the mutual infor-
mation (MI) between the masked graph and the prediction made
with the original graph is maximized. PGExplainer [25] adopts the
same MI importance but trains a mask predictor to generate a dis-
crete mask instead. Other popular importance measures are game
theory values. SubgraphX [48] uses the Shapley value [34] and per-
forms Monte Carlo Tree Search (MCTS) on subgraphs. GStarX [52]
uses a structure-aware HN value [8] to measure the importance of
nodes and generates the important-node-induced subgraph. There
are more studies from other perspectives that are less related to
this work, i.e., surrogate models [12, 39], counterfactual explana-
tions [24], and causality [22, 23], for which [46] provides a good
review. While these methods produce subgraphs as explanations,
what makes a good explanation is a complex topic, especially how
to meet “stakeholders’ desiderata” [18]. Our work differs from all
above since we focus on a new task of explaining heterogeneous LP,
and we generate paths instead of unrestricted subgraphs as explana-
tions. The interpretability of paths makes our method advantaged
especially when stakeholders have less ML background.
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Table 1: Methods and desired explanation properties. A ques-
tion mark (?) means “unclear”, or “maybe, after non-trivial
extensions”. "Rec. Exp." stands for the general recommenda-
tion explanation methods.
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Explains GNN v v v v
Explains LP ? ? v v v v
Connection ? ? ? v
Scalability v v v ? ? v
Heterogeneity v v v ? v

Recommendation explanation. This line of works explains why a
recommendation is made [53]. J-RECS [28] generates recommen-
dation explanations on product graphs using a justification score
that balances item relevance and diversity. PRINCE [6] produces
end-user explanations as a set of minimal actions performed by the
user on graphs with users, items, reviews, and categories. The set
of actions is selected using counterfactual evidence. Typically, rec-
ommendations on graphs can be formalized as an LP task. However,
the recommendation explanation problem differs from explaining
GNNs for LP because the recommendation data may not be graphs,
and the models to be explained are primarily not GNN-based [40].
GNNs have their unique message passing procedure, and GNN-
based LP corresponds to more general applications beyond rec-
ommendation, e.g., drug repurposing [13], and knowledge graph
completion [3, 27]. Thus, recommendation explanation is related
to but not directly comparable to GNN explanation.

Paths. Paths are important in graph ML, and many LP meth-
ods are path-based, such as graph distance [21], Katz index [16],
SimRank [15], and PathSim [36]. Paths have also been used to cap-
ture the relationship between a pair of nodes. For example, the
“connection subgraphs” [5] find paths between the source and the
target based on electricity analogs. In general, although black-box
GNNs recently outperform path-based methods in LP accuracy, we
embrace paths for their interpretability for LP explanation.

3 NOTATIONS AND PRELIMINARY

In this section, we define necessary notations, summarize them in
Table 2, and review the GNN-based LP models.

Definition 3.1. A heterogeneous graph is defined as a directed
graph G = (V, &) associated with a node type mapping function
¢V — A and an edge type mapping function 7 : & — R. Each
node v € V belongs to one node type ¢(v) € A and each edge
e € & belongs to one edge type z(e) € R.

Let @(, -) denote a trained GNN-based model for predicting the
missing links in G, where a prediction Y = ®(G, (s, t)) denotes
the predicted link between a source node s and a target node ¢.
The model ® learns a conditional distribution Pg(Y|G, (s,t)) of
the binary random variable Y. The commonly used GNN-based LP
models [50, 54, 56] involve two steps. The first step is to generate
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Table 2: Notation table

Notation Definition and description
G=(V,8) a heterogeneous graph G, node set V, and edge set &
¢: VoA a node type mapping function
7: &> R an edge type mapping function
D, the degree of node v € V
& edges with type r € R,ie, & ={e € E|r(e) =1}
®(-, ) the GNN-based LP model to explain
(s, 1) the source and target node for the predicted link
hs & h; the node representations for s & ¢
Y =®(G, (s,t)) | the link prediction of the node pair (s, t)
Ge = (Ve, E) the computation graph, i.e., L-hop ego-graph of (s, ¢)

node representations (hg, h;) of (s, t) with an L-hop GNN encoder.
The second step is to apply a prediction head on (hs, h;) to get the
prediction of Y. An example prediction head is an inner product.

To explain ®(@G, (s, t)) with an L-Layer GNN encoder, we restrict
to the computation graph G. = (V, Ec). Ge is the L-hop ego-graph
of the predicted pair (s, t), i.e., the subgraph with node set V, =
{v € V|dist(v,s) < L ordist(v,t) < L}. It is called a computation
graph because the L-layer GNN only collects messages from the L-
hop neighbors of s and t to compute hg and h;. The LP result is thus
fully determined by G, i.e., ®(G, (s,t)) = ®(G,, (s, t)). Figure 3b
shows a 2-hop ego-graph of u; and i1, where u3 and a% are excluded
since they are more than 2 hops away from either u; or iy.

4 PROPOSED PROBLEM FORMULATION:
LINK-PREDICTION EXPLANATION

In this work, we address a post hoc and instance-level GNN explana-
tion problem. The post hoc means the model ®(-, -) has been trained.
To generate explanations, we won’t change its architecture or pa-
rameters. The instance level means we generate an explanation for
the prediction of each instance (s, t). Specifically, the explanation
method answers the question of why a missing link is predicted
by ®@(, ). In a practical web recommendation system, this question
can be “why an item is recommended to a user by the model”.

An explanation for a GNN prediction should be some substruc-
ture in G, and it should also be concise, i.e., limited by a size budget
B. This is because an explanation with a large size is often neither
informative nor interpretable, for example, an extreme case is that
G. could be a non-informative explanation for itself. Also, a fair
comparison between different explanations should consume the
same budget. In the following, we define budget B as the maximum
number of edges included in the explanation.

We list three desirable properties for a GNN explanation method
on heterogeneous LP: capturing the connection between the source
node and the target node, scalable to large graphs, and addressing
graph heterogeneity. Using a path-based method inherently pos-
sesses all the properties. Paths capture the connection between a
pair of nodes and can be transferred to human-interpretable expla-
nations. Besides, the search space of paths with the fixed source
node and the target node is greatly reduced compared to edge-
induced subgraphs. Given the ego-graph G. of s and t, the number
of paths between s and t and the number of edge-induced sub-
graphs in G, both rely on the structure of G.. However, they can
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Figure 3: PaGE-Link on a graph with user nodes u, item nodes i, and two attribute types a! and a°. (Best viewed in color.)

be estimated using random graph approximations. The next propo-
sition on random graphs shows that the expected number of paths
grows strictly slower than the expected number of edge-induced
subgraphs as the random graph grows. Also, the expected number
of paths becomes insignificant for large graphs.

Proposition 4.1. Let G(n,d) be a random graph with n nodes and
density d, i.e., there are m = d(’;) edges chosen uniformly randomly
from all node pairs. Let Z,, ; be the expected number of paths between
any pair of nodes. Let S,, g be the expected number of edge-induced

subgraphs. Then Z,, g = 0(S,, 4), i.e, limp oo ?L’: =0.
Proor. In Appendix A. [ ]

Paths are also a natural choice for LP explanations on heteroge-
neous graphs. On homogeneous graphs, features are important for
prediction and explanation. A s-t link may be predicted because
of the feature similarity of node s and node t. However, the het-
erogeneous graphs we focus on, as defined in Definition 3.1, often
do not store feature information but explicitly model it using new
node and edge types. For example, for the heterogeneous graph
in Figure 3a, instead of making it a user-item graph and assigning
each item node a two-dimensional feature with attributes a! and a2,
the attribute nodes are explicitly created and connected to the item
nodes. Then an explanation like “i; and iz share node feature a%”
on a homogeneous graph is transferred to “i; and iy are connected
through the attribute node ai” on a heterogeneous graph.

Given the advantages of paths over general subgraphs on con-
nection interpretability, scalability, and their capability to capture
feature similarity on heterogeneous graphs, we use paths to explain
GNN:ss for heterogeneous LP. Our design principle is that a good
explanation should be concise and informative, so we define the
explanation to contain only short paths without high-degree nodes.
Long paths are less desirable since they could correspond to unnec-
essarily complicated connections, making the explanation neither
concise nor convincing. For example, in Figure 3c, the long path
(u1, i3, a;, io, a%, i1) is not ideal since it takes four hops to go from
item i3 to the item i;, making it less persuasive to be interpreted
as “item1 and item3 are similar so item1 should be recommended”.
Paths containing high-degree nodes are also less desirable because
high-degree nodes are often generic, and a path going through them
is not as informative. In the same figure, all paths containing node

a; are less desirable because a; has a high degree and connects to

all the items in the graph. A real example of a generic attribute is
the attribute “grocery” connecting to both “vanilla ice cream” and
“vanilla cookie”. When “vanilla ice cream” is recommended to a per-
son who bought “vanilla cookie”, explaining this recommendation
with a path going through “grocery” is not very informative since
“grocery” connects many items. In contrast, a good informative path
explanation should go through the attribute “vanilla”, which only
connects to vanilla-flavored items and has a much lower degree.
We formalize the GNN explanation for heterogeneous LP as:

Problem 4.2. Generating path-based explanations for a predicted
link between node s and ¢:

e Given
- a trained GNN-based LP model ®(-, -),
- a heterogeneous computation graph G of s and ¢,

- abudget B of the maximum number of edges in the explanation,
o Find an explanation  ={p|p is a s-t path with maximum length
Imax and degree of each node less than Dyyax }, |P|lmax < B,

e By optimizing p € P to be influential to the prediction, concise,
and informative.

5 PROPOSED METHOD: PAGE-LINK

This section details PaGE-Link. PaGE-Link has two modules: (i) a
k-core pruning module to eliminate spurious neighbors and im-
prove speed, and (ii) a heterogeneous path-enforcing mask learning
module to identify important paths. An illustration is in Figure 3.

5.1 The k-core Pruning

The k-core pruning module of PaGE-Link reduces the complexity of
G.. The k-core of a graph is defined as the unique maximal subgraph
with a minimum node degree k [2]. We use the superscript k to
denote the k-core, i.e., gf = (85, (Vck) for the k-core of G.. The
k-core pruning is a recursive algorithm that removes nodes v € V
such that their degrees D, < k, until the remaining subgraph only
has nodes with D, > k, which gives the k-core. The difference
in nodes between a (k + 1)-core and a k-core is called the k-shell.
The nodes in the orange box of Figure 3b is an example of a 2-
core pruned from the 2-hop ego-graph, where node a% and a% are
pruned in the first iteration because they are degree one. Node is
is recursively pruned because it becomes degree one after node a%
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is pruned. All those three nodes belong to the 1-shell. We perform
k-core pruning to help path finding because the pruned k-shell
nodes are unlikely to be part of meaningful paths when k is small.
For example, the 1-shell nodes are either leaf nodes or will become
leaf nodes during the recursive pruning, which will never be part
of a path unless s or ¢ are one of these 1-shell nodes. The k-core
pruning module in PaGE-Link is modified from the standard k-core
pruning by adding a condition of never pruning s and t.

The following theorem shows that for a random graph G(n, d),
k-core will reduce the expected number of nodes by a factor of
Oy (n,d, k) and reduce the expected number of edges by a factor of
dg(n,d, k). Both factors are functions of n, d, and k. We defer the
exact expressions of these two factors in Appendix B, since they are
only implicitly defined based on Poisson distribution. Numerically,
for a random G(n, d) with average node degree d(n — 1) = 7, its
5-core has §«(n,d,5) and §g(n, d, 5) both ~ 0.69.

Theorem 5.1 (Pittel, Spencer and Wormald [29]). Let G(n,d) be
a random graph with m edges as in Proposition 4.1. Let G¥ (n,d) =
(V¥(n,d), E%(n, d)) be the nonemptyk-core of G(n, d). Then G*(n,d)
contain d«y (n, d, k)n nodes and 8 g (n, d, k)m edges with high probabil-

ity for large n, i.e., |VE(n,d)|/n LR S (n,d, k) and |EX (n, d)|/m 2,
dg(n,d k) (L stands for convergence in probability).

ProoF. Please refer to Appendix B and [29]. [

The k-core pruning helps reduce the graph complexity and ac-
celerates path finding. One concern is whether it prunes too much
and disconnects s and t. We found that such a situation is very
unlikely to happen in practice. To be specific, we focus on explain-
ing positively predicted links, e.g. why an item is recommended to
a user by the model. Negative predictions, e.g., why an arbitrary
item is not recommended to a user by the model, are less useful in
practice and thus not in the scope of our explanation. (s, t) node
pairs are usually connected by many paths in a practical G [41],
and positive link predictions are rarely made between disconnected
or weakly-connected (s, t). Empirically, we observe that there are
usually too many paths connecting a positively predicted (s, t) in-
stead of no paths, even in the k-core. Therefore, an optional step to
enhance pruning is to remove nodes with super-high degrees. As
we discussed in Section 4, high-degree nodes are often generic and
less informative. Removing them can be a complement to k-core to
further reduce complexity and improve path quality.

5.2 Heterogeneous Path-Enforcing Mask
Learning

The second module of PaGE-Link learns heterogeneous masks to
find important path-forming edges. We perform mask learning
to select edges from the k-core-pruned computation graph. For
notation simplicity in this section, we use G = (V, &) to denote
the graph for mask learning to save superscripts and subscripts, and
Qf is the actual graph in the complete version of our algorithm.
The idea is to learn a mask over all edges of all edge types to
select the important edges. Let 8" = {e € &E|r(e) = r} be edges

with type r € R. Let M = {Mr}yjll be learnable masks of all edge

types, with M" € RIE corresponds type r. We denote applying
M on its corresponding edge type by & © (M), where o is the
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sigmoid function, and © is the element-wise product. Similarly, we
also overload the notation © to indicate applying the set of masks
on all types of edges, i.e., & © 0(M) = U, eg{E" © a(M")}. We
call the graph with the edge set & © (M) a masked graph. Apply-
ing a mask on graph edges will change the edge weights, which
makes GNNs pass more information between nodes connected by
highly-weighted edges and less on others. The general idea of mask
learning is to learn an M that produces high weights for important
edges and low weights for others. To learn an M that better fits
the LP explanation, we measure edge importance from two per-
spectives: important edges should be both influential for the model
prediction and form meaningful paths. Below, we introduce two
loss terms L4 and L5 for achieving these two measurements.

Lpreq is to learn to select influential edges for model prediction.
The idea is to do a perturbation-based explanation, where parts of
the input are considered important if perturbing them changes the
model prediction significantly. In the graph sense, if removing an
edge e significantly influences the prediction, then e is a critical
counterfactual edge that should be part of the explanation. This idea
can be formalized as maximizing the mutual information between
the masked graph and the original graph prediction Y, which is
equivalent to minimizing the prediction loss

Lprea(M) = —logPp(Y = 1|G = (V. E © (M), (s,1)). (1)

Lyred (M) has a straightforward meaning, which says the masked
subgraph should provide enough information for predicting the
missing link (s, ) as the whole graph. Since the original prediction
is a constant, £,,.q(M) can also be interpreted as the performance
drop after the mask is applied to the graph. A well-masked graph
should give a minimum performance drop. Regularizations of the
mask entropy and mask norm are often included in £,¢q(M) to
encourage the mask to be discrete and sparse.

Lyarn is the loss term for M to learn to select path-forming
edges. The idea is to first identify a set of candidate edges denoted
by Eparn (specified below), where these edges can form concise
and informative paths, and then optimize £,,:4(M) to enforce
the mask weights for e € &4y, to increase and mask weights for
€ & Sparp to decrease. We considered a weighted average of these
two forces balanced by hyperparameters « and S,

LyanM)==3 (@ Y Mi=p > M) @
reR  e€&parn e€&.e¢Eparn
7(e)=r 7(e)=r

The key question for computing Lp4:,(M) is to find a good
Eparn containing edges of concise and informative paths. As in
Section 4, paths with these two desired properties should be short
and without high-degree generic nodes. We thus define a score

function of a path p reflecting these two properties as below

Score(p) = log 1_[ Ple) = Z Score(e), (3)

ecp Do ecp
e=(u,v) e=(u,v)
Score(e) = log s(MZ®) — log (D). @)

In this score function, M gives the probability of e to be included
in the explanation, i.e., P(e) = U(M:(e)). To get the importance
of a path, we first use a mean-field approximation for the joint
probability by multiplying P(e) together, and we normalize each
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Algorithm 1 PaGE-Link

Input: heterogeneous graph G, trained GNN-based LP model

d(-,-), predicted link (s, t), size budget B, k for k-core, hyperpa-

rameters a and f, learning rate 7, maximum iterations T.

Output: Explanation as a set of paths P.

Extract the computation graph G;

Prune G, for the k-core Qf;

Initialize M(®);

t=0;

while M®) not converge and t < T do
Compute Lpred(M([)); > Eq.(1)
Compute Score(e) for each edge e; > Eq.(4)
Construct Epqsp, by finding shortest paths on gf with edge

distance —Score(e);
Compute Lpath(M(t)) according to Epqrh; > Eq.(2)
MED = MO =9V (Lyrea(MD) + Lparn(MD));
t+=1;

end while

P = Under budget B, the top shortest paths on Qf with edge

distance —Score(e);

Return: .

Table 3: Time complexity of PaGE-Link and other methods.

GNNExp [45]
O(|&cIT)

PGExp [25]
O(|&IT) [ O(|&c)

SubgraphX [48] ‘ PaGE-Link (ours)
O(|Ve|D*Prode™®) | O(|&c| +|8EIT)

P(e) for edge e = (u,0) by its target node degree D,. Then, we
perform log transformation, which improves numerical stability
for multiplying many edges with small P(e) or large D, and break
down a path score to a summation of edge scores Score(e) that are
easier to work with. This path score function captures both desired
properties mentioned above. A path score will be high if the edges
on it have high probabilities and these edges are linked to nodes
with low degrees. Finding paths with the highest Score(p) can be
implemented using Dijkstra’s shortest path algorithm [4], where
the distance represented by each edge is set to be the negative score
of the edge, i.e., =Score(e). We let Epq¢p, be the set of edges in the
top five shortest paths found by Dijkstra’s algorithm.

5.3 Mask Optimization and Path Generation

We optimize M with both Ly,,cq and Ly4sp. Lpreq Will increase
the weights of the prediction-influential edges. L4,y will further
increase the weights of the path-forming edges that are also highly
weighted by the current M and decrease other weights. Finally,
after the mask learning converges, we run one more shortest-path
algorithm to generate paths from the final M and select the top
paths according to budget B to get the explanation P defined in
Section 4. A pseudo-code of PaGE-Link is shown in Algorithm 1.

5.4 Complexity Analysis

In Table 3, we summarize the time complexity of PaGE-Link and
representative existing methods for explaining a prediction with
computation graph G. = (V, &) on a full graph G = (V,E).

Zhang, Shichang et al.

Let T be the mask learning epochs. GNNExplainer has complexity
|Ec|T as it learns a mask on &.. PGExplainer has a training stage
and an inference stage (separated by / in the table). The inference
stage is linear in |&;|, but the training stage covers edges in the
entire graph and thus scales in O(|&|T). SubgraphX has a much
higher time complexity exponential in |V,|, so a size budget of
Biode nodes is forced to replace |V,|, and D = max,eq Dy denotes
the maximum degree (derivation in Appendix C). For PaGE-Link,
the k-core pruning step is linear in |E.|. The mask learning with
Dijkstra’s algorithm has complexity |8£c |T. PaGE-Link has a better
complexity than existing methods since |8§| is usually smaller than
|&c| (see Theorem 5.1), and PaGE-Link often converges faster, i.e.,
has a smaller T, as the space of candidate explanations is smaller
(see Proposition 4.1) and noisy nodes are pruned.

6 EXPERIMENTS

In this section, we conduct empirical studies to evaluate explana-
tions generated by PaGE-Link. Evaluation is a general challenge
when studying model explainability since standard datasets do not
have ground truth explanations. Many works [25, 45] use synthetic
benchmarks, but no benchmarks are available for evaluating GNN
explanations for heterogeneous LP. Therefore, we generate an aug-
mented graph and a synthetic graph to evaluate explanations. They
allow us to generate ground truth explanation patterns and evaluate
explainers quantitatively.

6.1 Datasets

The augmented graph. AugCitation is constructed by augment-
ing the AMiner citation network [37]. A graph schema is shown
in Figure 4a. The original AMiner graph contains four node types:
author, paper, reference (ref), and field of study (fos), and edge
types “cites”, “writes”, and “in”. We construct AugCitation by aug-
menting the original graph with new (author, paper) edges typed
“likes” and define a paper recommendation task on AugCitation
for predicting the “like” edges. A new edge (s, t) is augmented if
there is at least one concise and informative path p between them.
In our augmentation process, we require the paths p to have lengths
shorter than a hyperparameter I,;,4, and with degrees of nodes on p
(excluding s & t) bounded by a hyperparameter Dy, 4. We highlight
these two hyperparameters because of the conciseness and infor-
mativeness principles discussed in Section 4. The augmented edge
(s, t) is used for prediction. The ground truth explanation is the set
of paths satisfying the two hyperparameter requirements. We only
take the top Pax paths with the smallest degree sums if there are
many qualified paths. We train a GNN-based LP model to predict
these new “likes” edges and evaluate explainers by comparing their
output explanations with these path patterns as ground truth.

The synthetic graph. UserItemAttr is generated to mimic graphs
with users, items, and attributes for recommendations. Figure 4b
shows the graph schema and illustrates the generation process. We
include three node types: “user”, “item”, and item attributes (“attr”)
in the synthetic graph, and we build different types of edges step
by step. Firstly, the “has” edges are created by randomly connect-
ing items to attrs, and the “hidden prefers” edges are created by
randomly connecting users to attrs. These edges represent items
having attributes and user preferences for these attributes. Next,



PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction

user \‘
cites buvs 1likes U
writes — ref ys | 1
author —— paper item /
- _l;I-<(; } fos has |

U

Uz \ as
attr buys i

WWW ’23, May 1-5, 2023, Austin, TX, USA

i1\ has likes

. % Prediction Uy a4

L2 edge

. %2 Explanation Uz 2
Uz

i

B patterns l3
\ as

iy

4

(a) Schema of AugCitation. “writes”, (b) Schema of UserItemAttr (the left box) and its generation process (the right box). Three types of base
“cites”, and “in” edges are original. edges are generated first, i.e., “has” (black), “hidden prefers” (dashed gray), and “buys” (blue). The solid
The “likes” edges (dashed red) are “has” and “buys” edges are then used to generate “likes” edges (dashed red) for prediction and the ground

augmented for prediction.

truth explanation patterns (green arrows).

Figure 4: The proposed augmented graph AugCitation and the synthetic graph UserItemAttr.

we randomly sample a set of items for each user, and we connect a
(user, item) pair by a “buys” edge, if the user “hidden prefers” any
attr the item “has”. The “hidden prefers” edges correspond to an
intermediate step for generating the observable “buys” edges. We
remove the “hidden prefers” edges after “buys” edges are generated
since we cannot observe ‘hidden prefers” information in reality. An
example of the rationale behind this generation step is that items
have certain attributes, like the item “ice cream” with the attribute
“vanilla”. Then given that a user likes the attribute “vanilla” as hid-
den information, we observe that the user buys “vanilla ice cream”.
The next step is to generate more ‘buys” edges between randomly
picked (user, item) pairs if a similar user (two users with many
shared item neighbors) buys this item. The idea is like collaborative
filtering, which says similar users tend to buy similar items. The
final step is generating edges for prediction and their corresponding
ground truth explanations, which follows the same augmentation
process described above for AugCitation. For UserItemAttr, we
have “has” and “buys” as base edges to construct the ground truth,
and we create “likes” edges between users and items for prediction.

6.2 Experiment Settings

The GNN-based LP model. As described in Section 3, the LP model
involves a GNN encoder and a prediction head. We use RGCN [32]
as the encoder to learn node representations on heterogeneous
graphs and the inner product as the prediction head. We train the
model using the cross-entropy loss. On each dataset, our prediction
task covers one edge type r. We randomly split the observed edges
of type r into train:validation:test = 7:1:2 as positive samples and
draw negative samples from the unobserved edges of type r. Edges
of other types are used for GNN message passing but not prediction.

Explainer baselines. Existing GNN explanation methods cannot
be directly applied to heterogeneous LP. Thus, we extend the popu-
lar GNNExplainer [45] and PGExplainer [25] as our baselines. We
re-implement a heterogeneous version of their mask matrix and
mask predictor similar to the heterogeneous mask learning mod-
ule in PaGE-Link. For these baselines, we perform mask learning
using their original objectives, and we generate edge-induced sub-
graph explanations from their learned mask. We refer to these two
adapted explainers as GNNExp-Link and PGExp-Link below. We do
not compare to other search-based explainers like SubgraphX [48]

Table 4: ROC-AUC scores on learned masks. PaGE-Link out-
performs baselines.

GNNExp-Link  PGExp-Link ‘ PaGE-Link (ours)

AugCitation 0.829 0.586 0.928
UserItemAttr 0.608 0.578 0.954

because of their high computational complexity (see Section 5.4).
They work well on small graphs as in the original papers, but they
are hard to scale to large and dense graphs we consider for LP.

6.3 Evaluation Results

Quantitative evaluation. Both the ground truth and the final ex-
planation output of PaGE-Link are sets of paths. In contrast, the
baseline explainers generate edge masks M. For a fair compari-
son, we take the intermediate result PaGE-Link learned, also the
mask M, and we follow [25] to compare explainers by their masks.
Specifically for each computation graph, edges in the ground truth
paths are treated as positive, and other edges are treated as negative.
Then weights in M are treated as the prediction scores of edges
and are evaluated with the ROC-AUC metric. A high ROC-AUC
score reflects that edges in ground truth are precisely captured
by the mask. The results are shown in Table 4, where PaGE-Link
outperforms both baseline explainers.

For scalability, we showed PaGE-Link scales linearly in O(I(‘Jéc D
in Section 5.4. Here we evaluate its scalability empirically by gen-
erating ten synthetic graphs with various sizes from 20 to 5,500
edges in G.. The results are shown in Figure 2b, which suggests
the computation time scales linearly in the number of edges.

Qualitative evaluation. A critical advantage of PaGE-Link is that
it generates path explanations, which can capture the connections
between node pairs and enjoy better interpretability. In contrast,
the top important edges found by baseline methods are often dis-
connected from the source, the target, or both, which makes their
explanations hard for humans to interpret and investigate. We con-
duct case studies to visualize explanations generated by PaGE-Link
on the paper recommendation task on AugCitation.

Figure 5 shows a case in which the model recommends the source
author “Vipin Kumar” the recommended target paper titled “Fast
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Figure 5: Explanations (green arrows) by different explainers for the predicted link (a2367, p16200) (dashed red). PaGE-Link
explanation explains the recommendation by co-authorship, whereas baseline explanations are less interpretable.

a328: Huan Liu

p5670: Using association rules to
solve the cold-start problem in
recommender systems

f3: Data mining
f4: Computer science

author
fos
paper
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Phd f34: Artificial intelligence
~ 7 rites f50: Machine learning
a328_ wri f4134: Redundancy (engineering)
N Writes 95165 f5674: User profile
“'r;, p22646: A tool for collecting

provenance data in social media
p25160: Redundancy based feature
selection for microarray data
p35294: Efficiently handling
feature redundancy in high-
5674 dimensional data

Figure 6: Top three paths (green arrows) selected by PaGE-
Link for explaining the predicted link (a328, p5670) (dashed
red). The selected paths are short and do not go through a
generic field of study like “Computer Science”.

and exact network trajectory similarity computation: a case-study
on bicycle corridor planning”. The top path explanation generated
by PaGE-Link goes through the coauthor “Shashi Shekhar”, which
explains the recommendation as Vipin Kumar and Shashi Shekhar
coauthored the paper “Correlation analysis of spatial time series
datasets: a filter-and-refine approach”, and Shashi Shekhar wrote
the recommended paper. Given the same budget of three edges,
explanations generated by baselines are less interpretable.

Figure 6 shows another example with the source author “Huan
Liu” and the recommended target paper titled “Using association
rules to solve the cold-start problem in recommender systems”.
PaGE-Link generates paths going through the common fos of the
recommended paper and three other papers written by Huan Liu:
22646, p25160, and p35294. We show the PaGE-Link explana-
tion with the top three paths in green. We also show other un-
selected fos shared by the p22646, p25160, and p35294 and the
target paper. Note that the explanation paths all have length three,
even though there are many paths with length five or longer,
e.g., (a328, p22646, f4, p25260, f4134, p5670). Also, the explanation
paths go through the fos “Redundancy (engineering)” and “User

profile” instead of generic fos like “Artificial intelligence” and “Com-
puter science”. This case demonstrates that explanation paths se-
lected by PaGE-Link are more concise and informative.

7 HUMAN EVALUATION

The ultimate goal of model explanation is to improve model trans-
parency and help human decision-making. Human evaluation is
thus the best way to evaluate the effectiveness of an explainer,
which has been a standard evaluation approach in previous works
[6, 30, 33]. We conduct a human evaluation by randomly picking
100 predicted links from the test set of AugCitation and generate
explanations for each link using GNNExp-Link, PGExp-Link, and
PaGE-Link. We design a survey with single-choice questions. In
each question, we show respondents the predicted link and those
three explanations with both the graph structure and the node/edge
type information, similarly as in Figure 5 but excluding method
names. The survey is sent to people across graduate students, post-
docs, engineers, research scientists, and professors, including peo-
ple with and without background knowledge about GNNs. We ask
respondents to “please select the best explanation of ‘why the model
predicts this author will like the recommended paper?’ ”. At least
three answers from different people are collected for each question.
In total, 340 evaluations are collected and 78.79% of them selected
explanations by PaGE-Link as the best.

8 CONCLUSION

In this work, we study model transparency and accountability on
graphs. We investigate a new task: GNN explanation for heteroge-
neous LP. We identify three challenges for the task and propose a
new path-based method, i.e. PaGE-Link, that produces explanations
with interpretable connections, is scalable, and handles graph hetero-
geneity. PaGE-Link explanations quantitatively improve ROC-AUC
by 9 - 35% over baselines and are chosen by 78.79% responses as
qualitatively more interpretable in human evaluation.
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A PROOF OF PROPOSITION 4.1

Proor. We prove Z,, 4 = 0(S,, 4) by definition, where we show

. Z, .. .
limy, 00 ﬁ = 0. As we can permute the indices of nodes in

G(n, d), without loss of generality, we assume Z, 4 is the expected
number of paths between nodes indexed 1 and n. Our proof is
mainly based on the result in [31], which computes the expected
number of all 1-n paths, ie., Z,, g = (n — 2)!1d™ e(1+0(1)). On the
other hand, the number of edge-induced subgraphs considered in
[25, 45] equals the size of the power set of all edges, i.e., S, 4 = 2d(3).
We thus have

log Z, 4 =log [(n—2)!1d" te(1 +0(1))] (1)

< log |v2r(n - 2)(n7_2)("_2)e12('1*2) d"le(1+ o(l))]
)

- %log(ZH(n —2))+ (-2 log(*— %) +log 12(n1_ 5
+(n—1)logd+1+log(1+0(1)) 3)

= O(logn) + O(nlogn) + O(log %) +O(nlogd) (4)

+1log(1+0(1)) (5)

= O(nlogn) +log(1+o0(1)) 6)

log Sy.q = log2¢(2) = d(g) log2 = O(n?) @)

Z Z

lim =% - Iim exp(log n’d) (8)
n—oo Sn,d n—oo Sn,d
Znd

= lim log —— 9

exp( lim log Sn,d) ©

=exp( lim logZ, 4 —log S, 4) (10)

n—oo

exp(nlgigo O(nlogn) +log(1+0(1)) — o(n?) (@11
=0 (12)

Step (1) to (2) is Stirling’s formula. Step (8) to (9) is because exp is
continuous. [ |
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B DETAILED THEOREM 5.1

We now state a more detailed version of Theorem 5.1. This theorem
gives the exact formula of d4/(n,d, k) and dg(n, d, k), which are
built upon a Poisson random variable. The argument is adapted
from [14, 29]. Readers can refer to [14, 29] for the proof.

For p1 > 0, let Po(y) denote a Poisson distribution with mean .
Let Y4 (dn) = P(Po(dn) > k) be the tail probability of Po(dn). Let
ci = inf50 p/pr—1(1). When dn > ci, the equation p/v_q () =
dn will have two roots for p. Let p(dn, k) be the larger root. Then
we have the following more detailed version of Theorem 5.1 with
d(n,d, k) and dg(n, d, k) as functions of p(dn, k).

Theorem B.1 (Pittel, Spencer and Wormald). Let G(n,d) be a
random graph with m edges as in Proposition 4.1. Let GX(n,d) =
(V¥ (n,d), X (n, d)) be the k-core of G (n, d). Whendn > ci, G¥ (n, d)
will be nonempty with high probability (w.h.p.) for large n. Also,
G*(n,d) will contain Ui (u(dn, k))n nodes and [p(dn, k)2 / (d?n(n —

1))]m edges w.h.p. for large n, i.e., [VE(n,d)|/n LN Y (u(dn, k)) and

|EX (n, d)|/m L u(dn, k)2 /(d?n(n - 1)) (i stands for convergence
in probability).

C COMPLEXITY OF SUBGRAPHX

The search-based methods often have much higher time complex-
ity exponential in the number of nodes or edges. Thus, a budget
is forced instead of searching subgraphs with all sizes. For exam-
ple, SubgraphX finds all connected subgraphs with at most B4,
nodes, which has complexity ©(|V,|D?Brode=2) for a graph with
maximum degree D = maxyey Dy. This complexity can be shown
using the following two lemmas.

Lemma C.1. For a graph G with n vertices, the number of the
connected subgraph of G having B,,,4. nodes is bounded below by
the number of trees in G having By, 4, nodes.

Proor. Each connected subgraph has a spanning tree. [ ]

Lemma C.2. For a graph G with node set 'V, the number of trees in
G having Bpoge tree nodes is ©(|V|D?Brode=2),

ProoF. See [11] for proof using an encoding procedure. [ ]

D DATASET DETAILS

We show the hyperparameters for constructing the datasets in
Section 6 in Table 5, which includes the augmentation of the Aminer
citation graph and the generation of the synthetic graph.

Table 5: Hyperparameters for constructing AugCitation and
UserItemAttr

lmax Dmax Pmax

AugCitation 3 30 5
UserItemAttr 3 15 5
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E PATH HIT EVALUATION

Besides ROC-AUC scores, another way to evaluate the explanations
is through the path hit rate (HR). Specifically, we fix the budget of
B edges and evaluate whether an explanation can hit any complete
path in the ground truth. Note that the ground truth for each link
(s, t) only has the top Ppqx shortest paths with the smallest degree
sums, so hitting a long path or a less informative path with high-
degree generic nodes will not count.

For a fair comparison with baselines, we take the generated
explanation mask M for each method, select the top B weighted
edges to compare against the ground truth. We show results with
different budget B in Table 6. Explanations generated by PaGE-
Link have higher path HR than baselines on both datasets. In con-
trast, GNNExp-Link and PGExp-Link can barely hit any path in the
ground truth for B less than 50.

Note that the actual explanation output of PaGE-Link is a set of
paths P. If we evaluate P instead of the top cut of the intermediate

WWW ’23, May 1-5, 2023, Austin, TX, USA

output mask M. Then PaGE-Link can achieve perfect path HR (=1)
when the budget |P| gets large.

Table 6: Path hit rate (HR). PaGE-Link has high HR with a
small budget B. Baselines achieve nonzero HR for large B.

| B | GNNExp-Link PGExp-Link | PaGE-Link (ours)

10 0.000 0.000 0.007
L 50 0.002 0.000 0.194
AugCitation | o, 0.019 0.000 0.425
200 0.064 0.002 0.645

10 0.000 0.000 0.163

Userttemattr | 0.008 0.032 0.705
100 0.016 0.039 0.790

200 0.046 0.101 0.907
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