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Abstract

Product catalogs, conceptually in the form of
text-rich tables, are self-reported by individ-
ual retailers and thus inevitably contain noisy
facts. Verifying such textual attributes in prod-
uct catalogs is essential to improve their re-
liability. However, popular methods for pro-
cessing free-text content, such as pre-trained
language models, are not particularly effective
on structured tabular data since they are typ-
ically trained on free-form natural language
texts. In this paper, we present Tab-Cleaner, a
model designed to handle error detection over
text-rich tabular data following a pre-training
/ fine-tuning paradigm. We train Tab-Cleaner
on a real-world Amazon Product Catalog table
w.r.t millions of products and show improve-
ments over state-of-the-art methods by 16% on
PR AUC over attribute applicability classifica-
tion task and by 11% on PR AUC over attribute
value validation task.

1 Introduction

Product catalogs are widely used by E-commerce
websites to organize product information (Dong
et al., 2020). They can be conceptualized as wide
tables where each row corresponds to a product and
each column corresponds to an attribute (Table 1).
Most of the product catalog data are self-reported
by individual retailers and thus inevitably contain
various types of errors (Dong et al., 2020). It is
critical to clean the data to avoid cascading errors
harming downstream applications (Pujara et al.,
2017; Chu et al., 2016).

Due to product catalogs’ wide tabular format
and rich textual content, attribute cleaning poses a
number of challenges as we outline below.

C1: Product catalogs are structured tables
with unstructured textual values. Errors in prod-
uct catalogs are indicated by column-wise, row-
wise, and table-wise inconsistencies (Table 1).
While common pre-trained language models (LMs)
(Rajpurkar et al., 2016; Clark et al., 2020; Beltagy

et al., 2019; Martin et al., 2019) are effective in
processing free texts, they are not suited to cap-
ture tabular structures. Although recent works (Yin
etal., 2020; Herzig et al., 2020) have adapted Trans-
formers to jointly query tabular and textual data ,
their goal is information extraction (e.g. answer-
ing SQL/free text questions) or tabular structure
prediction, rather than error detection.

C2: Attributes in product catalogs are
strongly correlated with each other. For example,
in Table 1, “Cheddar” is a valid flavor on its own,
but contradicts its ingredient column “Cayenne
Pepper, Paprika Extract, Dehydrated Spices”. Such
correlation renders anomaly detection methods fo-
cusing only on value distributions in a single col-
umn ineffective.

C3: Product catalogs are extraordinarily
wide. Considering that some attributes of prod-
uct catalogs may be text-heavy (e.g., product ti-
tles and descriptions are often very long.), a super-
long sequence will arise from concatenating all
textual attributes of a specific product. Existing
table representation models (Yin et al., 2020; Du
et al., 2021) restrict input sequence length to a cer-
tain budget (e.g., 512) by truncation, which will
inevitably cause information loss.

To address the above challenges, we present Tab-
Cleaner, a transformer model with a hierarchical-
attention mechanism and trained with the pre-
training / finetuning paradigm to facilitate
data cleaning over text-rich tabular data for E-
commerce catalog. Our proposed model is generic.
It applies not only to the product domain but also
excels in other domains which involve text-rich
tabular data. In summary, this paper makes the
following contributions.

* We propose a tabular structure-aware pre-training
/ fine-tuning paradigm to enable a Transformer-
based model to process text-rich tabular data.

— We propose a novel hierarchical attention
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Product Title | Product Category |  Flavor | Ingredient ;_Color | Size
7777777 Brand A Tortilla Chips 3y~~~ |\ . = . . "~ Ground Corn, Chipotle Pepper |~~~ | _ . "~ |
Rl Spicy Queso. 6-2ozbags 1 SMPYANGCIISPS ) SPIEY QUS| powder, Paprika Bxtract, Spices 1T 1 07207 |
Brand B Bean Chips Spicy Queso] : : : Navy Beans, Cayenne Pepper, : : 5.5 Ounce
R High Protein and Fiber, Gluten Free, , chips-and-crisps | Cheddar Paprika Extract, | | (P.ack of 6)
| _ _ VeganSnack, 5.5 Ounce (Packof6) L | DehydratedSpices . 777 7|
ani " ! ! - | 100% pure raw honey | I
Rs | Brand C Organic Honey, Blossom, 17.6 Ounce : honey : Blossom : straight from the hive : jl 17.6 Ounce
777777 Brand DBPA FreeNoSpilt; .~~~ "~~~ -~~~ “~"°"°" """~ """ ooooomn o ]
Ral . Sippy Cup. Orange (9 ounce) | Deby-drinkware | Oramge | P , Ornge | Soumee |
Brand F Women’s Spa Studio o | | Aloe, Camellia Sinensis | | Total
Rs Green Tea Eye Pads 2 Pack- Each Contains’ ! green-teas I Green Tea ! Leaf Extract, I Green ! 10 Treatments
5 treatment (Total 10 Treatments) 1 ! ' Panax Ginseng Root Extract '

 We mask the brand of the products to avoid revealing sensitive information.

Table 1: An example product catalog, where each row corresponds to a product and each column corresponds to an attribute. A
vast majority of attributes in product catalogs are textual attributes. The incorrect attributes are highlighted in red.

mechanism to capture attribute-level corre-
lation.

— The hierarchical attention also enables a
sparse attention pattern to reduce memory
consumption and speed-up training, which
allows us to cope with long sequences.

* We train Tab-Cleaner on a real-world Amazon
Product Catalog w.r.t millions of products and
show that we can improve over SOTA methods
by 16% on PR AUC over attribute applicability
classification task and by 11% on PR AUC over
attribute value validation task.

2 Problem Definition

Given a product catalog table 7', each row corre-
sponds to a product (p;) and each column corre-
sponds to an attribute (a;). Cell Tj; is the value of
attribute j of product ¢ containing a list of tokens.
Attributes in product catalog data can be broadly
divided into two classes:

» Context attributes (Aconext), Which are usually
long texts that describe general information of a
product (e.g., title, product description).

 Feature attributes (Ageapure), Which are usually
short texts that describe a specific attribute about
a product (e.g., color, size, flavor, scent).

We formally define the problem of data cleaning
over the product catalog table as follows:

Given: a product catalog table 7',

Identify: incorrect cells about feature attributes

{EJ }piep,aj € Afeature

3 Tab-Cleaner Framework

Since manual annotation of error data is costly and
labor-intensive to obtain on E-commerce websites,
we follow the pre-training/finetuning paradigm to
alleviate the need for large-scale labeled data for
data cleaning. Tab-Cleaner is first pre-trained on

Context Attribute 1  Feature Attribute 1 Feature Attribute 2

BECC SN

Input
Sequence
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(a) Attention pattern for cell encoding (b) Attention pattern for row encoding (c) Overall attention pattern

Figure 1: Hierarchical attention mechanism for capturing
the interactions among different attributes in a table using a
two-level architecture. (a) encodes cells (i.e., attributes) on the
basis of their tokens; (b) encodes rows (i.e., products) on the
basis of all their cells; (c) the combined hierarchical attention.

an unlabeled product catalog corpus with tabular
structure-aware pre-training objectives carefully
designed to capture the tabular structure. Then,
Tab-Cleaner fine-tunes the model using manually
curated labeled data.

3.1 Tab-Cleaner Architecture

Transformer-based models cannot be directly ap-
plied to tabular data. To flatten each row in the
input table into a sequence, we first prepend each
attribute value with a [COL] token and its column
name, then concatenate them into a flat sequence.
For example, Tab-Cleaner flattens R; in Table 1 as
follows.

[CLS] [COL] Product title: Brand A Tortilla
Chips Spicy Queso,6 - 2 oz bags [COL] Product
Category: chips-and-crisps [COL] Flavor: Spicy
Queso [COL] Ingredient: Ground Corn, Chipo-
tle Pepper Powder, Paprika Extract, Spices [COL]
Size: 6 - 2 oz bags

The input structure is designed to capture both
attribute and product representations.

Attribute (Cell-level) Representation: The
first token of every cell is always a special token
[COL]. The final hidden state corresponding to to-
ken [COL] is used to represent a cell.

Product (Row-level) Representation: Each
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Figure 2: The configuration of attention patterns for context
attribute learning. (a) partitions the long context into smaller
sequences; (b) local sliding window attention (w = 3); (c)
global dilated sliding window attention (d = 2); (d) the com-
bined model.

row in the product catalog corresponds to a spe-
cific product. The first token of a row (i.e.,[CLS])
is used to represent a product.

Tab-Cleaner is implemented by extending Dis-
tillBERT’s architecture (Sanh et al., 2019) with
additional embeddings to capture tabular structure.
The detailed architecture is given in Appendix A.

3.2 Hierarchical Attention Mechanism

Long sequences from concatenated product at-
tributes are challenging for Transformer-based
models to process due to quadratic scaling in the
full self-attention operation. However, full atten-
tion to the entire content is not necessary for mod-
eling structured tables. Based on this insight, we
propose a hierarchical attention mechanism that
models the tabular structure through a two-level
architecture, first encoding all cells on the basis
of their tokens (Fig. 1 (a)), then encoding the en-
tire rows on the basis of all their cells (Fig. 1 (b)).
In this way, we avoid full attention calculation,
thereby greatly reducing the memory and computa-
tion in need. The detailed implementation is given
in Appendix B.

3.2.1 Cell Encoding

A cell is the smallest unit to form a table. The
list of tokens within each cell expresses semantics
independently of the rest content in a row. A local
window that covers only the target cell is enough to

learn its semantics. Motivated by such observation,
our local attention pattern employs a flexible-size
window to include only the tokens of the target cell
to calculate its representation as shown in Fig. 1
(a). Attributes in a product catalog fall into two
classes: (1) feature attributes, which are usually
short and can be easily covered by a small window;
(2) context attributes, which can contain thousands
of tokens. A window with a limited size cannot
cover a context attribute.

Context Attribute Representation Learning A
straightforward solution may partition a context
attribute into smaller sequences (Fig. 6 (a)). Such
partitioning could result in information loss. To ad-
dress this issue, we propose a novel local + global
attention to learn the context attribute representa-
tion (Fig. 6 (d)).

Local Attention Most information about a to-
ken can be derived from its surrounding tokens. We
define a sliding window attention to capture local
information around each token. Given a fixed win-
dow size w, each token attends to 1/2w its local
neighboring tokens on each side (Fig. 6 (b)).

Global Attention Although the local attention
shows great effectiveness in capturing local con-
text as demonstrated in Longformer (Beltagy et al.,
2020)), it cannot aggregate the global information
into the token [COL]. The [COL] has to attend all
tokens across the cell to collect the global informa-
tion. To reduce the computational cost, we propose
a “dilated attention” on [COL] where the window
has gaps of size dilation d (Fig. 6 (c)). Note that the
“dilated attention” operation is symmetric. All to-
kens attended by [COL] also attend [COL] tokens.
Assuming we set dilation d equal to the window
size w. Given a sequence with length as L, we can
learn [COL] by attending only ceil(v/L) tokens.

We discussed the expressiveness of local +
global attention in Appendix C and showed that it
is as expressive as full attention.

3.2.2 Row Encoding

Attributes of products are usually correlated with
each other, which is useful to identify incorrect
attribute values. For example, 12 in Table 1 indi-
cates a strong correlation between the ingredient
“pepper” and the flavor “spicy”. To capture the
underlying correlations among attributes, the hier-
archical attention mechanism focuses on learning
the attention among [COL] tokens (i.e., attribute
representation) and [CLS] tokens (i.e., product rep-
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(a) Original Table

(b) Swap Cells on the Same Row

(c) Swap Cells on the Same Column

Flavor + Color Flavor
R [ SpicyQueso =~ - | Ra [ Spicy Queso
Rs Green Tea ) Green Rs Green

Color Flavor Color
f -1 Raf GreenTea  — - ]
_ Green Tea Rs | Spicy Queso  Green

Table 2: The different cell corruption strategies. We highlight the swapped attributes in red.

resentation) at its second level as shown in Fig. 1
(b). The learned attention cannot only capture the
interaction among attributes but also aggregate the
entire content of a row into the special token [CLS].

3.2.3 Conditional Encodings of Feature
Attributes over Context Attributes

Context attributes contain useful information about
products for verifying the correctness of feature at-
tributes. However, given the hierarchical attention
mechanism, feature attributes are learned indepen-
dently from context attributes. To enable condi-
tional encodings of feature attributes over context
attributes, we further improve cell encoding for
feature attributes as discussed in Appendix D.

3.3 Pre-training Objectives

In order to pre-train Tab-Cleaner using unlabeled
product catalog tabular corpus, we adopt the
Masked Language Model (MLM) objective for
learning token-level representations. In addition,
we also propose several different objectives for
tabular structure representation learning (e.g., cell-
level and row-level representations).

Objective for learning token level representa-
tions: We apply the standard Masked Language
Modeling (MLM) objective to learn token-level
representations, with a masking rate of 15%. Since
MLM lacks the ability to decompose the tabular
structure, we also propose two different objectives
for tabular structure representation learning:

Objective for learning cell-level representa-
tion: Essentially, we corrupt a certain percentage
of cells and then learn a classifier to decide if the
cell has been corrupted. This objective enables the
model to identify incorrect attributes. We use two
different corruption strategies to generate corrupted
cells as shown in Table 2.

* Swap cells on the same row: randomly swap
two attributes of the same product, e.g. switch
the attribute value of color and flavor of R to
construct corrupted cells (Table 2(b)).

* Swap cells on the same column: randomly swap
an attribute of a product with the same attribute

from another product, e.g. switch the flavor at-
tributes of 21 and R5 (Table 2(c)).

A binary classifier is placed over the final hidden
state corresponding to the token [COL] to decide
whether the cell has been corrupted.

Objective for learning row-level representa-
tion: Each product in the product catalog is associ-
ated with a label indicating its category. To learn
row-level representation, we apply a multi-class
classifier over the final hidden state corresponding
to [CLS] token to predict the category of the prod-
uct. This objective helps the model to understand
the entire content of a product.

Both objectives for learning cell and row level
representation can be modeled using cross-entropy
between the one-hot label and the prediction:

L= yrlogpy (1)
k

where ;. is the true label and p; is the softmax
probability for the k-th class. The final objective
function is formulated by combining all three ob-
jectives together.

3.4 Fine-tuning

The pre-training procedure is followed by the fine-
tuning stage on labeled data. During the fine-tuning
stage, we apply Tab-Cleaner to identify two kinds
of data errors:

 Inapplicable attribute, which refers to an at-
tribute that a product should not have. For exam-
ple, a sippy cup is not edible and thus should not
have the attribute “flavor” (R4 in Table 1);

* Incorrect attribute value, which refers to in-
correct value of an attribute. For example, the
category of product “Women’s Spa Studio Green
Tea Eye Pads” should be “eye pad” instead of
“green teas”. (Ry in Table 1).

To predict the correctness of an attribute, its rep-
resentation ([COL] embeddings) is fed into a two-
layer network with ReLU activations. The output is
then used to predict the correctness from a sigmoid
layer, training with a binary classification objective.
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We demonstrate that Tab-Cleaner is effective in de-
tecting both inapplicable attributes and incorrect
attribute values in experimental studies.

4 [Experiments

In this section, we evaluate Tab-Cleaner over two
different data cleaning downstream tasks on real-
world Amazon datasets.

4.1 Datasets

Datasets for Pre-training We construct two tab-
ular corpora based on the product data obtained
from the public Amazon website for pre-training.
Due to the different numbers of attributes included,
we call these two pre-training tables standard table
and wide table. Specifically, the wide table is con-
structed to investigate how Tab-Cleaner deals with
extremely long sequences. Detailed information
has been introduced in Appendix E.1 and E.2.

Datasets for Fine-tuning To ascertain the per-
formance of Tab-Cleaner, we study two down-
stream tasks: attribute applicability classification
and attribute value validation. Details are provided
in Appendix E.2.

4.2 Experimental Setup

Pre-training & Fine-tuning We train Tab-Cleaner
for three epochs for pre-training and 10 epochs for
fine-tuning. Detailed settings are in Appendix E.3.

Evaluation Metric. Our goal is to identify in-
correct attributes of a product, which is a binary
classification problem. We adopt the area under the
Precision-Recall curve (PR AUC), the area under
the Receiver Operating Characteristic Curve (ROC
AUCQC), and Recall at Precision=X (R@P=X) for
evaluation. Details about these metrics are given in
Appendix E.3.

Compared Methods. We evaluate Tab-Cleaner
against state-of-the-art (SOTA) algorithms, includ-
ing (1) DistillBERT (Sanh et al., 2019), since Tab-
Cleaner is implemented by extending DistillBERT;
(2) Transformer for Longer Sequences (e.g., Long-
former (Beltagy et al., 2020)); (3) Nature Language
Inference method (NLI). Details about the baseline
methods are given in Appendix E.3. We did not in-
clude tabular representation models as our baseline
because they cannot be applied to our scenario.

4.3 Data Cleaning Tasks

Attribute Applicability Classification We require
each method to predict the applicability of the at-
tribute in the test dataset. Details are provided in

Appendix E.4. As presented in Table 3: (1) NLI
performs the worst among all methods, indicating
the necessity of jointly leveraging all attributes to
detect error; (2) Tab-Cleaner consistently outper-
forms baselines in all cases with significant perfor-
mance gain (improving SOTA from 0.296 to 0.379
on R@P=0.9).

Attribute Value Validation We require each
method to validate the correctness of the attribute
value in the test dataset. As shown in Table 4,
TabCleaner handles both short sequences and long
sequences very well.

4.4 Scalability

To demonstrate the scalability of Tab-Cleaner, we
present training time and memory cost for pre-
training over the wide table in Table 5. Specifically,
we train Tab-Cleaner for three epochs where Tab-
Cleaner has 6 layers, a hidden dimensionality of
768, 12 heads, and a batch size of 32. To fairly
compare different transformer-based methods, the
same setting is employed for all models. Before
pre-training, we truncate each row’s contents to
512 tokens to make training feasible for Distill-
BERT. Tab-Cleaner shows the best performance in
terms of both pre-training time and memory cost.
The superiority of Tab-Cleaner can ascribe to the
sparse attention pattern enabled by the hierarchical-
attention mechanism.

Pre-training Time | Memory Cost
Methods (Hours/Ef)och) (Ml%)
DistillBERT 26.95 31263
Longformer 60.56 32391
Tab-Cleaner 21.63 26501

Table 5: Training time and memory cost of different methods.

4.5 Ablation Study

Improvement brought by pre-training Tab-
Cleaner follows the pre-training/finetuning
paradigm to alleviate the need for large-scale
labeled data for data cleaning. To validate the
improvement brought by pre-training, we derive
a baseline Tab-Cleaner without pre-training
and compare it with Tab-Cleaner over attribute
applicability classification task as shown in
Fig. 3. Tab-Cleaner without pre-training directly
fine-tunes over the distilled version of the BERT
base model without pre-training over the Amazon
product catalog corpus. We observe that the
pre-training brings significant performance gain:
Tab-Cleaner with pre-training increases the PR
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Pre-training over Standard Table

Pre-training over Standard Table

Methods PR AUC | ROC AUC | R@P=0.6 | R@P=0.7 | R@P=0.8 | R@P=0.9

Methods PR AUC | ROC AUC | R@P=0.6 | R@P=0.7 | R@P=0.8 | R@P=0.9

NLI 0.33 0.832 0.237 0.181 0.11 0.079 NLI 0.242 0.637 0.011 0.019 0 0

DistillBERT | 0.593 0.907 0.561 0.47 0.411 0.296 DistilBERT | 0.622 0.894 0.561 0.388 0.226 0.011
Longformer 0.554 0.905 0.501 0.462 0.395 0.245 Longformer 0.512 0.847 0.326 0.207 0.023 0.019
Tab-Cleaner | 0.613 0.91 0.583 0.533 0.437 0.379 Tab-Cleaner | 0.623 0.871 0.646 0.476 0.242 0.059

Pre-training over Wide Table

Pre-training over Wide Table

Methods PR AUC | ROC AUC | R@P=0.6 | R@P=0.7 | R@P=0.8 | R@P=0.9

Methods PR AUC | ROC AUC | R@P=0.6 | R@P=0.7 | R@P=0.8 | R@P=0.9

NLI 0.33 0.832 0.237 0.181 0.11 0.079 NLI 0.242 0.637 0.011 0.019 0 0

DistillBERT | 0.468 0.872 0.395 0.359 0.316 0.126 DistillBERT 0.44 0.764 0.219 0.123 0.038 0.015
Longformer 0.533 0.89 0.403 0.407 0.347 0.185 Longformer 0.471 0.793 0.276 0.188 0.061 0.019
Tab-Cleaner | 0.541 0.903 0.458 0.411 0.375 0.3 Tab-Cleaner | 0.487 0.81 0.415 0.234 0.076 0.011

Table 3: Results of data cleaning over attribute applicability
classification task. The numbers in bold represent the best
performance. TabCleaner gives the best performance.

EEm With Pre-training
[XIN Without Pre-training

Table 4: Results of data cleaning over attribute value valida-
tion task. The numbers in bold represent the best performance.
TabCleaner handles both short sequences and long sequences
very well.

EZ Tab Cleaner

B Tab Cleaner w/o additional embeddings

B Tab Cleaner w/o proposed pre-training objective
BN Tab Cleaner w/o hierarchical attention

PR AUC ROCAUC ACC R@P=0.5R@P=0.6R@P=0.7R@P=0.8R@P=0.9

Figure 3: Improvement brought by pre-training over attribute

applicability classification task.

AUC of Tab-Cleaner without pre-training from
0.340 to 0.613 and increases R@P=0.9 from 0.101
to 0.379.

Impact of different components of Tab-
Cleaner Upon the base Tab-Cleaner model, we
derive three different variants as follows:

* Tab-Cleaner w/o additional embeddings: We
exclude additional embeddings during learning.

* Tab-Cleaner w/o table structure-aware objec-
tive: We do not employ the pre-training objective
for learning tabular substructure representations.

* Tab-Cleaner w/o hierarchical attention: We
do not adopt the hierarchical attention.

We compare these three variants with the origi-
nal Tab-Cleaner framework over the attribute value
validation task in Fig. 4. We observe that: (1) The
original Tab-Cleaner achieves the best performance,
showing the necessity of integrating all three com-
ponents; (2) Tab-Cleaner w/o hierarchical attention
presents the worst performance, indicating the ef-
fectiveness of the hierarchical attention mechanism
in capturing information from tabular data.

4.6 Case Study

To further demonstrate the capability of Tab-
Cleaner in detecting real-world errors in the Ama-
zon dataset, we present examples of identified er-
rors and missed errors as shown in Table 6. We
pre-trained Tab-Cleaner over standard length tab-

PR AUC ROCAUC ACC R@P=0.5R@P=0.6R@P=0.7R@P=0.8R@P=0.9

Figure 4: Impact of different components of Tab-Cleaner in
terms of attribute applicability classification task.

ular corpus and fine-tuned Tab-Cleaner over two
downstream tasks: attribute applicability classifi-
cation and attribute value validation. Contrary to
the common settings, a positive label in an error
detection scenario means the data instance is an
error while a negative label means the data instance
is true. Therefore, the triples with the highest prob-
ability have the highest possibility to be incorrect.
Threshold o is chosen based on the best classifica-
tion accuracies on the validation dataset in order
to classify the attributes. Given human labeled
incorrect attributes in the test dataset, we present
the top 3 attributes with the highest probability as
identified errors and the top 3 attributes with the
lowest probability as missed errors. We observe
that attribute values of identified errors usually vi-
olate the description of products and thus can be
correctly classified as errors. For example, prod-
uct 1 in Table 6 is not a skin care product, thus
should not have the attribute “skin type”. Although
the attribute values of products 7, 9, and 11 are
commonly observed phrases to describe the target
attributes (i.e., “dark” is widely used to describe
“skin tone”), their inconsistency with the product
description makes them no longer correct attribute
values. We also notice that most of the missed
errors are correct but labeled as errors due to the
wrong annotation. We verify the correctness of all
missed errors by ourselves and highlight the correct
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Error Type Identified Errors ] Missed Errors ]
ID Product Attribute Value | ID Product Attribute Value
Inapplicable 1 Sanitiferrdllfl(i)l/;e}:?;/chain skin type 2 Brand B Isoprophyl Alcohol scent -
Attribute 3 Brand C horse Fly mask favor 4 Brand D Velvetines color j
Over Fence - Face Covers Liquid Matte Lipstick
5 Brand E sock stocking hose sox | age range 6 Brand F Coffee, Dulce ontainer Ly .
) anklets Women Print Multicolor | description De Leche Flavored Coffee contaer type
Brand G ColorStay Overtime . Brand H Loose L.
Incorrect 7 Lipcolor Forever Scarlet (040) skin tone dark 8 Face Powder, Translucent finish type matte
Attribute Value 9 Brand I Salad Dressing, ariet arlic | 10 Brand J Advanced Defence duct benefit leansi
Zesty Robusto Italian vanety £ Gum Treatment for Gingivitis product bene cleansing
Brand J Popcorn Brand K unisex-adult . .
11 S . . Item form | butter | 12 | Bottle Bright - Hydration Pack benefit brightening
easoning, White Cheddar Cleaning Tabl
eaning Tablets Clear

Table 6: Identified errors & missed errors on Amazon Data. We present the top 3 human labeled incorrect attributes with the
highest probability as identified errors. Meanwhile, the top 3 human labeled incorrect attributes with the lowest probability are

presented as missed errors.

attributes in red and attributes for which we can-
not determine their correctness based on product
profiles in blue. We observe that Tab-Cleaner can
classify the samples which cannot be correctly clas-
sified by humans. This indicates the strong power
of Tab-Cleaner in identifying errors.

5 Related Work

Natural Language Inference (NLI) Data clean-
ing for product catalog data is related to natural
language inference (NLI). Given a premise (e.g.,
product profiles in our scenario), NLI aims to clas-
sify whether the hypothesis (e.g., attribute values
in our scenario) is true, false, or undetermined (Tay
et al., 2017; Chen et al., 2016). Most of the ex-
isting NLI models are based on cross-sentence at-
tention, which can be divided into word-by-word
attention-based methods (Rocktischel et al., 2015;
Wang et al., 2017; Wang and Jiang, 2015) and inter-
sentence interaction-based methods (Yin et al.,
2018). Existing NLI methods are typically trained
on free-form natural language while Tab-Cleaner
is designed to handle error detection over text-rich
tabular data.

Tabular Data Representation Tables are im-
portant media of world knowledge (Cafarella et al.,
2008). Motivated by the large-scale language mod-
els pretrained on tasks involving unstructured natu-
ral language, several works attempt to extend the
pre-trained language models (LMs) to jointly learn
representations of tables as well as text (Yin et al.,
2020; Herzig et al., 2020; Zhang et al., 2019) with
applications including semantic parsing (Yin et al.,
2020; Herzig et al., 2020), entity linking (Deng
et al., 2020) and table structure understanding (Nas-
sar et al., 2022; Du et al., 2021; Deng et al., 2020).
The training data of these works usually involve
thousands of tables, where each table consists

of only a few rows and columns. Our proposed
method focuses on a different task, text-rich tabular
data cleaning, where the training data involve only
a single table w.r.t millions of rows.

Transformer for Longer Sequences It is chal-
lenging for Transformers-based models to process
long sequences because their self-attention opera-
tion scales quadratically with the sequence length
in terms of memory. There have been a number
of attempts to alleviate this issue (Dai et al., 2019;
Sukhbaatar et al., 2019; Rae et al., 2019; Wang
et al., 2019; Joshi et al., 2020; Child et al., 2019),
in which Longformer (Beltagy et al., 2020) and Big
Bird (Zaheer et al., 2020) are the most represen-
tative methods. All these methods focus on tasks
involving free-text long content (e.g., document
classification, and genomics data analysis), while
Tab-Cleaner is designed to cope with a wide table.

6 Conclusion

We have proposed Tab-Cleaner, a Transformer-
based model designed specifically for data-cleaning
tasks on text-rich tabular catalog data. It provides
a versatile solution for data cleaning tasks by ef-
ficiently handling the unique challenges posed by
text-rich tabular catalog data. To enhance the ef-
ficiency of training and reduce memory consump-
tion, we have introduced a novel hierarchical atten-
tion mechanism. This mechanism enables a sparse
attention pattern, allowing for the effective process-
ing of long sequences. We train Tab-Cleaner on a
real-world Amazon Product Catalog w.r.t millions
of products and show that we can improve over
SOTA methods greatly.
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Product Representation Attribute Representation

]
g G S o D 1

IRt R T )
]

Context Attribute 1

[CLS] [COL] Product Title: Brand A Tortilla Chips ... [COL] Flavor: Spicy Queso ... [COL] Ingredient: Ground Corn ...

Feature Attribute 1 Feature Attribute 2

Figure 5: Example input of Tab-Cleaner. Tab-Cleaner flattens each row in the input table into a sequence of tokens. The token
embeddings are combined with additional embeddings to capture tabular structure.

A Tab-Cleaner Architecture

Tab-Cleaner takes a m X n product catalog table as
input and produces token representation and tabular
substructure representation (i.e., cell-level represen-
tation and row-level representation). Tab-Cleaner is
implemented by extending DistillBERT’s architec-
ture (Sanh et al., 2019) with additional embeddings
that capture tabular structure (Fig. 5).

Additional embeddings The token embeddings
are combined with additional embeddings used to
encode tabular structure before feeding them to the
pre-training model:

* Position Embedding is the relative index of a
token within a cell. For example, the position
embedding of k-th token in a cell is k.
Column Embedding is the index of the col-
umn that the token appears in. For example,
the column embedding of tokens in cell T;; is
J-

Header/Cell Embedding indicates if the to-
ken corresponds to the column name or the
attribute value. It takes two possible values: 0
for the column name and 1 for attribute values.
For example, the 4-th cell of R; in Table 1
consists of a list of tokens {[COL], [Ingredi-
ent], [:], [Ground], [Corn], [Chipotle], [Pep-
per], [Powder], [Paprika], [Extract], [Spices]},
where the header/cell embedding for token
[Ingredient] and [:] are O and 1 otherwise.
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For each element x; in the input sequence, we con-
struct its input representation as:

0 ele

hi = x5 X?OS + Xlt;ol + X?eader )
where xSk is the token embedding, xP** is the posi-

tion embedding, xf“’l is the column embedding, and
xfeader jg the Header/Cell Embedding. After con-
structing all input representations, we feed them
into a stack of L successive Transformer encoders

to encode the sequence and obtain:

h! = Transformer(h!~!)

3)

where hé is the hidden state of x; after the I-th
layer.

B Implementation of the Transformer
Encoder with the Hierarchical
Attention

Let H = (hy,...,h,) denote an input representa-
tion, where h; is a d dimensional vector and H is
a matrix in R"*%. We discussed the construction
of H in Appendix B. Given the linear projections
Q, K,V the Transformer encoder computes atten-
tion scores as follows:

K
Attention(H;) =

k=1

)
where N (i) denote the out-neighbors set of node i
and H ;) corresponds to the matrix over {h; :

o (Qr(hy) K (Hpri)) ") Vi (Hpi))
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Figure 6: The configuration of attention patterns for context
attribute learning. (a) partitions the long context into smaller
sequences; (b) local sliding window attention (w = 3); (c)
global dilated sliding window attention (d = 2); (d) the com-
bined model.

j € N(i)}. K denotes the number of heads.
Qr, K, Vi, are query, key, and value functions. Let
the adjacency matrix A define a directed graph G.
Each vertex in G corresponds to a token in the in-
put sequence. A € [0,1]"*™ with A(i,5) = 1
if query ¢ attends to key j and is zero otherwise.
The traditional Transformer encoder calculates full
quadratic attention by assuming G is a fully con-
nected graph. Instead, we sparsify G by proposing
a hierarchical attention mechanism meanwhile en-
sure the proposed attentions are as powerful and
expressive as full attention. For example, the graph-
ical illustration of the attention pattern shown in
Fig. 6 (d) is given in Fig. 7.

C Expressiveness of Local + Global
Attention for Context Attribute
Learning

In this section, we discussed the expressiveness of
local + global attention and showed that it is as ex-
pressive as full attention. The graphical illustration
of the attention pattern shown in Fig. 6 (d) is given
in Fig. 7. Each node in the graph corresponds to
a token in the input sequence. Following the pro-
posed attention pattern, the token can only attend
to its directly connected neighbors.

Definition 1 h-hop enclosing graph For a h-hop
enclosing graph G = (V, E), given any two nodes
z,y € V, we have d(z,y) < h.

It is obvious that the graph in Fig. 7 is a 3-hop

Figure 7: Graphical illustration of attention pattern
shown in Fig. 6 (d). Each node in the graph corresponds
to a token in the input sequence. The token can only
attend to its directly connected neighbors.

enclosing graph. To generalize such observation,
we have the following theorem.

Theorem 1 Given an input sequence with length
as L, assuming we set dilation equal to the window
size d = w = ceil(v/L), its attention graph is
always a 4-hop enclosing graph.

We denote the input sequence as zg.—1 =
(xoy...,xr—1). Given a fixed window size w,
each token attends to 1/2w its local neighboring
tokens on each side and the global token [COL]
(z) attends tokens (zg, T4, . . ., Tpeq) Where n =
ceil(v/L) — 1. Next, we will show that given any
node x; € V, we have d(z;, xg) < 2.

* If { = k *d, token x; directly connected to the
global token [COL]. We have d(x;, o) = 1.

» If i # k x d, token x; attends all tokens within
the window ;1 /24d):(i+1/2+d) (We s€t W =
d). We can always find an integer k£ which
satisfies (1 —1/2%d) < kxd < (i+1/2xd)
because (i + 1/2xd) — (i — 1/2 % d) = d.
Therefore, we have d(z;, xg) = 2.

Since d(z;,z0) < 2, we have d(x;,x;) <
d(xi,x0) + d(zj,z9) = 4. The attention graph
is always a 4-hop enclosing graph.

We know that a node in an h-hop enclosing graph
is able to collect information from any other node
in the graph using an h-layer GNN. Therefore, any
token z; is able to aggregate information from all
tokens in the sequence using a GNN with over 4
layers.
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D Conditional Encodings of Feature
Attributes over Context Attributes

Note that content attributes contain rich informa-
tion about products, which is useful for verifying
the correctness of feature attributes. For example,
the product title “Brand A Tortilla Chips Spicy
Queso, 6 - 2 oz bags” covers multiple attributes,
including brand, product category, flavor, and size.
We can easily verify the correctness of these at-
tributes against the product title. However, given
the hierarchical attention mechanism, feature at-
tributes are learned independently from context
attributes during the cell encoding stage. Although
the correlations between feature attributes and con-
text attributes can be captured afterward during the
row encoding stage, the cross-cell token-to-token
correlation is lost. To enable cross-cell token-to-
token conditional encoding of feature attributes
over context attributes, we improve cell encoding
for feature attributes as shown in the following ex-
ample.

Example: Given a product with description
Mango Chipotle Origami Wraps are all natural
sushi wraps made from vegetable and fruit purees.
This wrap has a ripe, tropical mango flavor bal-
anced with the bold spiciness of chipotle pepper.
Origami Wraps are healthy, vegan, gluten-free al-
ternatives to seaweed nori and/or soy paper. They
are a creative, flavorful, and colorful new ingre-
dient for restaurant and home chefs alike. Use
Mango Chipotle wraps to add some Latin fusion
[favor to traditional sushi or to create innovative
sushi-style rolls with many different non-seafood
ingredients. Can be used for onigiri, nigiri, and
musubi.”, only the words highlighted in boldface
describe target attribute flavor. The value of this
product on attribute flavor is “mango”, which is
given in the product catalog.

To capture the cross-cell token-to-token corre-
lation between feature attributes and context at-
tributes, the most straightforward way is to con-
catenate the context attributes and target feature
attribute and require each token in the target feature
attribute to attend the entire concatenation. Since
the concatenation is usually long, attending all to-
kens in the concatenation is computationally im-
practical. Note that most contents in context at-
tributes are irrelevant to the target feature attributes.
We extract only the relevant information from con-
text attributes to build the concatenation instead.
We adopt two different extraction strategies as fol-

««
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Figure 8: Length distribution of string encoding for over 3
million randomly sampled products.

lows:

» Extract the words around the target attribute
value. Given the above example, the words high-
lighted in blue will be extracted to concatenate
with “Flavor: Mango” .

* Extract the words around the most frequently ob-
served textual values for the target attribute. As-
suming the most frequent observed textual values
for attribute flavor include { “fruit”, “spiciness”,
“chocolate”, “vanilla” }, the words highlighted
in red will be extracted to concatenate with the

“Flavor: Mango” .

E Experiments

E.1 Analysis of Amazon Data

Tab-Cleaner flattens each row in the input table into
a sequence of tokens by concatenating all textual
attributes. Such a process may raise a super long
sequence. To investigate the length of rows in com-
monly used catalogs in daily business, we randomly
sampled web pages from the Amazon website and
extract dozens of commonly observed attributes
to construct a standard table. We show that long
sequences have been widely observed in the stan-
dard table with only dozens of attributes. To better
understand the performance of Tab-Cleaner over
extremely long sequences, we further construct a
wide table, which contains hundreds of attributes.
Analysis To investigate the length of rows in
Amazon data used in daily business, we randomly
sampled over millions of products associated with
31 commonly used attributes. To avoid bias, we fol-
low the product categories’ frequency distribution
(i.e., commonly-occurring product categories are
sampled more often than rare product categories) to
sample data. The sampled products are cross hun-
dreds of product categories from different domains,
such as food, beauty, and drug. After concatenat-
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Standard Tabular Data
31

Dataset
#Attributes (Columns)

Longer Sequence
119

#Products (Rows) 3,110,715 677,744
#Context Attributes 7 7
#Feature Attributes 24 112

#Average length 257 639

Table 7: Pre-training data statistics.

ing all attributes of a product into a sequence, the
length distribution of products’ string encoding is
given in Fig. 8. As observed from the figure, even
though we include only 31 attributes, over 10%
rows have lengths over 512. Note that most exist-
ing Transformer models can only handle sequences
that fall within the typical 512-token limits, it is
necessary to scale Tab-Cleaner to process longer
input sequences.

E.2 Datasets

Datasets for Pre-training To prepare the unla-
beled product catalog corpus for pre-training, we
construct two tables based on randomly sampled
web pages from the Amazon website. The first
table contains a standard amount of attributes (i.e.,
31). We call it a standard table. The second table
contains a much larger amount of attributes (i.e.,
119). We call it a wide table. The detailed statistics
about these two tables are given Table 7.

Standard Table We construct the standard ta-
ble using the data sampled in Section E.1. After
flattening the table into a sequence of tokens, the
average length of rows in the standard table is 257.

Wide Table To better investigate the perfor-
mance of Tab-Cleaner over extremely long se-
quences, we construct a wide table that contains
hundreds of attributes. To ensure the sufficient
length of sampled data, we concatenate all at-
tributes of a product into a sequence and select
only products with sequence lengths over 512. The
wide table contains 677,744 products associated
with 119 attributes. The average length of rows in
the wide table is 639.

Datasets for Fine-tuning To prepare labeled
data for fine-tuning, we asked Amazon Mechan-
ical Turk (MTurk) workers to manually label the
correctness of attributes based on product profiles.
Each data point is annotated by three Amazon Me-
chanical Turk workers and the final label is decided
by majority voting. In order to ascertain the perfor-
mance of learned Tab-Cleaner representation over
error detection, we study two downstream tasks:
attribute applicability classification and attribute
value validation. As shown in Table 8, the labeled

Data Split
#Validation

2,150

Task # Feature Attributes

#Train
43,002

#Test
8,601

Attribute Applicability
Classification
Attribute Value
Validation

24

26 7,770 309 1,235

Table 8: Fine-tuning data statistics

data for the attribute applicability classification task
covers 53,753 products and 24 feature attributes,
and the labeled data for the attribute value vali-
dation task covers 9,713 products and 26 feature
attributes. For both datasets, 80 percent of the data
is used as training data for fine-tuning and the rest
is used as validation and test data. Contrary to the
common settings, a positive label in an error detec-
tion scenario means the data instance is an error
while a negative label means the data instance is
true. We can observe that both datasets are super
unbalanced. Only a few data are labeled as errors
(i.e., positive labels).

E.3 Experimental Setup

Pre-training & Fine-tuning Before pre-training,
we truncate each row’s content to satisfy the maxi-
mum sequence length requirement, as some rows
contain huge amounts of text. We train Tab-Cleaner
for three epochs for pre-training. Tab-Cleaner has
6 layers, a hidden dimensionality of 768, and 12
heads. We use the Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 5e-5. For fine-
tuning, we initialize the parameters with the pre-
trained model, and further train all parameters with
a binary classification objective for 10 epochs. To
fairly compare different transformer-based meth-
ods, the same setting is employed for all models.
We build data for evaluation using the held-out
validation/test rows to ensure that there is no over-
lapping data in training and validation/test.
Evaluation Metric. We adopt the area under
the Precision-Recall curve (PR AUC), area under
the Receiver Operating Characteristic Curve (ROC
AUC), and Recall at Precision=X (R @P=X) to eval-
uate the performance of the models over error de-
tection. To be more specific, PR AUC is defined
as the area under the precision-recall curve, which
is widely used to evaluate the ranked retrieval re-
sults. ROC AUC is a performance measurement
for classification problems at various threshold set-
tings, telling how much the model is capable of
distinguishing between classes. R@P is defined as
the recall value at a given precision, which aims
to evaluate the model performance when a specific
precision requirement needs to be satisfied. For

184

13



example, R@R = (.7 shows the recall when the
precision is 0.7.

Compared Methods. We evaluate Tab-Cleaner
against state-of-the-art (SOTA) algorithms, includ-
ing (1) DistilIBERT (Sanh et al., 2019) since Tab-
Cleaner is implemented by extending DistilIBERT;
(2) Transformer for Longer Sequences (e.g., Long-
former (Beltagy et al., 2020)); (3) nature language
inference (NLI) methods. The SOTA Transformer
for NLI is selected as our baseline. In our set-
ting, the input of the NLI model includes two parts:
product profiles (i.e, concatenation of context at-
tributes) and the corresponding feature attribute
values. These two sequences are concatenated us-
ing a separator token ([SEP]). The first token of
input is always set as a special token ([CLS]). We
feed the input into Transformers. The final hidden
state corresponding to [CLS] is used as the final
representation. To predict the correctness of the at-
tribute, a binary classifier is placed over the [CLS]
representation for inference. All baseline methods
are built within HuggingFace’s framework.

We did not include tabular representation learn-
ing models as our baseline because existing tabular
representation learning models focus on different
downstream tasks such as table query (i.e., answer-
ing either SQL questions or natural language ques-
tions given a table) or tabular structure prediction
(i.e., predict the data type or tag of a cell). They
cannot be applied to clean catalog data. First, they
require a different input data format. For example,
table query requires paired tables and text (e.g., nat-
ural language questions and their answers) and tab-
ular structure prediction requires the tags of cells.
Second, they can only deal with tiny tables (e.g.,
TABBIE (Iida et al., 2021) has to truncate tables to
30 rows and 20 columns).

E.4 Data Cleaning Tasks

Attribute Applicability Classification To eval-
uate whether the proposed hierarchical attention
mechanism is as powerful and expressive as
full-attentions, we pre-train each method over a
standard-length tabular corpus (standard table),
where most of the rows satisfy the maximum se-
quence length requirement (512) without trunca-
tion. A binary classifier is trained to predict the
correctness of attributes during fine-tuning. We
also pre-train Tab-Cleaner over a longer tabular cor-
pus (wide table), which has contexts significantly
longer than 512 tokens.
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